Melexis MLX90363KDCABB-000RE Triaxisâ® magnetometer ic with high speed serial interface Datasheet

MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
Features and Benefits
Tria⊗is® Magnetometer (BX, BY, BZ)
On Chip Signal Processing for Robust Position Sensing
High Speed Serial Interface (SPI compatible – Full Duplex)
Enhanced Self-Diagnostics Features
5V and 3V3 Application Compatible
14 bit Output Resolution
48 bit ID Number
Single Die – SO8 Package RoHS Compliant
Dual Die (Full Redundant) – TSSOP16 Package RoHS Compliant
Applications
Absolute Contactless Position Sensor
Ordering Code
Product Code Temperature Code
MLX90363
MLX90363
MLX90363
MLX90363
MLX90363
MLX90363
MLX90363
MLX90363
MLX90363
MLX90363
MLX90363
MLX90363
Legend:
Temperature Code:
Package Code:
Option Code:
Packing Form:
Ordering example:
K
K
K
K
E
E
E
E
L
L
L
L
Package Code
DC
DC
GO
GO
DC
DC
GO
GO
DC
DC
GO
GO
ABB-000
ABB-000
ABB-000
ABB-000
ABB-000
ABB-000
ABB-000
ABB-000
ABB-000
ABB-000
ABB-000
ABB-000
Packing Form Code
RE
TU
RE
TU
RE
TU
RE
TU
RE
TU
RE
TU
L for Temperature Range - 40°C to 150°C,
K for Temperature Range - 40°C to 125°C,
E for Temperature Range - 40°C to 85°C.
DC for SOIC-8, GO for TSSOP-16.
xxx-000: Standard version
RE for Reel
TU for Tube
MLX90363LGO-ABB-000-TU
GO [TSSO-16]
3901090363
Rev. 005
Option Code
PPS
Page 1 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
1. Functional Diagram
VDEC
VDD
3V3
Reg
Triais™
DSP
µC
VX
VZ
MUX
VY
G
A
SPI(4)
14
D
RAM
ROM
TEST
VSS
EEP
ROM
Figure 1 – Block Diagram
2. Description
The MLX90363 is a monolithic magnetic sensor IC featuring the Tria⊗is® Hall technology. Conventional
planar Hall technology is only sensitive to the flux density applied orthogonally to the IC surface. The
Tria⊗is® Hall sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained
through an Integrated Magneto-Concentrator (IMC) which is deposited on the CMOS die .
The MLX90363 is sensitive to the three (3) components of the flux density applied to the IC (i.e. BX, BY
and BZ). This allows the MLX90363 to sense any magnet moving in its surrounding and decode its
position through an appropriate signal processing.
Using its Serial Interface the MLX90363 can transmit a digital output (SP – 64 bits per frame).
The MLX90363 is intended for Embedded Position Sensor applications (vs. Stand-Alone “Remote”
Sensor) for which the output is directly provided to a microcontroller (Master) close to the magnetometer
IC MLX90363 (Slave). The SPI protocol confirms this intent.
The MLX90363 is using full duplex SPI protocol and requires therefore the separated SPI signal lines:
MOSI, MISO, /SS and SLCK1.
1
The MLX90316 multiplexes the MOSI/MISO lines. The application diagrams of the MLX90363 and MLX90316 are therefore not
compatible.
3901090363
Rev. 005
Page 2 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
TABLE of CONTENTS
FEATURES AND BENEFITS ....................................................................................................................... 1
APPLICATIONS ............................................................................................................................................ 1
1.
FUNCTIONAL DIAGRAM ...................................................................................................................... 2
2.
DESCRIPTION ....................................................................................................................................... 2
3.
GLOSSARY OF TERMS − ABBREVIATIONS − ACRONYMS ............................................................ 5
4.
PINOUT .................................................................................................................................................. 5
5.
PIN DESCRIPTION ................................................................................................................................ 6
6.
ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 6
7.
DETAILED DESCRIPTION.................................................................................................................... 7
8.
MLX90363 ELECTRICAL SPECIFICATION ......................................................................................... 8
9.
MLX90363 ISOLATION SPECIFICATION ............................................................................................ 8
10. MLX90363 TIMING SPECIFICATION ................................................................................................... 9
10.1.
10.2.
TIMING SPECIFICATION FOR 5V APPLICATION DIAGRAM ............................................................................ 9
TIMING SPECIFICATION FOR 3V3 APPLICATION DIAGRAM ........................................................................ 10
11. MLX90363 ACCURACY SPECIFICATION ......................................................................................... 11
12. MLX90363 MAGNETIC SPECIFICATION .......................................................................................... 13
13. MLX90363 CPU & MEMORY SPECIFICATION ................................................................................. 13
14. MLX90363 SERIAL INTERFACE ........................................................................................................ 14
14.1.
ELECTRICAL LAYER AND TIMING SPECIFICATION ..................................................................................... 14
14.2.
SERIAL PROTOCOL .................................................................................................................................... 16
14.3.
MESSAGE GENERAL STRUCTURE .............................................................................................................. 16
14.4.
REGULAR MESSAGES ................................................................................................................................ 18
14.4.1. Note for the regular message “X – Y – Z – diagnostic” (Marker = 2)................................................. 18
14.5.
TRIGGER MODE 1 ...................................................................................................................................... 19
14.6.
TRIGGER MODE 2 ...................................................................................................................................... 21
14.7.
TRIGGER MODE 3 ...................................................................................................................................... 22
14.8.
TRIGGER MODES TIMING SPECIFICATIONS ................................................................................................ 23
14.9.
OPCODE TABLE ......................................................................................................................................... 26
14.10.
TIMING SPECIFICATIONS PER OPCODE, AND NEXT ALLOWED MESSAGES ................................................... 26
14.11.
NOP COMMAND AND NOP ANSWER ........................................................................................................ 27
14.12.
OSCCOUNTERSTART AND OSCCOUNTERSTOP COMMANDS ...................................................................... 27
14.13.
PROTOCOL ERRORS HANDLING ................................................................................................................. 29
14.14.
READY, ERROR AND NTT MESSAGES ....................................................................................................... 30
14.15.
DIAGNOSTICSDETAILS COMMANDS........................................................................................................... 31
14.16.
MEMORYREAD MESSAGE .......................................................................................................................... 32
14.17.
EEPROMWRITE MESSAGE ......................................................................................................................... 33
14.18.
REBOOT .................................................................................................................................................... 35
14.19.
STANDBY .................................................................................................................................................. 35
14.20.
START-UP SEQUENCE (SERIAL COMMUNICATION) .................................................................................... 36
14.21.
ALLOWED SEQUENCES .............................................................................................................................. 37
15. MLX90363 TRACEABILITY INFORMATION...................................................................................... 38
16. MLX90363 END-USER PROGRAMMABLE ITEMS ........................................................................... 38
3901090363
Rev. 005
Page 3 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
17. MLX90363 DESCRIPTION OF END-USER PROGRAMMABLE ITEMS ........................................... 39
17.1.
USER CONFIGURATION: DEVICE ORIENTATION......................................................................................... 39
17.2.
USER CONFIGURATION: MAGNETIC ANGLE FORMULA ............................................................................. 39
17.3.
USER CONFIGURATION: 3D=0 FORMULA TRIMMING PARAMETERS SMISM AND ORTH_B1B2 ............... 39
17.3.1. Magnetic Angle ∠XY ............................................................................................................................ 39
17.3.2. Magnetic Angle ∠XZ and ∠YZ ............................................................................................................ 40
17.4.
USER CONFIGURATION: 3D=1 FORMULA TRIMMING PARAMETERS KALPHA, KBETA, KT .................... 40
17.5.
USER CONFIGURATION: FILTER ................................................................................................................ 41
17.6.
VIRTUAL GAIN MIN AND MAX PARAMETERS ........................................................................................... 41
17.7.
HYSTERESIS FILTER ................................................................................................................................ 42
17.8.
EMC FILTER ON SCI PINS......................................................................................................................... 42
17.9.
IDENTIFICATION & FREE BYTES ............................................................................................................... 42
17.10.
LOCK......................................................................................................................................................... 42
18. MLX90363 SELF DIAGNOSTIC .......................................................................................................... 43
19. MLX90363 FIRMWARE FLOWCHARTS ............................................................................................ 44
19.1.
19.2.
19.3.
19.4.
START-UP SEQUENCE ................................................................................................................................ 44
SIGNAL PROCESSING (GETX) ................................................................................................................... 45
FAIL-SAFE MODE ...................................................................................................................................... 45
AUTOMATIC GAIN CONTROL .................................................................................................................... 46
20. RECOMMENDED APPLICATION DIAGRAMS .................................................................................. 47
20.1.
20.2.
20.3.
20.4.
MLX90363 IN SOIC-8 PACKAGE AND 5V APPLICATION DIAGRAMS........................................................ 47
MLX90363 IN SOIC-8 PACKAGE AND 3V3 APPLICATION DIAGRAMS...................................................... 47
MLX90363 IN TSSOP-16 PACKAGE AND 5V APPLICATION DIAGRAMS ................................................... 48
MLX90363 IN TSSOP-16 PACKAGE AND 3V3 APPLICATION DIAGRAMS ................................................. 49
21. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS
WITH DIFFERENT SOLDERING PROCESSES ........................................................................................ 50
22. ESD PRECAUTIONS ........................................................................................................................... 50
23. PACKAGE INFORMATION ................................................................................................................. 51
23.1.
23.2.
23.3.
23.4.
23.5.
23.6.
SOIC8 – PACKAGE DIMENSIONS ............................................................................................................... 51
SOIC8 – PINOUT AND MARKING ............................................................................................................... 52
SOIC8 – IMC POSITIONNING .................................................................................................................... 53
TSSOP16 – PACKAGE DIMENSIONS .......................................................................................................... 54
TSSOP16 – PINOUT AND MARKING .......................................................................................................... 55
TSSOP16 – IMC POSITIONNING ............................................................................................................... 55
24. DISCLAIMER ....................................................................................................................................... 57
3901090363
Rev. 005
Page 4 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
3. Glossary of Terms − Abbreviations − Acronyms
Gauss (G), Tesla (T): Units for the magnetic flux density − 1 mT = 10 G
TC: Temperature Coefficient (in ppm/Deg.C.)
NC: Not Connected
Byte: 8 bits
Word: 16 bits (= 2 bytes)
ADC: Analog-to-Digital Converter
LSB: Least Significant Bit
MSB: Most Significant Bit
DNL: Differential Non-Linearity
INL: Integral Non-Linearity
RISC: Reduced Instruction Set Computer
ASP: Analog Signal Processing
DSP: Digital Signal Processing
ATAN: trigonometric function: arctangent (or inverse tangent)
IMC: Integrated Magneto-Concentrator (IMC)
CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform)
EMC: Electro-Magnetic Compatibility
FE: Falling Edge
RE: Rising Edge
MSC: Message Sequence Chart
FW: Firmware
HW: Hardware
4. Pinout
Pin #
SOIC-8
TSSOP-16
1
VDD
VDEC1
2
MISO
VSS1 (Ground1)
3
Test
VDD1
4
SCLK
MISO1
5
/SS
Test2
6
MOSI
SCLK2
7
VDEC
/SS2
8
VSS (Ground)
MOSI2
9
VDEC2
10
VSS2 (Ground2)
11
VDD2
12
MISO2
13
Test1
14
SCLK1
15
/SS1
16
MOSI1
For optimal EMC behavior, it is recommended to connect the unused pins (Test) to the Ground (see
section 19).
3901090363
Rev. 005
Page 5 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
5. Pin Description
Name
Direction
Type
Function / Description
VDD
VDD
Analog
Supply (5V and 3V3 application diagrams)
MISO
OUT
Digital
Master In Slave Out
Test
I/O
Both
Test Pin
SCLK
IN
Digital
Clock
/SS
IN
Digital
Slave Select
MOSI
IN
Digital
VDEC
I/O
Analog
VSS (Ground)
GND
Analog
Master Out Slave IN
5V Application Diagrams
Decoupling Pin
3V3 Application Diagrams
Supply (Shorted to VDD)
Ground
6. Absolute Maximum Ratings
Supply Voltage,
Parameter
Value
VDD(2)
+ 18 V
Reverse VDD Voltage
− 0.3 V
Supply Voltage, VDEC
+ 3.6 V
Reverse VDEC Voltage
− 0.3 V
Positive Input Voltage
+ 11 V
Reverse Input Voltage
− 11 V
Positive Output Voltage
VDD + 0.3 V
Reverse Output Voltage
− 0.3 V
Operating Ambient Temperature Range, TA
− 40°C … + 150°C
Storage Temperature Range, TS
− 40°C … + 150°C
Magnetic Flux Density
± 700 mT
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability.
2
Maximum rise time: 10µs. Rise time faster than 10µs might induce an extra current consumption.
3901090363
Rev. 005
Page 6 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
7. Detailed Description
The three components of the applied flux density are measured through the Tria⊗is front end:
VX ∝ BX
VY ∝ BY
VZ ∝ BZ
Those three (3) Hall voltages corresponding to the three (3) components of the applied flux density are
provided to the ADC (Analog-to-Digital Converter). The Hall signals are processed through a fully
differential analog chain featuring the classic offset cancellation technique (Hall plate 2-Phases spinning
and chopper-stabilized amplifier).
The amplitude of VZ is smaller than the two (2) components VX and VY due to the fact that the magnetic
gain of the IMC only affects the components parallel to the IC surface.
The conditioned analog signals are converted through a 14 bit ADC and provided to a DSP block for
further processing. The DSP stage is based on a 16 bit RISC micro-controller whose primary function is
the extraction of the position information (magnetic angle(s)) from the raw signals (after front-end
compensation steps) through one the following operations:
 k ⋅ V1 

V
 2 
α = ATAN 
where V1 = VX or VY or VZ , V2 = VX or VY or VZ and k (or SMISM) is a programmable factor to match the
amplitude of k V1 and V2.
 (k V ) 2 + (k V ) 2
α 3
t 2

V1

α = ATAN




 (k V ) 2 + (k V ) 2
β 3
t 1

and β = ATAN

V2





where V1 = VX or VY or VZ, V2 = VX or VY or VZ, V3 = VX or VY or VZ and kα, kβ and kt are programmable
parameters.
The DSP functionality is governed by the micro-code (firmware − FW) of the micro-controller which is
stored into the ROM (mask programmable). In addition to the “ATAN” (“Arctangent”) function, the FW
controls the whole analog chain, the programming/calibration and also the self-diagnostic modes.
Due to the fact that the “ATAN” operation is performed on the ratios “V1/V2”, “V3/V1” and “V3/V2”, the
output is intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing
effects) affecting both signals. This feature allows an improved thermal accuracy compared to a
conventional linear Hall sensor.
The end-user programmable parameters are stored in EEPROM featuring a Hamming Error Correction
Coding (ECC).
The programming steps do not require dedicated pins or programming tool. The operation is performed
through the Master and the Serial Protocol using a dedicated and protected function(3).
3
For debug/demo purpose, Melexis can provide the Melexis Programming Unit PTC-04 with the SPI daughterboard (PTC-04-DBSPI) and software library (PSF – Product Specific Functions).
3901090363
Rev. 005
Page 7 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
8. MLX90363 Electrical Specification
DC Operating Parameters at VDD = 5V (5V Application Diagram) or VDD = 3.3V (3V3 Application
Diagram) and for TA as specified by the Temperature suffix (E, K and L).
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
Nominal Supply Voltage
VDD5
5V Application Diagram
4.5
5
5.5
V
Nominal Supply Voltage
VDD33
3V3 Application Diagram
3.15
3.3
3.45
V
Supply Current (4)
IDD
12.5
15.5
mA
Standby Current
ISTANDBY
3.5
4.5
mA
18
mA
Supply Current at VDD MAX
IDDMAX
VDD = 18V
POR Rising Level
POR LH
Voltage referred to VDEC
2.6
2.8
3.1
V
POR Falling Level
POR HL
Voltage referred to VDEC
2.5
2.7
2.9
V
POR Hyst
Voltage referred to VDEC
POR Hysteresis
MISO Switch Off Rising Level
MISO Switch Off Falling Level
MISO Switch Off Hysteresis
0.1
V
VDD level for disabling
MISO(5)
7.5
9.5
V
VDD level for disabling
MISO(5)
6
7.5
V
MT8V Hyst VDD level for disabling
MISO(5)
1
2
V
MT8V LH
MT8V HL
Input High Voltage Level
VIH
65% *VDD
-
-
V
Input Low Voltage Level
VIL
-
-
35% *VDD
V
Input Hysteresis
VHYS
Input Capacitance
CIN
Referred to GND
Output High Voltage Level
VOH
Current Drive IOH = 0.5 mA
20% *VDD
V
20
pF
VDD-0.4
V
Output Low Voltage Level
VOL
Current Drive IOH = 0.5 mA
0.4
V
Output High Short Circuit Current
IshortH
VOUT forced to 0V
20
30
mA
Output Low Short Circuit Current
IshortL
VOUT forced to VDD
25
30
mA
Typ
Max
Units
9. MLX90363 Isolation Specification
Only valid for the package code GO i.e. dual die version.
Parameter
Isolation Resistance
Symbol
Test Conditions
Between 2 dies
Min
4
MΩ
4 For
5
the dual version, the supply current is multiplied by 2
Above the MT8V threshold, no SPI communication is possible.
3901090363
Rev. 005
Page 8 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
10.
MLX90363 Timing Specification
10.1. Timing Specification for 5V Application Diagram
6
DC Operating Parameters at VDD = 5V and for TA as specified by the Temperature suffix (E, K) .
Parameter
Symbol
Main Clock Frequency
Ck
Frame Rate
FR
Watchdog time-out
Wd
Power On to First SCI message
(Start-up Time)
tStartUp
SCI protocol: Slave-select risingedge to falling-edge
tShort
SCI protocol: EEPROMWrite Time
teewrite
Test Conditions
Min
Typ
15.2
Trigger Mode 1 (Trg. Mod. 1),
Markers 0&2, SCI 2MHz
All other modes, markers and SCI
Frequencies
See Section 18
See Section 14.20
Trimmed oscillator
15.3
18.8
Max
Units
18.8
MHz
1000
s-1
500
s-1
20
ms
20
ms
120
us
32
ms
Diagnostic Loop Time
tDiag
FR = 1000 s-1,Trg.Mod.1, Mark 0&2
FR = 500 s-1
FR = 200 s-1
Internal 1MHz signal
t1us
Ck = 19MHz
1
MISO Rise Time
CL = 30pF, RL = 10 kΩ
35
60
ns
MISO Fall Time
CL = 30pF, RL = 10 kΩ
35
60
ns
4
8
18
Hz
Hz
Hz
28
14
5.6
Hz
Hz
Hz
Magnetic Flux Density Frequency
Sinewave Flux
FR = 1000 s-1
FR = 500 s-1
FR = 100 s-1
40
20
10
ms
ms
ms
us
Density(7)
FR = 1000 s-1(8)
FR = 500 s-1(8)
FR = 200 s-1(8)
Please contact Melexis for Timing specification for “L” Temperature suffix
Sensitivity monitors enable (See section 18). Beyond that frequency, the Sensitivity monitor should be disabled.
8 Limitation linked to the Automatic Gain Control. Beyond that frequency, there is a reduced immunity to norm change (like
vibration). See also Section 19.4.
6
7
3901090363
Rev. 005
Page 9 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
10.2. Timing Specification for 3V3 Application Diagram
9
DC Operating Parameters at VDD = 3.3V and for TA as specified by the Temperature suffix (E, K) .
Parameter
Symbol
Main Clock Frequency
Ck
Frame Rate
FR
Watchdog time-out
Wd
Power On to First SCI message
(Start-up Time)
tStartUp
SCI protocol: Slave-select risingedge to falling-edge
tShort
SCI protocol: EEPROMWrite Time
teewrite
Test Conditions
Min
Typ
13.1
Trigger Mode 1 (Trg. Mod. 1),
Markers 0&2, SCI 2MHz
All other modes, markers and SCI
Frequencies
Max
Units
18.8
MHz
862
s-1
430
s-1
23.2
ms
See Section 18
15.3
See Section 14.20
23.2
ms
139
us
37
ms
3.3V Trimmed oscillator
Diagnostic Loop Time
tDiag
FR = 862
FR = 430 s-1
FR = 215 s-1
Internal 1MHz signal
t1us
Ck = 19MHz
1
CL = 30pF, RL = 10 kΩ
35
60
MISO Fall Time
CL = 30pF, RL = 10 kΩ
35
60
ns
Magnetic Flux Density Frequency
FR = 862 s-1(10)
FR = 430 s-1(10)
FR = 215 s-1(10)
24
12
4.8
Hz
Hz
Hz
MISO Rise Time
s-1,Trg.Mod.1,
Mark 0&2
46.4
23.2
11.6
ms
ms
ms
us
ns
Please contact Melexis for Timing specification for “L” Temperature suffix.
Limitation linked to the Automatic Gain Control. Beyond that frequency, there is a reduced immunity to norm change (like
vibration). See also Section 19.4.
9
10
3901090363
Rev. 005
Page 10 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
11.
MLX90363 Accuracy Specification
DC Operating Parameters at VDD = 5V (5V Application Diagram) or VDD = 3.3V (3V3 Application
Diagram) and for TA as specified by the Temperature suffix (E, K and L).
Parameter
Symbol
ADC Resolution on the raw
signals X, Y and Z
RADC
Serial Interface Resolution
RSI
Test Conditions
Min
On the angle value
On the X,Y,Z values
Offset on the Raw Signals X, Y
X0, Y0, Z0 TA = 25°C
and Z
Typ
Max
Units
14
bit
14
12
bit
bit
-30
+30
LSB14
Mismatch on the Raw Signals
X, Y and Z
SMISMXY
SMISMXZ
SMISMYZ
TA = 25°C
Between X and Y
Between X and Z(11)
Between Y and Z(11)
-1
-30
-30
1
+30
+30
%
%
%
Magnetic Angle
Phase Error
ORTHXY
ORTHXZ
ORTHYZ
TA = 25°C
Between X and Y
Between X and Z(12)
Between Y and Z(12)
-0.3
-10
-10
0.3
10
10
Deg
Deg
Deg
TA = 25°C,
Magnetic Angle ∠XY
Magnetic Angle ∠XZ, ∠YZ(14)
-1
-20
1
20
Deg
Deg
5V Application Diagram
VDD = 4.5 … 5.5V
-0.1
0.1
Deg
-0.8
-0.4
0.8
0.4
Deg
Deg
-1
-0.6
1
0.6
Deg
Deg
Intrinsic Linearity Error(13)
Le
Supply Dependency
3V3 Application Diagram
VDD = 3.20 … 3.40V
Temperature suffix E and K
20mT
50mT
Temperature suffix L
20mT
50mT
MLX90363 Accuracy Specification continues…
The Mismatch between X or Y and Z can be reduced through the calibration of the SMISM (or k) factor in the end application.
See section 17.3.2 for more information
12 The Magnetic Angle Phase error X or Y and Z can be reduced through the calibration of the ORTH_B1B2 factor in the end
application. See section 17.3.2 for more information
13 The Intrinsic Linearity Error is a consolidation of the IC errors (offset, sensitivity mismatch, phase error) taking into account an
ideal rotating field. Once associated to a practical magnetic construction and the associated mechanical and magnetic
tolerances, the output linearity error increases.
14 The Intrisic Linearity Error for Magnetic Angle ∠XZ, ∠YZ can be reduced through the programming of the SMISM (or k) factor
and ORTH_B1B2. By applying the correct compensation, a non linearity error of +/-1 deg can be reached. See section 17.3.2 for
more information
11
3901090363
Rev. 005
Page 11 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
… MLX90363 Accuracy Specification
Thermal Offset Drift(15)
Temperature suffix E and K
Temperature suffix L
-30
-45
+30
+45
LSB14
LSB14
XY axis, XZ axis, YZ axis
Temperature suffix E and K
Temperature suffix L
- 0.5
- 0.7
+ 0.5
+ 0.7
%
%
Thermal Drift of Magnetic Angle
Phase Error
XY axis, XZ axis, YZ axis
0.1
0.1
Deg
Magnetic Angle Noise(17)
Temperature suffix E and K
20mT, No Filter
50mT, No Filter
50mT, FILTER=1
Temperature suffix L
20mT, No Filter
50mT, No Filter
50mT, FILTER=1
0.20
0.10
0.07
Deg
Deg
Deg
0.25
0.12
0.08
Deg
Deg
Deg
12
6
4
LSB14
LSB14
LSB14
14
7
4
LSB14
LSB14
LSB14
Thermal Drift of Sensitivity
Mismatch(16)
Raw signals X, Y, Z Noise(17)
Temperature suffix E and K
20mT, No Filter
50mT, No Filter
50mT, FILTER_TYPE =1
Temperature suffix L
20mT, No Filter
50mT, No Filter
50mT, FILTER=1
15 For instance, Thermal Offset Drift equal ± 30LSB14 yields to max. ± 0.32 Deg. error. This is only valid if the Virtual Gain is not
fixed (See Section 17.6).See Front End Application Note for more details.
16 For instance, Thermal Drift of Sensitivity Mismatch equal ± 0.4% yields to max. ± 0.1 Deg. error. See Front End Application
Note for more details.
17 Noise is defined by ± 3 σ for 1000 successive acquisitions. The application diagram used is described in the recommended
wiring (Section 20). For detailed information, refer to section Filter in application mode (Section 17.5).
3901090363
Rev. 005
Page 12 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
12.
MLX90363 Magnetic Specification
DC Operating Parameters at VDD = 5V (5V Application Diagram) or VDD = 3.3V (3V3 Application Diagram)
and for TA as specified by the Temperature suffix (E, K and L).
Parameter
Symbol
Magnetic Flux Density in X or Y
Min
Typ
Max
Units
BXY(18)
20
50
70(19)
mT
Magnetic Flux Density in Z
BZ(18)
24
75
126
mT
Magnet Temperature Coefficient
TCm
-2400
0
ppm/°C
GainIMC
1.2
IMC
Gain(20)
13.
Test Conditions
1.4
1.8
Typ
Max
MLX90363 CPU & Memory Specification
The digital signal processing is based on a 16 bit RISC µController featuring
ROM & RAM
EEPROM with hamming codes (ECC)
Watchdog
C Compiler
Parameter
Symbol
Test Conditions
Min
Units
ROM
14
kByte
RAM
256
Byte
EEPROM
64
Byte
3.5
MIPS
CPU MIPS
Ck = 15 MHz
The condition must be fulfilled for at least one field BX, BY or BZ.
Above 70 mT, the IMC starts saturating yielding an increase of the linearity error.
20 This is the magnetic gain linked to the Integrated Magneto Concentrator structure. It applies to BX and BY and not to BZ. This is
the overall variation. Within one lot, the part to part variation is typically ± 10% versus the average value of the IMC gain of that
lot.
18
19
3901090363
Rev. 005
Page 13 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
14.
MLX90363 Serial Interface
The MLX90363 serial interface allows a master device to operate the position sensor. The MLX90363
interface allows multi-slave applications and synchronous start of the data acquisition among the slaves.
The interface offers 2 Mbps data transfer bit rate and is full duplex. The interface accepts messages of 64
bits wide only, making the interfacing robust.
In this document, the words message, frame and packet refer to the same concept.
14.1. Electrical Layer and Timing Specification
Message transmissions start necessarily at a falling edge on /SS and end necessarily at a rising edge on
the /SS signal. This defines a message. The serial interface counts the number of transmitted bits and
declares the incoming message invalid when the bit count differs from 64. The master must therefore
ensure the flow described below:
1. Set pin /SS Low
2. Send and receive 8 bytes or four (4x) 16 bit words
3. Set pin /SS High
The MISO and MOSI signals change on SCLK rising edge and are captured on SCLK falling edge. The
most-significant-bit of the transmitted byte or word comes first (21).
/SS Pin
t1
tSCLK
tSCLK_HI
t3
tSCLK_LO
SCLK Pin
tMOSI
MOSI Pin
t2
tMISO
t4
MISO Pin
Figure 2 – Serial Interface Timing Diagram
The interface is sensitive, in Trigger mode 2 (see section 14.6), to Sync pulses. A Sync pulse is negative
pulse on /SS, while SCLK is kept quiet.
/SS (IC PIN)
tSyncPulse
Figure 3 – Sync Pulse Timing Diagram
21
For instance, for master compatible w/ the Motorola SPI protocol, the configuration bits must be CPHA=1, CPOL=0, LSBFE=0.
3901090363
Rev. 005
Page 14 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial
erial Interface
Parameter
Clock Period
Symbol
Test Conditions
Min
Typ
500
1000
2000
Max
Units
tSCLK
EE_PINFILTER = 1
EE_PINFILTER = 2
EE_PINFILTER = 3
450
900
1800
Clock Low Level
tSCLK_HI
EE_PINFILTER = 1
EE_PINFILTER = 2
EE_PINFILTER = 3
225
450
900
ns
ns
ns
Clock High Level
tSCLK_LO
EE_PINFILTER = 1
EE_PINFILTER = 2
EE_PINFILTER = 3
225
450
900
ns
ns
ns
Clock to Data Delay
tMISO
Data Capture Setup Time
tMOSI
EE_PINFILTER = 1 , Cload = 30pF
EE_PINFILTER = 2 , Cload = 30pF
EE_PINFILTER = 3 , Cload = 30pF
/SS FE to SCLK RE
t1
EE_PINFILTER = 1
EE_PINFILTER = 2
EE_PINFILTER = 3
/SS FE to MISO Low Impedance
t2
EE_PINFILTER = 1
EE_PINFILTER = 2
EE_PINFILTER = 3
SCLK FE to /SS RE
t3
/SS RE to MISO High Impedance
t4
Sync Pulse Duration
ns
ns
ns
210
300
510
30
ns
225
450
900
ns
ns
ns
520
610
820
ns
ns
ns
90
180
370
120
210
420
90
180
370
120
210
420
ns
ns
ns
10000
10000
10000
ns
ns
ns
225
EE_PINFILTER = 1
EE_PINFILTER = 2
EE_PINFILTER = 3
tSyncPulse EE_PINFILTER = 1
EE_PINFILTER = 2
EE_PINFILTER = 3
ns
ns
ns
ns
Table 1 - Serial Interface Timing Specifications
Melexis recommends using the multi-slave
slave application d
diagram
as shown on the right.
The SCLK, MISO and MOSI wires interconnect the slaves with
the master. A slave is selected by its dedicated /SS input. A
slave MISO output is in high-impedance
ance state when the slave is
not selected.
Slaves can be triggered synchronously by sending Sync pulses
on the different /SS.. The pulses must not overlap to avoid
electrical short-circuits on the MISO bus.
3901090363
Rev. 005
Page 15 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
14.2. Serial Protocol
The serial protocol of MLX90363 allows the SPI master device to request the following information:
Position (magnetic angle Alpha)
Raw field components (X,Y and Z)
Self-Diagnostic data
It allows customizing the calibration of the sensor, when needed, at the end-of-line, through EEPROM
programming.
The serial protocol offers a transfer rate of 1000 messages/sec. A regular message holds position and
diagnostic information. The data acquisition start and processing is fully under the control of the SPI
master. The user configuration bits, stored in EEPROM, are programmable with this protocol.
Data integrity is guaranteed in both directions by an 8 bit CRC covering the content of the incoming and
outgoing messages. In a dual sensors application, a Sync pulse allows a synchronous start of the raw
signals acquisition.
14.3. Message General Structure
A message has a unique Opcode. The general structure of a message consists of 8 bytes (byte #0,
transmitted first, to byte #7 transmitted last).
Byte #7 (the last byte transmitted) holds an 8 bit CRC. The byte #6 holds a Marker plus either an Opcode
or a rolling counter.
#
7
1
(4)
6
5
4
3
2
1
0
#
7
(3)
0
(2)
3
2
5
4
7
CRC
6
6
5
4
3
2
1
0
(1)
(5)
Marker
Opcode or Roll Counter
Table 2 – General Structure of a message and bit naming convention
(1) This bit is named Byte0[0]
(3) This bit is named Byte1[0]
(5) This bit is named Byte2[0]
(2) This bit is named Byte0[7]
(4) This bit is named Byte1[7]
A blank cell refers necessarily to a bit 0.
In a byte, the most-significant-bit is transmitted first (for instance, Byte0[7] is transmitted first, Byte0[0]
transmitted last).
Parameter CRC[7:0] is Byte7[7:0], Parameter Marker[1:0] is Byte6[7:6],
Parameter Opcode[5:0] (or Roll Counter[5:0]) is Byte6[5:0]
CRCs are encoded and decoded according the following algorithm (language-C):
crc = 0xFF;
crc = cba_256_TAB[ Byte0 ^ crc ];
crc = cba_256_TAB[ Byte1 ^ crc ];
crc = cba_256_TAB[ Byte2 ^ crc ];
crc = cba_256_TAB[ Byte3 ^ crc ];
crc = cba_256_TAB[ Byte4 ^ crc ];
crc = cba_256_TAB[ Byte5 ^ crc ];
crc = cba_256_TAB[ Byte6 ^ crc ];
crc = ~crc;
3901090363
Rev. 005
Page 16 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
The Table 3 corresponds to the CRC-8 polynomial “0xC2”.
cba_256_TAB
0
1
2
3
4
5
6
7
0
0x00
0x2f
0x5e
0x71
0xbc
0x93
0xe2
0xcd
1
0x57
0x78
0x09
0x26
0xeb
0xc4
0xb5
0x9a
2
0xae
0x81
0xf0
0xdf
0x12
0x3d
0x4c
0x63
3
0xf9
0xd6
0xa7
0x88
0x45
0x6a
0x1b
0x34
4
0x73
0x5c
0x2d
0x02
0xcf
0xe0
0x91
0xbe
5
0x24
0x0b
0x7a
0x55
0x98
0xb7
0xc6
0xe9
6
0xdd
0xf2
0x83
0xac
0x61
0x4e
0x3f
0x10
7
0x8a
0xa5
0xd4
0xfb
0x36
0x19
0x68
0x47
8
0xe6
0xc9
0xb8
0x97
0x5a
0x75
0x04
0x2b
9
0xb1
0x9e
0xef
0xc0
0x0d
0x22
0x53
0x7c
10
0x48
0x67
0x16
0x39
0xf4
0xdb
0xaa
0x85
11
0x1f
0x30
0x41
0x6e
0xa3
0x8c
0xfd
0xd2
12
0x95
0xba
0xcb
0xe4
0x29
0x06
0x77
0x58
13
0xc2
0xed
0x9c
0xb3
0x7e
0x51
0x20
0x0f
14
0x3b
0x14
0x65
0x4a
0x87
0xa8
0xd9
0xf6
15
0x6c
0x43
0x32
0x1d
0xd0
0xff
0x8e
0xa1
16
0xe3
0xcc
0xbd
0x92
0x5f
0x70
0x01
0x2e
17
0xb4
0x9b
0xea
0xc5
0x08
0x27
0x56
0x79
18
0x4d
0x62
0x13
0x3c
0xf1
0xde
0xaf
0x80
19
0x1a
0x35
0x44
0x6b
0xa6
0x89
0xf8
0xd7
20
0x90
0xbf
0xce
0xe1
0x2c
0x03
0x72
0x5d
21
0xc7
0xe8
0x99
0xb6
0x7b
0x54
0x25
0x0a
22
0x3e
0x11
0x60
0x4f
0x82
0xad
0xdc
0xf3
23
0x69
0x46
0x37
0x18
0xd5
0xfa
0x8b
0xa4
24
0x05
0x2a
0x5b
0x74
0xb9
0x96
0xe7
0xc8
25
0x52
0x7d
0x0c
0x23
0xee
0xc1
0xb0
0x9f
26
0xab
0x84
0xf5
0xda
0x17
0x38
0x49
0x66
27
0xfc
0xd3
0xa2
0x8d
0x40
0x6f
0x1e
0x31
28
0x76
0x59
0x28
0x07
0xca
0xe5
0x94
0xbb
29
0x21
0x0e
0x7f
0x50
0x9d
0xb2
0xc3
0xec
30
0xd8
0xf7
0x86
0xa9
0x64
0x4b
0x3a
0x15
31
0x8f
0xa0
0xd1
0xfe
0x33
0x1c
0x6d
0x42
Table 3 – cba_256_TAB Look-up table Polynomial “C2”
#
7
6
5
4
3
2
1
0
#
7
6
5
4
3
1
0xFF
0
3
0xFF
2
0x16
5
0xFF
4
0xD4
7
0x23
6
0x86
2
1
0
0xC1
Table 4 – Example of valid CRC
3901090363
Rev. 005
Page 17 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
14.4. Regular Messages
The MLX90363 offers three types of regular messages:
“α” – diagnostic
“α – β” – diagnostic
X – Y – Z – diagnostic
#
7
6
1
E1
E0
5
4
3
2
1
0
ALPHA [13:8]
#
7
6
5
0
4
3
2
1
0
2
1
0
2
1
0
ALPHA [7:0]
3
0
2
0
5
0
4
VG[7:0]
7
CRC
6
0
0
ROLL
Table 5 – “α” message
#
7
6
1
E1
E0
5
4
3
2
1
0
#
7
6
5
4
3
ALPHA [13:8]
0
ALPHA [7:0]
BETA [13:8]
2
BETA [7:0]
3
5
0
4
7
CRC
6
VG[7:0]
0
1
ROLL
Table 6 – “α – β” message
#
7
6
1
E1
E0
5
4
3
2
1
0
#
7
6
5
4
3
X COMPONENT [13:8]
0
X COMPONENT [7:0]
3
Y COMPONENT [13:8]
2
Y COMPONENT [7:0]
5
Z COMPONENT [13:8]
4
7
CRC
6
Z COMPONENT [7:0]
1
0
ROLL
Table 7 – “X – Y – Z” message
The bits byte6[7] and byte6[6] are markers. They allow the master to recognize the type of regular
message (00b, 01b, 10b). The marker is present in all messages (incoming and outgoing). The marker of
any message which is not a regular message is equal to 11b.
The bits E1 and E0 report the status of the diagnostics (4 possibilities) as described in the Table 8 – See
section 18 for more details.
E1
E0
Description
0
0
1
1
0
1
0
1
First Diagnostics Sequence Not Yet Finished
Diagnostic Fail
Diagnostic Pass (Previous cycle)
Diagnostic Pass – New Cycle Completed
Table 8 - Diagnostics Status Bits
14.4.1. Note for the regular message “X – Y – Z – diagnostic” (Marker = 2)
In the case of marker = 2, the X,Y,Z components are given after offset compensation and filtering (see
signal processing in section 19.2). These components are gain dependent (see also section 17.6).
3901090363
Rev. 005
Page 18 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
The sensitivity in the X and Y direction is always higher than the Z direction by the IMC Gain factor (see
parameter GainIMC in section 12). Melexis therefore recommends multiplying the Z component by the
GainIMC factor inside the master in order to use the MLX90363 as a 3D magnetometer.
14.5. Trigger Mode 1
The master sends a GET1 command to initiate the magnetic field acquisition and post-processing. It waits
tSSREFE, issues the next GET1 and receives at the same time the regular message resulting from the
previous GET.
The field sensing, acquisition and post-processing is starting on /SS rising edge events.
Although GET1 commands are preferably followed by another GET1 command or a NOP command, any
other commands are accepted by the slave.
FW
background
SPI HW
ASP DSP SPI
Get
ASP DSP SPI
Get
tSSREFE
Roll=0
ASP DSP SPI
SPI
Get
NOP
Roll=1
Roll=2
X
Figure 4 – Trigger mode 1
Message Sequence Chart
Single Slave - Mode 1
Master
Slave1
GET1 ()
NTT ()
Loop
GET1 ()
Regular Packet ()
NOP ()
Regular Packet ()
Figure 5 – Trigger Mode 1 Message Sequence Chart
3901090363
Rev. 005
Page 19 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
#
7
6
5
4
3
1
3
Time – Out
5
7
2
1
0
#
RST
0
7
6
5
2
4
3
2
1
0
0
1
1
Value
4
CRC
6
Marker
0
1
0
Table 9 – GET1 MOSI Message (Opcode = 19)
Note: The NOP message is described at section “14.11”
•
The parameter Marker defines the regular data packet type expected by the master:
Marker = 0 refers to frame type “ALPHA + Diagnostic”.
Marker = 1 refers to frame type “ALPHA + BETA + Diagnostic”.
Marker = 2 refers to frame type “Components X + Y + Z +Diagnostic”.
•
The parameter Rst (Byte1[0] ) when set, resets the rolling counter attached to the regular data
packets.
•
The parameter TimeOutValue tells the maximum life time of the Regular Data Message.
The time step is t1us (See table in Section 10), the maximum time-out is 65535 * t1us. The timeout timer starts when the message is ready, and stops on the SS rising edge of the next
message.
On time-out occurrence, there are two possible scenarios:
Scenario 1.
SS is high, there is no message exchange. In this case, a NTT message replaces
the regular message in the SCI buffer.
Scenario 2.
SS is low, the regular packet is being sent out. In this case, the timeout violation
is reported on the next message, this later being an NTT message.
3901090363
Rev. 005
Page 20 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
14.6. Trigger Mode 2
The Trigger Mode 1 works without Sync pulses, as the GET1 command plays the role of a sync pulse.
When a delay between the regular message readback and the start of acquisition is needed, or when two
or more slaves should be triggered synchronously, the use of a sync pulse is required, and this is the
meaning of the Trigger Mode 2.
Principle: The master first enables the trigger mode 2 by issuing a GET2 command.
The master then sends a Sync Pulse, at the appropriate time, to initiate the magnetic field acquisition and
post-processing.
Finally the master reads the response message with a NOP or a GET2. The GET2 command re-initiates a
sync pulse triggered acquisition, whereas the NOP command would just allow the master to receive the
latest packet.
FW
background
SPI HW
S
PI
S
ASP DSP SPI
PI
Sync
Puls
Get2
S
PI
S
ASP DSP SPI
PI
Sync
Puls
Get2
tRESync
S
PI
Get2
tSyncFE
Figure 6 – Trigger Mode 2 – Single Slave Approach
A timing constraint between GET2 and the sync pulse (tRESync) should be met.
When this timing is smaller than the constraint, the sync pulse might not be taken in account, causing the
next GET2 to return a NTT packet.
GET1 and GET2/SyncPulse can be interlaced.
Multi-slave approach: The way of working described below fits the multi-slave applications where
synchronous acquisitions are important. GET2 commands are sent one after the other to the slaves. Then
the Sync Pulses are sent almost synchronously (very shortly one after the other).
Mode 2 in dual slave
FW1
S
background
PI
SPI HW1 Get2
FW2
S
PI
ASP DSP SPI
Get2
background
SPI HW2
S
PI
ASP DSP SPI
Get2
S
PI
Sync
Puls
Get2
S
PI
ASP DSP SPI
Get2
S
PI
ASP DSP SPI
Sync
Puls
Get2
Get2 for Slave 1 and Get2 for Slave 2 do not overlap
Figure 7 – Trigger mode 2 - Multi-slave approach, example for two slaves
3901090363
Rev. 005
Page 21 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
Message Sequence Chart
Dual Slave - Mode 2 (Sync pulses)
Master
Slave1
Slave2
GET2 ()
NTT ()
GET2 ()
NTT ()
Sync Pulse
Loop
GET2 ()
Regular Packet ()
GET2 ()
Regular Packet ()
Sync Pulse
NOP ()
Regular Packet ()
NOP ()
Regular Packet ()
Figure 8 – Trigger mode 2 Message Sequence Chart
#
7
6
5
4
3
2
1
1
3
0
#
RST
0
7
6
5
2
Time – Out
5
4
3
2
1
0
1
0
0
Value
4
7
CRC
6
Marker
0
1
0
Table 10 – GET2 MOSI Message (Opcode = 20)
Parameter definition: See GET1 (Section 14.5).
14.7. Trigger Mode 3
Principle: The acquisition sequences are triggered by a GET message, but unlike the Mode 1, the
resulting data (position …) is buffered. The slave-out messages contain the buffered data of the previous
GET message, and not the newly computed values corresponding to the current GET slave-in request.
The buffering releases constraints on the SCI clock frequency (SCLK). The Mode 3 offers frame rates as
high as Mode 1, if not higher, with slower SCLK frequencies. When the clock frequency is limited (400
kbps or less), and when it matters to reach a certain frame rate, Mode 3 is preferred over Mode 1. In any
other cases, for instance when the shortest response time represents the main design criteria, Mode 1 is
preferred.
FW
background
SPI HW
Get3
SPI ASP
S
SPI
ASP
ASP
DSP
PI
DSP
Get3
tSSRERE_mod3
DSP
SPI ASP
DSP
Get3
Roll=0
tSSREFE_
mod3
DSP
NOP
Roll=1
SPI
X
Roll=2
Figure 9 – Trigger mode 3
3901090363
Rev. 005
Page 22 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
GET3 sequences must end with a NOP.
Message Sequence Chart
Single Slave - Mode 3
Master
Slave1
GET3 ()
X ()
GET3 ()
Get3Ready ()
Loop
GET3 ()
Regular Packet ()
NOP ()
Regular Packet ()
Figure 10 – Trigger mode 3 Message Sequence Chart
#
7
6
5
4
3
2
1
1
3
0
#
RST
0
7
6
5
2
Time – Out
5
4
3
2
1
0
0
1
0
1
Value
4
7
CRC
6
Marker
0
1
Table 11 – GET3 MOSI Message (Opcode = 21)
Parameter definition: See GET1 (Section 14.5)
#
7
6
5
4
3
2
1
0
#
1
0
3
2
5
7
6
5
4
3
2
1
0
1
1
1
0
1
1
0
1
4
7
CRC
6
Table 12 – Get3Ready Slave-Out Message (Opcode = 45)
14.8. Trigger Modes Timing Specifications
/SS Pin
GET1
GET1
tREFE_mod1
SCI Internal state
High: NTT
Low: Ready
tReady_mod1
Figure 11 – Trigger mode 1 timing diagram
3901090363
Rev. 005
Page 23 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
SyncPulse
/SS Pin
GET2
GET2
tRESync
tSyncFE
SCI Internal state
High: NTT
Low: Ready
tReady_mod2
Figure 12 – Trigger mode 2 timing diagram
/SS Pin
GET3
GET3
tREFE_mod3
tRERE_mod3
SCI Internal state
High: NTT
Low: Ready
tReady_FEmod3
tReady_REmod3
High: DSP Ongoing
Figure 13 – Trigger mode 3 timing diagram
5V Application Diagram
Items
Definition
tREFE_mod1
Get1 SS Rising Edge to next Get1 SS Falling
Edge
tReady_mod1
Get1 SSRE to SO Answer ReadyToTransmit
Marker
0
1
2
0
1
2
Min
920
1050
920
Typ
Max
920
1050
920
Unit
µs
µs
µs
µs
µs
µs
Table 13 – Trigger Modes Timing Specification (Mode 1, VDD=5V)
Items
Definition
tSyncFE
Sync Pulse (RE) to Get2 Falling Edge
tReady_mod2
Sync Pulse (RE) to SO Answer
ReadyToTransmit
tRESync
Get2 SS Rising Edge to Sync Pulse (RE)
Marker
0
1
2
0
1
2
Min
874
1004
874
Typ
Max
874
1004
874
80
Unit
µs
µs
µs
µs
µs
µs
µs
Table 14 – Trigger Modes Timing Specification (Mode 2, VDD=5V)
Items
tRERE_mod3
Definition
Get3 SS RE to RE
tReadyRE_mod3
Get3 SS RE to DSP Completion
tREFE_mod3
tReadyFE_mod3
Get3 SS Rising to Falling
Get3 SS RE to SO Answer
ReadyToTransmit
Marker
0
1
2
0
1
2
Min
950
1080
950
Typ
Max
950
1080
950
90
90
Unit
µs
µs
µs
µs
µs
µs
µs
µs
Table 15 – Trigger Modes Timing Specification (Mode 3, VDD=5V)
3901090363
Rev. 005
Page 24 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
3V3 Application Diagram
Items
Definition
tREFE_mod1
Get1 SS Rising Edge to next Get1 SS Falling
Edge
tReady_mod1
Get1 SSRE to SO Answer ReadyToTransmit
Marker
0
1
2
0
1
2
Min
1067
1218
1067
Typ
Max
1067
1218
1067
Unit
µs
µs
µs
µs
µs
µs
Table 16 – Trigger Modes Timing Specification (Mode 1, VDD = 3.3V)
Items
Definition
tSyncFE
Sync Pulse (RE) to Get2 Falling Edge
tReady_mod2
Sync Pulse (RE) to SO Answer
ReadyToTransmit
tRESync
Get2 SS Rising Edge to Sync Pulse (RE)
Marker
0
1
2
0
1
2
Min
1014
1165
1014
Typ
Max
1014
1165
1014
93
Unit
µs
µs
µs
µs
µs
µs
µs
Table 17 – Trigger Modes Timing Specification (Mode 2, VDD = 3.3V)
Items
Definition
tRERE_mod3
Get3 SS RE to RE
tReadyRE_mod3
Get3 SS RE to DSP Completion
tREFE_mod3
tReadyFE_mod3
Get3 SS Rising to Falling
Get3 SS RE to SO Answer
ReadyToTransmit
Marker
0
1
2
0
1
2
Min
1102
1253
1102
Typ
Max
1102
1253
1102
105
105
Unit
µs
µs
µs
µs
µs
µs
µs
µs
Table 18 – Trigger Modes Timing Specification (Mode 3, VDD = 3.3V)
3901090363
Rev. 005
Page 25 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
14.9. Opcode Table
Opcode
19d
0x13
20d
0x14
21d
0x15
1d
0x01
3d
0x03
5d
0x05
15d
0x0F
16d
0x10
22d
0x16
24d
0x18
26d
0x1A
47d
0x2F
49d
0x31
MOSI Message
GET1
GET2
GET3
MemoryRead
EEPROMWrite
EEChallengeAns
EEReadChallenge
NOP / Challenge
DiagnosticDetails
OscCounterStart
OscCounterStop
Reboot
Standby
Opcode
n/a
MISO Message
Regular Data Packet
45d
2d
4d
40d
14d
17d
23d
25d
27d
0x2D
0x02
0x04
0x28
0x0E
0x11
0x17
0x19
0x1B
Get3Ready
MemoryRead Answer
EEPROMWrite Challenge
EEReadAnswer
EEPROMWrite Status
Challenge/NOP MISO Packet
Diagnostics Answer
OscCounterStart Acknowledge
OscCounterStopAck+CounterValue
50d
61d
62d
44d
0x32
0x3D
0x3E
0x2C
StandbyAck
Error frame
NothingToTransmit (NTT)
Ready Message (first SO after POR)
Table 19 – Opcode Table
14.10. Timing specifications per Opcode, and next allowed messages
For each slave-in message, the timing between the slave-select-rising-edge event and the slave-selectfalling event, as depicted below, is specified.
/SS Pin
Opcode
Opcode
tREFE
Figure 14 – Timing diagram
Op
19
20
21
1
3
5
15
16
22
24
26
47
49
MOSI Message
GET1
GET2 followed by Sync
GET3
MemoryRead
EEPROMWrite
EEChallengeAns
EEReadChallenge
NOP / Challenge
DiagnosticDetails
OscCounterStart
OscCounterStop
Reboot
Standby
tREFE
tREFE_mod1
tSyncFE
tREFE_mod3
tShort
tShort
teewrite
tShort
tShort
tShort
tShort
tShort
tStartup
tShort
Next allowed slave-in message
GET1, MemoryRead,DiagDetails,NOP
GET2, MemoryRead,DiagDetails,NOP
GET3, MemoryRead,DiagDetails,NOP
MemoryRead, DiagDetails, NOP
EEReadChallenge
NOP
EEChallengeAns
All commands
All commands
OscCounterStop
NOP
See Startup Sequence
All commands
Table 20 – Response time and Next allowed slave-in messages
3901090363
Rev. 005
Page 26 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
14.11. NOP Command and NOP Answer
#
7
6
5
4
3
2
1
0
1
#
7
6
5
4
3
2
1
0
0
0
0
0
3
KEY [15:8]
2
5
KEY [7:0]
4
7
CRC
6
1
1
0
1
0
Table 21 – NOP(Challenge) MOSI Message (Opcode = 16)
MSC NOP
Master
Slave
NOP(Challenge) ()
X ()
Next Cmd ()
Challenge Echo ()
Figure 15 – NOP Message Sequence Chart
Note: the message X means “unspecified valid answer” and typically contains the answer of the previous
command.
•
Parameter Key : any 16 bit number
#
7
6
5
4
3
2
1
0
1
#
7
6
5
4
3
2
1
0
0
1
0
3
KEY_ECHO [15:8]
2
KEY_ECHO [7:0]
5
INVERTED KEY_ECHO [15:8]
4
INVERTED KEY_ECHO [7:0]
7
CRC
6
1
1
0
1
0
0
Table 22 - Challenge Echo MISO Message (Opcode = 17)
•
•
Parameter Key_Echo = Key
Parameter InvertedKey_Echo = 65535 - Key (meaning bit reversal).
14.12. OscCounterStart and OscCounterStop Commands
The SCI Master can evaluate the slave’s internal oscillator frequency by the use of the OscCounterStart
and OscCounterStop commands. This first command enables in the MLX90363 a software counter
whereas the second command stops it and returns the counter value.
#
7
6
5
4
3
1
0
#
0
3
2
5
7
3901090363
Rev. 005
2
1
7
6
5
4
3
2
1
0
1
1
0
1
1
0
0
0
4
CRC
6
Page 27 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
Table 23 – OscCounterStart Slave-In message (opcode 24)
#
7
6
5
4
3
2
1
0
#
1
0
3
2
5
7
6
5
4
3
2
1
0
1
1
0
1
1
0
0
1
4
7
CRC
6
Table 24 – OscCounterStart Acknowledge Slave-Out message (opcode 25)
#
7
6
5
4
3
2
1
0
#
1
0
3
2
5
7
6
5
4
3
2
1
0
1
1
0
1
1
0
1
0
2
1
0
0
1
1
4
7
CRC
6
Table 25 – OscCounterStop Slave-In message (opcode 26)
#
7
6
5
4
3
2
1
0
1
#
7
6
5
4
3
0
3
CounterValue[14:8]
2
5
CounterValue[7:0]
4
7
CRC
6
1
1
0
1
1
Table 26 – OscCounter Slave-Out message (opcode 27)
•
Parameter CounterValue represents the time between the two events OscCounterStart Slave
Select Rising Edge and OscCounterStop Slave Select Rising Edge, in microsecond, and for an
oscillator frequency equal to 19MHz exactly.
Message Sequence Chart
Oscillator Frequency Diagnostic
Master
Slave1
OscCounterStart ()
Challenge Echo ()
OscCounterStop ()
OscStartAck ()
X ()
OscCounter ()
Figure 16 – Oscillator Frequency Diagnostic Message Sequence Chart
SI
OscStart
OscStop
SO
X
StartAck OscCounter
X
SS
tOscCounter
Figure 17 – Oscillator Frequency Diagnostic Timing Diagram (SCI)
Parameter
Symbol
Test Conditions
tOscCounter
3901090363
Rev. 005
Page 28 of 57
Min
Typ
Max
Units
500
1000
30000
us
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
14.13. Protocol Errors Handling
Error Item
Error definition
Condition
Detection
Slave Actions
IncorrectBitCount
Slave In Message bit count
≠ 64
all modes
FW reads the HW bit
counter
IncorrectCRC
Slave In Message has a
CRC Error
all modes
FW computes CRC
IncorrectOpcode
Invalid Slave in Message
all modes
FW
tREFE <
tReady_mod1
Regular Message
Readback occurs to early
Trigger
mode 1
tSyncFE <
tReady_mod2
Regular Message
Readback occurs to early
Trigger
mode 2
Interrupt occurring to
early +
Fw reads HW bit +
Protection interrupt
Interrupt occurring to
early +
Fw reads HW bit +
Protection interrupt
none. The Sync
pulse is pending
internally.
tRESync Violation
Sync Pulse occurring to
early
Trigger
mode 2
tRERE_mod3 <
tReady_mod3
tREFE_mod3 <
tReady_FE_mod3
Regular Message
Readback occurs to early
Regular Message
Readback occurs to early
Trigger
mode 3
Trigger
mode 3
Protection interrupt
TimeOut
Regular Message
Readback occurs to late
all modes
Timer Interrupt
Protection interrupt
Ignore
Message +
Re-init Protocol
Ignore
Message +
Re-init Protocol
Ignore
Message +
Re-init Protocol
MISO Message
Error Message
(incorrect bitcount = 1)
Error Message
(incorrect crc = 1)
Error Message
(incorrect opcode = 1)
Ignore Frame +
Re-init Protocol
NTT message
Ignore Frame +
Re-init Protocol
NTT message
none (but the
sync pulse is
not treated
immediately)
Valid message. Note:
This violation can
cause a TSyncFE <
TReady_mod2
violation.
Re-init Protocol
NTT message
Re-init Protocol
NTT message
MISO Frame =
NTT +
Re-init Protocol
NTT message
Table 27 – Protocol Errors Handling (Slave standpoint)
Error Items/Events
Associated Slave
Event
Master recommended Associated
actions
Slave Actions
Next
MISO message
Error Message *
(TimeViolation = 1)
Receive NTT
Protocol re-initialization
Protocol reinitialization
undetected event
Protocol re-initialization
none
Normal message
Receive Error Message
Send Error Message Protocol re-initialization
none
Normal message
Receive an unexpected
DiagDetails message
Run in fail-safe mode
Protocol re-initialization
+ Slave reset
none
DiagDetails message
Receive NTT
Receive Incorrect CRC
Receive Incorrect Opcode
Table 28 – Protocol Errors Handling (Master standpoint)
Note 1: On NTT or Error messages, master should consider that the last command is ignored by the
slave, and it should therefore, either resend the command, or more generally re-initialize the protocol.
Note 2: After protocol re-initialization, master can diagnose the communication with a NOP command.
3901090363
Rev. 005
Page 29 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
Note 3: A slave-out error message implicitly means that the slave has re-initialized the communication and
is therefore ready to receive any commands.
14.14. Ready, Error and NTT Messages
After power-on-reset, the first slave-out message is a Ready message.
#
7
6
5
1
4
3
2
1
0
FWVersion[15:8]
#
7
6
5
0
3
4
3
2
1
0
1
0
0
HWVersion[7:0]
2
5
4
7
CRC
6
1
1
1
0
1
Table 29 - Ready Slave-out Message (Opcode = 44)
The MLX90363 reports protocol errors using the Error message defined below. Diagnostics Errors (as
opposed to protocol errors) are reported with the bits E1 and E0 of the regular message.
#
7
6
5
4
3
2
1
0
#
1
0
3
2
5
7
6
5
4
3
2
1
0
1
0
1
ERROR CODE
4
7
CRC
6
1
1
1
1
1
Table 30 - Error Message MISO (Opcode = 61)
The description of the parameter ErrorCode is given in the table below.
Code
1
2
3
4
Description of Error CODE
Incorrect BitCount
Incorrect CRC
Answer = NTT message
Two reasons: Answer Time-Out or Answer not Ready
OPCODE not valid
In most of the timing violations, the slave answers with a NTT message. A NTT message is stored in the
slave’s ROM (as opposed to the slave’s RAM). NTT messages are typically seen in case of timing
violation: either the firmware is still currently processing the previous SCI command, or a time-out
occurred (see GET). In normal operation, NTT messages are not supposed to be observed: the Master is
supposed to respect the protocol timings defined.
#
7
6
1
4
3
2
1
3
1
5
1
7
5
1
1
1
1
1
CRC
0
#
7
6
1
4
6
4
3
2
1
1
2
1
5
0
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
0
Table 31 – NTT (Nothing To Transmit) Message (Opcode = 62)
3901090363
Rev. 005
Page 30 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
14.15. DiagnosticsDetails commands
This is the only function that can be combined with a regular message.
#
7
6
5
4
3
2
1
0
#
1
0
3
2
5
7
6
5
4
3
2
1
0
1
1
0
1
0
1
1
0
4
7
CRC
6
Table 32 – DiagnosticsDetails Slave In Command (opcode =22)
Use DiagnosticDetails to get a detailed analysis of the diagnostics.
#
7
6
5
4
3
2
1
0
#
7
6
5
4
3
2
1
0
1
D15
D14
D13
D12
D11
D10
D9
D8
0
D7
D6
D5
D4
D3
D2
D1
D0
2
0
0
0
D20
D19
D18
D17
D16
1
1
0
1
0
1
1
1
3
FSMERC
ANADIAGCNT
5
4
7
CRC
6
Table 33 - Diagnostics DiagnosticDetails Master In message (Opcode = 23)
•
Diagnostic bit Dx : see Section 18
•
Parameter ANADIAGCNT is a sequence loop counter referring to the analog-class diagnostics (all
others).
If FSMERC = 3, ANADIAGCNT takes another meaning:
193 protection error interruption happened
194 invalid address error interruption happened
195 program error interruption happened
196 exchange error interruption happened
197 not connected error interruption happened
198 Stack Interrupt
199 Flow Control Error
•
Parameter FSMERC reports the root-cause of entry in fail-safe mode
o
o
o
o
3901090363
Rev. 005
FSMERC = 0 : the chip is not in fail safe mode
FSMERC = 1 : BIST error happened and the chip is in fail safe mode
FSMERC = 2 : digital diagnostic error happened and the chip is in fail safe mode
FSMERC = 3 : one of the 5 error interruptions listed above happened and the chip is in
fail safe mode
Page 31 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
14.16. MemoryRead message
#
7
6
5
4
3
2
1
0
#
7
6
5
4
3
1
ADD0[15:8]
0
ADD0[7:0]
3
ADD1[15:8]
2
ADD1[7:0]
5
2
1
0
0
0
1
4
7
CRC
6
1
1
0
0
0
Table 34 – MemoryRead Master-Out Slave-In Message (Opcode = 1)
MemoryRead returns two EEPROM or RAM words respectively pointed by the parameters ADDR0,
ADDR1.
•
The parameter ADDRx has three valid ranges: 0…254 for RAM access, 0x1000...0x103E for
EEPROM access, and 0x4000…0x5FFE for ROM access
MSC MemoryRead
Master
Slave
MemoryRead ()
X ()
Loop
MemoryRead ()
MemoryRead ()
Next Cmd ()
MemoryRead ()
Figure 18 – MSC for RAM/ROM/EEPROM Memory Read
Note: Enter the loop for complete memory dumps.
MemoryRead Master-In Message (opcode 0x02)
The address Addr may be valid or not:
Case of validity: MemoryRead returns normally the data word pointed by Addr
Case of invalidity: MemoryRead returns DataWord = 0.
Note: FW makes sure that invalid addresses do not cause memory access violation
#
7
6
5
4
3
2
1
0
#
7
6
5
4
3
2
1
DATA[15:8] AT ADD0
0
DATA[7:0] AT ADD0
3
DATA[15:8] AT ADD1
2
DATA[7:0] AT ADD1
5
7
1
0
1
0
4
CRC
6
1
1
0
0
0
0
Table 35 – MemoryRead MISO Packet (Opcode = 2)
3901090363
Rev. 005
Page 32 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
14.17. EepromWrite Message
#
7
6
1
0
0
5
4
3
2
1
0
#
ADDRESS[5:0](22)
7
6
5
4
3
2
1
0
0
1
1
0
3
KEY[15:8]
2
KEY[7:0]
5
DATA WORD[15:8]
4
DATA WORD[7:0]
7
CRC
6
1
1
0
0
0
Table 36 – EEPROMWrite MOSI Message (Opcode = 3)
The EEPROM data consistency is guaranteed through two protection mechanisms: A and B.
Protection A: The parameter ADDRESS should match the parameter KEY.
The key associated to each address is public. Protection against erroneous write (in the field) is
guaranteed as long as the keys are not stored in the master (ECU), but in the calibration system, which is
typically a CAN or LIN Master.
Protection B: Slave challenges the Master with a randomly generated ChallengeKey, expects back this
key exclusive-or with 0x1234
MSC EEPROMWrite
MSC EEPROMWrite
(Case of Erroneous Key)
Master
Slave
MSC EEPROMWrite
(Case of Failing Challenge)
Master
Slave
Master
Slave
EEWrite(Addr,Key)()
X ()
EEWrite(Addr,Key)()
X ()
EEWrite(Addr,Key)()
X ()
EEReadChallenge ()
EEChallenge ()
EEReadChallenge ()
EEWriteStatus ()
EEReadChallenge ()
EEChallenge ()
EEChallengeAns ()
EEReadAnswer ()
EEChallengeAnsr ()
EEReadAnswer ()
tEEWrite
tEEWrite
NOP ()
EEWriteStatus ()
NOP ()
EEWriteStatus ()
Figure 19 – MSCs EEPROMWrite
0
17485
1
31053
2
57190
ADDRESS[3:1]
3
4
57724
7899
5
53543
6
26763
7
12528
1
38105
51302
16209
24847
13134
52339
14530
18350
2
55636
64477
40905
45498
24411
36677
4213
48843
3
6368
5907
31384
63325
3562
19816
6995
3147
ADDRESS[5:4]
0
Table 37 – EEPROM Write Public Keys
#
7
6
5
4
3
2
1
0
#
1
0
3
2
5
7
7
6
5
4
3
2
1
0
1
1
0
0
1
1
1
1
4
CRC
6
Table 38 – EEPROMWrite ReadChallenge Slave-In Message (Opcode = 15)
22
The value of the ADDRESS[5:0] shall be even.
3901090363
Rev. 005
Page 33 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
#
7
6
5
4
3
2
1
0
1
#
7
6
5
4
3
2
1
0
0
0
0
3
CHALLENGE KEY [15:8]
2
5
CHALLENGE KEY [7:0]
4
7
CRC
6
1
1
0
0
0
1
Table 39 – EEPROMWrite EEChallenge Slave-Out Message (Opcode = 4)
•
The parameter ChallengeKey is randomly generated by the sensor, and should be echoed
because of the next command
#
7
6
5
4
3
2
1
0
1
#
7
6
5
4
3
2
1
0
0
1
0
3
KEY ECHO [15:8]
2
KEY ECHO [7:0]
5
INVERTED KEY ECHO [15:8]
4
INVERTED KEY ECHO [7:0]
7
CRC
6
1
1
0
0
0
1
Table 40 – EEPROMWrite ChallengeAns Slave-In Message (Opcode = 5)
•
•
The parameter KeyEcho should match ChallengeKey exor’ed with 0x1234.
The parameter InvertedKeyEcho should match KeyEcho after bit reversal.
#
7
6
5
4
3
2
1
0
#
1
0
3
2
4
7
6
5
4
3
2
1
0
1
1
1
0
1
0
0
0
1
0
4
7
CRC
6
Table 41 – EEReadAnswer Slave-Out Message (Opcode = 40)
#
7
6
5
4
3
2
1
0
#
1
0
3
2
4
7
7
6
5
4
3
2
CODE
4
CRC
6
1
1
0
0
1
1
1
0
Table 42 – EEPROMWriteStatus Slave-Out Message (Opcode = 14)
•
The parameter Code details the exact cause of EEPROM write failure
Code
1
2
4
6
7
8
Description of EEPROM Write Failure
Success
Erase/Write Fail
EEPROM CRC Erase/Write Fail
Key Invalid
Challenge Fail
Odd Address
The command Reboot must be sent after a series of EEPROM writes, to make sure that the new
EEPROM parameters are taken into account.
3901090363
Rev. 005
Page 34 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
14.18. Reboot
Reboot is a valid command in the following three cases.
1. After an EEPROM write
2. In fail-safe mode
3. In standby mode
In normal mode, Reboot reports wrong opcode.
Reboot causes a system reset identical to a true power-on reset. Start-up timings and sequences are
applicable for the reboot message.
Reboot, after EEPROM programming
It is meant to force the FW to refresh the EEPROM cache and IO space after a series of EEPROM write
commands. It forces the FW to take into account all the changes (modes enabling, disabling...) including
those that are not cached.
Reboot, in fail-safe mode
ECU can issue a reboot message to exit the fail-safe mode before the watchdog time-out, for a fast
recovery.
#
7
6
5
4
3
2
1
0
#
1
0
3
2
4
7
6
5
4
3
2
1
0
1
1
1
0
1
1
1
1
4
7
CRC
6
Table 43 – Reboot (Opcode = 47)
14.19. Standby
Standby sets the sensor in Standby mode: the digital clock is stopped and some analog blocks are
switched off. The SCI clock remains active, allowing the sensor to be responsive to SCI messages.
The first SCI message received while in Standby wakes up the sensor. The standby mode is precisely
exited on the SS rising edge. The first message following a Standby message is normally interpreted by
the sensor. It can be NOP, a GET or anything else.
#
7
6
5
4
3
2
1
0
#
1
0
3
2
4
7
7
6
5
4
3
2
1
0
1
1
1
1
0
0
0
1
4
CRC
6
Table 44 – Standby (Opcode = 49)
The sensor answer to Standby is StandbyAck (opcode 50).
After resuming, the (E1, E0) error bits of the 6 following GET messages shall be ignored.
3901090363
Rev. 005
Page 35 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
14.20. Start-up Sequence (Serial Communication)
The MLX90363 serial interface is enabled after the internal start-up initializations and start-up checks.
Note: The start-up sequence of the MLX90363 firmware is described at chapter 19.1.
The recommended SCI start-up sequences (Master – Slave) are depicted in the following message
sequence charts, and timing diagrams. It usually starts with a NOP SI message. Ready is the first SO
message.
For safety critical applications, Melexis recommends performing two extra checks prior to the request of
the first regular data: oscillator frequency check and a readback of the diagnostic details (ROM, RAM,
ADC Monitor…)
Message Sequence Chart
Start-up Sequence (Basic Scenario)
Master
Message Sequence Chart
Start-up Sequence (Safety Scenario)
Slave1
Master
NOP(Challenge) ()
Ready ()
Slave1
NOP ()
Ready ()
OscCounterStart ()
Challenge Echo ( )
GETx ()
Challenge Echo ( )
OscCounterStop ()
OscStartAck ( )
Loop
DiagDetails ( )
OscCounter ()
GETx ()
Regular Packet ( )
GETx ()
DiagDetails ( )
Loop
GETx ()
Regular Packet ()
Figure 20 – MSCs Start-up sequence examples (basic and safety critical scenario)
VDD
POR
SI
NOP
SO
Ready Challenge Echo
SS
GETx
tPOR
tStartUp
Figure 21 – Start-up sequence, basic scenario, timing diagram
VDD
POR
SI
NOP
SO
Ready Challenge Echo
SS
OscStart
OscStop DiagDetails
StartAck OscCounter
GETx
DiagDetails
tPOR
tStartUp
tOscCounter
Figure 22 – Start-up sequence, safety critical scenario, timing diagram
Notes:
• The timing tStartUp is specified at chapter Timing Specifications (Section 10)
• The slave answers with NTT in case the first SI message occurs prior the end of the initial checks.
• The NOP - Challenge Echo is meant to diagnose the SCI link.
3901090363
Rev. 005
Page 36 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
14.21. Allowed sequences
Only the message sequences described in this datasheet are accepted by the sensor.
A few more are described below; they combine GET1 or GET2 with MemoryRead or DiagDetails.
The particular timings associated to these sequences do not overrule the general timing specifications.
Message Sequence Chart
Single Slave - Combi GET1+MemoryRead
Master
Slave1
Message Sequence Chart
Single Slave - Combi GET1+DiagDetails
Master
Loop
Slave1
Loop
GET1 ()
MemoryReadAns ()
GET1 ()
DiagDetails ()
MemoryRead ()
Regular packet ()
DiagDetails ()
Regular packet ()
NOP ()
MemoryReadAns ()
NOP ()
DiagDetails ()
Figure 23 – MSCs Combi sequences GET1+MemoryRead and GET1+DiagDetails
Message Sequence Chart
Single Slave - Combi GET2+MemoryRead
Master
Loop
Slave1
GET2 ()
MemoryReadAns ()
Message Sequence Chart
Single Slave - Combi GET2+DiagDetails
Master
Loop
Slave1
GET2 ()
DiagDetails ()
Sync Pulse
Sync Pulse
MemoryRead ()
Regular packet ()
DiagDetails ()
Regular packet ()
NOP ()
MemoryReadAns ()
NOP ()
DiagDetails ()
Figure 24 – MSCs Combi sequences GET2+MemoryRead and GET2+DiagDetails
3901090363
Rev. 005
Page 37 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
15.
MLX90363 Traceability Information
Every device contains a unique ID that is stored in the EEPROM. Melexis strongly recommends storing
this value during the EOL (end-of-line) programming to ensure full traceability of the product.
These parameters shall never be erased during the EOL programming.
Parameter
MLXID
16.
Comments
Traceability Information
Address
(Hexa)
1012[15:0]
1014[15:0]
1016[15:0]
Default
Values
MLX
Parameter
# bit
48
MLX90363 End-User Programmable Items
The list below describes the parameters that are available to the customer during EOL programming. The
parameters will be programmed through the EepromWrite Message (section 14.17).
It must be noted that the data type of Eepromwrite Message is a word, and therefore it is mandatory to
first readback the complete contents of the word before changing only the bits corresponding to the
parameter.
Parameter
Comments
MAPXYZ
3D
FILTER
VIRTUALGAINMAX
VIRTUALGAINMIN
KALPHA
KBETA
SMISM + SEL_SMISM
ORTH_B1B2
KT
FHYST
PINFILTER
XYZ Coordinates mapping
Enabling of 3D formula (Joystick)
Enabling of Signal Filter
Electrical Gain Code Max
Electrical Gain Code Min
Magnetic Angle Formula Parameter
Magnetic Angle Formula Parameter
Magnetic Angle Formula Parameter
Magnetic Angle Formula Parameter
Magnetic Angle Formula Parameter
Hysteresis Value (Alpha + Beta )
SCI Input Pins: EMC: Filter Bandwidth
USERID
User Identification
FREE
Freely usable by user
Address
(Hexa)
102A[2:0]
102A[3]
102A[5:4]
102E[15:8]
102E[7:0]
1022[15:0]
1024[15:0]
1032[15:0]
1026[7:0]
1030[15:0]
1028[15:8]
1001[1:0]
103A[15:0]
103C[15:0]
1018[15:0]
1026[15:8]
1028[7:0]
103E[7:0]
Default
Values
0
0
0
41
0
0
1.6
1
0
1
MLX
1
0001
0003
0
Parameter
# bit
3
1
2
8
8
16
16
16
8
16
8
2
16
16
40
Melexis strongly recommends checking the User Identification data (Parameters USERID) during EOL
calibration.
3901090363
Rev. 005
Page 38 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
17.
MLX90363 Description of End-User Programmable Items
17.1. User Configuration: Device Orientation
MAPXYZ
Assignment
0
B1 = X, B2 = Y, B3 = Z
1
B1 = X, B2 = Z, B3 = Y
2
B1 = Y, B2 = Z, B3 = X
3
B1 = Y, B2 = X, B3 = Z
4
B1 = Z, B2 = X, B3 = Y
5
B1 = Z, B2 = Y, B3 = X
Note
Use mode 0 instead
The values B1, B2 and B3 are inputs to the 2D/3D formula (see section 17.2).
The field coordinates X, Y, Z are relative to the device (See Section 23.3 and 23.6). The parameter
MAPXYZ selects the application-dependent mapping of (X, Y, Z) to (B1, B2, B3).
17.2. User Configuration: Magnetic Angle Formula
Parameter 3D
0
1
Formula
Note
 B2 
Alpha = arctan

 B1 
 (KALPHA× B3)2 + ( KT × B2) 2
Alpha = arctan

B1






Beta = arctan




extended to the full circle
extended across
B1=0 and B2=0
max 180deg
(KBETA × B3)2 + ( KT × B1) 2 
B2
17.3. User Configuration: 3D=0 formula trimming parameters SMISM and
ORTH_B1B2
17.3.1. Magnetic Angle ∠XY
Parameter
Address (hex)
Value
SMISM + SEL_MISM
1032[15:0]
Trimmed by MLX
ORTH
1038[7:0]
Trimmed by MLX
ORTH_SEL
102C[8]
0
MAPXYZ
102A[2:0]
0
This is the default condition as programmed by MLX. In such case, no front-end calibration is needed from
the customer.
3901090363
Rev. 005
Page 39 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
17.3.2. Magnetic Angle ∠XZ and ∠YZ
Parameter
Address (hex)
Range
Value
SEL_SMISM
1032[15]
0 or 1
0 or 1
SMISM
1032[14:0]
[0..2]
TYP = 1.4
ORTH_SEL
102C[8]
0 or 1
1
ORTH_B1B2
1026[7:0]
[0..2]
TYP = 0
MAPXYZ
102A[2:0]
1, 2, 4 or 5
1, 2, 4 or 5
If the magnetic angle ∠XZ or ∠YZ is read, Melexis strongly recommends calibrating the front-end
parameters in order to reduce the magnetic accuracy error (see Section 11):
1) Phase Error
B2 = B1 – B2 * ORTH_B1B2 / 1024
Where ORTH_B1B2 is the phase mismatch between the B1 and B2 signals.
2) Sensitivity Mismatch between B1 and B2
The parameter SMISM is selected in such a way that:
i.
Case |B1|>|B2| SEL_SMISM = 0
B1 * SMISM[14:0] / 2^15 and B2 have the same amplitude.
ii.
Case |B1|<|B2| SEL_SMISM = 1
B1 and B2 * SMISM[14:0] / 2^15 have the same amplitude.
17.4. User Configuration: 3D=1 formula trimming parameters KALPHA, KBETA, KT
The values KAPLHA, KBETA and KT are inputs to the 3D formula (see section 17.2) and allow a targeted
reduction of the linearity error through a normalization of the raw signals and a correction prior to the
ATAN function.
Parameter
Value
Range
Typ.
KAPLHA
0 … 2^16-1
[0..2]
1.4
KBETA
0 … 2^16-1
[0..2]
1.4
KT
0 … 2^16-1
[0..2]
1
Note: when not trimmed by the customer, the values per default of KALPHA and KBETA must be
programmed to the TYP. value of 1.4.
3901090363
Rev. 005
Page 40 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
17.5. User Configuration: Filter
The MLX90363 features 3 FIR filter modes controlled with Filter = 1…3. The transfer function is described
below:
yn =
j
1
∑a x
i
j
∑a
n −i
i =0
i
i =0
The characteristics of the filters No. 0 to 3 is given in the following table.
Filter No. (j)
Type
Coefficients a0… a5
Title
99% Response Time
Efficiency RMS (dB)
Digital value [16bits]
0
Disable
N/A
No Filter
1
0
1
2
3
Finite Impulse Response
11
1111
12221
Extra Light
Light
Medium
2
4
5
3.0
6.0
6.6
Step and impulse response of the 3 different filters
30000
20000
No filtering
FIR2 [1111]
FIR1 [11]
FIR2 [12221]
10000
0
0
10
20 Time [samples] 30
40
50
17.6. Virtual Gain Min and Max Parameters
The MLX90363 automatic gain control (AGC) loop selects the electrical gain code within the user-defined
range VIRTUALGAINMIN…VIRTUALGAINMAX. Setting VIRTUALGAINMIN=VIRTUALGAINMAX means
setting a fixed gain. The min and max virtual gain codes influence directly the sensitivity of the diagnostics
D17-“Field Magnitude Too High” and D18-“Field Magnitude Too Low”.
3901090363
Rev. 005
Page 41 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
17.7. Hysteresis FILTER
Parameter
Value
Note
FHYST
0 … 255
1 LSB = 0.044 deg
The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step
is smaller than the programmed FHYST parameter value. The output value is modified when the
increment is bigger than the hysteresis. The hysteresis filter reduces the resolution to a level compatible
with the internal noise of the IC. The hysteresis must be programmed to a value close to the noise level.
17.8. EMC Filter on SCI Pins
The EEPROM parameter PINFILTER selects the level of filtering on the serial protocol input pins.
SCI clock frequency
PINFILTER
Recommended value
for higher EM Immunity
2MHz
1
1MHz
2
500kHz
3
17.9. Identification & FREE bytes
Parameter
Value
Unit
31
USERID
0..(2 -1)
FREE
0…(2 -1)
39
Identification number: 32 bits freely useable by Customer for traceability purpose.
The FREE bytes can also be used for identification or any other purposes.
17.10. Lock
The calibration parameters of the MLX90363 are locked.
To unlock the write, one must follow the write procedure described in section 14.17.
3901090363
Rev. 005
Page 42 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
18.
MLX90363 Self Diagnostic
The MLX90363 provides numerous self-diagnostic features which increase the safety integrity level of the
IC, by diagnosing and reporting as many as 18 internal and external failure cases.
Diagnostic Item
RAM March C- 10N Test
Watchdog BIST
ROM 16 bit Checksum
RAM Test (continuous)
CPU Register Functional Test
EEPROM Calibration parameters (8 bit CRC)
EEPROM Hamming Code DED (Dual Error Detection)
EEPROM RAM Cache Error
Action
Fail-safe mode
Fail-safe mode
Fail-safe mode
Fail-safe mode
Fail-safe mode
Fail-safe mode
Fail-safe mode
Report(23)
Bit
D0
D1
D2
D3
D4
D5
D6
D7
Notes
At Startup only
At Startup only
ADC Block
Report
D8
Reference Voltage Unit (VCM)
+ 11 Input Levels
D12
See Magnetic Frequency Spec.
D13
D14
See Magnetic Frequency Spec.
See Magnetic Frequency Spec.
Temperature > 190 deg (± 20deg)
Temperature < -80 deg (± 20deg)
Report
(Optional)
Report
Report
Report, temp.
value set to
EE_T35
Report, saturate
temp. value
Field magnitude too high (Norm > 99% ADC Span)(24)
Report
D17
Field magnitude too low (Norm < 20% ADC Span)
Report
D18
ADC clipping (X, Y, Z, two phases each)
Supply voltage monitor (VDD) and Regulator monitor
(VDEC)(25)
Firmware Flow monitoring
Read/Write Access out of physical memory
Stack Overflow
Write Access to protected area (IO and RAM Words)
Unauthorized entry in “SYSTEM” Mode
D19
D20
External failure
Watchdog Timeout
Oscillator Frequency (Dedicated SCI Command)
Report
Report
(Optional)
Fail-safe mode
Fail-safe mode
Fail-safe mode
Fail-safe mode
Fail-safe mode
NTT
Message(26)
Reset(27)
n/a
External failure, given that
AGC keeps Norm below 63.5%
External failure, given that
AGC keeps Norm above 47%
External failure
VDD > MT8V
MISO is HiZ
Bz sensitivity monitor(25)
monitor(25)
Bx sensitivity
By sensitivity monitor(25)
Temperature sensor monitoring (based on redundancy)
Serial Interface Protection Error
D15
D16
External failure
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
Diagnostic performed by master
100% Hardware detection.
No communication possible.
Figure 25 – Diagnostics List
Reporting is done through the bits E0 and E1 of the regular messages or the bits Dx of the DiagnosticDetails message. See
Table 8 for more details.
24 Norm = max(abs(X),abs(Y),abs(Z))
25 Diagnostic to be disabled in the 3V3 application diagram (VDD = VDEC).
26 The NTT Message is followed by an Error Message.
27 Resetting has the same effects as a POR: the next SO message is therefore Ready.
23
3901090363
Rev. 005
Page 43 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
19.
MLX90363 Firmware Flowcharts
19.1. Start-up sequence
The entry in operation mode is preceded by a startup phase or startup sequence, performing the built-in
self tests (performed only once), the automatic analog gain adjustment, the temperature acquisition and a
first execution of the built-in self diagnostics (also performed continuously afterwards). The start-up
sequence ends with the enabling of the serial interface.
Start-up Sequence on POR
BIST RAM
BIST Watchdog
BIST EEPROM CRC+DED
RAM and IO Space Initialization
SCI, ADC Driver Initialization
Automatic Gain Control
(6 x Signal Processing)
Temperature Acquisition
Digital Diagnostics First Pass
ROM, RAM, CPU, EE CRC
Analog Diagnostics First Pass
ADCMonitor, TempMonitors...
Enable SCI Communication
SO = Ready
Background
Figure 26 – Firmware start-up sequence
3901090363
Rev. 005
Page 44 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
19.2. Signal Processing (GETx)
The digital signal processing performed by the firmware is depicted by the following diagram.
Inputs
from
EEPROM
OfsX0
OfsY0
OfsZ0
Xslope
Yslope
Zslope
T25
Tm40
T125
ORTH
SMIS
DSP
Outputs
Inputs
from ADC
Xadc
kalpha
kbeta
kt
FIR/IIR
Setting
+
X1
-
+
If Orth_Sel =0
X2
FIR/IIR
Filter
+
*
If 3D=0
X
If Orth_Sel
=1
XB
OfsX = ( OfsX0 + XSlope *
dT ) * VG / VGMAX
Yadc
+
Y1
-
+
ORTH_XY
Y2
FIR/IIR
Filter
+
Map
X,Y,Z
on
B1,B2,
B3
*
Y
If Marker = 0
ORTH
_B1B2
*
*
Alpha = atan( B2 / B1)
*
B1
SMIS
Zadc
+
Z1
-
+
Z2
*
FIR/IIR
Filter
+
Z
ALPHA
Alpha = atan( Sqrt(
(kalpha.B3)2 + (kt.B2)2 ) / B1)
YB
OfsY = ( OfsY0 + YSlope *
dT ) * VG / VGMAX
If Marker = 1
B2
B3
BETA
Beta = atan( Sqrt(
(Kbeta.B3)2 + (kt.B1)2 ) / B2 )
Digital Signal (Post)-Processing
ZB
OfsZ = ( OfsZ0 + ZSlope *
dT ) * VG / VGMAX
SCI Message Coding
Case Marker = 2
ALPHA
T
+
*
-
T25
T125
+
-
dT
BETA
Norm = max(abs(X1,X2,Y1,Y2,Z1,Z2))
Tslope
Tm40
SCI Message Coding
Case Marker = 1
ALPHA
90363 ABB Digital Signal (Pre)-Processing
VG
SCI Message Coding
Case Marker = 0
Figure 27 – Block Diagram of Signal Processing – Function model
19.3. Fail-safe Mode
The purpose of fail-safe mode is dual:
1. To increase the safety integrity, by blocking any position calculation and position reporting
whenever a critical error (WD error, ROM Checksum, Firmware flow error…) is detected
2. To report the root cause of the failure
In fail-safe mode,
The analog is [set] inactive
The sensor waits for the master to initiate a reset
Autonomous reset by watchdog after 100ms, i.e. watchdog running but will not be acknowledged
Only SPI driver and communication handler is active. The only supported MOSI commands is
- sciREBOOT
Upon all SPI MOSI commands, the MISO message SPI_ERROR ( = DiagDetailAnswer) is sent
Diagnostics (analog and digital) and background are not running
Fail-safe mode – entry conditions
The fail-safe mode is entered upon:
- Critical error during initialization (RAM BIST, WD BIST, ROM Checksum, EEPROM CRC)
- Critical error during background/digital diagnostics (RAM continuous test, ROM test, EEPROM CRC)
- Exception, i.e. system level interrupts (Stack-overflow, invalid address, protection error, program
error)
- FW flow error
3901090363
Rev. 005
Page 45 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
19.4. Automatic Gain Control
The Virtual Gain code is updated at every GET message. The new code value is based on the field
strength (Norm) of every raw component (X, Y, Z).
The Automatic Gain Control (AGC) makes sure that Norm is between 47% and 63.5%, by controlling the
gain code within the range (VIRTUALGAINMIN, VIRTUALGAINMAX).
The algorithm gives a limitation in term flux density frequency, see Section 10 for specification.
It is not recommended to interrupt the GET message sequence, because AGC iterations are triggered by
GET messages. If a pause cannot be avoided, the (E1, E0) error bits of the 6 following GET messages
shall be ignored.
3901090363
Rev. 005
Page 46 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
20.
Recommended Application Diagrams
20.1. MLX90363 in SOIC-8 Package and 5V Application Diagrams
5V
VDD_IO
VSS_IO
SPI MASTER
8
1
C2
100nF
VDD
VSS
C1
47nF
MLX90363
SCLK
MISO
VDEC
MOSI
Test
MISO
MOSI
5
4
/SS
SCLK
/SS
Figure 28 – Recommended wiring(28) for the MLX90363 in SOIC8 package and 5V Application Diagrams.
20.2. MLX90363 in SOIC-8 Package and 3V3 Application Diagrams
3V3
VDD_IO
VSS_IO
8
1
SPI MASTER
VDD
VSS
C1
100nF
MLX90363
SCLK
MISO
VDEC
MOSI
Test
MISO
MOSI
5
4
/SS
SCLK
(28)
Figure 29 – Recommended wiring
/SS
for the MLX90363 in SOIC8 package and 3V3 Application Diagrams.
28 Wiring of the SCI signals must be kept short on the PCB. In other cases, Melexis advises to add 100Ω serial resistor on the
SCLK, MOSI, MISO and /SS lines. Melexis also recommends doubling the C1 decoupling capacitor.
3901090363
Rev. 005
Page 47 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
20.3. MLX90363 in TSSOP-16 Package and 5V Application Diagrams
C3 100nF
5V
VDD_IO
MLX90363
VSS_IO
C1 47nF
14
SCLK1
VDEC1 1
6
SCLK2
VSS1 2
SCLK
16
MOSI1
Test1 13
MOSI
8
MOSI2
VDD1 3
MISO
4
MISO1
VDEC2 9
SPI MASTER
12
MISO2
VSS2 10
/SS1
15
/SS1
Test2 5
/SS2
7
/SS2
VDD2 11
C2 47nF
Figure 30 – Recommended(29) wiring for the MLX90363 in TSSOP16 package (dual die) and 5V
Application Diagrams.
29
Wiring of the SCI signals must be kept short on the PCB. In other cases, Melexis advises to add 100Ω serial resistor on the
SCLK, MOSI, MISO and /SS lines. Melexis also recommends to double the C1,C2 decoupling capacitors.
3901090363
Rev. 005
Page 48 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
20.4. MLX90363 in TSSOP-16 Package and 3V3 Application Diagrams
3V3
VDD_IO
MLX90363
VSS_IO
14
SCLK1
VDEC1 1
6
SCLK2
VSS1 2
SCLK
16
MOSI1
Test1 13
MOSI
8
MOSI2
VDD1 3
MISO
4
MISO1
VDEC2 9
12
MISO2
VSS2 10
/SS1
15
/SS1
Test2 5
/SS2
7
/SS2
VDD2 11
SPI MASTER
C1 100nF
C2 100nF
Figure 31 – Recommended(29) wiring for the MLX90363 in TSSOP16 package (dual die) and 3V3
Application Diagrams
3901090363
Rev. 005
Page 49 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
21. Standard information regarding manufacturability of Melexis
products with different soldering processes
Our products are classified and qualified regarding soldering technology, solderability and moisture
sensitivity level according to following test methods:
Reflow Soldering SMD’s (Surface Mount Devices)
•
•
IPC/JEDEC J-STD-020
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
(classification reflow profiles according to table 5-2)
EIA/JEDEC JESD22-A113
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing
(reflow profiles according to table 2)
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
•
EN60749-20
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat
EIA/JEDEC JESD22-B106 and EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Iron Soldering THD’s (Through Hole Devices)
•
EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
EIA/JEDEC JESD22-B102 and EN60749-21
Solderability
For all soldering technologies deviating from above mentioned standard conditions (regarding peak
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests
have to be agreed upon with Melexis.
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance
of adhesive strength between device and board.
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more
information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction
Of the use of certain Hazardous Substances) please visit the quality page on our website:
http://www.melexis.com/quality.aspx
22.
ESD Precautions
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
3901090363
Rev. 005
Page 50 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
23.
Package Information
23.1. SOIC8 – Package Dimensions
1.27 TYP
NOTES:
3.81
3.99**
4.80
4.98*
5.80
6.20**
All dimensions are in millimeters (anlges in degrees).
* Dimension does not include mold flash, protrusions or
gate burrs (shall not exceed 0.15 per side).
** Dimension does not include interleads flash or protrusion
(shall not exceed 0.25 per side).
*** Dimension does not include dambar protrusion.
Allowable dambar protrusion shall be 0.08 mm total in
excess of the dimension at maximum material condition.
Dambar cannot be located on the lower radius of the foot.
1.37
1.57
1.52
1.72
0.19
0.25
0°
8°
0.36
0.46***
3901090363
Rev. 005
0.100
0.250
0.41
1.27
Page 51 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
8
/SS
MOSI
V DEC
V SS
23.2. SOIC8 – Pinout and Marking
Marking :
5
Part Number MLX90363 (3 digits)
Die Version (3 digits)
Top
363 Axx
M12345
Xy-E
Xy-E
Split lot number (Optional ) + “-E”
WW
SCLK
Test
MISO
YY
Lot number: “M” + 5 digits
Week Date code (2 digits)
Year Date code (2 digits)
4
VDD
3901090363
Rev. 005
Axx
M12325
Bottom
1
363
Page 52 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
23.3. SOIC8 – IMC Positionning
CW
8
7
6
5
CCW
X
0.46 +/- 0.06
1.16 +/- 0.155
1.25
1.65
1
2
3
4
Z
1.96
2.26
Y
Angle detection MLX90363 SOIC8
6
2
3
~ 90 Deg.*
5
8
7
4
1
2
2
3
5
S3
4
~ 270 Deg.*
5
8
7
6
5
4
1
2
N3
4
S
6
N
1
7
S
~ 180 Deg.*
8
6
N
1
7
S
8
N
~ 0 Deg.*
* No absolute reference for the angular information.
The MLX90363 is an absolute angular position sensor but the linearity error (Le – See Section 11) does
not include the error linked to the absolute reference 0 Deg.
3901090363
Rev. 005
Page 53 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
23.4. TSSOP16 – Package Dimensions
0.65 TYP
12O TYP
0.20 TYP
0.09 MIN
1.0 DIA
4.30
4.50**
6.4 TYP
0.09 MIN
1.0
12O TYP
0.50
0.75
0O
8O
1.0
1.0 TYP
0.85
0.95
4.90
5.10*
1.1 MAX
0.19
0.30***
0.09
0.20
0.05
0.15
NOTES:
All dimensions are in millimeters (anlges in degrees).
* Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side).
** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side).
*** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at
maximum material condition. Dambar cannot be located on the lower radius of the foot.
3901090363
Rev. 005
Page 54 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
23.5. TSSOP16 – Pinout and Marking
16
1
VDEC1
MOSI 1
/SS 1
SCLK 1
363Axx
M12345
Xy-E
VSS1
VDD1
MISO1
Test2
Test1
MISO2
VSS2
9
VDD2
/SS2
MOSI2
8
SCLK2
Marking :
Part Number MLX90363 (3 digits)
Die Version (3 digits)
VDEC2
Top
363
Axx
M12325
Xy-E
Bottom
YY
Lot number: “M” + 5 digits
Split lot number (Optional) + “-E”
WW
Week Date code (2 digits)
Year Date code (2 digits)
23.6. TSSOP16 – IMC Positionning
CW
X2
Z2
16
9
Die 1
Die 2
Y2
Y1
0.30 +/- 0.06
CCW
1.95
2.45
1
Z1
0.70 +/- 0.13
8
1.84
2.04
X1
2.76
2.96
3901090363
Rev. 005
Page 55 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
Angle detection MLX90363 TSSOP16
~ 180 Deg.*
16
9
16
Die 2
1
8
~ 180 Deg.* ~ 0 Deg.*
16
1
8
~ 270 Deg.* ~ 90 Deg.*
9
16
Die 2
9
Die 1
S
S
N
1
Die 2
S
Die 1
S
Die 1
9
N
N
Die 1
~ 90 Deg.* ~ 270 Deg.*
8
1
Die 2
N
~ 0 Deg.*
8
* No absolute reference for the angular information.
The MLX90363 is an absolute angular position sensor but the linearity error (Le – See Section 11) does
not include the error linked to the absolute reference 0 Deg.
3901090363
Rev. 005
Page 56 of 57
Data Sheet
Jul/13
MLX90363
Triaxis® Magnetometer IC
With High Speed Serial Interface
24.
Disclaimer
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in
its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement.
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,
prior to designing this product into a system, it is necessary to check with Melexis for current information.
This product is intended for use in normal commercial applications. Applications requiring extended
temperature range, unusual environmental requirements, or high reliability applications, such as military,
medical life-support or life-sustaining equipment are specifically not recommended without additional
processing by Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not
be liable to recipient or any third party for any damages, including but not limited to personal injury,
property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or
consequential damages, of any kind, in connection with or arising out of the furnishing, performance or
use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow
out of Melexis’ rendering of technical or other services.
© 2013 Melexis NV. All rights reserved.
For the latest version of this document, go to our website at
www.melexis.com
Or for additional information contact Melexis Direct:
Europe, Africa, Asia:
Phone: +32 1367 0495
E-mail: [email protected]
America:
Phone: +1 248 306 5400
E-mail: [email protected]
ISO/TS 16949 and ISO14001 Certified
3901090363
Rev. 005
Page 57 of 57
Data Sheet
Jul/13
Similar pages