MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface Features and Benefits Tria⊗is® Magnetometer (BX, BY, BZ) On Chip Signal Processing for Robust Position Sensing High Speed Serial Interface (SPI compatible – Full Duplex) Enhanced Self-Diagnostics Features 5V and 3V3 Application Compatible 14 bit Output Resolution 48 bit ID Number Single Die – SO8 Package RoHS Compliant Dual Die (Full Redundant) – TSSOP16 Package RoHS Compliant Applications Absolute Contactless Position Sensor Ordering Code Product Code Temperature Code MLX90363 MLX90363 MLX90363 MLX90363 MLX90363 MLX90363 MLX90363 MLX90363 MLX90363 MLX90363 MLX90363 MLX90363 Legend: Temperature Code: Package Code: Option Code: Packing Form: Ordering example: K K K K E E E E L L L L Package Code DC DC GO GO DC DC GO GO DC DC GO GO ABB-000 ABB-000 ABB-000 ABB-000 ABB-000 ABB-000 ABB-000 ABB-000 ABB-000 ABB-000 ABB-000 ABB-000 Packing Form Code RE TU RE TU RE TU RE TU RE TU RE TU L for Temperature Range - 40°C to 150°C, K for Temperature Range - 40°C to 125°C, E for Temperature Range - 40°C to 85°C. DC for SOIC-8, GO for TSSOP-16. xxx-000: Standard version RE for Reel TU for Tube MLX90363LGO-ABB-000-TU GO [TSSO-16] 3901090363 Rev. 005 Option Code PPS Page 1 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 1. Functional Diagram VDEC VDD 3V3 Reg Triais™ DSP µC VX VZ MUX VY G A SPI(4) 14 D RAM ROM TEST VSS EEP ROM Figure 1 – Block Diagram 2. Description The MLX90363 is a monolithic magnetic sensor IC featuring the Tria⊗is® Hall technology. Conventional planar Hall technology is only sensitive to the flux density applied orthogonally to the IC surface. The Tria⊗is® Hall sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an Integrated Magneto-Concentrator (IMC) which is deposited on the CMOS die . The MLX90363 is sensitive to the three (3) components of the flux density applied to the IC (i.e. BX, BY and BZ). This allows the MLX90363 to sense any magnet moving in its surrounding and decode its position through an appropriate signal processing. Using its Serial Interface the MLX90363 can transmit a digital output (SP – 64 bits per frame). The MLX90363 is intended for Embedded Position Sensor applications (vs. Stand-Alone “Remote” Sensor) for which the output is directly provided to a microcontroller (Master) close to the magnetometer IC MLX90363 (Slave). The SPI protocol confirms this intent. The MLX90363 is using full duplex SPI protocol and requires therefore the separated SPI signal lines: MOSI, MISO, /SS and SLCK1. 1 The MLX90316 multiplexes the MOSI/MISO lines. The application diagrams of the MLX90363 and MLX90316 are therefore not compatible. 3901090363 Rev. 005 Page 2 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface TABLE of CONTENTS FEATURES AND BENEFITS ....................................................................................................................... 1 APPLICATIONS ............................................................................................................................................ 1 1. FUNCTIONAL DIAGRAM ...................................................................................................................... 2 2. DESCRIPTION ....................................................................................................................................... 2 3. GLOSSARY OF TERMS − ABBREVIATIONS − ACRONYMS ............................................................ 5 4. PINOUT .................................................................................................................................................. 5 5. PIN DESCRIPTION ................................................................................................................................ 6 6. ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 6 7. DETAILED DESCRIPTION.................................................................................................................... 7 8. MLX90363 ELECTRICAL SPECIFICATION ......................................................................................... 8 9. MLX90363 ISOLATION SPECIFICATION ............................................................................................ 8 10. MLX90363 TIMING SPECIFICATION ................................................................................................... 9 10.1. 10.2. TIMING SPECIFICATION FOR 5V APPLICATION DIAGRAM ............................................................................ 9 TIMING SPECIFICATION FOR 3V3 APPLICATION DIAGRAM ........................................................................ 10 11. MLX90363 ACCURACY SPECIFICATION ......................................................................................... 11 12. MLX90363 MAGNETIC SPECIFICATION .......................................................................................... 13 13. MLX90363 CPU & MEMORY SPECIFICATION ................................................................................. 13 14. MLX90363 SERIAL INTERFACE ........................................................................................................ 14 14.1. ELECTRICAL LAYER AND TIMING SPECIFICATION ..................................................................................... 14 14.2. SERIAL PROTOCOL .................................................................................................................................... 16 14.3. MESSAGE GENERAL STRUCTURE .............................................................................................................. 16 14.4. REGULAR MESSAGES ................................................................................................................................ 18 14.4.1. Note for the regular message “X – Y – Z – diagnostic” (Marker = 2)................................................. 18 14.5. TRIGGER MODE 1 ...................................................................................................................................... 19 14.6. TRIGGER MODE 2 ...................................................................................................................................... 21 14.7. TRIGGER MODE 3 ...................................................................................................................................... 22 14.8. TRIGGER MODES TIMING SPECIFICATIONS ................................................................................................ 23 14.9. OPCODE TABLE ......................................................................................................................................... 26 14.10. TIMING SPECIFICATIONS PER OPCODE, AND NEXT ALLOWED MESSAGES ................................................... 26 14.11. NOP COMMAND AND NOP ANSWER ........................................................................................................ 27 14.12. OSCCOUNTERSTART AND OSCCOUNTERSTOP COMMANDS ...................................................................... 27 14.13. PROTOCOL ERRORS HANDLING ................................................................................................................. 29 14.14. READY, ERROR AND NTT MESSAGES ....................................................................................................... 30 14.15. DIAGNOSTICSDETAILS COMMANDS........................................................................................................... 31 14.16. MEMORYREAD MESSAGE .......................................................................................................................... 32 14.17. EEPROMWRITE MESSAGE ......................................................................................................................... 33 14.18. REBOOT .................................................................................................................................................... 35 14.19. STANDBY .................................................................................................................................................. 35 14.20. START-UP SEQUENCE (SERIAL COMMUNICATION) .................................................................................... 36 14.21. ALLOWED SEQUENCES .............................................................................................................................. 37 15. MLX90363 TRACEABILITY INFORMATION...................................................................................... 38 16. MLX90363 END-USER PROGRAMMABLE ITEMS ........................................................................... 38 3901090363 Rev. 005 Page 3 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 17. MLX90363 DESCRIPTION OF END-USER PROGRAMMABLE ITEMS ........................................... 39 17.1. USER CONFIGURATION: DEVICE ORIENTATION......................................................................................... 39 17.2. USER CONFIGURATION: MAGNETIC ANGLE FORMULA ............................................................................. 39 17.3. USER CONFIGURATION: 3D=0 FORMULA TRIMMING PARAMETERS SMISM AND ORTH_B1B2 ............... 39 17.3.1. Magnetic Angle ∠XY ............................................................................................................................ 39 17.3.2. Magnetic Angle ∠XZ and ∠YZ ............................................................................................................ 40 17.4. USER CONFIGURATION: 3D=1 FORMULA TRIMMING PARAMETERS KALPHA, KBETA, KT .................... 40 17.5. USER CONFIGURATION: FILTER ................................................................................................................ 41 17.6. VIRTUAL GAIN MIN AND MAX PARAMETERS ........................................................................................... 41 17.7. HYSTERESIS FILTER ................................................................................................................................ 42 17.8. EMC FILTER ON SCI PINS......................................................................................................................... 42 17.9. IDENTIFICATION & FREE BYTES ............................................................................................................... 42 17.10. LOCK......................................................................................................................................................... 42 18. MLX90363 SELF DIAGNOSTIC .......................................................................................................... 43 19. MLX90363 FIRMWARE FLOWCHARTS ............................................................................................ 44 19.1. 19.2. 19.3. 19.4. START-UP SEQUENCE ................................................................................................................................ 44 SIGNAL PROCESSING (GETX) ................................................................................................................... 45 FAIL-SAFE MODE ...................................................................................................................................... 45 AUTOMATIC GAIN CONTROL .................................................................................................................... 46 20. RECOMMENDED APPLICATION DIAGRAMS .................................................................................. 47 20.1. 20.2. 20.3. 20.4. MLX90363 IN SOIC-8 PACKAGE AND 5V APPLICATION DIAGRAMS........................................................ 47 MLX90363 IN SOIC-8 PACKAGE AND 3V3 APPLICATION DIAGRAMS...................................................... 47 MLX90363 IN TSSOP-16 PACKAGE AND 5V APPLICATION DIAGRAMS ................................................... 48 MLX90363 IN TSSOP-16 PACKAGE AND 3V3 APPLICATION DIAGRAMS ................................................. 49 21. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS WITH DIFFERENT SOLDERING PROCESSES ........................................................................................ 50 22. ESD PRECAUTIONS ........................................................................................................................... 50 23. PACKAGE INFORMATION ................................................................................................................. 51 23.1. 23.2. 23.3. 23.4. 23.5. 23.6. SOIC8 – PACKAGE DIMENSIONS ............................................................................................................... 51 SOIC8 – PINOUT AND MARKING ............................................................................................................... 52 SOIC8 – IMC POSITIONNING .................................................................................................................... 53 TSSOP16 – PACKAGE DIMENSIONS .......................................................................................................... 54 TSSOP16 – PINOUT AND MARKING .......................................................................................................... 55 TSSOP16 – IMC POSITIONNING ............................................................................................................... 55 24. DISCLAIMER ....................................................................................................................................... 57 3901090363 Rev. 005 Page 4 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 3. Glossary of Terms − Abbreviations − Acronyms Gauss (G), Tesla (T): Units for the magnetic flux density − 1 mT = 10 G TC: Temperature Coefficient (in ppm/Deg.C.) NC: Not Connected Byte: 8 bits Word: 16 bits (= 2 bytes) ADC: Analog-to-Digital Converter LSB: Least Significant Bit MSB: Most Significant Bit DNL: Differential Non-Linearity INL: Integral Non-Linearity RISC: Reduced Instruction Set Computer ASP: Analog Signal Processing DSP: Digital Signal Processing ATAN: trigonometric function: arctangent (or inverse tangent) IMC: Integrated Magneto-Concentrator (IMC) CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform) EMC: Electro-Magnetic Compatibility FE: Falling Edge RE: Rising Edge MSC: Message Sequence Chart FW: Firmware HW: Hardware 4. Pinout Pin # SOIC-8 TSSOP-16 1 VDD VDEC1 2 MISO VSS1 (Ground1) 3 Test VDD1 4 SCLK MISO1 5 /SS Test2 6 MOSI SCLK2 7 VDEC /SS2 8 VSS (Ground) MOSI2 9 VDEC2 10 VSS2 (Ground2) 11 VDD2 12 MISO2 13 Test1 14 SCLK1 15 /SS1 16 MOSI1 For optimal EMC behavior, it is recommended to connect the unused pins (Test) to the Ground (see section 19). 3901090363 Rev. 005 Page 5 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 5. Pin Description Name Direction Type Function / Description VDD VDD Analog Supply (5V and 3V3 application diagrams) MISO OUT Digital Master In Slave Out Test I/O Both Test Pin SCLK IN Digital Clock /SS IN Digital Slave Select MOSI IN Digital VDEC I/O Analog VSS (Ground) GND Analog Master Out Slave IN 5V Application Diagrams Decoupling Pin 3V3 Application Diagrams Supply (Shorted to VDD) Ground 6. Absolute Maximum Ratings Supply Voltage, Parameter Value VDD(2) + 18 V Reverse VDD Voltage − 0.3 V Supply Voltage, VDEC + 3.6 V Reverse VDEC Voltage − 0.3 V Positive Input Voltage + 11 V Reverse Input Voltage − 11 V Positive Output Voltage VDD + 0.3 V Reverse Output Voltage − 0.3 V Operating Ambient Temperature Range, TA − 40°C … + 150°C Storage Temperature Range, TS − 40°C … + 150°C Magnetic Flux Density ± 700 mT Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability. 2 Maximum rise time: 10µs. Rise time faster than 10µs might induce an extra current consumption. 3901090363 Rev. 005 Page 6 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 7. Detailed Description The three components of the applied flux density are measured through the Tria⊗is front end: VX ∝ BX VY ∝ BY VZ ∝ BZ Those three (3) Hall voltages corresponding to the three (3) components of the applied flux density are provided to the ADC (Analog-to-Digital Converter). The Hall signals are processed through a fully differential analog chain featuring the classic offset cancellation technique (Hall plate 2-Phases spinning and chopper-stabilized amplifier). The amplitude of VZ is smaller than the two (2) components VX and VY due to the fact that the magnetic gain of the IMC only affects the components parallel to the IC surface. The conditioned analog signals are converted through a 14 bit ADC and provided to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose primary function is the extraction of the position information (magnetic angle(s)) from the raw signals (after front-end compensation steps) through one the following operations: k ⋅ V1 V 2 α = ATAN where V1 = VX or VY or VZ , V2 = VX or VY or VZ and k (or SMISM) is a programmable factor to match the amplitude of k V1 and V2. (k V ) 2 + (k V ) 2 α 3 t 2 V1 α = ATAN (k V ) 2 + (k V ) 2 β 3 t 1 and β = ATAN V2 where V1 = VX or VY or VZ, V2 = VX or VY or VZ, V3 = VX or VY or VZ and kα, kβ and kt are programmable parameters. The DSP functionality is governed by the micro-code (firmware − FW) of the micro-controller which is stored into the ROM (mask programmable). In addition to the “ATAN” (“Arctangent”) function, the FW controls the whole analog chain, the programming/calibration and also the self-diagnostic modes. Due to the fact that the “ATAN” operation is performed on the ratios “V1/V2”, “V3/V1” and “V3/V2”, the output is intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects) affecting both signals. This feature allows an improved thermal accuracy compared to a conventional linear Hall sensor. The end-user programmable parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC). The programming steps do not require dedicated pins or programming tool. The operation is performed through the Master and the Serial Protocol using a dedicated and protected function(3). 3 For debug/demo purpose, Melexis can provide the Melexis Programming Unit PTC-04 with the SPI daughterboard (PTC-04-DBSPI) and software library (PSF – Product Specific Functions). 3901090363 Rev. 005 Page 7 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 8. MLX90363 Electrical Specification DC Operating Parameters at VDD = 5V (5V Application Diagram) or VDD = 3.3V (3V3 Application Diagram) and for TA as specified by the Temperature suffix (E, K and L). Parameter Symbol Test Conditions Min Typ Max Units Nominal Supply Voltage VDD5 5V Application Diagram 4.5 5 5.5 V Nominal Supply Voltage VDD33 3V3 Application Diagram 3.15 3.3 3.45 V Supply Current (4) IDD 12.5 15.5 mA Standby Current ISTANDBY 3.5 4.5 mA 18 mA Supply Current at VDD MAX IDDMAX VDD = 18V POR Rising Level POR LH Voltage referred to VDEC 2.6 2.8 3.1 V POR Falling Level POR HL Voltage referred to VDEC 2.5 2.7 2.9 V POR Hyst Voltage referred to VDEC POR Hysteresis MISO Switch Off Rising Level MISO Switch Off Falling Level MISO Switch Off Hysteresis 0.1 V VDD level for disabling MISO(5) 7.5 9.5 V VDD level for disabling MISO(5) 6 7.5 V MT8V Hyst VDD level for disabling MISO(5) 1 2 V MT8V LH MT8V HL Input High Voltage Level VIH 65% *VDD - - V Input Low Voltage Level VIL - - 35% *VDD V Input Hysteresis VHYS Input Capacitance CIN Referred to GND Output High Voltage Level VOH Current Drive IOH = 0.5 mA 20% *VDD V 20 pF VDD-0.4 V Output Low Voltage Level VOL Current Drive IOH = 0.5 mA 0.4 V Output High Short Circuit Current IshortH VOUT forced to 0V 20 30 mA Output Low Short Circuit Current IshortL VOUT forced to VDD 25 30 mA Typ Max Units 9. MLX90363 Isolation Specification Only valid for the package code GO i.e. dual die version. Parameter Isolation Resistance Symbol Test Conditions Between 2 dies Min 4 MΩ 4 For 5 the dual version, the supply current is multiplied by 2 Above the MT8V threshold, no SPI communication is possible. 3901090363 Rev. 005 Page 8 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 10. MLX90363 Timing Specification 10.1. Timing Specification for 5V Application Diagram 6 DC Operating Parameters at VDD = 5V and for TA as specified by the Temperature suffix (E, K) . Parameter Symbol Main Clock Frequency Ck Frame Rate FR Watchdog time-out Wd Power On to First SCI message (Start-up Time) tStartUp SCI protocol: Slave-select risingedge to falling-edge tShort SCI protocol: EEPROMWrite Time teewrite Test Conditions Min Typ 15.2 Trigger Mode 1 (Trg. Mod. 1), Markers 0&2, SCI 2MHz All other modes, markers and SCI Frequencies See Section 18 See Section 14.20 Trimmed oscillator 15.3 18.8 Max Units 18.8 MHz 1000 s-1 500 s-1 20 ms 20 ms 120 us 32 ms Diagnostic Loop Time tDiag FR = 1000 s-1,Trg.Mod.1, Mark 0&2 FR = 500 s-1 FR = 200 s-1 Internal 1MHz signal t1us Ck = 19MHz 1 MISO Rise Time CL = 30pF, RL = 10 kΩ 35 60 ns MISO Fall Time CL = 30pF, RL = 10 kΩ 35 60 ns 4 8 18 Hz Hz Hz 28 14 5.6 Hz Hz Hz Magnetic Flux Density Frequency Sinewave Flux FR = 1000 s-1 FR = 500 s-1 FR = 100 s-1 40 20 10 ms ms ms us Density(7) FR = 1000 s-1(8) FR = 500 s-1(8) FR = 200 s-1(8) Please contact Melexis for Timing specification for “L” Temperature suffix Sensitivity monitors enable (See section 18). Beyond that frequency, the Sensitivity monitor should be disabled. 8 Limitation linked to the Automatic Gain Control. Beyond that frequency, there is a reduced immunity to norm change (like vibration). See also Section 19.4. 6 7 3901090363 Rev. 005 Page 9 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 10.2. Timing Specification for 3V3 Application Diagram 9 DC Operating Parameters at VDD = 3.3V and for TA as specified by the Temperature suffix (E, K) . Parameter Symbol Main Clock Frequency Ck Frame Rate FR Watchdog time-out Wd Power On to First SCI message (Start-up Time) tStartUp SCI protocol: Slave-select risingedge to falling-edge tShort SCI protocol: EEPROMWrite Time teewrite Test Conditions Min Typ 13.1 Trigger Mode 1 (Trg. Mod. 1), Markers 0&2, SCI 2MHz All other modes, markers and SCI Frequencies Max Units 18.8 MHz 862 s-1 430 s-1 23.2 ms See Section 18 15.3 See Section 14.20 23.2 ms 139 us 37 ms 3.3V Trimmed oscillator Diagnostic Loop Time tDiag FR = 862 FR = 430 s-1 FR = 215 s-1 Internal 1MHz signal t1us Ck = 19MHz 1 CL = 30pF, RL = 10 kΩ 35 60 MISO Fall Time CL = 30pF, RL = 10 kΩ 35 60 ns Magnetic Flux Density Frequency FR = 862 s-1(10) FR = 430 s-1(10) FR = 215 s-1(10) 24 12 4.8 Hz Hz Hz MISO Rise Time s-1,Trg.Mod.1, Mark 0&2 46.4 23.2 11.6 ms ms ms us ns Please contact Melexis for Timing specification for “L” Temperature suffix. Limitation linked to the Automatic Gain Control. Beyond that frequency, there is a reduced immunity to norm change (like vibration). See also Section 19.4. 9 10 3901090363 Rev. 005 Page 10 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 11. MLX90363 Accuracy Specification DC Operating Parameters at VDD = 5V (5V Application Diagram) or VDD = 3.3V (3V3 Application Diagram) and for TA as specified by the Temperature suffix (E, K and L). Parameter Symbol ADC Resolution on the raw signals X, Y and Z RADC Serial Interface Resolution RSI Test Conditions Min On the angle value On the X,Y,Z values Offset on the Raw Signals X, Y X0, Y0, Z0 TA = 25°C and Z Typ Max Units 14 bit 14 12 bit bit -30 +30 LSB14 Mismatch on the Raw Signals X, Y and Z SMISMXY SMISMXZ SMISMYZ TA = 25°C Between X and Y Between X and Z(11) Between Y and Z(11) -1 -30 -30 1 +30 +30 % % % Magnetic Angle Phase Error ORTHXY ORTHXZ ORTHYZ TA = 25°C Between X and Y Between X and Z(12) Between Y and Z(12) -0.3 -10 -10 0.3 10 10 Deg Deg Deg TA = 25°C, Magnetic Angle ∠XY Magnetic Angle ∠XZ, ∠YZ(14) -1 -20 1 20 Deg Deg 5V Application Diagram VDD = 4.5 … 5.5V -0.1 0.1 Deg -0.8 -0.4 0.8 0.4 Deg Deg -1 -0.6 1 0.6 Deg Deg Intrinsic Linearity Error(13) Le Supply Dependency 3V3 Application Diagram VDD = 3.20 … 3.40V Temperature suffix E and K 20mT 50mT Temperature suffix L 20mT 50mT MLX90363 Accuracy Specification continues… The Mismatch between X or Y and Z can be reduced through the calibration of the SMISM (or k) factor in the end application. See section 17.3.2 for more information 12 The Magnetic Angle Phase error X or Y and Z can be reduced through the calibration of the ORTH_B1B2 factor in the end application. See section 17.3.2 for more information 13 The Intrinsic Linearity Error is a consolidation of the IC errors (offset, sensitivity mismatch, phase error) taking into account an ideal rotating field. Once associated to a practical magnetic construction and the associated mechanical and magnetic tolerances, the output linearity error increases. 14 The Intrisic Linearity Error for Magnetic Angle ∠XZ, ∠YZ can be reduced through the programming of the SMISM (or k) factor and ORTH_B1B2. By applying the correct compensation, a non linearity error of +/-1 deg can be reached. See section 17.3.2 for more information 11 3901090363 Rev. 005 Page 11 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface … MLX90363 Accuracy Specification Thermal Offset Drift(15) Temperature suffix E and K Temperature suffix L -30 -45 +30 +45 LSB14 LSB14 XY axis, XZ axis, YZ axis Temperature suffix E and K Temperature suffix L - 0.5 - 0.7 + 0.5 + 0.7 % % Thermal Drift of Magnetic Angle Phase Error XY axis, XZ axis, YZ axis 0.1 0.1 Deg Magnetic Angle Noise(17) Temperature suffix E and K 20mT, No Filter 50mT, No Filter 50mT, FILTER=1 Temperature suffix L 20mT, No Filter 50mT, No Filter 50mT, FILTER=1 0.20 0.10 0.07 Deg Deg Deg 0.25 0.12 0.08 Deg Deg Deg 12 6 4 LSB14 LSB14 LSB14 14 7 4 LSB14 LSB14 LSB14 Thermal Drift of Sensitivity Mismatch(16) Raw signals X, Y, Z Noise(17) Temperature suffix E and K 20mT, No Filter 50mT, No Filter 50mT, FILTER_TYPE =1 Temperature suffix L 20mT, No Filter 50mT, No Filter 50mT, FILTER=1 15 For instance, Thermal Offset Drift equal ± 30LSB14 yields to max. ± 0.32 Deg. error. This is only valid if the Virtual Gain is not fixed (See Section 17.6).See Front End Application Note for more details. 16 For instance, Thermal Drift of Sensitivity Mismatch equal ± 0.4% yields to max. ± 0.1 Deg. error. See Front End Application Note for more details. 17 Noise is defined by ± 3 σ for 1000 successive acquisitions. The application diagram used is described in the recommended wiring (Section 20). For detailed information, refer to section Filter in application mode (Section 17.5). 3901090363 Rev. 005 Page 12 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 12. MLX90363 Magnetic Specification DC Operating Parameters at VDD = 5V (5V Application Diagram) or VDD = 3.3V (3V3 Application Diagram) and for TA as specified by the Temperature suffix (E, K and L). Parameter Symbol Magnetic Flux Density in X or Y Min Typ Max Units BXY(18) 20 50 70(19) mT Magnetic Flux Density in Z BZ(18) 24 75 126 mT Magnet Temperature Coefficient TCm -2400 0 ppm/°C GainIMC 1.2 IMC Gain(20) 13. Test Conditions 1.4 1.8 Typ Max MLX90363 CPU & Memory Specification The digital signal processing is based on a 16 bit RISC µController featuring ROM & RAM EEPROM with hamming codes (ECC) Watchdog C Compiler Parameter Symbol Test Conditions Min Units ROM 14 kByte RAM 256 Byte EEPROM 64 Byte 3.5 MIPS CPU MIPS Ck = 15 MHz The condition must be fulfilled for at least one field BX, BY or BZ. Above 70 mT, the IMC starts saturating yielding an increase of the linearity error. 20 This is the magnetic gain linked to the Integrated Magneto Concentrator structure. It applies to BX and BY and not to BZ. This is the overall variation. Within one lot, the part to part variation is typically ± 10% versus the average value of the IMC gain of that lot. 18 19 3901090363 Rev. 005 Page 13 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 14. MLX90363 Serial Interface The MLX90363 serial interface allows a master device to operate the position sensor. The MLX90363 interface allows multi-slave applications and synchronous start of the data acquisition among the slaves. The interface offers 2 Mbps data transfer bit rate and is full duplex. The interface accepts messages of 64 bits wide only, making the interfacing robust. In this document, the words message, frame and packet refer to the same concept. 14.1. Electrical Layer and Timing Specification Message transmissions start necessarily at a falling edge on /SS and end necessarily at a rising edge on the /SS signal. This defines a message. The serial interface counts the number of transmitted bits and declares the incoming message invalid when the bit count differs from 64. The master must therefore ensure the flow described below: 1. Set pin /SS Low 2. Send and receive 8 bytes or four (4x) 16 bit words 3. Set pin /SS High The MISO and MOSI signals change on SCLK rising edge and are captured on SCLK falling edge. The most-significant-bit of the transmitted byte or word comes first (21). /SS Pin t1 tSCLK tSCLK_HI t3 tSCLK_LO SCLK Pin tMOSI MOSI Pin t2 tMISO t4 MISO Pin Figure 2 – Serial Interface Timing Diagram The interface is sensitive, in Trigger mode 2 (see section 14.6), to Sync pulses. A Sync pulse is negative pulse on /SS, while SCLK is kept quiet. /SS (IC PIN) tSyncPulse Figure 3 – Sync Pulse Timing Diagram 21 For instance, for master compatible w/ the Motorola SPI protocol, the configuration bits must be CPHA=1, CPOL=0, LSBFE=0. 3901090363 Rev. 005 Page 14 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial erial Interface Parameter Clock Period Symbol Test Conditions Min Typ 500 1000 2000 Max Units tSCLK EE_PINFILTER = 1 EE_PINFILTER = 2 EE_PINFILTER = 3 450 900 1800 Clock Low Level tSCLK_HI EE_PINFILTER = 1 EE_PINFILTER = 2 EE_PINFILTER = 3 225 450 900 ns ns ns Clock High Level tSCLK_LO EE_PINFILTER = 1 EE_PINFILTER = 2 EE_PINFILTER = 3 225 450 900 ns ns ns Clock to Data Delay tMISO Data Capture Setup Time tMOSI EE_PINFILTER = 1 , Cload = 30pF EE_PINFILTER = 2 , Cload = 30pF EE_PINFILTER = 3 , Cload = 30pF /SS FE to SCLK RE t1 EE_PINFILTER = 1 EE_PINFILTER = 2 EE_PINFILTER = 3 /SS FE to MISO Low Impedance t2 EE_PINFILTER = 1 EE_PINFILTER = 2 EE_PINFILTER = 3 SCLK FE to /SS RE t3 /SS RE to MISO High Impedance t4 Sync Pulse Duration ns ns ns 210 300 510 30 ns 225 450 900 ns ns ns 520 610 820 ns ns ns 90 180 370 120 210 420 90 180 370 120 210 420 ns ns ns 10000 10000 10000 ns ns ns 225 EE_PINFILTER = 1 EE_PINFILTER = 2 EE_PINFILTER = 3 tSyncPulse EE_PINFILTER = 1 EE_PINFILTER = 2 EE_PINFILTER = 3 ns ns ns ns Table 1 - Serial Interface Timing Specifications Melexis recommends using the multi-slave slave application d diagram as shown on the right. The SCLK, MISO and MOSI wires interconnect the slaves with the master. A slave is selected by its dedicated /SS input. A slave MISO output is in high-impedance ance state when the slave is not selected. Slaves can be triggered synchronously by sending Sync pulses on the different /SS.. The pulses must not overlap to avoid electrical short-circuits on the MISO bus. 3901090363 Rev. 005 Page 15 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 14.2. Serial Protocol The serial protocol of MLX90363 allows the SPI master device to request the following information: Position (magnetic angle Alpha) Raw field components (X,Y and Z) Self-Diagnostic data It allows customizing the calibration of the sensor, when needed, at the end-of-line, through EEPROM programming. The serial protocol offers a transfer rate of 1000 messages/sec. A regular message holds position and diagnostic information. The data acquisition start and processing is fully under the control of the SPI master. The user configuration bits, stored in EEPROM, are programmable with this protocol. Data integrity is guaranteed in both directions by an 8 bit CRC covering the content of the incoming and outgoing messages. In a dual sensors application, a Sync pulse allows a synchronous start of the raw signals acquisition. 14.3. Message General Structure A message has a unique Opcode. The general structure of a message consists of 8 bytes (byte #0, transmitted first, to byte #7 transmitted last). Byte #7 (the last byte transmitted) holds an 8 bit CRC. The byte #6 holds a Marker plus either an Opcode or a rolling counter. # 7 1 (4) 6 5 4 3 2 1 0 # 7 (3) 0 (2) 3 2 5 4 7 CRC 6 6 5 4 3 2 1 0 (1) (5) Marker Opcode or Roll Counter Table 2 – General Structure of a message and bit naming convention (1) This bit is named Byte0[0] (3) This bit is named Byte1[0] (5) This bit is named Byte2[0] (2) This bit is named Byte0[7] (4) This bit is named Byte1[7] A blank cell refers necessarily to a bit 0. In a byte, the most-significant-bit is transmitted first (for instance, Byte0[7] is transmitted first, Byte0[0] transmitted last). Parameter CRC[7:0] is Byte7[7:0], Parameter Marker[1:0] is Byte6[7:6], Parameter Opcode[5:0] (or Roll Counter[5:0]) is Byte6[5:0] CRCs are encoded and decoded according the following algorithm (language-C): crc = 0xFF; crc = cba_256_TAB[ Byte0 ^ crc ]; crc = cba_256_TAB[ Byte1 ^ crc ]; crc = cba_256_TAB[ Byte2 ^ crc ]; crc = cba_256_TAB[ Byte3 ^ crc ]; crc = cba_256_TAB[ Byte4 ^ crc ]; crc = cba_256_TAB[ Byte5 ^ crc ]; crc = cba_256_TAB[ Byte6 ^ crc ]; crc = ~crc; 3901090363 Rev. 005 Page 16 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface The Table 3 corresponds to the CRC-8 polynomial “0xC2”. cba_256_TAB 0 1 2 3 4 5 6 7 0 0x00 0x2f 0x5e 0x71 0xbc 0x93 0xe2 0xcd 1 0x57 0x78 0x09 0x26 0xeb 0xc4 0xb5 0x9a 2 0xae 0x81 0xf0 0xdf 0x12 0x3d 0x4c 0x63 3 0xf9 0xd6 0xa7 0x88 0x45 0x6a 0x1b 0x34 4 0x73 0x5c 0x2d 0x02 0xcf 0xe0 0x91 0xbe 5 0x24 0x0b 0x7a 0x55 0x98 0xb7 0xc6 0xe9 6 0xdd 0xf2 0x83 0xac 0x61 0x4e 0x3f 0x10 7 0x8a 0xa5 0xd4 0xfb 0x36 0x19 0x68 0x47 8 0xe6 0xc9 0xb8 0x97 0x5a 0x75 0x04 0x2b 9 0xb1 0x9e 0xef 0xc0 0x0d 0x22 0x53 0x7c 10 0x48 0x67 0x16 0x39 0xf4 0xdb 0xaa 0x85 11 0x1f 0x30 0x41 0x6e 0xa3 0x8c 0xfd 0xd2 12 0x95 0xba 0xcb 0xe4 0x29 0x06 0x77 0x58 13 0xc2 0xed 0x9c 0xb3 0x7e 0x51 0x20 0x0f 14 0x3b 0x14 0x65 0x4a 0x87 0xa8 0xd9 0xf6 15 0x6c 0x43 0x32 0x1d 0xd0 0xff 0x8e 0xa1 16 0xe3 0xcc 0xbd 0x92 0x5f 0x70 0x01 0x2e 17 0xb4 0x9b 0xea 0xc5 0x08 0x27 0x56 0x79 18 0x4d 0x62 0x13 0x3c 0xf1 0xde 0xaf 0x80 19 0x1a 0x35 0x44 0x6b 0xa6 0x89 0xf8 0xd7 20 0x90 0xbf 0xce 0xe1 0x2c 0x03 0x72 0x5d 21 0xc7 0xe8 0x99 0xb6 0x7b 0x54 0x25 0x0a 22 0x3e 0x11 0x60 0x4f 0x82 0xad 0xdc 0xf3 23 0x69 0x46 0x37 0x18 0xd5 0xfa 0x8b 0xa4 24 0x05 0x2a 0x5b 0x74 0xb9 0x96 0xe7 0xc8 25 0x52 0x7d 0x0c 0x23 0xee 0xc1 0xb0 0x9f 26 0xab 0x84 0xf5 0xda 0x17 0x38 0x49 0x66 27 0xfc 0xd3 0xa2 0x8d 0x40 0x6f 0x1e 0x31 28 0x76 0x59 0x28 0x07 0xca 0xe5 0x94 0xbb 29 0x21 0x0e 0x7f 0x50 0x9d 0xb2 0xc3 0xec 30 0xd8 0xf7 0x86 0xa9 0x64 0x4b 0x3a 0x15 31 0x8f 0xa0 0xd1 0xfe 0x33 0x1c 0x6d 0x42 Table 3 – cba_256_TAB Look-up table Polynomial “C2” # 7 6 5 4 3 2 1 0 # 7 6 5 4 3 1 0xFF 0 3 0xFF 2 0x16 5 0xFF 4 0xD4 7 0x23 6 0x86 2 1 0 0xC1 Table 4 – Example of valid CRC 3901090363 Rev. 005 Page 17 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 14.4. Regular Messages The MLX90363 offers three types of regular messages: “α” – diagnostic “α – β” – diagnostic X – Y – Z – diagnostic # 7 6 1 E1 E0 5 4 3 2 1 0 ALPHA [13:8] # 7 6 5 0 4 3 2 1 0 2 1 0 2 1 0 ALPHA [7:0] 3 0 2 0 5 0 4 VG[7:0] 7 CRC 6 0 0 ROLL Table 5 – “α” message # 7 6 1 E1 E0 5 4 3 2 1 0 # 7 6 5 4 3 ALPHA [13:8] 0 ALPHA [7:0] BETA [13:8] 2 BETA [7:0] 3 5 0 4 7 CRC 6 VG[7:0] 0 1 ROLL Table 6 – “α – β” message # 7 6 1 E1 E0 5 4 3 2 1 0 # 7 6 5 4 3 X COMPONENT [13:8] 0 X COMPONENT [7:0] 3 Y COMPONENT [13:8] 2 Y COMPONENT [7:0] 5 Z COMPONENT [13:8] 4 7 CRC 6 Z COMPONENT [7:0] 1 0 ROLL Table 7 – “X – Y – Z” message The bits byte6[7] and byte6[6] are markers. They allow the master to recognize the type of regular message (00b, 01b, 10b). The marker is present in all messages (incoming and outgoing). The marker of any message which is not a regular message is equal to 11b. The bits E1 and E0 report the status of the diagnostics (4 possibilities) as described in the Table 8 – See section 18 for more details. E1 E0 Description 0 0 1 1 0 1 0 1 First Diagnostics Sequence Not Yet Finished Diagnostic Fail Diagnostic Pass (Previous cycle) Diagnostic Pass – New Cycle Completed Table 8 - Diagnostics Status Bits 14.4.1. Note for the regular message “X – Y – Z – diagnostic” (Marker = 2) In the case of marker = 2, the X,Y,Z components are given after offset compensation and filtering (see signal processing in section 19.2). These components are gain dependent (see also section 17.6). 3901090363 Rev. 005 Page 18 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface The sensitivity in the X and Y direction is always higher than the Z direction by the IMC Gain factor (see parameter GainIMC in section 12). Melexis therefore recommends multiplying the Z component by the GainIMC factor inside the master in order to use the MLX90363 as a 3D magnetometer. 14.5. Trigger Mode 1 The master sends a GET1 command to initiate the magnetic field acquisition and post-processing. It waits tSSREFE, issues the next GET1 and receives at the same time the regular message resulting from the previous GET. The field sensing, acquisition and post-processing is starting on /SS rising edge events. Although GET1 commands are preferably followed by another GET1 command or a NOP command, any other commands are accepted by the slave. FW background SPI HW ASP DSP SPI Get ASP DSP SPI Get tSSREFE Roll=0 ASP DSP SPI SPI Get NOP Roll=1 Roll=2 X Figure 4 – Trigger mode 1 Message Sequence Chart Single Slave - Mode 1 Master Slave1 GET1 () NTT () Loop GET1 () Regular Packet () NOP () Regular Packet () Figure 5 – Trigger Mode 1 Message Sequence Chart 3901090363 Rev. 005 Page 19 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface # 7 6 5 4 3 1 3 Time – Out 5 7 2 1 0 # RST 0 7 6 5 2 4 3 2 1 0 0 1 1 Value 4 CRC 6 Marker 0 1 0 Table 9 – GET1 MOSI Message (Opcode = 19) Note: The NOP message is described at section “14.11” • The parameter Marker defines the regular data packet type expected by the master: Marker = 0 refers to frame type “ALPHA + Diagnostic”. Marker = 1 refers to frame type “ALPHA + BETA + Diagnostic”. Marker = 2 refers to frame type “Components X + Y + Z +Diagnostic”. • The parameter Rst (Byte1[0] ) when set, resets the rolling counter attached to the regular data packets. • The parameter TimeOutValue tells the maximum life time of the Regular Data Message. The time step is t1us (See table in Section 10), the maximum time-out is 65535 * t1us. The timeout timer starts when the message is ready, and stops on the SS rising edge of the next message. On time-out occurrence, there are two possible scenarios: Scenario 1. SS is high, there is no message exchange. In this case, a NTT message replaces the regular message in the SCI buffer. Scenario 2. SS is low, the regular packet is being sent out. In this case, the timeout violation is reported on the next message, this later being an NTT message. 3901090363 Rev. 005 Page 20 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 14.6. Trigger Mode 2 The Trigger Mode 1 works without Sync pulses, as the GET1 command plays the role of a sync pulse. When a delay between the regular message readback and the start of acquisition is needed, or when two or more slaves should be triggered synchronously, the use of a sync pulse is required, and this is the meaning of the Trigger Mode 2. Principle: The master first enables the trigger mode 2 by issuing a GET2 command. The master then sends a Sync Pulse, at the appropriate time, to initiate the magnetic field acquisition and post-processing. Finally the master reads the response message with a NOP or a GET2. The GET2 command re-initiates a sync pulse triggered acquisition, whereas the NOP command would just allow the master to receive the latest packet. FW background SPI HW S PI S ASP DSP SPI PI Sync Puls Get2 S PI S ASP DSP SPI PI Sync Puls Get2 tRESync S PI Get2 tSyncFE Figure 6 – Trigger Mode 2 – Single Slave Approach A timing constraint between GET2 and the sync pulse (tRESync) should be met. When this timing is smaller than the constraint, the sync pulse might not be taken in account, causing the next GET2 to return a NTT packet. GET1 and GET2/SyncPulse can be interlaced. Multi-slave approach: The way of working described below fits the multi-slave applications where synchronous acquisitions are important. GET2 commands are sent one after the other to the slaves. Then the Sync Pulses are sent almost synchronously (very shortly one after the other). Mode 2 in dual slave FW1 S background PI SPI HW1 Get2 FW2 S PI ASP DSP SPI Get2 background SPI HW2 S PI ASP DSP SPI Get2 S PI Sync Puls Get2 S PI ASP DSP SPI Get2 S PI ASP DSP SPI Sync Puls Get2 Get2 for Slave 1 and Get2 for Slave 2 do not overlap Figure 7 – Trigger mode 2 - Multi-slave approach, example for two slaves 3901090363 Rev. 005 Page 21 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface Message Sequence Chart Dual Slave - Mode 2 (Sync pulses) Master Slave1 Slave2 GET2 () NTT () GET2 () NTT () Sync Pulse Loop GET2 () Regular Packet () GET2 () Regular Packet () Sync Pulse NOP () Regular Packet () NOP () Regular Packet () Figure 8 – Trigger mode 2 Message Sequence Chart # 7 6 5 4 3 2 1 1 3 0 # RST 0 7 6 5 2 Time – Out 5 4 3 2 1 0 1 0 0 Value 4 7 CRC 6 Marker 0 1 0 Table 10 – GET2 MOSI Message (Opcode = 20) Parameter definition: See GET1 (Section 14.5). 14.7. Trigger Mode 3 Principle: The acquisition sequences are triggered by a GET message, but unlike the Mode 1, the resulting data (position …) is buffered. The slave-out messages contain the buffered data of the previous GET message, and not the newly computed values corresponding to the current GET slave-in request. The buffering releases constraints on the SCI clock frequency (SCLK). The Mode 3 offers frame rates as high as Mode 1, if not higher, with slower SCLK frequencies. When the clock frequency is limited (400 kbps or less), and when it matters to reach a certain frame rate, Mode 3 is preferred over Mode 1. In any other cases, for instance when the shortest response time represents the main design criteria, Mode 1 is preferred. FW background SPI HW Get3 SPI ASP S SPI ASP ASP DSP PI DSP Get3 tSSRERE_mod3 DSP SPI ASP DSP Get3 Roll=0 tSSREFE_ mod3 DSP NOP Roll=1 SPI X Roll=2 Figure 9 – Trigger mode 3 3901090363 Rev. 005 Page 22 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface GET3 sequences must end with a NOP. Message Sequence Chart Single Slave - Mode 3 Master Slave1 GET3 () X () GET3 () Get3Ready () Loop GET3 () Regular Packet () NOP () Regular Packet () Figure 10 – Trigger mode 3 Message Sequence Chart # 7 6 5 4 3 2 1 1 3 0 # RST 0 7 6 5 2 Time – Out 5 4 3 2 1 0 0 1 0 1 Value 4 7 CRC 6 Marker 0 1 Table 11 – GET3 MOSI Message (Opcode = 21) Parameter definition: See GET1 (Section 14.5) # 7 6 5 4 3 2 1 0 # 1 0 3 2 5 7 6 5 4 3 2 1 0 1 1 1 0 1 1 0 1 4 7 CRC 6 Table 12 – Get3Ready Slave-Out Message (Opcode = 45) 14.8. Trigger Modes Timing Specifications /SS Pin GET1 GET1 tREFE_mod1 SCI Internal state High: NTT Low: Ready tReady_mod1 Figure 11 – Trigger mode 1 timing diagram 3901090363 Rev. 005 Page 23 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface SyncPulse /SS Pin GET2 GET2 tRESync tSyncFE SCI Internal state High: NTT Low: Ready tReady_mod2 Figure 12 – Trigger mode 2 timing diagram /SS Pin GET3 GET3 tREFE_mod3 tRERE_mod3 SCI Internal state High: NTT Low: Ready tReady_FEmod3 tReady_REmod3 High: DSP Ongoing Figure 13 – Trigger mode 3 timing diagram 5V Application Diagram Items Definition tREFE_mod1 Get1 SS Rising Edge to next Get1 SS Falling Edge tReady_mod1 Get1 SSRE to SO Answer ReadyToTransmit Marker 0 1 2 0 1 2 Min 920 1050 920 Typ Max 920 1050 920 Unit µs µs µs µs µs µs Table 13 – Trigger Modes Timing Specification (Mode 1, VDD=5V) Items Definition tSyncFE Sync Pulse (RE) to Get2 Falling Edge tReady_mod2 Sync Pulse (RE) to SO Answer ReadyToTransmit tRESync Get2 SS Rising Edge to Sync Pulse (RE) Marker 0 1 2 0 1 2 Min 874 1004 874 Typ Max 874 1004 874 80 Unit µs µs µs µs µs µs µs Table 14 – Trigger Modes Timing Specification (Mode 2, VDD=5V) Items tRERE_mod3 Definition Get3 SS RE to RE tReadyRE_mod3 Get3 SS RE to DSP Completion tREFE_mod3 tReadyFE_mod3 Get3 SS Rising to Falling Get3 SS RE to SO Answer ReadyToTransmit Marker 0 1 2 0 1 2 Min 950 1080 950 Typ Max 950 1080 950 90 90 Unit µs µs µs µs µs µs µs µs Table 15 – Trigger Modes Timing Specification (Mode 3, VDD=5V) 3901090363 Rev. 005 Page 24 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 3V3 Application Diagram Items Definition tREFE_mod1 Get1 SS Rising Edge to next Get1 SS Falling Edge tReady_mod1 Get1 SSRE to SO Answer ReadyToTransmit Marker 0 1 2 0 1 2 Min 1067 1218 1067 Typ Max 1067 1218 1067 Unit µs µs µs µs µs µs Table 16 – Trigger Modes Timing Specification (Mode 1, VDD = 3.3V) Items Definition tSyncFE Sync Pulse (RE) to Get2 Falling Edge tReady_mod2 Sync Pulse (RE) to SO Answer ReadyToTransmit tRESync Get2 SS Rising Edge to Sync Pulse (RE) Marker 0 1 2 0 1 2 Min 1014 1165 1014 Typ Max 1014 1165 1014 93 Unit µs µs µs µs µs µs µs Table 17 – Trigger Modes Timing Specification (Mode 2, VDD = 3.3V) Items Definition tRERE_mod3 Get3 SS RE to RE tReadyRE_mod3 Get3 SS RE to DSP Completion tREFE_mod3 tReadyFE_mod3 Get3 SS Rising to Falling Get3 SS RE to SO Answer ReadyToTransmit Marker 0 1 2 0 1 2 Min 1102 1253 1102 Typ Max 1102 1253 1102 105 105 Unit µs µs µs µs µs µs µs µs Table 18 – Trigger Modes Timing Specification (Mode 3, VDD = 3.3V) 3901090363 Rev. 005 Page 25 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 14.9. Opcode Table Opcode 19d 0x13 20d 0x14 21d 0x15 1d 0x01 3d 0x03 5d 0x05 15d 0x0F 16d 0x10 22d 0x16 24d 0x18 26d 0x1A 47d 0x2F 49d 0x31 MOSI Message GET1 GET2 GET3 MemoryRead EEPROMWrite EEChallengeAns EEReadChallenge NOP / Challenge DiagnosticDetails OscCounterStart OscCounterStop Reboot Standby Opcode n/a MISO Message Regular Data Packet 45d 2d 4d 40d 14d 17d 23d 25d 27d 0x2D 0x02 0x04 0x28 0x0E 0x11 0x17 0x19 0x1B Get3Ready MemoryRead Answer EEPROMWrite Challenge EEReadAnswer EEPROMWrite Status Challenge/NOP MISO Packet Diagnostics Answer OscCounterStart Acknowledge OscCounterStopAck+CounterValue 50d 61d 62d 44d 0x32 0x3D 0x3E 0x2C StandbyAck Error frame NothingToTransmit (NTT) Ready Message (first SO after POR) Table 19 – Opcode Table 14.10. Timing specifications per Opcode, and next allowed messages For each slave-in message, the timing between the slave-select-rising-edge event and the slave-selectfalling event, as depicted below, is specified. /SS Pin Opcode Opcode tREFE Figure 14 – Timing diagram Op 19 20 21 1 3 5 15 16 22 24 26 47 49 MOSI Message GET1 GET2 followed by Sync GET3 MemoryRead EEPROMWrite EEChallengeAns EEReadChallenge NOP / Challenge DiagnosticDetails OscCounterStart OscCounterStop Reboot Standby tREFE tREFE_mod1 tSyncFE tREFE_mod3 tShort tShort teewrite tShort tShort tShort tShort tShort tStartup tShort Next allowed slave-in message GET1, MemoryRead,DiagDetails,NOP GET2, MemoryRead,DiagDetails,NOP GET3, MemoryRead,DiagDetails,NOP MemoryRead, DiagDetails, NOP EEReadChallenge NOP EEChallengeAns All commands All commands OscCounterStop NOP See Startup Sequence All commands Table 20 – Response time and Next allowed slave-in messages 3901090363 Rev. 005 Page 26 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 14.11. NOP Command and NOP Answer # 7 6 5 4 3 2 1 0 1 # 7 6 5 4 3 2 1 0 0 0 0 0 3 KEY [15:8] 2 5 KEY [7:0] 4 7 CRC 6 1 1 0 1 0 Table 21 – NOP(Challenge) MOSI Message (Opcode = 16) MSC NOP Master Slave NOP(Challenge) () X () Next Cmd () Challenge Echo () Figure 15 – NOP Message Sequence Chart Note: the message X means “unspecified valid answer” and typically contains the answer of the previous command. • Parameter Key : any 16 bit number # 7 6 5 4 3 2 1 0 1 # 7 6 5 4 3 2 1 0 0 1 0 3 KEY_ECHO [15:8] 2 KEY_ECHO [7:0] 5 INVERTED KEY_ECHO [15:8] 4 INVERTED KEY_ECHO [7:0] 7 CRC 6 1 1 0 1 0 0 Table 22 - Challenge Echo MISO Message (Opcode = 17) • • Parameter Key_Echo = Key Parameter InvertedKey_Echo = 65535 - Key (meaning bit reversal). 14.12. OscCounterStart and OscCounterStop Commands The SCI Master can evaluate the slave’s internal oscillator frequency by the use of the OscCounterStart and OscCounterStop commands. This first command enables in the MLX90363 a software counter whereas the second command stops it and returns the counter value. # 7 6 5 4 3 1 0 # 0 3 2 5 7 3901090363 Rev. 005 2 1 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 4 CRC 6 Page 27 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface Table 23 – OscCounterStart Slave-In message (opcode 24) # 7 6 5 4 3 2 1 0 # 1 0 3 2 5 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 1 4 7 CRC 6 Table 24 – OscCounterStart Acknowledge Slave-Out message (opcode 25) # 7 6 5 4 3 2 1 0 # 1 0 3 2 5 7 6 5 4 3 2 1 0 1 1 0 1 1 0 1 0 2 1 0 0 1 1 4 7 CRC 6 Table 25 – OscCounterStop Slave-In message (opcode 26) # 7 6 5 4 3 2 1 0 1 # 7 6 5 4 3 0 3 CounterValue[14:8] 2 5 CounterValue[7:0] 4 7 CRC 6 1 1 0 1 1 Table 26 – OscCounter Slave-Out message (opcode 27) • Parameter CounterValue represents the time between the two events OscCounterStart Slave Select Rising Edge and OscCounterStop Slave Select Rising Edge, in microsecond, and for an oscillator frequency equal to 19MHz exactly. Message Sequence Chart Oscillator Frequency Diagnostic Master Slave1 OscCounterStart () Challenge Echo () OscCounterStop () OscStartAck () X () OscCounter () Figure 16 – Oscillator Frequency Diagnostic Message Sequence Chart SI OscStart OscStop SO X StartAck OscCounter X SS tOscCounter Figure 17 – Oscillator Frequency Diagnostic Timing Diagram (SCI) Parameter Symbol Test Conditions tOscCounter 3901090363 Rev. 005 Page 28 of 57 Min Typ Max Units 500 1000 30000 us Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 14.13. Protocol Errors Handling Error Item Error definition Condition Detection Slave Actions IncorrectBitCount Slave In Message bit count ≠ 64 all modes FW reads the HW bit counter IncorrectCRC Slave In Message has a CRC Error all modes FW computes CRC IncorrectOpcode Invalid Slave in Message all modes FW tREFE < tReady_mod1 Regular Message Readback occurs to early Trigger mode 1 tSyncFE < tReady_mod2 Regular Message Readback occurs to early Trigger mode 2 Interrupt occurring to early + Fw reads HW bit + Protection interrupt Interrupt occurring to early + Fw reads HW bit + Protection interrupt none. The Sync pulse is pending internally. tRESync Violation Sync Pulse occurring to early Trigger mode 2 tRERE_mod3 < tReady_mod3 tREFE_mod3 < tReady_FE_mod3 Regular Message Readback occurs to early Regular Message Readback occurs to early Trigger mode 3 Trigger mode 3 Protection interrupt TimeOut Regular Message Readback occurs to late all modes Timer Interrupt Protection interrupt Ignore Message + Re-init Protocol Ignore Message + Re-init Protocol Ignore Message + Re-init Protocol MISO Message Error Message (incorrect bitcount = 1) Error Message (incorrect crc = 1) Error Message (incorrect opcode = 1) Ignore Frame + Re-init Protocol NTT message Ignore Frame + Re-init Protocol NTT message none (but the sync pulse is not treated immediately) Valid message. Note: This violation can cause a TSyncFE < TReady_mod2 violation. Re-init Protocol NTT message Re-init Protocol NTT message MISO Frame = NTT + Re-init Protocol NTT message Table 27 – Protocol Errors Handling (Slave standpoint) Error Items/Events Associated Slave Event Master recommended Associated actions Slave Actions Next MISO message Error Message * (TimeViolation = 1) Receive NTT Protocol re-initialization Protocol reinitialization undetected event Protocol re-initialization none Normal message Receive Error Message Send Error Message Protocol re-initialization none Normal message Receive an unexpected DiagDetails message Run in fail-safe mode Protocol re-initialization + Slave reset none DiagDetails message Receive NTT Receive Incorrect CRC Receive Incorrect Opcode Table 28 – Protocol Errors Handling (Master standpoint) Note 1: On NTT or Error messages, master should consider that the last command is ignored by the slave, and it should therefore, either resend the command, or more generally re-initialize the protocol. Note 2: After protocol re-initialization, master can diagnose the communication with a NOP command. 3901090363 Rev. 005 Page 29 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface Note 3: A slave-out error message implicitly means that the slave has re-initialized the communication and is therefore ready to receive any commands. 14.14. Ready, Error and NTT Messages After power-on-reset, the first slave-out message is a Ready message. # 7 6 5 1 4 3 2 1 0 FWVersion[15:8] # 7 6 5 0 3 4 3 2 1 0 1 0 0 HWVersion[7:0] 2 5 4 7 CRC 6 1 1 1 0 1 Table 29 - Ready Slave-out Message (Opcode = 44) The MLX90363 reports protocol errors using the Error message defined below. Diagnostics Errors (as opposed to protocol errors) are reported with the bits E1 and E0 of the regular message. # 7 6 5 4 3 2 1 0 # 1 0 3 2 5 7 6 5 4 3 2 1 0 1 0 1 ERROR CODE 4 7 CRC 6 1 1 1 1 1 Table 30 - Error Message MISO (Opcode = 61) The description of the parameter ErrorCode is given in the table below. Code 1 2 3 4 Description of Error CODE Incorrect BitCount Incorrect CRC Answer = NTT message Two reasons: Answer Time-Out or Answer not Ready OPCODE not valid In most of the timing violations, the slave answers with a NTT message. A NTT message is stored in the slave’s ROM (as opposed to the slave’s RAM). NTT messages are typically seen in case of timing violation: either the firmware is still currently processing the previous SCI command, or a time-out occurred (see GET). In normal operation, NTT messages are not supposed to be observed: the Master is supposed to respect the protocol timings defined. # 7 6 1 4 3 2 1 3 1 5 1 7 5 1 1 1 1 1 CRC 0 # 7 6 1 4 6 4 3 2 1 1 2 1 5 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 Table 31 – NTT (Nothing To Transmit) Message (Opcode = 62) 3901090363 Rev. 005 Page 30 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 14.15. DiagnosticsDetails commands This is the only function that can be combined with a regular message. # 7 6 5 4 3 2 1 0 # 1 0 3 2 5 7 6 5 4 3 2 1 0 1 1 0 1 0 1 1 0 4 7 CRC 6 Table 32 – DiagnosticsDetails Slave In Command (opcode =22) Use DiagnosticDetails to get a detailed analysis of the diagnostics. # 7 6 5 4 3 2 1 0 # 7 6 5 4 3 2 1 0 1 D15 D14 D13 D12 D11 D10 D9 D8 0 D7 D6 D5 D4 D3 D2 D1 D0 2 0 0 0 D20 D19 D18 D17 D16 1 1 0 1 0 1 1 1 3 FSMERC ANADIAGCNT 5 4 7 CRC 6 Table 33 - Diagnostics DiagnosticDetails Master In message (Opcode = 23) • Diagnostic bit Dx : see Section 18 • Parameter ANADIAGCNT is a sequence loop counter referring to the analog-class diagnostics (all others). If FSMERC = 3, ANADIAGCNT takes another meaning: 193 protection error interruption happened 194 invalid address error interruption happened 195 program error interruption happened 196 exchange error interruption happened 197 not connected error interruption happened 198 Stack Interrupt 199 Flow Control Error • Parameter FSMERC reports the root-cause of entry in fail-safe mode o o o o 3901090363 Rev. 005 FSMERC = 0 : the chip is not in fail safe mode FSMERC = 1 : BIST error happened and the chip is in fail safe mode FSMERC = 2 : digital diagnostic error happened and the chip is in fail safe mode FSMERC = 3 : one of the 5 error interruptions listed above happened and the chip is in fail safe mode Page 31 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 14.16. MemoryRead message # 7 6 5 4 3 2 1 0 # 7 6 5 4 3 1 ADD0[15:8] 0 ADD0[7:0] 3 ADD1[15:8] 2 ADD1[7:0] 5 2 1 0 0 0 1 4 7 CRC 6 1 1 0 0 0 Table 34 – MemoryRead Master-Out Slave-In Message (Opcode = 1) MemoryRead returns two EEPROM or RAM words respectively pointed by the parameters ADDR0, ADDR1. • The parameter ADDRx has three valid ranges: 0…254 for RAM access, 0x1000...0x103E for EEPROM access, and 0x4000…0x5FFE for ROM access MSC MemoryRead Master Slave MemoryRead () X () Loop MemoryRead () MemoryRead () Next Cmd () MemoryRead () Figure 18 – MSC for RAM/ROM/EEPROM Memory Read Note: Enter the loop for complete memory dumps. MemoryRead Master-In Message (opcode 0x02) The address Addr may be valid or not: Case of validity: MemoryRead returns normally the data word pointed by Addr Case of invalidity: MemoryRead returns DataWord = 0. Note: FW makes sure that invalid addresses do not cause memory access violation # 7 6 5 4 3 2 1 0 # 7 6 5 4 3 2 1 DATA[15:8] AT ADD0 0 DATA[7:0] AT ADD0 3 DATA[15:8] AT ADD1 2 DATA[7:0] AT ADD1 5 7 1 0 1 0 4 CRC 6 1 1 0 0 0 0 Table 35 – MemoryRead MISO Packet (Opcode = 2) 3901090363 Rev. 005 Page 32 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 14.17. EepromWrite Message # 7 6 1 0 0 5 4 3 2 1 0 # ADDRESS[5:0](22) 7 6 5 4 3 2 1 0 0 1 1 0 3 KEY[15:8] 2 KEY[7:0] 5 DATA WORD[15:8] 4 DATA WORD[7:0] 7 CRC 6 1 1 0 0 0 Table 36 – EEPROMWrite MOSI Message (Opcode = 3) The EEPROM data consistency is guaranteed through two protection mechanisms: A and B. Protection A: The parameter ADDRESS should match the parameter KEY. The key associated to each address is public. Protection against erroneous write (in the field) is guaranteed as long as the keys are not stored in the master (ECU), but in the calibration system, which is typically a CAN or LIN Master. Protection B: Slave challenges the Master with a randomly generated ChallengeKey, expects back this key exclusive-or with 0x1234 MSC EEPROMWrite MSC EEPROMWrite (Case of Erroneous Key) Master Slave MSC EEPROMWrite (Case of Failing Challenge) Master Slave Master Slave EEWrite(Addr,Key)() X () EEWrite(Addr,Key)() X () EEWrite(Addr,Key)() X () EEReadChallenge () EEChallenge () EEReadChallenge () EEWriteStatus () EEReadChallenge () EEChallenge () EEChallengeAns () EEReadAnswer () EEChallengeAnsr () EEReadAnswer () tEEWrite tEEWrite NOP () EEWriteStatus () NOP () EEWriteStatus () Figure 19 – MSCs EEPROMWrite 0 17485 1 31053 2 57190 ADDRESS[3:1] 3 4 57724 7899 5 53543 6 26763 7 12528 1 38105 51302 16209 24847 13134 52339 14530 18350 2 55636 64477 40905 45498 24411 36677 4213 48843 3 6368 5907 31384 63325 3562 19816 6995 3147 ADDRESS[5:4] 0 Table 37 – EEPROM Write Public Keys # 7 6 5 4 3 2 1 0 # 1 0 3 2 5 7 7 6 5 4 3 2 1 0 1 1 0 0 1 1 1 1 4 CRC 6 Table 38 – EEPROMWrite ReadChallenge Slave-In Message (Opcode = 15) 22 The value of the ADDRESS[5:0] shall be even. 3901090363 Rev. 005 Page 33 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface # 7 6 5 4 3 2 1 0 1 # 7 6 5 4 3 2 1 0 0 0 0 3 CHALLENGE KEY [15:8] 2 5 CHALLENGE KEY [7:0] 4 7 CRC 6 1 1 0 0 0 1 Table 39 – EEPROMWrite EEChallenge Slave-Out Message (Opcode = 4) • The parameter ChallengeKey is randomly generated by the sensor, and should be echoed because of the next command # 7 6 5 4 3 2 1 0 1 # 7 6 5 4 3 2 1 0 0 1 0 3 KEY ECHO [15:8] 2 KEY ECHO [7:0] 5 INVERTED KEY ECHO [15:8] 4 INVERTED KEY ECHO [7:0] 7 CRC 6 1 1 0 0 0 1 Table 40 – EEPROMWrite ChallengeAns Slave-In Message (Opcode = 5) • • The parameter KeyEcho should match ChallengeKey exor’ed with 0x1234. The parameter InvertedKeyEcho should match KeyEcho after bit reversal. # 7 6 5 4 3 2 1 0 # 1 0 3 2 4 7 6 5 4 3 2 1 0 1 1 1 0 1 0 0 0 1 0 4 7 CRC 6 Table 41 – EEReadAnswer Slave-Out Message (Opcode = 40) # 7 6 5 4 3 2 1 0 # 1 0 3 2 4 7 7 6 5 4 3 2 CODE 4 CRC 6 1 1 0 0 1 1 1 0 Table 42 – EEPROMWriteStatus Slave-Out Message (Opcode = 14) • The parameter Code details the exact cause of EEPROM write failure Code 1 2 4 6 7 8 Description of EEPROM Write Failure Success Erase/Write Fail EEPROM CRC Erase/Write Fail Key Invalid Challenge Fail Odd Address The command Reboot must be sent after a series of EEPROM writes, to make sure that the new EEPROM parameters are taken into account. 3901090363 Rev. 005 Page 34 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 14.18. Reboot Reboot is a valid command in the following three cases. 1. After an EEPROM write 2. In fail-safe mode 3. In standby mode In normal mode, Reboot reports wrong opcode. Reboot causes a system reset identical to a true power-on reset. Start-up timings and sequences are applicable for the reboot message. Reboot, after EEPROM programming It is meant to force the FW to refresh the EEPROM cache and IO space after a series of EEPROM write commands. It forces the FW to take into account all the changes (modes enabling, disabling...) including those that are not cached. Reboot, in fail-safe mode ECU can issue a reboot message to exit the fail-safe mode before the watchdog time-out, for a fast recovery. # 7 6 5 4 3 2 1 0 # 1 0 3 2 4 7 6 5 4 3 2 1 0 1 1 1 0 1 1 1 1 4 7 CRC 6 Table 43 – Reboot (Opcode = 47) 14.19. Standby Standby sets the sensor in Standby mode: the digital clock is stopped and some analog blocks are switched off. The SCI clock remains active, allowing the sensor to be responsive to SCI messages. The first SCI message received while in Standby wakes up the sensor. The standby mode is precisely exited on the SS rising edge. The first message following a Standby message is normally interpreted by the sensor. It can be NOP, a GET or anything else. # 7 6 5 4 3 2 1 0 # 1 0 3 2 4 7 7 6 5 4 3 2 1 0 1 1 1 1 0 0 0 1 4 CRC 6 Table 44 – Standby (Opcode = 49) The sensor answer to Standby is StandbyAck (opcode 50). After resuming, the (E1, E0) error bits of the 6 following GET messages shall be ignored. 3901090363 Rev. 005 Page 35 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 14.20. Start-up Sequence (Serial Communication) The MLX90363 serial interface is enabled after the internal start-up initializations and start-up checks. Note: The start-up sequence of the MLX90363 firmware is described at chapter 19.1. The recommended SCI start-up sequences (Master – Slave) are depicted in the following message sequence charts, and timing diagrams. It usually starts with a NOP SI message. Ready is the first SO message. For safety critical applications, Melexis recommends performing two extra checks prior to the request of the first regular data: oscillator frequency check and a readback of the diagnostic details (ROM, RAM, ADC Monitor…) Message Sequence Chart Start-up Sequence (Basic Scenario) Master Message Sequence Chart Start-up Sequence (Safety Scenario) Slave1 Master NOP(Challenge) () Ready () Slave1 NOP () Ready () OscCounterStart () Challenge Echo ( ) GETx () Challenge Echo ( ) OscCounterStop () OscStartAck ( ) Loop DiagDetails ( ) OscCounter () GETx () Regular Packet ( ) GETx () DiagDetails ( ) Loop GETx () Regular Packet () Figure 20 – MSCs Start-up sequence examples (basic and safety critical scenario) VDD POR SI NOP SO Ready Challenge Echo SS GETx tPOR tStartUp Figure 21 – Start-up sequence, basic scenario, timing diagram VDD POR SI NOP SO Ready Challenge Echo SS OscStart OscStop DiagDetails StartAck OscCounter GETx DiagDetails tPOR tStartUp tOscCounter Figure 22 – Start-up sequence, safety critical scenario, timing diagram Notes: • The timing tStartUp is specified at chapter Timing Specifications (Section 10) • The slave answers with NTT in case the first SI message occurs prior the end of the initial checks. • The NOP - Challenge Echo is meant to diagnose the SCI link. 3901090363 Rev. 005 Page 36 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 14.21. Allowed sequences Only the message sequences described in this datasheet are accepted by the sensor. A few more are described below; they combine GET1 or GET2 with MemoryRead or DiagDetails. The particular timings associated to these sequences do not overrule the general timing specifications. Message Sequence Chart Single Slave - Combi GET1+MemoryRead Master Slave1 Message Sequence Chart Single Slave - Combi GET1+DiagDetails Master Loop Slave1 Loop GET1 () MemoryReadAns () GET1 () DiagDetails () MemoryRead () Regular packet () DiagDetails () Regular packet () NOP () MemoryReadAns () NOP () DiagDetails () Figure 23 – MSCs Combi sequences GET1+MemoryRead and GET1+DiagDetails Message Sequence Chart Single Slave - Combi GET2+MemoryRead Master Loop Slave1 GET2 () MemoryReadAns () Message Sequence Chart Single Slave - Combi GET2+DiagDetails Master Loop Slave1 GET2 () DiagDetails () Sync Pulse Sync Pulse MemoryRead () Regular packet () DiagDetails () Regular packet () NOP () MemoryReadAns () NOP () DiagDetails () Figure 24 – MSCs Combi sequences GET2+MemoryRead and GET2+DiagDetails 3901090363 Rev. 005 Page 37 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 15. MLX90363 Traceability Information Every device contains a unique ID that is stored in the EEPROM. Melexis strongly recommends storing this value during the EOL (end-of-line) programming to ensure full traceability of the product. These parameters shall never be erased during the EOL programming. Parameter MLXID 16. Comments Traceability Information Address (Hexa) 1012[15:0] 1014[15:0] 1016[15:0] Default Values MLX Parameter # bit 48 MLX90363 End-User Programmable Items The list below describes the parameters that are available to the customer during EOL programming. The parameters will be programmed through the EepromWrite Message (section 14.17). It must be noted that the data type of Eepromwrite Message is a word, and therefore it is mandatory to first readback the complete contents of the word before changing only the bits corresponding to the parameter. Parameter Comments MAPXYZ 3D FILTER VIRTUALGAINMAX VIRTUALGAINMIN KALPHA KBETA SMISM + SEL_SMISM ORTH_B1B2 KT FHYST PINFILTER XYZ Coordinates mapping Enabling of 3D formula (Joystick) Enabling of Signal Filter Electrical Gain Code Max Electrical Gain Code Min Magnetic Angle Formula Parameter Magnetic Angle Formula Parameter Magnetic Angle Formula Parameter Magnetic Angle Formula Parameter Magnetic Angle Formula Parameter Hysteresis Value (Alpha + Beta ) SCI Input Pins: EMC: Filter Bandwidth USERID User Identification FREE Freely usable by user Address (Hexa) 102A[2:0] 102A[3] 102A[5:4] 102E[15:8] 102E[7:0] 1022[15:0] 1024[15:0] 1032[15:0] 1026[7:0] 1030[15:0] 1028[15:8] 1001[1:0] 103A[15:0] 103C[15:0] 1018[15:0] 1026[15:8] 1028[7:0] 103E[7:0] Default Values 0 0 0 41 0 0 1.6 1 0 1 MLX 1 0001 0003 0 Parameter # bit 3 1 2 8 8 16 16 16 8 16 8 2 16 16 40 Melexis strongly recommends checking the User Identification data (Parameters USERID) during EOL calibration. 3901090363 Rev. 005 Page 38 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 17. MLX90363 Description of End-User Programmable Items 17.1. User Configuration: Device Orientation MAPXYZ Assignment 0 B1 = X, B2 = Y, B3 = Z 1 B1 = X, B2 = Z, B3 = Y 2 B1 = Y, B2 = Z, B3 = X 3 B1 = Y, B2 = X, B3 = Z 4 B1 = Z, B2 = X, B3 = Y 5 B1 = Z, B2 = Y, B3 = X Note Use mode 0 instead The values B1, B2 and B3 are inputs to the 2D/3D formula (see section 17.2). The field coordinates X, Y, Z are relative to the device (See Section 23.3 and 23.6). The parameter MAPXYZ selects the application-dependent mapping of (X, Y, Z) to (B1, B2, B3). 17.2. User Configuration: Magnetic Angle Formula Parameter 3D 0 1 Formula Note B2 Alpha = arctan B1 (KALPHA× B3)2 + ( KT × B2) 2 Alpha = arctan B1 Beta = arctan extended to the full circle extended across B1=0 and B2=0 max 180deg (KBETA × B3)2 + ( KT × B1) 2 B2 17.3. User Configuration: 3D=0 formula trimming parameters SMISM and ORTH_B1B2 17.3.1. Magnetic Angle ∠XY Parameter Address (hex) Value SMISM + SEL_MISM 1032[15:0] Trimmed by MLX ORTH 1038[7:0] Trimmed by MLX ORTH_SEL 102C[8] 0 MAPXYZ 102A[2:0] 0 This is the default condition as programmed by MLX. In such case, no front-end calibration is needed from the customer. 3901090363 Rev. 005 Page 39 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 17.3.2. Magnetic Angle ∠XZ and ∠YZ Parameter Address (hex) Range Value SEL_SMISM 1032[15] 0 or 1 0 or 1 SMISM 1032[14:0] [0..2] TYP = 1.4 ORTH_SEL 102C[8] 0 or 1 1 ORTH_B1B2 1026[7:0] [0..2] TYP = 0 MAPXYZ 102A[2:0] 1, 2, 4 or 5 1, 2, 4 or 5 If the magnetic angle ∠XZ or ∠YZ is read, Melexis strongly recommends calibrating the front-end parameters in order to reduce the magnetic accuracy error (see Section 11): 1) Phase Error B2 = B1 – B2 * ORTH_B1B2 / 1024 Where ORTH_B1B2 is the phase mismatch between the B1 and B2 signals. 2) Sensitivity Mismatch between B1 and B2 The parameter SMISM is selected in such a way that: i. Case |B1|>|B2| SEL_SMISM = 0 B1 * SMISM[14:0] / 2^15 and B2 have the same amplitude. ii. Case |B1|<|B2| SEL_SMISM = 1 B1 and B2 * SMISM[14:0] / 2^15 have the same amplitude. 17.4. User Configuration: 3D=1 formula trimming parameters KALPHA, KBETA, KT The values KAPLHA, KBETA and KT are inputs to the 3D formula (see section 17.2) and allow a targeted reduction of the linearity error through a normalization of the raw signals and a correction prior to the ATAN function. Parameter Value Range Typ. KAPLHA 0 … 2^16-1 [0..2] 1.4 KBETA 0 … 2^16-1 [0..2] 1.4 KT 0 … 2^16-1 [0..2] 1 Note: when not trimmed by the customer, the values per default of KALPHA and KBETA must be programmed to the TYP. value of 1.4. 3901090363 Rev. 005 Page 40 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 17.5. User Configuration: Filter The MLX90363 features 3 FIR filter modes controlled with Filter = 1…3. The transfer function is described below: yn = j 1 ∑a x i j ∑a n −i i =0 i i =0 The characteristics of the filters No. 0 to 3 is given in the following table. Filter No. (j) Type Coefficients a0… a5 Title 99% Response Time Efficiency RMS (dB) Digital value [16bits] 0 Disable N/A No Filter 1 0 1 2 3 Finite Impulse Response 11 1111 12221 Extra Light Light Medium 2 4 5 3.0 6.0 6.6 Step and impulse response of the 3 different filters 30000 20000 No filtering FIR2 [1111] FIR1 [11] FIR2 [12221] 10000 0 0 10 20 Time [samples] 30 40 50 17.6. Virtual Gain Min and Max Parameters The MLX90363 automatic gain control (AGC) loop selects the electrical gain code within the user-defined range VIRTUALGAINMIN…VIRTUALGAINMAX. Setting VIRTUALGAINMIN=VIRTUALGAINMAX means setting a fixed gain. The min and max virtual gain codes influence directly the sensitivity of the diagnostics D17-“Field Magnitude Too High” and D18-“Field Magnitude Too Low”. 3901090363 Rev. 005 Page 41 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 17.7. Hysteresis FILTER Parameter Value Note FHYST 0 … 255 1 LSB = 0.044 deg The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step is smaller than the programmed FHYST parameter value. The output value is modified when the increment is bigger than the hysteresis. The hysteresis filter reduces the resolution to a level compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the noise level. 17.8. EMC Filter on SCI Pins The EEPROM parameter PINFILTER selects the level of filtering on the serial protocol input pins. SCI clock frequency PINFILTER Recommended value for higher EM Immunity 2MHz 1 1MHz 2 500kHz 3 17.9. Identification & FREE bytes Parameter Value Unit 31 USERID 0..(2 -1) FREE 0…(2 -1) 39 Identification number: 32 bits freely useable by Customer for traceability purpose. The FREE bytes can also be used for identification or any other purposes. 17.10. Lock The calibration parameters of the MLX90363 are locked. To unlock the write, one must follow the write procedure described in section 14.17. 3901090363 Rev. 005 Page 42 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 18. MLX90363 Self Diagnostic The MLX90363 provides numerous self-diagnostic features which increase the safety integrity level of the IC, by diagnosing and reporting as many as 18 internal and external failure cases. Diagnostic Item RAM March C- 10N Test Watchdog BIST ROM 16 bit Checksum RAM Test (continuous) CPU Register Functional Test EEPROM Calibration parameters (8 bit CRC) EEPROM Hamming Code DED (Dual Error Detection) EEPROM RAM Cache Error Action Fail-safe mode Fail-safe mode Fail-safe mode Fail-safe mode Fail-safe mode Fail-safe mode Fail-safe mode Report(23) Bit D0 D1 D2 D3 D4 D5 D6 D7 Notes At Startup only At Startup only ADC Block Report D8 Reference Voltage Unit (VCM) + 11 Input Levels D12 See Magnetic Frequency Spec. D13 D14 See Magnetic Frequency Spec. See Magnetic Frequency Spec. Temperature > 190 deg (± 20deg) Temperature < -80 deg (± 20deg) Report (Optional) Report Report Report, temp. value set to EE_T35 Report, saturate temp. value Field magnitude too high (Norm > 99% ADC Span)(24) Report D17 Field magnitude too low (Norm < 20% ADC Span) Report D18 ADC clipping (X, Y, Z, two phases each) Supply voltage monitor (VDD) and Regulator monitor (VDEC)(25) Firmware Flow monitoring Read/Write Access out of physical memory Stack Overflow Write Access to protected area (IO and RAM Words) Unauthorized entry in “SYSTEM” Mode D19 D20 External failure Watchdog Timeout Oscillator Frequency (Dedicated SCI Command) Report Report (Optional) Fail-safe mode Fail-safe mode Fail-safe mode Fail-safe mode Fail-safe mode NTT Message(26) Reset(27) n/a External failure, given that AGC keeps Norm below 63.5% External failure, given that AGC keeps Norm above 47% External failure VDD > MT8V MISO is HiZ Bz sensitivity monitor(25) monitor(25) Bx sensitivity By sensitivity monitor(25) Temperature sensor monitoring (based on redundancy) Serial Interface Protection Error D15 D16 External failure n/a n/a n/a n/a n/a n/a n/a n/a n/a Diagnostic performed by master 100% Hardware detection. No communication possible. Figure 25 – Diagnostics List Reporting is done through the bits E0 and E1 of the regular messages or the bits Dx of the DiagnosticDetails message. See Table 8 for more details. 24 Norm = max(abs(X),abs(Y),abs(Z)) 25 Diagnostic to be disabled in the 3V3 application diagram (VDD = VDEC). 26 The NTT Message is followed by an Error Message. 27 Resetting has the same effects as a POR: the next SO message is therefore Ready. 23 3901090363 Rev. 005 Page 43 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 19. MLX90363 Firmware Flowcharts 19.1. Start-up sequence The entry in operation mode is preceded by a startup phase or startup sequence, performing the built-in self tests (performed only once), the automatic analog gain adjustment, the temperature acquisition and a first execution of the built-in self diagnostics (also performed continuously afterwards). The start-up sequence ends with the enabling of the serial interface. Start-up Sequence on POR BIST RAM BIST Watchdog BIST EEPROM CRC+DED RAM and IO Space Initialization SCI, ADC Driver Initialization Automatic Gain Control (6 x Signal Processing) Temperature Acquisition Digital Diagnostics First Pass ROM, RAM, CPU, EE CRC Analog Diagnostics First Pass ADCMonitor, TempMonitors... Enable SCI Communication SO = Ready Background Figure 26 – Firmware start-up sequence 3901090363 Rev. 005 Page 44 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 19.2. Signal Processing (GETx) The digital signal processing performed by the firmware is depicted by the following diagram. Inputs from EEPROM OfsX0 OfsY0 OfsZ0 Xslope Yslope Zslope T25 Tm40 T125 ORTH SMIS DSP Outputs Inputs from ADC Xadc kalpha kbeta kt FIR/IIR Setting + X1 - + If Orth_Sel =0 X2 FIR/IIR Filter + * If 3D=0 X If Orth_Sel =1 XB OfsX = ( OfsX0 + XSlope * dT ) * VG / VGMAX Yadc + Y1 - + ORTH_XY Y2 FIR/IIR Filter + Map X,Y,Z on B1,B2, B3 * Y If Marker = 0 ORTH _B1B2 * * Alpha = atan( B2 / B1) * B1 SMIS Zadc + Z1 - + Z2 * FIR/IIR Filter + Z ALPHA Alpha = atan( Sqrt( (kalpha.B3)2 + (kt.B2)2 ) / B1) YB OfsY = ( OfsY0 + YSlope * dT ) * VG / VGMAX If Marker = 1 B2 B3 BETA Beta = atan( Sqrt( (Kbeta.B3)2 + (kt.B1)2 ) / B2 ) Digital Signal (Post)-Processing ZB OfsZ = ( OfsZ0 + ZSlope * dT ) * VG / VGMAX SCI Message Coding Case Marker = 2 ALPHA T + * - T25 T125 + - dT BETA Norm = max(abs(X1,X2,Y1,Y2,Z1,Z2)) Tslope Tm40 SCI Message Coding Case Marker = 1 ALPHA 90363 ABB Digital Signal (Pre)-Processing VG SCI Message Coding Case Marker = 0 Figure 27 – Block Diagram of Signal Processing – Function model 19.3. Fail-safe Mode The purpose of fail-safe mode is dual: 1. To increase the safety integrity, by blocking any position calculation and position reporting whenever a critical error (WD error, ROM Checksum, Firmware flow error…) is detected 2. To report the root cause of the failure In fail-safe mode, The analog is [set] inactive The sensor waits for the master to initiate a reset Autonomous reset by watchdog after 100ms, i.e. watchdog running but will not be acknowledged Only SPI driver and communication handler is active. The only supported MOSI commands is - sciREBOOT Upon all SPI MOSI commands, the MISO message SPI_ERROR ( = DiagDetailAnswer) is sent Diagnostics (analog and digital) and background are not running Fail-safe mode – entry conditions The fail-safe mode is entered upon: - Critical error during initialization (RAM BIST, WD BIST, ROM Checksum, EEPROM CRC) - Critical error during background/digital diagnostics (RAM continuous test, ROM test, EEPROM CRC) - Exception, i.e. system level interrupts (Stack-overflow, invalid address, protection error, program error) - FW flow error 3901090363 Rev. 005 Page 45 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 19.4. Automatic Gain Control The Virtual Gain code is updated at every GET message. The new code value is based on the field strength (Norm) of every raw component (X, Y, Z). The Automatic Gain Control (AGC) makes sure that Norm is between 47% and 63.5%, by controlling the gain code within the range (VIRTUALGAINMIN, VIRTUALGAINMAX). The algorithm gives a limitation in term flux density frequency, see Section 10 for specification. It is not recommended to interrupt the GET message sequence, because AGC iterations are triggered by GET messages. If a pause cannot be avoided, the (E1, E0) error bits of the 6 following GET messages shall be ignored. 3901090363 Rev. 005 Page 46 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 20. Recommended Application Diagrams 20.1. MLX90363 in SOIC-8 Package and 5V Application Diagrams 5V VDD_IO VSS_IO SPI MASTER 8 1 C2 100nF VDD VSS C1 47nF MLX90363 SCLK MISO VDEC MOSI Test MISO MOSI 5 4 /SS SCLK /SS Figure 28 – Recommended wiring(28) for the MLX90363 in SOIC8 package and 5V Application Diagrams. 20.2. MLX90363 in SOIC-8 Package and 3V3 Application Diagrams 3V3 VDD_IO VSS_IO 8 1 SPI MASTER VDD VSS C1 100nF MLX90363 SCLK MISO VDEC MOSI Test MISO MOSI 5 4 /SS SCLK (28) Figure 29 – Recommended wiring /SS for the MLX90363 in SOIC8 package and 3V3 Application Diagrams. 28 Wiring of the SCI signals must be kept short on the PCB. In other cases, Melexis advises to add 100Ω serial resistor on the SCLK, MOSI, MISO and /SS lines. Melexis also recommends doubling the C1 decoupling capacitor. 3901090363 Rev. 005 Page 47 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 20.3. MLX90363 in TSSOP-16 Package and 5V Application Diagrams C3 100nF 5V VDD_IO MLX90363 VSS_IO C1 47nF 14 SCLK1 VDEC1 1 6 SCLK2 VSS1 2 SCLK 16 MOSI1 Test1 13 MOSI 8 MOSI2 VDD1 3 MISO 4 MISO1 VDEC2 9 SPI MASTER 12 MISO2 VSS2 10 /SS1 15 /SS1 Test2 5 /SS2 7 /SS2 VDD2 11 C2 47nF Figure 30 – Recommended(29) wiring for the MLX90363 in TSSOP16 package (dual die) and 5V Application Diagrams. 29 Wiring of the SCI signals must be kept short on the PCB. In other cases, Melexis advises to add 100Ω serial resistor on the SCLK, MOSI, MISO and /SS lines. Melexis also recommends to double the C1,C2 decoupling capacitors. 3901090363 Rev. 005 Page 48 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 20.4. MLX90363 in TSSOP-16 Package and 3V3 Application Diagrams 3V3 VDD_IO MLX90363 VSS_IO 14 SCLK1 VDEC1 1 6 SCLK2 VSS1 2 SCLK 16 MOSI1 Test1 13 MOSI 8 MOSI2 VDD1 3 MISO 4 MISO1 VDEC2 9 12 MISO2 VSS2 10 /SS1 15 /SS1 Test2 5 /SS2 7 /SS2 VDD2 11 SPI MASTER C1 100nF C2 100nF Figure 31 – Recommended(29) wiring for the MLX90363 in TSSOP16 package (dual die) and 3V3 Application Diagrams 3901090363 Rev. 005 Page 49 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 21. Standard information regarding manufacturability of Melexis products with different soldering processes Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods: Reflow Soldering SMD’s (Surface Mount Devices) • • IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2) EIA/JEDEC JESD22-A113 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2) Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) • • EN60749-20 Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat EIA/JEDEC JESD22-B106 and EN60749-15 Resistance to soldering temperature for through-hole mounted devices Iron Soldering THD’s (Through Hole Devices) • EN60749-15 Resistance to soldering temperature for through-hole mounted devices Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) • EIA/JEDEC JESD22-B102 and EN60749-21 Solderability For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board. Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx 22. ESD Precautions Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products. 3901090363 Rev. 005 Page 50 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 23. Package Information 23.1. SOIC8 – Package Dimensions 1.27 TYP NOTES: 3.81 3.99** 4.80 4.98* 5.80 6.20** All dimensions are in millimeters (anlges in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. 1.37 1.57 1.52 1.72 0.19 0.25 0° 8° 0.36 0.46*** 3901090363 Rev. 005 0.100 0.250 0.41 1.27 Page 51 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 8 /SS MOSI V DEC V SS 23.2. SOIC8 – Pinout and Marking Marking : 5 Part Number MLX90363 (3 digits) Die Version (3 digits) Top 363 Axx M12345 Xy-E Xy-E Split lot number (Optional ) + “-E” WW SCLK Test MISO YY Lot number: “M” + 5 digits Week Date code (2 digits) Year Date code (2 digits) 4 VDD 3901090363 Rev. 005 Axx M12325 Bottom 1 363 Page 52 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 23.3. SOIC8 – IMC Positionning CW 8 7 6 5 CCW X 0.46 +/- 0.06 1.16 +/- 0.155 1.25 1.65 1 2 3 4 Z 1.96 2.26 Y Angle detection MLX90363 SOIC8 6 2 3 ~ 90 Deg.* 5 8 7 4 1 2 2 3 5 S3 4 ~ 270 Deg.* 5 8 7 6 5 4 1 2 N3 4 S 6 N 1 7 S ~ 180 Deg.* 8 6 N 1 7 S 8 N ~ 0 Deg.* * No absolute reference for the angular information. The MLX90363 is an absolute angular position sensor but the linearity error (Le – See Section 11) does not include the error linked to the absolute reference 0 Deg. 3901090363 Rev. 005 Page 53 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 23.4. TSSOP16 – Package Dimensions 0.65 TYP 12O TYP 0.20 TYP 0.09 MIN 1.0 DIA 4.30 4.50** 6.4 TYP 0.09 MIN 1.0 12O TYP 0.50 0.75 0O 8O 1.0 1.0 TYP 0.85 0.95 4.90 5.10* 1.1 MAX 0.19 0.30*** 0.09 0.20 0.05 0.15 NOTES: All dimensions are in millimeters (anlges in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. 3901090363 Rev. 005 Page 54 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 23.5. TSSOP16 – Pinout and Marking 16 1 VDEC1 MOSI 1 /SS 1 SCLK 1 363Axx M12345 Xy-E VSS1 VDD1 MISO1 Test2 Test1 MISO2 VSS2 9 VDD2 /SS2 MOSI2 8 SCLK2 Marking : Part Number MLX90363 (3 digits) Die Version (3 digits) VDEC2 Top 363 Axx M12325 Xy-E Bottom YY Lot number: “M” + 5 digits Split lot number (Optional) + “-E” WW Week Date code (2 digits) Year Date code (2 digits) 23.6. TSSOP16 – IMC Positionning CW X2 Z2 16 9 Die 1 Die 2 Y2 Y1 0.30 +/- 0.06 CCW 1.95 2.45 1 Z1 0.70 +/- 0.13 8 1.84 2.04 X1 2.76 2.96 3901090363 Rev. 005 Page 55 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface Angle detection MLX90363 TSSOP16 ~ 180 Deg.* 16 9 16 Die 2 1 8 ~ 180 Deg.* ~ 0 Deg.* 16 1 8 ~ 270 Deg.* ~ 90 Deg.* 9 16 Die 2 9 Die 1 S S N 1 Die 2 S Die 1 S Die 1 9 N N Die 1 ~ 90 Deg.* ~ 270 Deg.* 8 1 Die 2 N ~ 0 Deg.* 8 * No absolute reference for the angular information. The MLX90363 is an absolute angular position sensor but the linearity error (Le – See Section 11) does not include the error linked to the absolute reference 0 Deg. 3901090363 Rev. 005 Page 56 of 57 Data Sheet Jul/13 MLX90363 Triaxis® Magnetometer IC With High Speed Serial Interface 24. Disclaimer Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application. The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering of technical or other services. © 2013 Melexis NV. All rights reserved. For the latest version of this document, go to our website at www.melexis.com Or for additional information contact Melexis Direct: Europe, Africa, Asia: Phone: +32 1367 0495 E-mail: [email protected] America: Phone: +1 248 306 5400 E-mail: [email protected] ISO/TS 16949 and ISO14001 Certified 3901090363 Rev. 005 Page 57 of 57 Data Sheet Jul/13