NXP Semiconductors Data Sheet: Technical Data K61 Sub-Family Document Number K61P143M120SF3 Rev. 7, 02/2018 K61P143M120SF3 Supports the following: MK61FN1M0CAA12 Key features • Operating Characteristics – Voltage range: 1.71 to 3.6 V – Flash write voltage range: 1.71 to 3.6 V – Temperature range (ambient): -40 to 85°C • Performance – Up to 120 MHz Arm® Cortex®-M4 core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz • Memories and memory interfaces – Up to 1024 KB program flash memory on nonFlexMemory devices – Up to 128 KB RAM – Serial programming interface (EzPort) – FlexBus external bus interface – NAND flash controller interface • Clocks – 3 to 32 MHz crystal oscillator – 32 kHz crystal oscillator – Multi-purpose clock generator • System peripherals – Multiple low-power modes to provide power optimization based on application requirements – Memory protection unit with multi-master protection – 32-channel DMA controller, supporting up to 128 request sources – External watchdog monitor – Software watchdog – Low-leakage wakeup unit • Security and integrity modules – Hardware CRC module to support fast cyclic redundancy checks – Tamper detect and secure storage – Hardware random-number generator – Hardware encryption supporting DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms – 128-bit unique identification (ID) number per chip • Human-machine interface – Low-power hardware touch sensor interface (TSI) – General-purpose input/output • Analog modules – Four 16-bit SAR ADCs – Programmable gain amplifier (PGA) (up to x64) integrated into each ADC – Two 12-bit DACs – Four analog comparators (CMP) containing a 6-bit DAC and programmable reference input – Voltage reference • Timers – Programmable delay block – Two 8-channel motor control/general purpose/PWM timers – Two 2-channel quadrature decoder/general purpose timers – IEEE 1588 timers – Periodic interrupt timers – 16-bit low-power timer – Carrier modulator transmitter – Real-time clock • Communication interfaces – Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability – USB high-/full-/low-speed On-the-Go controller with ULPI interface – USB full-/low-speed On-the-Go controller with onchip transceiver – USB Device Charger detect (USBDCD) – Two Controller Area Network (CAN) modules – Three SPI modules – Two I2C modules – Six UART modules – Secure Digital Host Controller (SDHC) – Two I2S modules NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. Table of Contents 1 Ordering parts.......................................................................................3 6.3 Clock modules............................................................................. 25 1.1 Determining valid orderable parts............................................... 3 6.3.1 MCG specifications..................................................... 25 2 Part identification................................................................................. 3 6.3.2 Oscillator electrical specifications...............................28 2.1 Description...................................................................................3 6.3.3 32 kHz oscillator electrical characteristics.................. 30 2.2 Format.......................................................................................... 3 6.4 Memories and memory interfaces................................................30 2.3 Fields............................................................................................3 6.4.1 Flash (FTFE) electrical specifications.........................30 2.4 Example....................................................................................... 4 6.4.2 EzPort switching specifications...................................32 3 Terminology and guidelines.................................................................4 6.4.3 NAND flash controller specifications......................... 33 3.1 Definitions................................................................................... 4 6.4.4 Flexbus switching specifications.................................36 3.2 Examples......................................................................................4 3.3 Typical-value conditions..............................................................5 3.4 Relationship between ratings and operating requirements.......... 5 6.5 Security and integrity modules.................................................... 39 6.5.1 DryIce Tamper Electrical Specifications.....................39 6.6 Analog..........................................................................................40 3.5 Guidelines for ratings and operating requirements......................6 6.6.1 ADC electrical specifications...................................... 40 4 Ratings..................................................................................................6 6.6.2 CMP and 6-bit DAC electrical specifications............. 47 4.1 Thermal handling ratings............................................................. 6 6.6.3 12-bit DAC electrical characteristics...........................49 4.2 Moisture handling ratings............................................................ 7 6.6.4 Voltage reference electrical specifications..................52 4.3 ESD handling ratings................................................................... 7 6.7 Timers.......................................................................................... 53 4.4 Voltage and current operating ratings..........................................7 6.8 Communication interfaces........................................................... 53 5 General................................................................................................. 8 6.8.1 Ethernet switching specifications................................ 53 5.1 AC electrical characteristics........................................................ 8 6.8.2 USB electrical specifications.......................................56 5.2 Nonswitching electrical specifications........................................ 8 6.8.3 USB DCD electrical specifications............................. 56 5.2.1 Voltage and current operating requirements............... 8 6.8.4 USB VREG electrical specifications...........................57 5.2.2 LVD and POR operating requirements....................... 9 6.8.5 CAN switching specifications..................................... 57 5.2.3 Voltage and current operating behaviors.....................10 6.8.6 DSPI switching specifications (limited voltage 5.2.4 Power mode transition operating behaviors................ 13 5.2.5 Power consumption operating behaviors.....................14 6.8.7 DSPI switching specifications (full voltage range)..... 59 5.2.6 EMC radiated emissions operating behaviors............. 17 6.8.8 Inter-Integrated Circuit Interface (I2C) timing............61 5.2.7 Designing with radiated emissions in mind.................18 6.8.9 UART switching specifications...................................62 5.2.8 Capacitance attributes..................................................18 6.8.10 SDHC specifications................................................... 62 5.3 Switching specifications.............................................................. 18 6.8.11 I2S/SAI switching specifications................................ 63 5.3.1 Device clock specifications......................................... 18 5.3.2 General switching specifications.................................19 5.4 Thermal specifications................................................................. 20 range)...........................................................................57 6.9 Human-machine interfaces (HMI)...............................................70 6.9.1 TSI electrical specifications........................................ 70 7 Dimensions...........................................................................................71 5.4.1 Thermal operating requirements..................................21 7.1 Obtaining package dimensions.................................................... 71 5.4.2 Thermal attributes........................................................21 8 Pinout................................................................................................... 71 6 Peripheral operating requirements and behaviors................................ 22 8.1 Pins with active pull control after reset....................................... 71 6.1 Core modules............................................................................... 22 8.2 K61 Signal Multiplexing and Pin Assignments...........................72 6.1.1 Debug trace timing specifications............................... 22 8.3 K61 Pinouts..................................................................................78 6.1.2 JTAG electricals.......................................................... 22 9 Revision History...................................................................................79 6.2 System modules........................................................................... 25 K61 Sub-Family, Rev. 7, 02/2018 2 NXP Semiconductors Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to nxp.com and perform a part number search for the following device numbers: PK61 and MK61 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: Q K## A M FFF T PP CC N 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification K## Kinetis family • K61 A Key attribute • F = Cortex-M4 w/ DSP and FPU M Flash memory type • N = Program flash only • X = Program flash and FlexMemory FFF Program flash memory size • 512 = 512 KB • 1M0 = 1 MB Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 3 Terminology and guidelines Field Description Values T Temperature range (°C) • V = –40 to 105 • C = –40 to 85 PP Package identifier • AA = 143 WLCSP CC Maximum CPU frequency (MHz) • 12 = 120 MHz N Packaging type • R = Tape and reel 2.4 Example This is an example part number: MK61FN1M0CAA12 3 Terminology and guidelines 3.1 Definitions Key terms are defined in the following table: Term Rating Definition A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip Operating behavior A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions Typical value A specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed. K61 Sub-Family, Rev. 7, 02/2018 4 NXP Semiconductors Terminology and guidelines 3.2 Examples EX A M PL E Operating rating: EX AM PL E Operating requirement: EX AM PL E Operating behavior that includes a typical value: 3.3 Typical-value conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD Supply voltage 3.3 V K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 5 Ratings 3.4 Relationship between ratings and operating requirements e Op ing rat r ( ng ati n. mi ) ing rat e Op e re ir qu ) in. t (m n me ing rat e Op e ir qu re t (m n me ax .) ing rat e Op (m ng ati .) ax r Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) ng dli n Ha n.) mi g( in rat ma g( ng dli n Ha in rat x.) Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure –∞ ∞ Handling (power off) 3.5 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 4 Ratings 4.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. K61 Sub-Family, Rev. 7, 02/2018 6 NXP Semiconductors Ratings 4.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 105°C -100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. 4.4 Voltage and current operating ratings Symbol Description Min. Max. Unit VDD Digital supply voltage1 –0.3 3.8 V IDD Digital supply current — 300 mA VDIO Digital input voltage (except RESET, EXTAL0/XTAL0, and EXTAL1/XTAL1) 2 –0.3 5.5 V VAIO Analog3, RESET, EXTAL0/XTAL0, and EXTAL1/XTAL1 input voltage –0.3 VDD + 0.3 V Maximum current single pin limit (applies to all digital pins) –25 25 mA ID VDD – 0.3 VDD + 0.3 V VUSB0_DP VDDA USB0_DP input voltage –0.3 3.63 V VUSB0_DM USB0_DM input voltage –0.3 3.63 V VREGIN USB regulator input –0.3 6.0 V RTC battery supply voltage –0.3 3.8 V VBAT Analog supply voltage 1. It applies for all port pins except Tamper pins. 2. It covers digital pins except Tamper pins. 3. Analog pins are defined as pins that do not have an associated general purpose I/O port function. K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 7 General 5 General 5.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. Input Signal High Low VIH 80% 50% 20% Midpoint1 VIL Fall Time Rise Time The midpoint is VIL + (VIH - VIL) / 2 Figure 1. Input signal measurement reference All digital I/O switching characteristics assume: 1. output pins • have CL=30pF loads, • are configured for fast slew rate (PORTx_PCRn[SRE]=0), and • are configured for high drive strength (PORTx_PCRn[DSE]=1) 2. input pins • have their passive filter disabled (PORTx_PCRn[PFE]=0) 5.2 Nonswitching electrical specifications 5.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V Notes Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 8 NXP Semiconductors General Table 1. Voltage and current operating requirements (continued) Symbol VBAT VIH Description Min. Max. Unit RTC battery supply voltage 1.71 3.6 V 0.7 × VDD — V 0.75 × VDD — V — 0.35 × VDD V — 0.3 × VDD V 0.06 × VDD — V -5 — mA Input high voltage (digital pins except Tamper pins ) • 2.7 V ≤ VDD ≤ 3.6 V • 1.7 V ≤ VDD ≤ 2.7 V VIL Input low voltage (digital pins except Tamper pins ) • 2.7 V ≤ VDD ≤ 3.6 V • 1.7 V ≤ VDD ≤ 2.7 V VHYS Input hysteresis (digital pins except Tamper pins ) IICDIO Digital pin (except Tamper pins) negative DC injection current — single pin Notes 1 • VIN < VSS-0.3V IICAIO Analog2, EXTAL0/XTAL0, and EXTAL1/ XTAL1 pin DC injection current — single pin • VIN < VSS-0.3V (Negative current injection) • VIN > VDD+0.3V (Positive current injection) IICcont Contiguous pin DC injection current — regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Negative current injection 3 mA -5 — — +5 -25 — — +25 mA • Positive current injection VODPU Open drain pullup voltage level VDD VDD V VRAM VDD voltage required to retain RAM 1.2 — V VPOR_VBAT — V VRFVBAT VBAT voltage required to retain the VBAT register file 4 1. All 5 V tolerant digital I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode connection to VDD. If VIN is less than VDIO_MIN, a current limiting resistor is required. If VIN greater than VDIO_MIN (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. The negative DC injection current limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IICDIO|. 2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and XTAL are analog pins. 3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or greater than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VIN-VAIO_MAX)/|IICAIO|. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents. 4. Open drain outputs must be pulled to VDD. K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 9 General 5.2.2 LVD and POR operating requirements Table 2. LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) 2.48 2.56 2.64 V 2.62 2.70 2.78 V 2.72 2.80 2.88 V 2.82 2.90 2.98 V 2.92 3.00 3.08 V — ±80 — mV 1.54 1.60 1.66 V 1.74 1.80 1.86 V 1.84 1.90 1.96 V 1.94 2.00 2.06 V 2.04 2.10 2.16 V — ±60 — mV VLVW1H VLVW2H VLVW3H VLVW4H Low-voltage warning thresholds — high range • Level 1 falling (LVWV=00) • Level 2 falling (LVWV=01) • Level 3 falling (LVWV=10) Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) VLVW2L VLVW3L VLVW4L VHYSL 1 • Level 4 falling (LVWV=11) VHYSH VLVW1L Notes Low-voltage warning thresholds — low range • Level 1 falling (LVWV=00) • Level 2 falling (LVWV=01) • Level 3 falling (LVWV=10) 1 • Level 4 falling (LVWV=11) Low-voltage inhibit reset/recover hysteresis — low range VBG Bandgap voltage reference 0.97 1.00 1.03 V tLPO Internal low power oscillator period 900 1000 1100 μs factory trimmed 1. Rising thresholds are falling threshold + hysteresis voltage Table 3. VBAT power operating requirements Symbol Description VPOR_VBAT Falling VBAT supply POR detect voltage Min. Typ. Max. Unit 0.8 1.1 1.5 V Notes 5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors Symbol VOH Description Min. Typ. • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -9mA VDD – 0.5 — • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA VDD – 0.5 — Output high voltage — high drive strength Max. Unit Notes — — V V Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 10 NXP Semiconductors General Table 4. Voltage and current operating behaviors (continued) Symbol Description Min. Typ. • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA VDD – 0.5 — • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA VDD – 0.5 — Output high current total for all ports — — 100 mA Output high current total for fast digital ports — — 100 mA VBAT – 0.5 — — V VBAT – 0.5 — — V VBAT – 0.5 — — V VBAT – 0.5 — — V — — 100 mA 0.5 V 0.5 V 0.5 V 0.5 V Output high voltage — low drive strength IOHT IOHT_io60 VOH_Tamper Output high voltage — high drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -10mA Max. Unit Notes — — V V • 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -3mA Output high voltage — low drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -2mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -0.6mA IOH_Tamper Output high current total for Tamper pins VOL Output low voltage — high drive strength — • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 10 mA — • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 5 mA — — Output low voltage — low drive strength IOLT IOLT_io60 — • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2 mA — • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 1 mA — — Output low current total for all ports — — 100 mA Output low current total for fast digital ports — — 100 mA — — 0.5 V — — 0.5 V — — 0.5 V — — 0.5 V — — 100 mA VOL_Tamper Output low voltage — high drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 10mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 3mA Output low voltage — low drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 2mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 0.6mA IOL_Tamper Output low current total for Tamper pins IINA Input leakage current, analog pins and digital pins configured as analog inputs 1, 2 • VSS ≤ VIN ≤ VDD • All pins except EXTAL32, XTAL32, EXTAL, XTAL • EXTAL (PTA18) and XTAL (PTA19) • EXTAL32, XTAL32 IIND — 0.002 0.5 μA — 0.004 1.5 μA — 0.075 10 μA Input leakage current, digital pins 2, 3 • VSS ≤ VIN ≤ VIL Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 11 General Table 4. Voltage and current operating behaviors (continued) Symbol Description • All digital pins Min. Typ. Max. Unit — 0.002 0.5 μA — 0.002 0.5 μA — 0.004 1 μA Notes • VIN = VDD • All digital pins except PTD7 • PTD7 IIND Input leakage current, digital pins 2, 3, 4 • VIL < VIN < VDD IIND • VDD = 3.6 V — 18 26 μA • VDD = 3.0 V — 12 19 μA • VDD = 2.5 V — 8 13 μA • VDD = 1.7 V — 3 6 μA Input leakage current, digital pins • VDD < VIN < 5.5 V ZIND 2, 3 — 1 50 μA Input impedance examples, digital pins 2, 5 • VDD = 3.6 V — — 48 kΩ • VDD = 3.0 V — — 55 kΩ • VDD = 2.5 V — — 57 kΩ • VDD = 1.7 V — — 85 kΩ IIN_Tamper Input leakage current (per Tamper pin) for full temperature range — — 1 μA IIN_Tamper Input leakage current (per Tamper pin) at 25°C — — 0.025 μA RPU Internal pullup resistors (except Tamper pins) 20 — 50 kΩ 6 RPD Internal pulldown resistors (except Tamper pins) 20 — 50 kΩ 7 1. 2. 3. 4. 5. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Digital pins have an associated GPIO port function and have 5V tolerant inputs, except EXTAL and XTAL. Internal pull-up/pull-down resistors disabled. Characterized, not tested in production. Examples calculated using VIL relation, VDD, and max IIND: ZIND=VIL/IIND. This is the impedance needed to pull a high signal to a level below VIL due to leakage when VIL < VIN < VDD. These examples assume signal source low = 0 V. See Figure 2. 6. Measured at VDD supply voltage = VDD min and Vinput = VSS 7. Measured at VDD supply voltage = VDD min and Vinput = VDD K61 Sub-Family, Rev. 7, 02/2018 12 NXP Semiconductors General Figure 2. 5 V Tolerant Input IIND Parameter 5.2.4 Power mode transition operating behaviors All specifications except tPOR, and VLLSx→RUN recovery times in the following table assume this clock configuration: • • • • • CPU and system clocks = 100 MHz Bus clock = 50 MHz FlexBus clock = 50 MHz Flash clock = 25 MHz MCG mode: FEI Table 5. Power mode transition operating behaviors Symbol tPOR Description Min. Max. After a POR event, amount of time from the point VDD reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. • VDD slew rate ≥ 5.7 kV/s • VDD slew rate < 5.7 kV/s • VLLS1 → RUN • VLLS2 → RUN • VLLS3 → RUN • LLS → RUN • VLPS → RUN • STOP → RUN Unit Notes 1 μs — 300 — 1.7 V / (VDD slew rate) — 160 μs — 114 μs — 114 μs — 5.0 μs — 5 μs — 4.8 μs 1. Normal boot (FTFE_FOPT[LPBOOT]=1) K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 13 General 5.2.5 Power consumption operating behaviors Table 6. Power consumption operating behaviors Symbol IDDA IDD_RUN IDD_RUN Description Analog supply current Min. Typ. Max. Unit Notes — — See note mA 1 Run mode current — all peripheral clocks disabled, code executing from flash 2 • @ 1.8V — 49.28 73.85 mA • @ 3.0V — 49.08 73.93 mA Run mode current — all peripheral clocks enabled, code executing from flash 3 • @ 1.8V — 74.43 99.97 mA • @ 3.0V — 74.28 100.41 mA IDD_WAIT Wait mode high frequency current at 3.0 V — all peripheral clocks disabled — 34.67 58.5 mA 2 IDD_WAIT Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled — 18.03 41.91 mA 4 IDD_STOP Stop mode current at 3.0 V • @ –40 to 25°C — 1.25 1.62 mA • @ 70°C — 2.93 4.39 mA • @ 85°C — 7.08 10.74 mA IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled — 1.03 4.48 mA 5 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled — 1.58 4.96 mA 5 IDD_VLPW Very-low-power wait mode current at 3.0 V — 0.64 4.29 mA 5 IDD_VLPS Very-low-power stop mode current at 3.0 V • @ –40 to 25°C — 0.22 0.38 mA • @ 70°C — 0.78 1.33 mA • @ 85°C — 2.18 3.56 mA • @ –40 to 25°C — 0.22 0.37 mA • @ 70°C — 0.78 1.33 mA • @ 85°C — 2.16 3.52 mA • @ –40 to 25°C — 4.09 5.58 μA • @ 70°C — 20.98 28.93 μA • @ 85°C — 84.95 111.15 μA IDD_LLS IDD_VLLS3 IDD_VLLS2 Low leakage stop mode current at 3.0 V Very low-leakage stop mode 3 current at 3.0 V Very low-leakage stop mode 2 current at 3.0 V Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 14 NXP Semiconductors General Table 6. Power consumption operating behaviors (continued) Symbol IDD_VLLS1 IDD_VBAT Description Min. Typ. Max. Unit • @ –40 to 25°C — 2.68 4.22 μA • @ 70°C — 8.8 10.74 μA • @ 85°C — 37.28 43.61 μA • @ –40 to 25°C — 2.46 4.02 μA • @ 70°C — 7.04 8.99 μA • @ 85°C — 30.68 37.04 μA Notes Very low-leakage stop mode 1 current at 3.0 V Average current when CPU is not accessing RTC registers at 3.0 V 6 • @ –40 to 25°C — 0.89 1.10 μA • @ 70°C — 1.28 1.85 μA • @ 85°C — 3.10 4.3 μA 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 120 MHz core and system clock, 60 MHz bus, 30 MHz FlexBus clock, and 20 MHz flash clock. MCG configured for PEE mode. All peripheral clocks disabled. 3. 120 MHz core and system clock, 60 MHz bus, 30 MHz FlexBus clock, and 20 MHz flash clock. MCG configured for PEE mode. All peripheral clocks enabled, but peripherals are not in active operation. 4. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz FlexBus and flash clock. MCG configured for FEI mode. 5. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. 6. Includes 32kHz oscillator current and RTC operation. 5.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies. MCG in PEE mode at greater than 100 MHz frequencies. • USB regulator disabled • No GPIOs toggled • Code execution from flash with cache enabled • For the ALLOFF curve, all peripheral clocks are disabled except FTFE K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 15 General Figure 3. Run mode supply current vs. core frequency K61 Sub-Family, Rev. 7, 02/2018 16 NXP Semiconductors General Figure 4. VLPR mode supply current vs. core frequency 5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors for 256MAPBGA Symbol Description Frequency band (MHz) Typ. Unit Notes 1, 2, 3 VRE1 Radiated emissions voltage, band 1 0.15–50 21 dBμV VRE2 Radiated emissions voltage, band 2 50–150 24 dBμV VRE3 Radiated emissions voltage, band 3 150–500 29 dBμV VRE4 Radiated emissions voltage, band 4 500–1000 28 dBμV 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. 2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 72 MHz, fBUS = 72 MHz 3. Determined according to IEC Standard JESD78, IC Latch-Up Test K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 17 General 5.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.nxp.com. 2. Perform a keyword search for “EMC design.” 5.2.8 Capacitance attributes Table 8. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF Input capacitance: fast digital pins — 9 pF CIN_D_io60 5.3 Switching specifications 5.3.1 Device clock specifications Table 9. Device clock specifications Symbol Description Min. Max. Unit System and core clock — 120 MHz System and core clock when Full Speed USB in operation 20 — MHz Notes Normal run mode fSYS fSYS_USBFS fENET System and core clock when ethernet in operation • 10 Mbps • 100 Mbps MHz 5 — 50 — Bus clock — 60 MHz FlexBus clock — 50 MHz fFLASH Flash clock — 25 MHz fLPTMR LPTMR clock — 25 MHz fBUS FB_CLK VLPR mode1 fSYS System and core clock — 4 MHz fBUS Bus clock — 4 MHz FlexBus clock — 4 MHz FB_CLK Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 18 NXP Semiconductors General Table 9. Device clock specifications (continued) Symbol Description Min. Max. Unit fFLASH Flash clock — 0.5 MHz fLPTMR LPTMR clock — 4 MHz Notes 1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module. 5.3.2 General switching specifications These general purpose specifications apply to all pins configured for: • GPIO signaling • Other peripheral module signaling not explicitly stated elsewhere Table 10. General switching specifications Symbol Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1, 2 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path 100 — ns 3 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path 16 — ns 3 External reset pulse width (digital glitch filter disabled) 100 — ns 3 2 — Bus clock cycles Mode select (EZP_CS) hold time after reset deassertion Port rise and fall time (high drive strength) 4 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 14 ns • 2.7 ≤ VDD ≤ 3.6V — 8 ns • 1.71 ≤ VDD ≤ 2.7V — 36 ns • 2.7 ≤ VDD ≤ 3.6V — 24 ns • Slew enabled Port rise and fall time (low drive strength) 5 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 14 ns • 2.7 ≤ VDD ≤ 3.6V — 8 ns • 1.71 ≤ VDD ≤ 2.7V — 36 ns • 2.7 ≤ VDD ≤ 3.6V — 24 ns • Slew enabled tio50 Port rise and fall time (high drive strength) 6 • Slew disabled Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 19 General Table 10. General switching specifications (continued) Symbol Description Min. Max. Unit Notes • 1.71 ≤ VDD ≤ 2.7V — 7 ns — • 2.7 ≤ VDD ≤ 3.6V — 3 ns — • 1.71 ≤ VDD ≤ 2.7V — 28 ns — • 2.7 ≤ VDD ≤ 3.6V — 14 ns — • Slew enabled tio50 Port rise and fall time (low drive strength) -1 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 18 ns — • 2.7 ≤ VDD ≤ 3.6V — 9 ns — • 1.71 ≤ VDD ≤ 2.7V — 48 ns — • 2.7 ≤ VDD ≤ 3.6V — 24 ns — • Slew enabled tio60 Port rise and fall time (high drive strength) 6 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 6 ns — • 2.7 ≤ VDD ≤ 3.6V — 3 ns — • 1.71 ≤ VDD ≤ 2.7V — 28 ns — • 2.7 ≤ VDD ≤ 3.6V — 14 ns — • Slew enabled tio60 Port rise and fall time (low drive strength) -1 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 18 ns — • 2.7 ≤ VDD ≤ 3.6V — 6 ns — • 1.71 ≤ VDD ≤ 2.7V — 48 ns — • 2.7 ≤ VDD ≤ 3.6V — 24 ns — • Slew enabled 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case. 2. The greater synchronous and asynchronous timing must be met. 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes. 4. 75 pF load 5. 15 pF load 6. 25 pF load 5.4 Thermal specifications K61 Sub-Family, Rev. 7, 02/2018 20 NXP Semiconductors General 5.4.1 Thermal operating requirements Table 11. Thermal operating requirements Symbol TJ TA Description Min. Max. Unit Die junction temperature –40 95 °C –40 85 °C Ambient temperature1 1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to determine TJ is: TJ = TA + RθJA x chip power dissipation 5.4.2 Thermal attributes Board type Symbol Description 143 WLCSP Unit Notes Single-layer (1s) RθJA Thermal 77 resistance, junction to ambient (natural convection) °C/W 1, 2 Four-layer (2s2p) RθJA Thermal 35 resistance, junction to ambient (natural convection) °C/W 1,2, 3 — RθJB Thermal 10 resistance, junction to board °C/W 4 — RθJC Thermal 1.9 resistance, junction to case °C/W 5 — ΨJT Thermal 2 characterization parameter, junction to package top outside center (natural convection) °C/W 6 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air) with the single layer board horizontal. Board meets JESD51-9 specification. 3. Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental Conditions —Forced Convection (Moving Air) with the board horizontal. 4. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions —Junction-to-Board. Board temperature is measured on the top surface of the board near the package. 5. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 21 Peripheral operating requirements and behaviors 6. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air). 6 Peripheral operating requirements and behaviors 6.1 Core modules 6.1.1 Debug trace timing specifications Table 12. Debug trace operating behaviors Symbol Description Min. Max. Unit Tcyc Clock period Frequency dependent MHz Twl Low pulse width 2 — ns Twh High pulse width 2 — ns Tr Clock and data rise time — 3 ns Tf Clock and data fall time — 3 ns Ts Data setup 3 — ns Th Data hold 2 — ns TRACECLK Tr Tf Twh Twl Tcyc Figure 5. TRACE_CLKOUT specifications TRACE_CLKOUT Ts Th Ts Th TRACE_D[3:0] Figure 6. Trace data specifications K61 Sub-Family, Rev. 7, 02/2018 22 NXP Semiconductors Peripheral operating requirements and behaviors 6.1.2 JTAG electricals Table 13. JTAG limited voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 2.7 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 25 • Serial Wire Debug 0 50 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 20 — ns • Serial Wire Debug 10 — ns J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 2.4 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1 — ns J11 TCLK low to TDO data valid — 17 ns J12 TCLK low to TDO high-Z — 17 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns J2 TCLK cycle period J3 TCLK clock pulse width Table 14. JTAG full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 1.71 3.6 V TCLK frequency of operation • Boundary Scan 0 10 • JTAG and CJTAG 0 20 • Serial Wire Debug 0 40 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 25 — ns • Serial Wire Debug 12.5 — ns — 3 ns J2 TCLK cycle period J3 TCLK clock pulse width J4 MHz TCLK rise and fall times Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 23 Peripheral operating requirements and behaviors Table 14. JTAG full voltage range electricals (continued) Symbol Description Min. Max. Unit J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 2.4 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1.4 — ns J11 TCLK low to TDO data valid — 22.1 ns J12 TCLK low to TDO high-Z — 22.1 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns J2 J3 J3 TCLK (input) J4 J4 Figure 7. Test clock input timing TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 8. Boundary scan (JTAG) timing K61 Sub-Family, Rev. 7, 02/2018 24 NXP Semiconductors Peripheral operating requirements and behaviors TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 9. Test Access Port timing TCLK J14 J13 TRST Figure 10. TRST timing 6.2 System modules There are no specifications necessary for the device's system modules. 6.3 Clock modules K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 25 Peripheral operating requirements and behaviors 6.3.1 MCG specifications Table 15. MCG specifications Symbol Description Min. Typ. Max. Unit — 32.768 — kHz 31.25 — 38.2 kHz Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM — ± 0.3 ± 0.6 %fdco 1 Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only — ± 0.2 ± 0.5 %fdco 1 Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C — ± 4.5 — %fdco 1 fintf_ft Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C — 4 — MHz fintf_t Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C 3 — 5 MHz fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C fints_t Internal reference frequency (slow clock) — user trimmed Δfdco_t floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — kHz 31.25 — 39.0625 kHz 20 20.97 25 MHz 40 41.94 50 MHz 60 62.91 75 MHz 80 83.89 100 MHz — 23.99 — MHz — 47.97 — MHz — 71.99 — MHz — 95.98 — MHz — 180 — Notes FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS=00) 2, 3 640 × ffll_ref Mid range (DRS=01) 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref fdco_t_DMX32 DCO output frequency Low range (DRS=00) 4, 5 732 × ffll_ref Mid range (DRS=01) 1464 × ffll_ref Mid-high range (DRS=10) 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Jcyc_fll FLL period jitter ps Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 26 NXP Semiconductors Peripheral operating requirements and behaviors Table 15. MCG specifications (continued) Symbol Description • fVCO = 48 MHz • fVCO = 98 MHz tfll_acquire FLL target frequency acquisition time Min. Typ. Max. Unit Notes — 150 — — — 1 ms 6 8 — 16 MHz PLL0,1 fpll_ref PLL reference frequency range fvcoclk_2x VCO output frequency fvcoclk PLL output frequency fvcoclk_90 180 90 PLL quadrature output frequency Ipll PLL0 operating current • VCO @ 184 MHz (fosc_hi_1 = 32 MHz, fpll_ref = 8 MHz, VDIV multiplier = 23) Ipll PLL0 operating current • VCO @ 360 MHz (fosc_hi_1 = 32 MHz, fpll_ref = 8 MHz, VDIV multiplier = 45) Ipll PLL1 operating current • VCO @ 184 MHz (fosc_hi_1 = 32 MHz, fpll_ref = 8 MHz, VDIV multiplier = 23) Ipll PLL1 operating current • VCO @ 360 MHz (fosc_hi_1 = 32 MHz, fpll_ref = 8 MHz, VDIV multiplier = 45) tpll_lock Lock detector detection time Jcyc_pll PLL period jitter (RMS) Jacc_pll 90 — — — 360 180 180 MHz MHz MHz — 2.8 — mA — 4.7 — mA — 2.3 — mA — 3.6 — mA — — 100 × 10-6 + 1075(1/ fpll_ref) s 7 7 7 8 9 • fvco = 180 MHz — 100 — ps • fvco = 360 MHz — 75 — ps PLL accumulated jitter over 1µs (RMS) 10 • fvco = 180 MHz — 600 — ps • fvco = 360 MHz — 300 — ps 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature should be considered. 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 7. Excludes any oscillator currents that are also consuming power while PLL is in operation. 8. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 10. Accumulated jitter depends on VCO frequency and VDIV. K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 27 Peripheral operating requirements and behaviors 6.3.2 Oscillator electrical specifications 6.3.2.1 Oscillator DC electrical specifications Table 16. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDOSC IDDOSC Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Supply current — high-gain mode (HGO=1) 1 • 32 kHz — 25 — μA • 4 MHz — 400 — μA • 8 MHz (RANGE=01) — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ — 0 — kΩ RS 2, 4 Series resistor — high-frequency, high-gain mode (HGO=1) Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 28 NXP Semiconductors Peripheral operating requirements and behaviors Table 16. Oscillator DC electrical specifications (continued) Symbol Vpp5 1. 2. 3. 4. 5. Description Min. Typ. Max. Unit Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V Notes VDD=3.3 V, Temperature =25 °C See crystal or resonator manufacturer's recommendation Cx and Cy can be provided by using either integrated capacitors or external components. When low-power mode is selected, RF is integrated and must not be attached externally. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device. 6.3.2.2 Symbol Oscillator frequency specifications Table 17. Oscillator frequency specifications Description Min. Typ. Max. Unit fosc_lo Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — highfrequency mode (low range) (MCG_C2[RANGE]=01) 3 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz fec_extal Input clock frequency (external clock mode) — — 60 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 1000 — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 500 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 1 — ms tcst Notes 1 2, 3 4, 5 1. Frequencies less than 8 MHz are not in the PLL range. 2. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL. 3. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency. K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 29 Peripheral operating requirements and behaviors 4. Proper PC board layout procedures must be followed to achieve specifications. 5. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. NOTE The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode. 6.3.3 32 kHz oscillator electrical characteristics 6.3.3.1 32 kHz oscillator DC electrical specifications Table 18. 32kHz oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VBAT Supply voltage 1.71 — 3.6 V Internal feedback resistor — 100 — MΩ Cpara Parasitical capacitance of EXTAL32 and XTAL32 — 5 7 pF Vpp1 Peak-to-peak amplitude of oscillation — 0.6 — V RF 1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices. 6.3.3.2 Symbol fosc_lo tstart 32 kHz oscillator frequency specifications Table 19. 32 kHz oscillator frequency specifications Description Min. Typ. Max. Unit Oscillator crystal — 32.768 — kHz Crystal start-up time — 1000 — ms 1 700 — VBAT mV 2, 3 vec_extal32 Externally provided input clock amplitude Notes 1. Proper PC board layout procedures must be followed to achieve specifications. 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected. 3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied clock must be within the range of VSS to VBAT. 6.4 Memories and memory interfaces 6.4.1 Flash (FTFE) electrical specifications This section describes the electrical characteristics of the FTFE module. K61 Sub-Family, Rev. 7, 02/2018 30 NXP Semiconductors Peripheral operating requirements and behaviors 6.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 20. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit thvpgm8 thversscr Notes Program Phrase high-voltage time — 7.5 18 μs Erase Flash Sector high-voltage time — 13 113 ms 1 thversblk128k Erase Flash Block high-voltage time for 128 KB — 104 1808 ms 1 thversblk256k Erase Flash Block high-voltage time for 256 KB — 208 3616 ms 1 Notes 1. Maximum time based on expectations at cycling end-of-life. 6.4.1.2 Symbol Flash timing specifications — commands Table 21. Flash command timing specifications Description Min. Typ. Max. Unit Read 1s Block execution time trd1blk128k • 128 KB data flash — — 0.5 ms trd1blk256k • 256 KB program flash — — 1.0 ms 256 KB data flash trd1sec4k Read 1s Section execution time (4 KB flash) — — 100 μs 1 tpgmchk Program Check execution time — — 80 μs 1 trdrsrc Read Resource execution time — — 40 μs 1 tpgm8 Program Phrase execution time — 70 150 μs Erase Flash Block execution time 2 tersblk128k • 128 KB data flash — 110 925 ms tersblk256k • 256 KB program flash — 220 1850 ms Erase Flash Sector execution time — 15 115 ms Program Section execution time (4KB flash) — 20 — ms — — 3.4 ms Read Once execution time — — 30 μs Program Once execution time — 70 — μs tersall Erase All Blocks execution time — 650 5600 ms 2 tvfykey Verify Backdoor Access Key execution time — — 30 μs 1 — 200 — μs 256 KB data flash tersscr tpgmsec4k 2 Read 1s All Blocks execution time trd1alln trdonce tpgmonce • Program flash only devices 1 Swap Control execution time tswapx01 • control code 0x01 K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 31 Peripheral operating requirements and behaviors Table 21. Flash command timing specifications Symbol Description Min. Typ. Max. Unit tswapx02 • control code 0x02 — 70 150 μs tswapx04 • control code 0x04 — 70 150 μs tswapx08 • control code 0x08 — — 30 μs Notes 1. Assumes 25MHz or greater flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 6.4.1.3 Flash high voltage current behaviors Table 22. Flash high voltage current behaviors Symbol Description IDD_PGM IDD_ERS 6.4.1.4 Symbol Min. Typ. Max. Unit Average current adder during high voltage flash programming operation — 3.5 7.5 mA Average current adder during high voltage flash erase operation — 1.5 4.0 mA Reliability specifications Table 23. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 50 — years tnvmretp1k Data retention after up to 1 K cycles 20 100 — years nnvmcycp Cycling endurance 10 K 50 K — cycles 2 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C. 6.4.2 EzPort switching specifications Table 24. EzPort switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V EP1 EZP_CK frequency of operation (all commands except READ) — fSYS/2 MHz EP1a EZP_CK frequency of operation (READ command) — fSYS/8 MHz EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK — ns EP3 EZP_CS input valid to EZP_CK high (setup) 5 — ns Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 32 NXP Semiconductors Peripheral operating requirements and behaviors Table 24. EzPort switching specifications (continued) Num Description Min. Max. Unit EP4 EZP_CK high to EZP_CS input invalid (hold) 5 — ns EP5 EZP_D input valid to EZP_CK high (setup) 2 — ns EP6 EZP_CK high to EZP_D input invalid (hold) 5 — ns EP7 EZP_CK low to EZP_Q output valid — 16 ns EP8 EZP_CK low to EZP_Q output invalid (hold) 0 — ns EP9 EZP_CS negation to EZP_Q tri-state — 12 ns EZP_CK EP3 EP2 EP4 EZP_CS EP9 EP7 EP8 EZP_Q (output) EP5 EP6 EZP_D (input) Figure 11. EzPort Timing Diagram 6.4.3 NAND flash controller specifications The NAND flash controller (NFC) implements the interface to standard NAND flash memory devices. This section describes the timing parameters of the NFC. In the following table: • TH is the flash clock high time and • TL is flash clock low time, which are defined as: T NFC = T L + T H = T input clock SCALER K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 33 Peripheral operating requirements and behaviors The SCALER value is derived from the fractional divider specified in the SIM's CLKDIV4 register: SCALER = SIM_CLKDIV4[NFCFRAC] + 1 SIM_CLKDIV4[NFCDIV] + 1 In case the reciprocal of SCALER is an integer, the duty cycle of NFC clock is 50%, means TH = TL. In case the reciprocal of SCALER is not an integer: T L = (1 + SCALER / 2) x T H = (1 – SCALER / 2) x T NFC 2 T NFC 2 For example, if SCALER is 0.2, then TH = TL = TNFC/2. TNFC TH TL However, if SCALER is 0.667, then TL = 2/3 x TNFC and TH = 1/3 x TNFC. TNFC TH TL NOTE The reciprocal of SCALER must be a multiple of 0.5. For example, 1, 1.5, 2, 2.5, etc. Table 25. NFC specifications Num Description Min. Max. Unit tCLS NFC_CLE setup time 2TH + TL – 1 — ns tCLH NFC_CLE hold time TH + TL – 1 — ns tCS NFC_CEn setup time 2TH + TL – 1 — ns tCH NFC_CEn hold time TH + TL — ns tWP NFC_WP pulse width TL – 1 — ns tALS NFC_ALE setup time 2TH + TL — ns tALH NFC_ALE hold time TH + TL — ns tDS Data setup time TL – 1 — ns tDH Data hold time TH – 1 — ns tWC Write cycle time TH + TL – 1 — ns tWH NFC_WE hold time TH – 1 — ns Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 34 NXP Semiconductors Peripheral operating requirements and behaviors Table 25. NFC specifications (continued) Num Description Min. Max. Unit tRR Ready to NFC_RE low 4TH + 3TL + 90 — ns tRP NFC_RE pulse width TL + 1 — ns tRC Read cycle time TL + TH – 1 — ns tREH NFC_RE high hold time TH – 1 — ns tIS Data input setup time 11 — ns NFC_CLE tCLS tCLH NFC_CEn tCS tWP tCH NFC_WE tDS tDH NFC_IOn Figure 12. Command latch cycle timing NFC_ALE tALS tALH NFC_CEn tCS tWP tCH NFC_WE tDS NFC_IOn tDH address Figure 13. Address latch cycle timing K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 35 Peripheral operating requirements and behaviors tCS tCH tWC NFC_CEn tWP tWH tDS tDH NFC_WE NFC_IOn data data data Figure 14. Write data latch cycle timing tCH tRC NFC_CEn tREH tRP NFC_RE tIS NFC_IOn data data data tRR NFC_RB Figure 15. Read data latch cycle timing in Slow mode tCH tRC NFC_CEn tRP tREH NFC_RE tIS NFC_IOn data data data tRR NFC_RB Figure 16. Read data latch cycle timing in Fast mode and EDO mode 6.4.4 Flexbus switching specifications All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency. K61 Sub-Family, Rev. 7, 02/2018 36 NXP Semiconductors Peripheral operating requirements and behaviors The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values. Table 26. Flexbus limited voltage range switching specifications Num Description Min. Max. Unit Notes Operating voltage 2.7 3.6 V Frequency of operation — FB_CLK MHz FB1 Clock period 20 — ns FB2 Address, data, and control output valid — 11.5 ns 1 FB3 Address, data, and control output hold 0.5 — ns 1 FB4 Data and FB_TA input setup 8.5 — ns 2 FB5 Data and FB_TA input hold 0.5 — ns 2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA. Table 27. Flexbus full voltage range switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V Frequency of operation Notes — FB_CLK MHz 1/FB_CLK — ns Address, data, and control output valid — 13.5 ns 1 FB3 Address, data, and control output hold 0 — ns 1 FB4 Data and FB_TA input setup 13.7 — ns 2 FB5 Data and FB_TA input hold 0.5 — ns 2 FB1 Clock period FB2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA. K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 37 Peripheral operating requirements and behaviors Read Timing Parameters S0 S1 S2 S3 S0 FB1 FB_CLK FB5 FB_A[Y] Address FB4 FB2 FB_D[X] FB3 Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn electricals_read.svg FB4 FB_BEn FB5 AA=1 FB_TA AA=0 FB_TSIZ[1:0] TSIZ S0 S1 S2 S3 S0 Figure 17. FlexBus read timing diagram K61 Sub-Family, Rev. 7, 02/2018 38 NXP Semiconductors Peripheral operating requirements and behaviors Write Timing Parameters FB1 FB_CLK FB2 FB3 FB_A[Y] FB_D[X] Address Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB_BEn FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 electricals_write.svg FB4 TSIZ Figure 18. FlexBus write timing diagram 6.5 Security and integrity modules 6.5.1 DryIce Tamper Electrical Specifications Information about security-related modules is not included in this document and is available only after a nondisclosure agreement (NDA) has been signed. To request an NDA, please contact your local NXP sales representative. K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 39 Peripheral operating requirements and behaviors 6.6 Analog 6.6.1 ADC electrical specifications The 16-bit accuracy specifications listed in Table 28 and Table 29 are achievable on the differential pins ADCx_DP0, ADCx_DM0. The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 30 and Table 31. All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 6.6.1.1 16-bit ADC operating conditions Table 28. 16-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V VREFL ADC reference voltage low VSSA VSSA VSSA V VADIN Input voltage • 16-bit differential mode VREFL — 31/32 × VREFH V • All other modes VREFL — • 16-bit mode — 8 10 • 8-bit / 10-bit / 12-bit modes — 4 5 — 2 5 CADIN RADIN RAS Input capacitance Input series resistance Notes VREFH pF kΩ Analog source resistance (external) 13-bit / 12-bit modes 3 fADCK < 4 MHz — — 5 kΩ fADCK ADC conversion clock frequency ≤ 13-bit mode 1.0 — 18.0 MHz 4 fADCK ADC conversion clock frequency 16-bit mode 2.0 — 12.0 MHz 4 Crate ADC conversion rate ≤ 13-bit modes 5 Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 40 NXP Semiconductors Peripheral operating requirements and behaviors Table 28. 16-bit ADC operating conditions (continued) Symbol Description Min. Typ.1 Max. Unit 20.000 — 818.330 kS/s Conditions No ADC hardware averaging Notes Continuous conversions enabled, subsequent conversion time Crate ADC conversion rate 16-bit mode 5 No ADC hardware averaging 37.037 — 461.467 kS/s Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production. 2. DC potential difference. 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1 ns. 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear. 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool. SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT ZADIN Pad leakage ZAS RAS SIMPLIFIED CHANNEL SELECT CIRCUIT RADIN ADC SAR ENGINE VADIN CAS VAS RADIN INPUT PIN INPUT PIN RADIN RADIN INPUT PIN CADIN Figure 19. ADC input impedance equivalency diagram 6.6.1.2 16-bit ADC electrical characteristics K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 41 Peripheral operating requirements and behaviors Table 29. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Symbol Description Conditions1 Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 • ADLPC = 1, ADHSC = 0 1.2 2.4 3.9 MHz • ADLPC = 1, ADHSC = 1 2.4 4.0 6.1 MHz tADACK = 1/ fADACK • ADLPC = 0, ADHSC = 0 3.0 5.2 7.3 MHz • ADLPC = 0, ADHSC = 1 4.4 6.2 9.5 MHz LSB4 5 LSB4 5 LSB4 5 LSB4 VADIN = VDDA5 IDDA_ADC Supply current ADC asynchronous clock source fADACK Sample Time TUE DNL INL EFS EQ ENOB See Reference Manual chapter for sample times Total unadjusted error • 12-bit modes — ±4 ±6.8 • <12-bit modes — ±1.4 ±2.1 Differential nonlinearity • 12-bit modes — ±0.7 –1.1 to +1.9 • <12-bit modes — ±0.2 • 12-bit modes — ±1.0 • <12-bit modes — ±0.5 • 12-bit modes — –4 –5.4 • <12-bit modes — –1.4 –1.8 • 16-bit modes — –1 to 0 — • ≤13-bit modes — — ±0.5 Integral non-linearity Full-scale error Quantization error Effective number of bits –0.3 to 0.5 –2.7 to +1.9 –0.7 to +0.5 LSB4 16-bit differential mode 6 • Avg = 32 12.8 14.5 • Avg = 4 11.9 13.8 — — bits bits 16-bit single-ended mode • Avg = 32 • Avg = 4 SINAD THD Signal-to-noise plus distortion See ENOB Total harmonic distortion 16-bit differential mode 12.2 13.9 11.4 13.1 — — 6.02 × ENOB + 1.76 • Avg = 32 bits bits dB dB — -94 7 — dB 16-bit single-ended mode • Avg = 32 SFDR Spurious free dynamic range — -85 82 95 16-bit differential mode • Avg = 32 16-bit single-ended mode 78 — — dB — dB 7 90 Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 42 NXP Semiconductors Peripheral operating requirements and behaviors Table 29. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Conditions1 Symbol Description Typ.2 Min. Max. Unit Notes mV IIn = leakage current • Avg = 32 EIL Input leakage error IIn × RAS (refer to the MCU's voltage and current operating ratings) Temp sensor slope Across the full temperature range of the device VTEMP25 Temp sensor voltage 25 °C 1.55 1.62 1.69 mV/°C 8 706 716 726 mV 8 1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA 2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed. 4. 1 LSB = (VREFH - VREFL)/2N 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11) 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz. 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz. 8. ADC conversion clock < 3 MHz Typical ADC 16-bit Differential ENOB vs ADC Clock 100Hz, 90% FS Sine Input 15.00 14.70 14.40 14.10 ENOB 13.80 13.50 13.20 12.90 12.60 Hardware Averaging Disabled Averaging of 4 samples Averaging of 8 samples Averaging of 32 samples 12.30 12.00 1 2 3 4 5 6 7 8 9 10 11 12 ADC Clock Frequency (MHz) Figure 20. Typical ENOB vs. ADC_CLK for 16-bit differential mode K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 43 Peripheral operating requirements and behaviors Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input 14.00 13.75 13.50 13.25 13.00 ENOB 12.75 12.50 12.25 12.00 11.75 11.50 11.25 11.00 Averaging of 4 samples Averaging of 32 samples 1 2 3 4 5 6 7 8 9 10 11 12 ADC Clock Frequency (MHz) Figure 21. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode 6.6.1.3 16-bit ADC with PGA operating conditions Table 30. 16-bit ADC with PGA operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V VREFPGA PGA ref voltage VADIN VCM RPGAD VREF_OU VREF_OU VREF_OU T T T V Notes 2, 3 Input voltage VSSA — VDDA V Input Common Mode range VSSA — VDDA V Gain = 1, 2, 4, 8 — 128 — kΩ IN+ to IN-4 Gain = 16, 32 — 64 — Gain = 64 — 32 — Differential input impedance RAS Analog source resistance — 100 — Ω 5 TS ADC sampling time 1.25 — — µs 6 18.484 — 450 Ksps 7 37.037 — 250 Ksps 8 Crate ADC conversion rate ≤ 13 bit modes No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50 MHz 16 bit modes K61 Sub-Family, Rev. 7, 02/2018 44 NXP Semiconductors Peripheral operating requirements and behaviors Table 30. 16-bit ADC with PGA operating conditions Symbol Description Conditions Typ.1 Min. Max. Unit Notes No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50 MHz 1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. ADC must be configured to use the internal voltage reference (VREF_OUT) 3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other than the output of the VREF module, the VREF module must be disabled. 4. For single ended configurations the input impedance of the driven input is RPGAD/2 5. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency. 6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock. 7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1 8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1 6.6.1.4 16-bit ADC with PGA characteristics Table 31. 16-bit ADC with PGA characteristics Symbol Description Conditions IDDA_PGA Supply current Low power (ADC_PGA[PGALPb]=0) IDC_PGA Input DC current G BW PSRR Gain4 Input signal bandwidth Power supply rejection ratio Min. Typ.1 Max. Unit Notes — 420 644 μA 2 A 3 Gain =1, VREFPGA=1.2V, VCM=0.5V — 1.54 — μA Gain =64, VREFPGA=1.2V, VCM=0.1V — 0.57 — μA • PGAG=0 0.95 1 1.05 • PGAG=1 1.9 2 2.1 • PGAG=2 3.8 4 4.2 • PGAG=3 7.6 8 8.4 • PGAG=4 15.2 16 16.6 • PGAG=5 30.0 31.6 33.2 • PGAG=6 58.8 63.3 67.8 — — 4 kHz — — 40 kHz — -84 — dB • 16-bit modes • < 16-bit modes Gain=1 RAS < 100Ω VDDA= 3V ±100mV, Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 45 Peripheral operating requirements and behaviors Table 31. 16-bit ADC with PGA characteristics (continued) Symbol Description Conditions Min. Typ.1 Max. Unit Notes fVDDA= 50Hz, 60Hz CMRR VOFS Common mode rejection ratio • Gain=1 — -84 — dB • Gain=64 — -85 — dB Input offset voltage • Chopping disabled (ADC_PGA[PGACHPb] =1) • Chopping enabled (ADC_PGA[PGACHPb] =0) — 2.4 — mV — 0.2 — mV — — 10 µs • Gain=1 • Gain=64 — 6 10 ppm/°C — 31 42 ppm/°C • Gain=1 • Gain=64 — 0.07 0.21 %/V — 0.14 0.31 %/V TGSW Gain switching settling time dG/dT Gain drift over full temperature range dG/dVDDA Gain drift over supply voltage EIL Input leakage error All modes IIn × RAS mV VCM= 500mVpp, fVCM= 50Hz, 100Hz Output offset = VOFS*(Gain+1) 5 VDDA from 1.71 to 3.6V IIn = leakage current (refer to the MCU's voltage and current operating ratings) VPP,DIFF Maximum differential input signal swing SNR Signal-to-noise ratio • Gain=1 80 90 • Gain=64 52 Total harmonic distortion • Gain=1 THD SFDR ENOB V 6 — dB 66 — dB 16-bit differential mode, Average=32 85 100 — dB • Gain=64 49 95 — dB Spurious free dynamic range • Gain=1 85 105 — dB • Gain=64 53 88 — dB Effective number of bits • Gain=1, Average=4 11.6 13.4 — bits • Gain=1, Average=8 8.0 13.6 — bits • Gain=64, Average=4 7.2 9.6 — bits • Gain=64, Average=8 6.3 9.6 — bits 12.8 14.5 — bits where VX = VREFPGA × 0.583 16-bit differential mode, Average=32, fin=100Hz 16-bit differential mode, Average=32, fin=100Hz 16-bit differential mode,fin=100Hz Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 46 NXP Semiconductors Peripheral operating requirements and behaviors Table 31. 16-bit ADC with PGA characteristics (continued) Symbol Description Min. Typ.1 Max. Unit • Gain=1, Average=32 11.0 14.3 — bits • Gain=2, Average=32 7.9 13.8 — bits • Gain=4, Average=32 7.3 13.1 — bits • Gain=8, Average=32 6.8 12.5 — bits • Gain=16, Average=32 6.8 11.5 — bits • Gain=32, Average=32 7.5 10.6 — bits Conditions Notes • Gain=64, Average=32 SINAD Signal-to-noise plus distortion ratio See ENOB 6.02 × ENOB + 1.76 dB 1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated. 2. This current is a PGA module adder, in addition to ADC conversion currents. 3. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage (VCM) and the PGA gain. 4. Gain = 2PGAG 5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored. 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting. 6.6.2 CMP and 6-bit DAC electrical specifications Table 32. Comparator and 6-bit DAC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDHS Supply current, High-speed mode (EN=1, PMODE=1) — — 200 μA IDDLS Supply current, low-speed mode (EN=1, PMODE=0) — — 20 μA VAIN Analog input voltage VSS – 0.3 — VDD V VAIO Analog input offset voltage — — 20 mV • CR0[HYSTCTR] = 00 — 5 — mV • CR0[HYSTCTR] = 01 — 10 — mV • CR0[HYSTCTR] = 10 — 20 — mV • CR0[HYSTCTR] = 11 — 30 — mV VH Analog comparator hysteresis1 VCMPOh Output high VDD – 0.5 — — V VCMPOl Output low — — 0.5 V tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 200 ns tDLS Propagation delay, low-speed mode (EN=1, PMODE=0) 80 250 600 ns — — 40 μs — 7 — μA Analog comparator initialization IDAC6b delay2 6-bit DAC current adder (enabled) Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 47 Peripheral operating requirements and behaviors Table 32. Comparator and 6-bit DAC electrical specifications (continued) Symbol Description Min. Typ. Max. Unit INL 6-bit DAC integral non-linearity –0.5 — 0.5 LSB3 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB 1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V. 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level. 3. 1 LSB = Vreference/64 0.08 0.07 CMP Hystereris (V) 0.06 HYSTCTR Setting 0.05 00 0.04 01 10 11 0.03 0.02 0.01 0 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 Vin level (V) Figure 22. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0) K61 Sub-Family, Rev. 7, 02/2018 48 NXP Semiconductors Peripheral operating requirements and behaviors 0.18 0.16 0.14 CMP Hysteresis (V) 0.12 HYSTCTR Setting 0.1 00 01 10 11 0.08 0.06 0.04 0.02 0 0.1 0.4 0.7 1 1.3 1.6 1.9 Vin level (V) 2.2 2.5 2.8 3.1 Figure 23. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1) 6.6.3 12-bit DAC electrical characteristics 6.6.3.1 Symbol 12-bit DAC operating requirements Table 33. 12-bit DAC operating requirements Desciption Min. Max. Unit VDDA Supply voltage 1.71 3.6 V VDACR Reference voltage 1.13 3.6 V 1 2 CL Output load capacitance — 100 pF IL Output load current — 1 mA Notes 1. The DAC reference can be selected to be VDDA or VREF_OUT. 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC. K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 49 Peripheral operating requirements and behaviors 6.6.3.2 Symbol 12-bit DAC operating behaviors Table 34. 12-bit DAC operating behaviors Description IDDA_DACL Supply current — low-power mode Min. Typ. Max. Unit — — 150 μA — — 700 μA Notes P IDDA_DACH Supply current — high-speed mode P tDACLP Full-scale settling time (0x080 to 0xF7F) — low-power mode — 100 200 μs 1 tDACHP Full-scale settling time (0x080 to 0xF7F) — high-power mode — 15 30 μs 1 — 0.7 1 μs 1 — — 100 mV tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode Vdacoutl DAC output voltage range low — high-speed mode, no load, DAC set to 0x000 Vdacouth DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode — — ±8 LSB 2 DNL Differential non-linearity error — VDACR > 2 V — — ±1 LSB 3 DNL Differential non-linearity error — VDACR = VREF_OUT — — ±1 LSB 4 — ±0.4 ±0.8 %FSR 5 Gain error — ±0.1 ±0.6 %FSR 5 Power supply rejection ratio, VDDA ≥ 2.4 V 60 — 90 dB TCO Temperature coefficient offset voltage — 3.7 — μV/C TGE Temperature coefficient gain error — 0.000421 — %FSR/C Rop Output resistance (load = 3 kΩ) — — 250 Ω SR Slew rate -80h→ F7Fh→ 80h VOFFSET Offset error EG PSRR 1. 2. 3. 4. 5. 6. V/μs • High power (SPHP) 1.2 1.7 — • Low power (SPLP) 0.05 0.12 — — — -80 CT Channel to channel cross talk BW 3dB bandwidth 6 dB kHz • High power (SPHP) 550 — — • Low power (SPLP) 40 — — Settling within ±1 LSB The INL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device K61 Sub-Family, Rev. 7, 02/2018 50 NXP Semiconductors Peripheral operating requirements and behaviors 8 6 4 DAC12 INL (LSB) 2 0 -2 -4 -6 -8 0 500 1000 1500 2000 2500 3000 3500 4000 Digital Code Figure 24. Typical INL error vs. digital code K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 51 Peripheral operating requirements and behaviors 1.499 DAC12 Mid Level Code Voltage 1.4985 1.498 1.4975 1.497 1.4965 1.496 25 -40 55 85 105 125 Temperature °C Figure 25. Offset at half scale vs. temperature 6.6.4 Voltage reference electrical specifications Table 35. VREF full-range operating requirements Symbol Description Min. Max. Unit VDDA Supply voltage 1.71 3.6 V TA Temperature CL Output load capacitance Operating temperature range of the device °C 100 nF Notes 1, 2 1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference. 2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of the device. K61 Sub-Family, Rev. 7, 02/2018 52 NXP Semiconductors Peripheral operating requirements and behaviors Table 36. VREF full-range operating behaviors Symbol Description Min. Typ. Max. Unit Notes Vout Voltage reference output with factory trim at nominal VDDA and temperature=25C 1.1915 1.195 1.1977 V 1 Vout Voltage reference output — factory trim 1.1584 — 1.2376 V 1 Vout Voltage reference output — user trim 1.193 — 1.197 V 1 Vstep Voltage reference trim step — 0.5 — mV 1 Vtdrift Temperature drift (Vmax -Vmin across the full temperature range: -40 to 85°C) — — 70 mV 1 Ibg Bandgap only current — — 80 µA 1 Ihp High-power buffer current — — 1 mA 1 mV 1, 2 ΔVLOAD Load regulation • current = + 1.0 mA — 2 — • current = - 1.0 mA — 5 — Tstup Buffer startup time — — 100 µs Vvdrift Voltage drift (Vmax -Vmin across the full voltage range) — 2 — mV 1 1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register. 2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load Table 37. VREF limited-range operating requirements Symbol Description Min. Max. Unit TA Temperature 0 50 °C Notes Table 38. VREF limited-range operating behaviors Symbol Vout Description Voltage reference output with factory trim Min. Max. Unit 1.173 1.225 V Notes 6.7 Timers See General switching specifications. 6.8 Communication interfaces K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 53 Peripheral operating requirements and behaviors 6.8.1 Ethernet switching specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. 6.8.1.1 MII signal switching specifications The following timing specs meet the requirements for MII style interfaces for a range of transceiver devices. Table 39. MII signal switching specifications Symbol — Description RXCLK frequency Min. Max. Unit — 25 MHz MII1 RXCLK pulse width high 35% 65% RXCLK MII2 RXCLK pulse width low 35% 65% RXCLK MII3 RXD[3:0], RXDV, RXER to RXCLK setup 5 — ns MII4 RXCLK to RXD[3:0], RXDV, RXER hold 5 — ns TXCLK frequency — 25 MHz 35% 65% TXCLK period period — MII5 TXCLK pulse width high period MII6 TXCLK pulse width low 35% 65% TXCLK period MII7 TXCLK to TXD[3:0], TXEN, TXER invalid 2 — ns MII8 TXCLK to TXD[3:0], TXEN, TXER valid — 25 ns MII6 MII5 TXCLK (input) MII8 MII7 TXD[n:0] Valid data TXEN Valid data TXER Valid data Figure 26. RMII/MII transmit signal timing diagram K61 Sub-Family, Rev. 7, 02/2018 54 NXP Semiconductors Peripheral operating requirements and behaviors MII2 MII1 MII3 MII4 RXCLK (input) RXD[n:0] Valid data RXDV Valid data RXER Valid data Figure 27. RMII/MII receive signal timing diagram 6.8.1.2 RMII signal switching specifications The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices. Table 40. RMII signal switching specifications Num — Description EXTAL frequency (RMII input clock RMII_CLK) Min. Max. Unit — 50 MHz RMII1 RMII_CLK pulse width high 35% 65% RMII_CLK period RMII2 RMII_CLK pulse width low 35% 65% RMII_CLK period RMII3 RXD[1:0], CRS_DV, RXER to RMII_CLK setup 4 — ns RMII4 RMII_CLK to RXD[1:0], CRS_DV, RXER hold 2 — ns RMII7 RMII_CLK to TXD[1:0], TXEN invalid 4 — ns RMII8 RMII_CLK to TXD[1:0], TXEN valid — 15 ns 6.8.1.3 MDIO serial management timing specifications Table 41. MDIO serial management channel signal timing Num Characteristic Min Max Unit E10 MDC cycle time 400 — ns E11 MDC pulse width 40 60 % tMDC E12 MDC to MDIO output valid Fsys period — ns E13 MDC to MDIO output invalid Fsys period1 — ns E14 MDIO input to MDC setup 10 — ns E15 MDIO input to MDC hold 0 — ns 1 K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 55 Peripheral operating requirements and behaviors 1. MDIO output valid and hold time can be adjusted using the ENET_MSCR[HOLDTIME] field. The minimum specification shown here is for the default ENET_MSCR value, where HOLDTIME = 0. The minimum output valid and output hold times can be increased by changing the HOLDTIME register field E10 E11 MDC (Output) E11 E12 MDIO (Output) E13 Valid Data E14 MDIO (Input) E15 Valid Data Figure 28. MDIO serial management channel timing diagram 6.8.2 USB electrical specifications The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit usb.org. NOTE The MCGPLLCLK meets the USB jitter and signaling rate specifications for certification with the use of an external clock/ crystal for both Device and Host modes. The MCGFLLCLK does not meet the USB jitter or signaling rate specifications for certification. 6.8.3 USB DCD electrical specifications Table 42. USB0 DCD electrical specifications Symbol Description Min. Typ. Max. Unit VDP_SRC USB_DP source voltage (up to 250 μA) 0.5 — 0.7 V Threshold voltage for logic high 0.8 — 2.0 V VLGC IDP_SRC USB_DP source current 7 10 13 μA IDM_SINK USB_DM sink current 50 100 150 μA RDM_DWN D- pulldown resistance for data pin contact detect 14.25 — 24.8 kΩ VDAT_REF Data detect voltage 0.25 0.325 0.4 V K61 Sub-Family, Rev. 7, 02/2018 56 NXP Semiconductors Peripheral operating requirements and behaviors 6.8.4 USB VREG electrical specifications Table 43. USB VREG electrical specifications Symbol Description Min. Typ.1 Max. Unit VREGIN Input supply voltage 2.7 — 5.5 V IDDon Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V — 125 186 μA IDDstby Quiescent current — Standby mode, load current equal zero — 1.1 10 μA IDDoff Quiescent current — Shutdown mode — 650 — nA — — 4 μA • VREGIN = 5.0 V and temperature=25 °C • Across operating voltage and temperature ILOADrun Maximum load current — Run mode — — 120 mA ILOADstby Maximum load current — Standby mode — — 1 mA VReg33out Regulator output voltage — Input supply (VREGIN) > 3.6 V 3 3.3 3.6 V • Run mode • Standby mode 2.1 2.8 3.6 V Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode 2.1 — 3.6 V COUT External output capacitor 1.76 2.2 8.16 μF ESR External output capacitor equivalent series resistance 1 — 100 mΩ ILIM Short circuit current — 290 — mA VReg33out Notes 2 1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated. 2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad. 6.8.5 CAN switching specifications See General switching specifications. K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 57 Peripheral operating requirements and behaviors 6.8.6 DSPI switching specifications (limited voltage range) The DMA Serial Peripheral Interface DSPI provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic DSPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 44. Master mode DSPI timing (limited voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit 2.7 3.6 V Notes — 30 MHz 2 x tBUS — ns DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 2 — ns 1 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 2 — ns 2 DS5 DSPI_SCK to DSPI_SOUT valid — 8.5 ns DS6 DSPI_SCK to DSPI_SOUT invalid −2 — ns DS7 DSPI_SIN to DSPI_SCK input setup 15 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns DS1 DSPI_SCK output cycle time DS2 1. The delay is programmable in DSPIx_CTARn[PSSCK] and DSPIx_CTARn[CSSCK]. 2. The delay is programmable in DSPIx_CTARn[PASC] and DSPIx_CTARn[ASC]. SPI_PCSn DS3 SPI_SIN DS4 DS8 DS7 (CPOL=0) DS1 DS2 SPI_SCK First data SPI_SOUT Data Last data DS5 First data DS6 Data Last data Figure 29. DSPI classic DSPI timing — master mode Table 45. Slave mode DSPI timing (limited voltage range) Num Description Operating voltage Min. Max. Unit 2.7 3.6 V 15 MHz — ns Frequency of operation DS9 DSPI_SCK input cycle time 4 x tBUS Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 58 NXP Semiconductors Peripheral operating requirements and behaviors Table 45. Slave mode DSPI timing (limited voltage range) (continued) Num Description Min. Max. Unit (tSCK/2) − 2 (tSCK/2) + 2 ns DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 10 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 14 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 14 ns SPI_SS DS10 DS9 SPI_SCK DS15 (POL=0) DS12 SPI_SOUT First data DS13 DS16 DS11 Last data Data DS14 SPI_SIN First data Data Last data Figure 30. DSPI classic DSPI timing — slave mode 6.8.7 DSPI switching specifications (full voltage range) The DMA Serial Peripheral Interface DSPI provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 46. Master mode DSPItiming (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit Notes 1.71 3.6 V 1 — 15 MHz 4 x tBUS — ns DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 4 — ns 2 Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 59 Peripheral operating requirements and behaviors Table 46. Master mode DSPItiming (full voltage range) (continued) Num Description Min. Max. Unit Notes (tBUS x 2) − 4 — ns 3 — 10 ns DS4 DSPI_SCK to DSPI_PCSn invalid delay DS5 DSPI_SCK to DSPI_SOUT valid DS6 DSPI_SCK to DSPI_SOUT invalid -4.5 — ns DS7 DSPI_SIN to DSPI_SCK input setup 20.5 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced. 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. SPI_PCSn DS3 SPI_SIN DS4 DS8 DS7 (CPOL=0) DS1 DS2 SPI_SCK First data SPI_SOUT Data Last data DS5 First data DS6 Data Last data Figure 31. DSPI classic SPI timing — master mode Table 47. Slave mode DSPI timing (full voltage range) Num Description Min. Max. Unit 1.71 3.6 V — 7.5 MHz 8 x tBUS — ns (tSCK/2) - 4 (tSCK/2) + 4 ns Operating voltage Frequency of operation DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 20 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 19 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 19 ns K61 Sub-Family, Rev. 7, 02/2018 60 NXP Semiconductors Peripheral operating requirements and behaviors SPI_SS DS10 DS9 SPI_SCK DS15 (POL=0) SPI_SOUT DS12 First data DS13 SPI_SIN DS16 DS11 Last data Data DS14 First data Data Last data Figure 32. DSPI classic SPI timing — slave mode 6.8.8 Inter-Integrated Circuit Interface (I2C) timing Table 48. I 2C timing Characteristic Symbol Standard Mode Fast Mode Unit Minimum Maximum Minimum Maximum SCL Clock Frequency fSCL 0 100 0 400 1 kHz Hold time (repeated) START condition. After this period, the first clock pulse is generated. tHD; STA 4 — 0.6 — µs LOW period of the SCL clock tLOW 4.7 — 1.25 — µs HIGH period of the SCL clock tHIGH 4 — 0.6 — µs Set-up time for a repeated START condition tSU; STA 4.7 — 0.6 — µs Data hold time for I2C bus devices tHD; DAT 02 3.453 04 0.92 µs tSU; DAT 2505 — 1003,6 Data set-up time — ns 7 Rise time of SDA and SCL signals tr — 1000 20 +0.1Cb 300 ns Fall time of SDA and SCL signals tf — 300 20 +0.1Cb6 300 ns Set-up time for STOP condition tSU; STO 4 — 0.6 — µs Bus free time between STOP and START condition tBUF 4.7 — 1.3 — µs Pulse width of spikes that must be suppressed by the input filter tSP N/A N/A 0 50 ns 1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only be achieved when using a pin configured for high drive across the full voltage range and when using the a pin configured for low drive with VDD ≥ 2.7 V. 2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines. 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal. 4. Input signal Slew = 10 ns and Output Load = 50 pF 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty. 6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 61 Peripheral operating requirements and behaviors device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released. 7. Cb = total capacitance of the one bus line in pF. SDA tf tLOW tSU; DAT tr tf tHD; STA tSP tr tBUF SCL S HD; STA tHD; DAT tHIGH tSU; STA tSU; STO SR P S Figure 33. Timing definition for fast and standard mode devices on the I2C bus 6.8.9 UART switching specifications See General switching specifications. 6.8.10 SDHC specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. Table 49. SDHC switching specifications over a limited operating voltage range Num Symbol Description Min. Max. Unit Operating voltage 2.7 3.6 V Card input clock SD1 fpp Clock frequency (low speed) 0 400 kHz fpp Clock frequency (SD\SDIO full speed\high speed) 0 25\40 MHz fpp Clock frequency (MMC full speed\high speed) 0 25\50 MHz fOD Clock frequency (identification mode) 0 400 kHz SD2 tWL Clock low time 7 — ns SD3 tWH Clock high time 7 — ns SD4 tTLH Clock rise time — 3 ns SD5 tTHL Clock fall time — 3 ns SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD6 tOD SDHC output delay (output valid) -5 6.5 ns SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD7 tISU SDHC input setup time 5 — ns SD8 tIH SDHC input hold time 0 — ns K61 Sub-Family, Rev. 7, 02/2018 62 NXP Semiconductors Peripheral operating requirements and behaviors Table 50. SDHC switching specifications over the full operating voltage range Num Symbol Description Min. Max. Unit Operating voltage 1.71 3.6 V Card input clock SD1 fpp Clock frequency (low speed) 0 400 kHz fpp Clock frequency (SD\SDIO full speed\high speed) 0 25\40 MHz fpp Clock frequency (MMC full speed\high speed) 0 25\50 MHz fOD Clock frequency (identification mode) 0 400 kHz tWL Clock low time 7 — ns SD3 tWH Clock high time 7 — ns SD4 tTLH Clock rise time — 3 ns SD5 tTHL Clock fall time — 3 ns SD2 SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD6 tOD SDHC output delay (output valid) -5 6.5 ns SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD7 tISU SDHC input setup time 5 — ns SD8 tIH SDHC input hold time 1.3 — ns SD3 SD2 SD1 SDHC_CLK SD6 Output SDHC_CMD Output SDHC_DAT[3:0] SD7 SD8 Input SDHC_CMD Input SDHC_DAT[3:0] Figure 34. SDHC timing 6.8.11 I2S/SAI switching specifications This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 63 Peripheral operating requirements and behaviors is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures. 6.8.11.1 Normal Run, Wait and Stop mode performance over a limited operating voltage range This section provides the operating performance over a limited operating voltage for the device in Normal Run, Wait and Stop modes. Table 51. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (limited voltage range) Num. Characteristic Min. Max. Unit Operating voltage 2.7 3.6 V S1 I2S_MCLK cycle time 40 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 15 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 15 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 15 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns K61 Sub-Family, Rev. 7, 02/2018 64 NXP Semiconductors Peripheral operating requirements and behaviors S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 35. I2S/SAI timing — master modes Table 52. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (limited voltage range) Num. Characteristic Min. Max. Unit Operating voltage 2.7 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 4.5 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 21 — 15 • Multiple SAI Synchronous mode • All other modes ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 4.5 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns — 25 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 65 Peripheral operating requirements and behaviors S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 36. I2S/SAI timing — slave modes 6.8.11.2 Normal Run, Wait and Stop mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes. Table 53. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 40 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 15 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid -1.0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 15 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 20.5 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns K61 Sub-Family, Rev. 7, 02/2018 66 NXP Semiconductors Peripheral operating requirements and behaviors S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 37. I2S/SAI timing — master modes Table 54. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 5.8 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 24 — 20.6 • Multiple SAI Synchronous mode • All other modes ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 5.8 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns — 25 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 67 Peripheral operating requirements and behaviors S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 38. I2S/SAI timing — slave modes 6.8.11.3 VLPR, VLPW, and VLPS mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes. Table 55. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 62.5 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 250 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 45 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 45 ns S8 I2S_TX_BCLK to I2S_TXD invalid -1.6 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 45 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns K61 Sub-Family, Rev. 7, 02/2018 68 NXP Semiconductors Peripheral operating requirements and behaviors S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 39. I2S/SAI timing — master modes Table 56. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 250 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 30 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 3 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 63 ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 30 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns — 72 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 69 Peripheral operating requirements and behaviors S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 40. I2S/SAI timing — slave modes 6.9 Human-machine interfaces (HMI) 6.9.1 TSI electrical specifications Table 57. TSI electrical specifications Symbol Description Min. Typ. Max. Unit VDDTSI Operating voltage 1.71 — 3.6 V Target electrode capacitance range 1 20 500 pF 1 fREFmax Reference oscillator frequency — 8 15 MHz 2, 3 fELEmax Electrode oscillator frequency — 1 1.8 MHz 2, 4 Internal reference capacitor — 1 — pF Oscillator delta voltage — 600 — mV 2, 5 μA 2, 6 μA 2, 7 CELE CREF VDELTA IREF IELE Reference oscillator current source base current • 2 μA setting (REFCHRG = 0) • 32 μA setting (REFCHRG = 15) Electrode oscillator current source base current • 2 μA setting (EXTCHRG = 0) • 32 μA setting (EXTCHRG = 15) — 2 3 — 36 50 — 2 3 — 36 50 Notes Pres5 Electrode capacitance measurement precision — 8.3333 38400 fF/count 8 Pres20 Electrode capacitance measurement precision — 8.3333 38400 fF/count 9 Pres100 Electrode capacitance measurement precision — 8.3333 38400 fF/count 10 0.008 1.46 — fF/count 11 — — 16 bits Response time @ 20 pF 8 15 25 μs Current added in run mode — 55 — μA Low power mode current adder — 1.3 2.5 μA MaxSens Maximum sensitivity Res TCon20 ITSI_RUN ITSI_LP Resolution 12 13 K61 Sub-Family, Rev. 7, 02/2018 70 NXP Semiconductors Dimensions 1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed. 2. Fixed external capacitance of 20 pF. 3. REFCHRG = 2, EXTCHRG=0. 4. REFCHRG = 0, EXTCHRG = 10. 5. VDD = 3.0 V. 6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current. 7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current. 8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16. 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16. 10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16. 11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity depends on the configuration used. The documented values are provided as examples calculated for a specific configuration of operating conditions using the following equation: (Cref * Iext)/( Iref * PS * NSCN) The typical value is calculated with the following configuration: Iext = 6 μA (EXTCHRG = 2), PS = 128, NSCN = 2, Iref = 16 μA (REFCHRG = 7), Cref = 1.0 pF The minimum value is calculated with the following configuration: Iext = 2 μA (EXTCHRG = 0), PS = 128, NSCN = 32, Iref = 32 μA (REFCHRG = 15), Cref = 0.5 pF The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be measured by a single count. 12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, EXTCHRG = 7. 13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window. 7 Dimensions 7.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to nxp.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package 143-pin WLCSP Then use this document number 98ASA00402D 8 Pinout 8.1 Pins with active pull control after reset The following pins are actively pulled up or down after reset: K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 71 Pinout Table 58. Pins with active pull control after reset Pin Active pull direction after reset PTA0 pulldown PTA1 pullup PTA3 pullup PTA4 pullup RESET_b pullup 8.2 K61 Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. 143 WLC SP A11 Pin Name PTE0 Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 ADC1_SE4a ADC1_SE4a PTE0 SPI1_PCS1 UART1_TX SDHC0_D1 I2C1_SDA RTC_ CLKOUT C10 PTE1/ LLWU_P0 ADC1_SE5a ADC1_SE5a PTE1/ LLWU_P0 SPI1_SOUT UART1_RX SDHC0_D0 I2C1_SCL SPI1_SIN B11 ADC1_SE6a ADC1_SE6a PTE2/ LLWU_P1 SPI1_SCK UART1_CTS_ SDHC0_DCLK b D10 PTE3 ADC1_SE7a ADC1_SE7a PTE3 SPI1_SIN UART1_RTS_ SDHC0_CMD b E7 VDD VDD VDD E8 VSS VSS VSS PTE2/ LLWU_P1 SPI1_SOUT C11 PTE4/ LLWU_P2 DISABLED PTE4/ LLWU_P2 SPI1_PCS0 UART3_TX SDHC0_D3 D11 PTE5 DISABLED PTE5 SPI1_PCS2 UART3_RX SDHC0_D2 FTM3_CH0 E9 PTE6 DISABLED PTE6 SPI1_PCS3 UART3_CTS_ I2S0_MCLK b FTM3_CH1 E10 PTE7 DISABLED PTE7 UART3_RTS_ I2S0_RXD0 b FTM3_CH2 E11 PTE8 ADC2_SE16 ADC2_SE16 PTE8 I2S0_RXD1 UART5_TX I2S0_RX_FS FTM3_CH3 F8 PTE9 ADC2_SE17 ADC2_SE17 PTE9 I2S0_TXD1 UART5_RX I2S0_RX_ BCLK FTM3_CH4 F9 PTE10 DISABLED F10 PTE11 ADC3_SE16 F11 PTE12 F7 VDD PTE10 UART5_CTS_ I2S0_TXD0 b FTM3_CH5 ADC3_SE16 PTE11 UART5_RTS_ I2S0_TX_FS b FTM3_CH6 ADC3_SE17 ADC3_SE17 PTE12 VDD VDD I2S0_TX_ BCLK EzPort USB_SOF_ OUT FTM3_CH7 K61 Sub-Family, Rev. 7, 02/2018 72 NXP Semiconductors Pinout 143 WLC SP E6 Pin Name VSS Default ALT0 VSS VSS G11 USB0_DP USB0_DP USB0_DP G10 USB0_DM USB0_DM USB0_DM G9 VOUT33 VOUT33 VOUT33 G8 VREGIN VREGIN VREGIN H11 PGA2_DP/ ADC2_DP0/ ADC3_DP3/ ADC0_DP1 PGA2_DP/ ADC2_DP0/ ADC3_DP3/ ADC0_DP1 PGA2_DP/ ADC2_DP0/ ADC3_DP3/ ADC0_DP1 H10 PGA2_DM/ ADC2_DM0/ ADC3_DM3/ ADC0_DM1 PGA2_DM/ ADC2_DM0/ ADC3_DM3/ ADC0_DM1 PGA2_DM/ ADC2_DM0/ ADC3_DM3/ ADC0_DM1 H9 PGA3_DP/ ADC3_DP0/ ADC2_DP3/ ADC1_DP1 PGA3_DP/ ADC3_DP0/ ADC2_DP3/ ADC1_DP1 PGA3_DP/ ADC3_DP0/ ADC2_DP3/ ADC1_DP1 H8 PGA3_DM/ ADC3_DM0/ ADC2_DM3/ ADC1_DM1 PGA3_DM/ ADC3_DM0/ ADC2_DM3/ ADC1_DM1 PGA3_DM/ ADC3_DM0/ ADC2_DM3/ ADC1_DM1 J11 PGA0_DP/ ADC0_DP0/ ADC1_DP3 PGA0_DP/ ADC0_DP0/ ADC1_DP3 PGA0_DP/ ADC0_DP0/ ADC1_DP3 J10 PGA0_DM/ ADC0_DM0/ ADC1_DM3 PGA0_DM/ ADC0_DM0/ ADC1_DM3 PGA0_DM/ ADC0_DM0/ ADC1_DM3 J9 PGA1_DP/ ADC1_DP0/ ADC0_DP3 PGA1_DP/ ADC1_DP0/ ADC0_DP3 PGA1_DP/ ADC1_DP0/ ADC0_DP3 J8 PGA1_DM/ ADC1_DM0/ ADC0_DM3 PGA1_DM/ ADC1_DM0/ ADC0_DM3 PGA1_DM/ ADC1_DM0/ ADC0_DM3 K11 VDDA VDDA VDDA K10 VREFH VREFH VREFH K9 VREFL VREFL VREFL K8 VSSA VSSA VSSA J7 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 L11 DAC0_OUT/ CMP1_IN3/ ADC0_SE23 DAC0_OUT/ CMP1_IN3/ ADC0_SE23 DAC0_OUT/ CMP1_IN3/ ADC0_SE23 K7 DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23 DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23 DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 73 Pinout 143 WLC SP Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort M11 TAMPER0/ RTC_ WAKEUP_B TAMPER0/ RTC_ WAKEUP_B TAMPER0/ RTC_ WAKEUP_B M10 TAMPER1 TAMPER1 TAMPER1 M9 TAMPER2 TAMPER2 TAMPER2 M8 TAMPER3 TAMPER3 TAMPER3 L10 XTAL32 XTAL32 XTAL32 L9 EXTAL32 EXTAL32 EXTAL32 L8 VBAT VBAT VBAT L7 PTE24 ADC0_SE17/ EXTAL1 ADC0_SE17/ EXTAL1 PTE24 CAN1_TX UART4_TX I2S1_TX_FS EWM_OUT_b I2S1_RXD1 H7 PTE25 ADC0_SE18/ XTAL1 ADC0_SE18/ XTAL1 PTE25 CAN1_RX UART4_RX I2S1_TX_ BCLK EWM_IN I2S1_TXD1 H6 PTE26 ADC3_SE5b ADC3_SE5b PTE26 ENET_1588_ CLKIN UART4_CTS_ I2S1_TXD0 b RTC_ CLKOUT USB_CLKIN L6 PTE27 ADC3_SE4b ADC3_SE4b PTE27 K6 PTA0 JTAG_TCLK/ SWD_CLK/ EZP_CLK TSI0_CH1 PTA0 UART0_CTS_ FTM0_CH5 b/ UART0_COL_ b JTAG_TCLK/ SWD_CLK EZP_CLK J6 PTA1 JTAG_TDI/ EZP_DI TSI0_CH2 PTA1 UART0_RX FTM0_CH6 JTAG_TDI EZP_DI H5 PTA2 JTAG_TDO/ TSI0_CH3 TRACE_SWO/ EZP_DO PTA2 UART0_TX FTM0_CH7 JTAG_TDO/ EZP_DO TRACE_SWO J5 PTA3 JTAG_TMS/ SWD_DIO TSI0_CH4 PTA3 UART0_RTS_ FTM0_CH0 b K5 PTA4/ LLWU_P3 NMI_b/ EZP_CS_b TSI0_CH5 PTA4/ LLWU_P3 L5 PTA5 DISABLED G5 VDD VDD VDD F5 VSS VSS VSS L4 PTA12 CMP2_IN0 K4 PTA13/ LLWU_P4 J4 UART4_RTS_ I2S1_MCLK b JTAG_TMS/ SWD_DIO FTM0_CH1 NMI_b PTA5 USB_CLKIN FTM0_CH2 RMII0_RXER/ CMP2_OUT MII0_RXER I2S0_TX_ BCLK JTAG_TRST_ b CMP2_IN0 PTA12 CAN0_TX FTM1_CH0 RMII0_RXD1/ MII0_RXD1 I2S0_TXD0 FTM1_QD_ PHA CMP2_IN1 CMP2_IN1 PTA13/ LLWU_P4 CAN0_RX FTM1_CH1 RMII0_RXD0/ MII0_RXD0 I2S0_TX_FS FTM1_QD_ PHB PTA14 CMP3_IN0 CMP3_IN0 PTA14 SPI0_PCS0 UART0_TX RMII0_CRS_ DV/ MII0_RXDV I2S0_RX_ BCLK I2S0_TXD1 L3 PTA15 CMP3_IN1 CMP3_IN1 PTA15 SPI0_SCK UART0_RX RMII0_TXEN/ MII0_TXEN I2S0_RXD0 K3 PTA16 CMP3_IN2 CMP3_IN2 PTA16 SPI0_SOUT UART0_CTS_ RMII0_TXD0/ b/ MII0_TXD0 UART0_COL_ b I2S0_RX_FS EZP_CS_b I2S0_RXD1 K61 Sub-Family, Rev. 7, 02/2018 74 NXP Semiconductors Pinout 143 WLC SP Pin Name Default ALT0 ALT1 PTA17 ALT2 SPI0_SIN ALT3 ALT4 ALT5 UART0_RTS_ RMII0_TXD1/ b MII0_TXD1 ALT6 J3 PTA17 ADC1_SE17 ADC1_SE17 L2 VDD VDD VDD J2 VSS VSS VSS L1 PTA18 EXTAL0 EXTAL0 PTA18 FTM0_FLT2 FTM_CLKIN0 K1 PTA19 XTAL0 XTAL0 PTA19 FTM1_FLT0 FTM_CLKIN1 LPTMR0_ ALT1 J1 RESET_b RESET_b RESET_b H4 PTB0/ LLWU_P5 ADC0_SE8/ ADC1_SE8/ ADC2_SE8/ ADC3_SE8/ TSI0_CH0 ADC0_SE8/ ADC1_SE8/ ADC2_SE8/ ADC3_SE8/ TSI0_CH0 PTB0/ LLWU_P5 I2C0_SCL FTM1_CH0 RMII0_MDIO/ MII0_MDIO FTM1_QD_ PHA H3 PTB1 ADC0_SE9/ ADC1_SE9/ ADC2_SE9/ ADC3_SE9/ TSI0_CH6 ADC0_SE9/ ADC1_SE9/ ADC2_SE9/ ADC3_SE9/ TSI0_CH6 PTB1 I2C0_SDA FTM1_CH1 RMII0_MDC/ MII0_MDC FTM1_QD_ PHB H2 PTB2 ADC0_SE12/ TSI0_CH7 ADC0_SE12/ TSI0_CH7 PTB2 I2C0_SCL UART0_RTS_ ENET0_1588_ b TMR0 FTM0_FLT3 H1 PTB3 ADC0_SE13/ TSI0_CH8 ADC0_SE13/ TSI0_CH8 PTB3 I2C0_SDA UART0_CTS_ ENET0_1588_ b/ TMR1 UART0_COL_ b FTM0_FLT0 G4 PTB4 ADC1_SE10 ADC1_SE10 PTB4 ENET0_1588_ TMR2 FTM1_FLT0 G3 PTB5 ADC1_SE11 ADC1_SE11 PTB5 ENET0_1588_ TMR3 FTM2_FLT0 G2 PTB6 ADC1_SE12 ADC1_SE12 PTB6 FB_AD23 G1 PTB7 ADC1_SE13 ADC1_SE13 PTB7 FB_AD22 F4 PTB8 DISABLED PTB8 F3 PTB9 DISABLED PTB9 F2 PTB10 ADC1_SE14 ADC1_SE14 F1 PTB11 ADC1_SE15 ADC1_SE15 G6 VSS VSS VSS E5 VDD VDD VDD E1 PTB16 TSI0_CH9 E2 PTB17 E3 PTB18 E4 D1 ALT7 EzPort I2S0_MCLK UART3_RTS_ b FB_AD21 SPI1_PCS1 UART3_CTS_ b FB_AD20 PTB10 SPI1_PCS0 UART3_RX I2S1_TX_ BCLK FB_AD19 FTM0_FLT1 PTB11 SPI1_SCK UART3_TX I2S1_TX_FS FB_AD18 FTM0_FLT2 TSI0_CH9 PTB16 SPI1_SOUT UART0_RX I2S1_TXD0 FB_AD17 EWM_IN TSI0_CH10 TSI0_CH10 PTB17 SPI1_SIN UART0_TX I2S1_TXD1 FB_AD16 EWM_OUT_b TSI0_CH11 TSI0_CH11 PTB18 CAN0_TX FTM2_CH0 I2S0_TX_ BCLK FB_AD15 FTM2_QD_ PHA PTB19 TSI0_CH12 TSI0_CH12 PTB19 CAN0_RX FTM2_CH1 I2S0_TX_FS FB_OE_b FTM2_QD_ PHB PTB20 ADC2_SE4a ADC2_SE4a PTB20 SPI2_PCS0 FB_AD31/ CMP0_OUT NFC_DATA15 K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 75 Pinout 143 WLC SP Pin Name Default D2 PTB21 ADC2_SE5a D5 PTB22 D4 ALT0 ADC2_SE5a ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 PTB21 SPI2_SCK FB_AD30/ CMP1_OUT NFC_DATA14 DISABLED PTB22 SPI2_SOUT FB_AD29/ CMP2_OUT NFC_DATA13 PTB23 DISABLED PTB23 SPI2_SIN SPI0_PCS5 FB_AD28/ CMP3_OUT NFC_DATA12 D3 PTC0 ADC0_SE14/ TSI0_CH13 ADC0_SE14/ TSI0_CH13 PTC0 SPI0_PCS4 PDB0_EXTRG FB_AD14/ I2S0_TXD1 NFC_DATA11 C1 PTC1/ LLWU_P6 ADC0_SE15/ TSI0_CH14 ADC0_SE15/ TSI0_CH14 PTC1/ LLWU_P6 SPI0_PCS3 UART1_RTS_ FTM0_CH0 b FB_AD13/ I2S0_TXD0 NFC_DATA10 C2 PTC2 ADC0_SE4b/ CMP1_IN0/ TSI0_CH15 ADC0_SE4b/ CMP1_IN0/ TSI0_CH15 PTC2 SPI0_PCS2 UART1_CTS_ FTM0_CH1 b FB_AD12/ NFC_DATA9 I2S0_TX_FS B1 PTC3/ LLWU_P7 CMP1_IN1 CMP1_IN1 PTC3/ LLWU_P7 SPI0_PCS1 UART1_RX FTM0_CH2 CLKOUT I2S0_TX_ BCLK G7 VDD VDD VDD A3 PTC4/ LLWU_P8 DISABLED PTC4/ LLWU_P8 SPI0_PCS0 UART1_TX FTM0_CH3 FB_AD11/ NFC_DATA8 CMP1_OUT I2S1_TX_ BCLK B4 PTC5/ LLWU_P9 DISABLED PTC5/ LLWU_P9 SPI0_SCK LPTMR0_ ALT2 I2S0_RXD0 FB_AD10/ NFC_DATA7 CMP0_OUT I2S1_TX_FS C5 PTC6/ LLWU_P10 CMP0_IN0 CMP0_IN0 PTC6/ LLWU_P10 SPI0_SOUT PDB0_EXTRG I2S0_RX_ BCLK FB_AD9/ NFC_DATA6 I2S0_MCLK B5 PTC7 CMP0_IN1 CMP0_IN1 PTC7 SPI0_SIN USB_SOF_ OUT I2S0_RX_FS FB_AD8/ NFC_DATA5 A4 PTC8 ADC1_SE4b/ CMP0_IN2 ADC1_SE4b/ CMP0_IN2 PTC8 FTM3_CH4 I2S0_MCLK FB_AD7/ NFC_DATA4 C6 PTC9 ADC1_SE5b/ CMP0_IN3 ADC1_SE5b/ CMP0_IN3 PTC9 FTM3_CH5 I2S0_RX_ BCLK FB_AD6/ NFC_DATA3 FTM2_FLT0 D6 PTC10 ADC1_SE6b ADC1_SE6b PTC10 I2C1_SCL FTM3_CH6 I2S0_RX_FS FB_AD5/ NFC_DATA2 I2S1_MCLK A5 PTC11/ LLWU_P11 ADC1_SE7b ADC1_SE7b PTC11/ LLWU_P11 I2C1_SDA FTM3_CH7 I2S0_RXD1 FB_RW_b/ NFC_WE D7 PTC12 DISABLED PTC12 UART4_RTS_ b FB_AD27 B6 PTC13 DISABLED PTC13 UART4_CTS_ b FB_AD26 C7 PTC14 DISABLED PTC14 UART4_RX FB_AD25 A6 PTC15 DISABLED PTC15 UART4_TX FB_AD24 C4 VDD VDD A7 PTC16 DISABLED PTC16 CAN1_RX UART3_RX ENET0_1588_ FB_CS5_b/ NFC_RB TMR0 FB_TSIZ1/ FB_BE23_16_ b B7 PTC17 DISABLED PTC17 CAN1_TX UART3_TX ENET0_1588_ FB_CS4_b/ NFC_CE0_b TMR1 FB_TSIZ0/ FB_BE31_24_ b EzPort FTM3_FLT0 VDD K61 Sub-Family, Rev. 7, 02/2018 76 NXP Semiconductors Pinout 143 WLC SP Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 C8 PTC18 DISABLED PTC18 UART3_RTS_ ENET0_1588_ FB_TBST_b/ NFC_CE1_b b TMR2 FB_CS2_b/ FB_BE15_8_b D8 PTC19 DISABLED PTC19 UART3_CTS_ ENET0_1588_ FB_CS3_b/ b TMR3 FB_BE7_0_b FB_TA_b B8 PTD0/ LLWU_P12 DISABLED PTD0/ LLWU_P12 SPI0_PCS0 UART2_RTS_ FTM3_CH0 b FB_ALE/ FB_CS1_b/ FB_TS_b I2S1_RXD1 A8 PTD1 ADC0_SE5b PTD1 SPI0_SCK UART2_CTS_ FTM3_CH1 b FB_CS0_b I2S1_RXD0 D9 PTD2/ LLWU_P13 DISABLED PTD2/ LLWU_P13 SPI0_SOUT UART2_RX FTM3_CH2 FB_AD4 I2S1_RX_FS C9 PTD3 DISABLED PTD3 SPI0_SIN UART2_TX FTM3_CH3 FB_AD3 I2S1_RX_ BCLK B9 PTD4/ LLWU_P14 DISABLED PTD4/ LLWU_P14 SPI0_PCS1 UART0_RTS_ FTM0_CH4 b FB_AD2/ NFC_DATA1 EWM_IN A9 PTD5 ADC0_SE6b ADC0_SE6b PTD5 SPI0_PCS2 UART0_CTS_ FTM0_CH5 b/ UART0_COL_ b FB_AD1/ NFC_DATA0 EWM_OUT_b B10 PTD6/ LLWU_P15 ADC0_SE7b ADC0_SE7b PTD6/ LLWU_P15 SPI0_PCS3 UART0_RX FTM0_CH6 FB_AD0 FTM0_FLT0 VDD PTD7 CMT_IRO UART0_TX FTM0_CH7 ADC0_SE5b K2 VDD VDD A10 PTD7 DISABLED B2 NC NC NC C3 NC NC NC A2 NC NC NC B3 NC NC NC A1 NC NC NC M1 NC NC NC M2 NC NC NC M3 NC NC NC M4 NC NC NC M5 NC NC NC M6 NC NC NC M7 NC NC NC A12 NC NC NC B12 NC NC NC C12 NC NC NC D12 NC NC NC E12 NC NC NC F12 NC NC NC G12 NC NC NC H12 NC NC NC ALT7 EzPort FTM0_FLT1 K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 77 Pinout 143 WLC SP Pin Name Default ALT0 J12 NC NC NC K12 NC NC NC L12 NC NC NC M12 NC NC NC ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort 8.3 K61 Pinouts The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section. 1 2 3 4 5 6 7 8 9 10 11 12 A NC NC PTC4/ LLWU_P8 PTC8 PTC11/ LLWU_P11 PTC15 PTC16 PTD1 PTD5 PTD7 PTE0 NC A B PTC3/ LLWU_P7 NC NC PTC5/ LLWU_P9 PTC7 PTC13 PTC17 PTD6/ PTD0/ PTD4/ LLWU_P12 LLWU_P14 LLWU_P15 PTE2/ LLWU_P1 NC B C PTC1/ LLWU_P6 PTC2 NC VDD PTC6/ LLWU_P10 PTC9 PTC14 PTC18 PTD3 PTE1/ LLWU_P0 PTE4/ LLWU_P2 NC C D PTB20 PTB21 PTC0 PTB23 PTB22 PTC10 PTC12 PTC19 PTD2/ LLWU_P13 PTE3 PTE5 NC D E PTB16 PTB17 PTB18 PTB19 VDD VSS VDD VSS PTE6 PTE7 PTE8 NC E F PTB11 PTB10 PTB9 PTB8 VSS VDD PTE9 PTE10 PTE11 PTE12 NC F G PTB7 PTB6 PTB5 PTB4 VDD VSS VDD VREGIN VOUT33 USB0_DM USB0_DP NC G H PTB3 PTB2 PTB1 PTB0/ LLWU_P5 PTA2 PTE26 PTE25 PGA3_DM/ ADC3_DM0/ ADC2_DM3/ ADC1_DM1 PGA3_DP/ PGA2_DM/ PGA2_DP/ ADC3_DP0/ ADC2_DM0/ ADC2_DP0/ ADC2_DP3/ ADC3_DM3/ ADC3_DP3/ ADC1_DP1 ADC0_DM1 ADC0_DP1 NC H J RESET_b VSS PTA17 PTA14 PTA3 PTA1 VREF_OUT/ PGA1_DM/ PGA1_DP/ PGA0_DM/ PGA0_DP/ CMP1_IN5/ ADC1_DM0/ ADC1_DP0/ ADC0_DM0/ ADC0_DP0/ CMP0_IN5/ ADC0_DM3 ADC0_DP3 ADC1_DM3 ADC1_DP3 ADC1_SE18 NC J K PTA19 VDD PTA16 PTA13/ LLWU_P4 PTA4/ LLWU_P3 PTA0 DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23 VSSA VREFL VREFH VDDA NC K L PTA18 VDD PTA15 PTA12 PTA5 PTE27 PTE24 VBAT EXTAL32 XTAL32 DAC0_OUT/ CMP1_IN3/ ADC0_SE23 NC L M NC NC NC NC NC NC NC TAMPER3 TAMPER2 TAMPER1 TAMPER0/ RTC_ WAKEUP_B NC M 1 2 3 4 5 6 7 8 9 10 11 12 Figure 41. K61 143 WLCSP Pinout Diagram K61 Sub-Family, Rev. 7, 02/2018 78 NXP Semiconductors Revision History 9 Revision History The following table provides a revision history for this document. Table 59. Revision History Rev. No. Date Substantial Changes 3 3/2012 Initial public release 4 10/2012 Replaced TBDs throughout. 5 10/2013 Changes for 4N96B mask set: • Min VDD operating requirement specification updated to support operation down to 1.71V. New specifications: • Updated Vdd_ddr min specification. • Added Vodpu specification. • Removed Ioz, Ioz_ddr, and Ioz_tamper Hi-Z leakage specfications. They have been replaced by new Iina, Iind, and Zind specifications. • Fpll_ref_acc specification has been added. • I2C module was previously covered by the general switching specifications. To provide more detail on I2C operation a dedicated Inter-Integrated Circuit Interface (I2C) timing section has been added. Modified specifications: • • • • Vref_ddr max spec has been updated. Tpor spec has been split into two specifications based on VDD slew rate. Trd1allx and Trd1alln max have been updated. 16-bit ADC Temp sensor slope and Temp sensor voltage (Vtemp25) have been modified. The typical values that were listed previously have been updated, and min and max specifications have been added. Corrections: • Some versions of the datasheets listed incorrect clock mode information in the "Diagram: Typical IDD_RUN operating behavior section." These errors have been corrected. • Fintf_ft specification was previously shown as a max value. It has been corrected to be shown as a typical value as originally intended. • Corrected DDR write and read timing diagrams to show the correct location of the Tcmv specification. • SDHC peripheral 50MHz high speed mode options were left out of the last datasheet. These have been added to the SDHC specifications section. 6 09/2015 • Updated the footnotes of Thermal Attributes table • Removed Power Sequencing section • Added footnote to ambient temperature specification of Thermal Operating requirements • Removed "USB HS/LS/FS on-the-go controller with on-chip high speed transceiver" from features section • Updated Terminology and guidelines section • Updated the footnotes and the values of Power consumption operating behaviors table • Added Notes in USB electrical specification section • Updated I2C timing table Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 79 Revision History Table 59. Revision History (continued) Rev. No. Date 7 02/2018 Substantial Changes • Updated maximum SDHC frequency in SDHC specifications • Added MDIO serial management timing specifications section in Ethernet Switching SPecifications K61 Sub-Family, Rev. 7, 02/2018 80 NXP Semiconductors How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP, the NXP logo,NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, the Energy Efficient Solutions logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. © 2012–2018 NXP B.V. Document Number K61P143M120SF3 Revision 7, 02/2018