CED14G04/CEU14G04 N-Channel Enhancement Mode Field Effect Transistor PRELIMINARY FEATURES 40V, 125A, RDS(ON) = 3.8mΩ @VGS = 10V. RDS(ON) = 6.8mΩ @VGS = 4.5V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-251 & TO-252 package. G D G S CEU SERIES TO-252(D-PAK) ABSOLUTE MAXIMUM RATINGS Parameter G D S CED SERIES TO-251(I-PAK) Tc = 25 C unless otherwise noted Symbol Limit 40 Units V VGS ±20 V ID 125 A IDM 500 A 83 W Drain-Source Voltage VDS Gate-Source Voltage Drain Current-Continuous Drain Current-Pulsed S a Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C Operating and Store Temperature Range 0.55 W/ C TJ,Tstg -55 to 175 C Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 1.8 C/W Thermal Resistance, Junction-to-Ambient RθJA 62.5 C/W Rev 1. 2011.July http://www.cetsemi.com Details are subject to change without notice . 1 CED14G04/CEU14G04 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 40 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 40V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA Off Characteristics V On Characteristics b Gate Threshold Voltage Static Drain-Source On-Resistance VGS(th) RDS(on) VGS = VDS, ID = 250µA 3 V VGS = 10V, ID = 50A 1 3.1 3.8 mΩ VGS = 4.5V, ID = 40A 4.7 6.8 mΩ Dynamic Characteristics c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 20V, VGS = 0V, f = 1.0 MHz 3730 pF 570 pF 360 pF Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 20V, ID = 20A, VGS= 10V, RGEN= 1.6Ω 21 42 ns 12 24 ns ns 83 166 Turn-Off Fall Time tf 19 38 ns Total Gate Charge Qg 50 65 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 20V, ID = 20A, VGS = 10V 10 nC 24 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 50A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. 2 50 A 1.2 V CED14G04/CEU14G04 240 25 C VGS=10,9,8,4V 50 ID, Drain Current (A) ID, Drain Current (A) 60 40 30 20 VGS=3V 10 0 0 0.5 1 1.5 2 2.5 3 2 4 6 8 10 Figure 1. Output Characteristics Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) Ciss 2400 1600 Coss 800 Crss 0 5 10 15 20 25 2.4 2.0 ID=50A VGS=10V 1.6 1.2 0.8 0.4 0.4 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 0 VGS, Gate-to-Source Voltage (V) IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage TJ=125 C VDS, Drain-to-Source Voltage (V) 3200 1.2 60 -55 C 4000 1.3 120 0 4800 0 180 -25 0 25 50 75 100 125 150 VGS=0V 10 2 10 1 10 0 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 V =20V DS ID=20A 10 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CED14G04/CEU14G04 6 4 2 0 0 10 20 30 40 50 10 RDS(ON)Limit 100ms 2 1ms 10 10 60 3 10ms DC 1 TC=25 C TJ=175 C Single Pulse 0 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 -1 PDM 0.1 t1 0.05 0.02 0.01 Single Pulse 10 -2 10 -5 t2 1. RθJA (t)=r (t) * RθJA 2. RθJA=See Datasheet 3. TJM-TA = P* RθJC (t) 4. Duty Cycle, D=t1/t2 10 -4 10 -3 10 -2 10 -1 Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 0 10 1 2