TI1 MAX3227E Multichannel line driver/receiver with esd protection Datasheet

MAX3227E
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV IEC ESD PROTECTION
www.ti.com
SLLS715A – FEBRUARY 2006 – REVISED JUNE 2007
FEATURES
APPLICATIONS
•
•
•
•
•
•
•
•
•
•
•
•
Meets or Exceeds the Requirements of
TIA/EIA-232-F and ITU v.28 Standards
Operates With 3-V to 5.5-V VCC Supply
Operates at Least 1 Mbit/s
Low Standby Current . . . 1 μA Typ
External Capacitors . . . 4 × 0.1 μF
Accepts 5-V Logic Input With 3.3-V Supply
Designed to Be Interchangeable With Maxim™
MAX3227E
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection for RS-232 I/O Pins
– ±15 kV – Human-Body Model
– ±8 kV – IEC61000-4-2, Contact Discharge
– ±15 kV – IEC61000-4-2, Air-Gap Discharge
Auto-Powerdown Plus Feature Automatically
Disables Drivers for Power Savings
Packaged in Plastic Shrink Small-Outline
Package
•
•
•
•
Battery-Powered, Hand-Held, and Portable
Equipment
PDAs and Palmtop PCs
Notebooks, Sub-Notebooks, and Laptops
Digital Cameras
Mobile Phones and Wireless Devices
DB PACKAGE
(TOP VIEW)
READY
C1+
V+
C1−
C2+
C2−
V−
RIN
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
FORCEOFF
VCC
GND
DOUT
FORCEON
DIN
INVALID
ROUT
DESCRIPTION/ORDERING INFORMATION
The MAX3227E consists of one line driver, one line receiver, and a dual charge-pump circuit with ±15-kV IEC
ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of
TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the
serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to
5.5-V supply. This device operates at data-signaling rates of 1 Mbit/s in normal operating mode and a maximum
of 30-V/μs driver output slew rate. This device also features a logic-level output (READY) that asserts when the
charge pump is regulating and the device is ready to begin transmitting.
The MAX3227E achieves a 1-μA supply current using the auto-powerdown plus feature. This device
automatically enters a low-power powerdown mode when the RS-232 cable is disconnected or the drivers of the
connected peripherals are inactive for more than 30 s. They turn on again when they sense a valid transition at
any driver or receiver input. Auto-powerdown saves power without changes to the existing BIOS or operating
system.
The MAX3227EC is characterized for operation from 0°C to 70°C. The MAX3227EI is characterized for
operation from –40°C to 85°C.
ORDERING INFORMATION
TA
PACKAGE
0°C to 70°C
SSOP – DB
–40°C to 85°C
SSOP – DB
(1)
(2)
(1) (2)
ORDERABLE PART NUMBER
Tube of 80
MAX3227ECDB
Reel of 2000
MAX3227ECDBR
Tube of 80
MAX3227EIDB
Reel of 2000
MAX3227EIDBR
TOP-SIDE MARKING
MP227EC
MP227EI
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
website at www.ti.com.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2006–2007, Texas Instruments Incorporated
MAX3227E
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV IEC ESD PROTECTION
www.ti.com
SLLS715A – FEBRUARY 2006 – REVISED JUNE 2007
FUNCTION TABLE (1)
INPUT CONDITIONS
FORCEON
FORCEOFF
RECEIVER
OR
DRIVER
EDGE
WITHIN
30 s
OUTPUT STATES
VALID
RS-232
LEVEL
PRESENT
AT
RECEIVER
DRIVER
RECEIVER
INVALID
READY
OPERATING MODE
Auto-Powerdown Plus Conditions
H
H
NO
NO
Active
Active
L
H
Normal operation,
auto-powerdown plus disabled
H
H
NO
YES
Active
Active
H
H
Normal operation,
auto-powerdown plus disabled
L
H
YES
NO
Active
Active
L
H
Normal operation,
auto-powerdown plus enabled
L
H
YES
YES
Active
Active
H
H
Normal operation,
auto-powerdown plus enabled
L
H
NO
NO
Z
Active
L
L
Powerdown,
auto-powerdown plus enabled
L
H
NO
YES
Z
Active
H
L
Powerdown,
auto-powerdown plus enabled
X
L
X
NO
Z
Active
L
L
Manual powerdown
X
L
X
YES
Z
Active
H
L
Manual powerdown
Auto-Powerdown Conditions
INVALID
INVALID
X
NO
Z
Active
L
L
Powerdown,
auto-powerdown enabled
INVALID
INVALID
X
YES
Active
Active
H
H
Normal operation,
auto-powerdown enabled
(1)
2
H = high level, L = low level, X = irrelevant, Z = high impedance
Submit Documentation Feedback
MAX3227E
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV IEC ESD PROTECTION
www.ti.com
SLLS715A – FEBRUARY 2006 – REVISED JUNE 2007
TERMINAL FUNCTIONS
TERMINAL
NAME
DESCRIPTION
NO.
C1+
2
Positive terminal of voltage-doubler charge-pump capacitor
C1–
4
Negative terminal of voltage-doubler charge-pump capacitor
C2+
5
Positive terminal of inverting charge-pump capacitor
C2–
6
Negative terminal of inverting charge-pump capacitor
DIN
11
CMOS driver input
DOUT
13
RS-232 driver output
FORCEOFF
16
Force-off input, active low. Drive low to shut down drivers, receivers, and charge pump. This overrides auto-shutdown
and FORCEON (see Function Table).
FORCEON
12
Force-on input, active high. Drive high to override powerdown, keeping drivers and receivers on (FORCEOFF must
be high) (see Function Table).
GND
14
Ground
INVALID
10
Valid signal detector output, active low. A logic high indicates that a valid RS-232 level is present on a receiver input.
READY
1
Ready to transmit output, active high. READY is enabled high when V– goes below –3.5 V and the device is ready to
transmit.
RIN
8
RS-232 receiver input
ROUT
9
CMOS receiver output
V+
3
+2 × VCC generated by the charge pump
V–
7
–2 × VCC generated by the charge pump
VCC
15
3-V to 5.5-V single-supply voltage
LOGIC DIAGRAM (POSITIVE LOGIC)
DIN
FORCEOFF
FORCEON
ROUT
11
13
DOUT
16
12
Auto-Powerdown
Plus
9
10
1
8
Submit Documentation Feedback
INVALID
READY
RIN
3
MAX3227E
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV IEC ESD PROTECTION
www.ti.com
SLLS715A – FEBRUARY 2006 – REVISED JUNE 2007
Absolute Maximum Ratings (1)
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
VCC
Supply voltage range (2)
–0.3
6
V
V+
Positive output supply voltage range (2)
–0.3
7
V
0.3
–7
V
13
V
V–
Negative output supply voltage range
(2)
V+ – V– Supply voltage difference (2)
VI
Input voltage range
VO
Output voltage range
–0.3
6
Receiver
–25
25
Driver
Receiver (INVALID, READY)
Short-circuit duration
θJA
Driver (FORCEOFF, FORCEON)
–13.2
13.2
–0.3
VCC + 0.3
DOUT to GND
(1)
(2)
(3)
V
V
Unlimited
Package thermal impedance (3)
Lead temperature 1,6 mm (1/16 in) from case for 10 s
Tstg
UNIT
Storage temperature range
–65
82
°C/W
260
°C
150
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to network GND.
The package thermal impedance is calculated in accordance with JESD 51-7.
Recommended Operating Conditions (1)
See Figure 5
MIN NOM MAX
VCC = 3.3 V
Supply voltage
VCC = 5 V
VIH
Driver and control high-level input voltage
DIN, FORCEOFF, FORCEON
VIL
Driver and control low-level input voltage
DIN, FORCEOFF, FORCEON
VI
Receiver input voltage
TA
Operating free-air temperature
(1)
VCC = 3.3 V
VCC = 5 V
MAX3227EC
MAX3227EI
3
3.3
3.6
4.5
5
5.5
2
5.5
2.4
5.5
UNIT
V
V
0
0.8
V
–25
25
V
0
70
–40
85
°C
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
Electrical Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)
PARAMETER
II
ICC
(1)
(2)
4
Input leakage current
Supply current
(TA = 25°C)
TEST CONDITIONS
FORCEOFF, FORCEON
MIN
TYP (2) MAX
±1
μA
0.3
2
mA
Auto-powerdown plus disabled
No load,
FORCEOFF and FORCEON at VCC
Powered off
No load, FORCEOFF at GND
1
10
No load, FORCEOFF at VCC,
Auto-powerdown plus enabled FORCEON at GND,
All RIN are open or grounded
1
10
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Submit Documentation Feedback
UNIT
±0.01
μA
MAX3227E
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV IEC ESD PROTECTION
www.ti.com
SLLS715A – FEBRUARY 2006 – REVISED JUNE 2007
DRIVER SECTION
abc
Electrical Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
(see Figure 1 and Figure 2)
PARAMETER
TEST CONDITIONS
MIN
TYP (2) MAX
High-level output voltage
DOUT at RL = 3 kΩ to GND,
DIN = GND
5
VOL
Low-level output voltage
DOUT at RL = 3 kΩ to GND,
DIN = VCC
–5
IIH
High-level input current
VI = VCC
±0.01
±1
μA
IIL
Low-level input current
VI at GND
±0.01
±1
μA
IOS
Short-circuit output current (3)
ro
Ioff
(1)
(2)
(3)
5.4
UNIT
VOH
V
–5.4
V
VCC = 3.6 V,
VO = 0 V
±35
±60
VCC = 5.5 V,
VO = 0 V
±35
±60
Output resistance
VCC, V+, and V– = 0 V,
VO = ±2 V
Output leakage current
FORCEOFF = GND,
VO = ±12 V,
300
Ω
10M
±25
VCC = 0 to 5.5 V
mA
μA
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one
output should be shorted at a time.
Switching Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
(see Figure 1 and Figure 2)
PARAMETER
Maximum data rate
(3)
tsk(p)
Pulse skew
SR(tr)
Slew rate,
transition region
(1)
(2)
(3)
TEST CONDITIONS
MIN
CL = 1000 pF,
One DIN switching,
RL = 3 kΩ,
See Figure 1
250
CL = 1000 pF,
VCC = 4.5 V,
RL = 3 kΩ,
See Figure 1
One DIN switching,
CL = 250 pF,
VCC = 3 V,
RL = 3 kΩ,
See Figure 1
One DIN switching,
CL = 150 pF to 2500 pF,
RL = 3 kΩ to 7 kΩ,
See Figure 2
VCC = 3.3 V,
CL = 150 pF to 1000 pF,
RL = 3 kΩ to 7 kΩ,
See Figure 1
TYP (2)
MAX
1000
UNIT
kbit/s
1000
25
24
ns
150
V/μs
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Pulse skew is defined as |tPLH – tPHL| of each channel of the same device.
ESD Protection
TERMINAL
NAME
NO.
DOUT
13
TEST CONDITIONS
TYP
UNIT
±15
Human-Body Model
Contact Discharge (IEC61000-4-2)
±8
Air-Gap Discharge (IEC61000-4-2)
±15
Submit Documentation Feedback
kV
5
MAX3227E
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV IEC ESD PROTECTION
www.ti.com
SLLS715A – FEBRUARY 2006 – REVISED JUNE 2007
RECEIVER SECTION
abc
Electrical Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 3)
PARAMETER
VOH
High-level output voltage
IOH = –1 mA
VOL
Low-level output voltage
IOL = 1.6 mA
VIT+
Positive-going input threshold voltage
VIT–
Negative-going input threshold voltage
Vhys
Input hysteresis (VIT+ – VIT–)
Ioff
Output leakage current
ri
Input resistance
MIN
TYP (2)
VCC – 0.6
VCC – 0.1
TEST CONDITIONS
MAX
V
0.4
VCC = 3.3 V
1.5
2.4
VCC = 5 V
1.8
2.4
VCC = 3.3 V
0.6
1.2
VCC = 5 V
0.8
1.5
V
V
V
0.5
VI = ±3 V to ±25 V
UNIT
V
±0.05
±10
μA
5
7
kΩ
3
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
(1)
(2)
Switching Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TYP (2)
UNIT
tPLH
Propagation delay time, low- to high-level output
CL = 150 pF, See Figure 3
150
ns
tPHL
Propagation delay time, high- to low-level output
CL = 150 pF, See Figure 3
150
ns
tsk(p)
Pulse skew (3)
See Figure 3
50
ns
TYP
UNIT
(1)
(2)
(3)
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Pulse skew is defined as |tPLH – tPHL| of each channel of the same device.
ESD Protection
TERMINAL
NAME
NO.
RIN
8
TEST CONDITIONS
±15
Human-Body Model
6
Contact Discharge (IEC61000-4-2)
±8
Air-Gap Discharge (IEC61000-4-2)
±15
Submit Documentation Feedback
kV
MAX3227E
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV IEC ESD PROTECTION
www.ti.com
SLLS715A – FEBRUARY 2006 – REVISED JUNE 2007
AUTO-POWERDOWN SECTION
xxx
Electrical Characteristics
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 4)
PARAMETER
TEST CONDITIONS
MIN
VT+(valid)
Receiver input threshold
for INVALID high-level output voltage
FORCEON = GND, FORCEOFF = VCC
VT–(valid)
Receiver input threshold
for INVALID high-level output voltage
FORCEON = GND, FORCEOFF = VCC
–2.7
VT(invalid)
Receiver input threshold
for INVALID low-level output voltage
FORCEON = GND, FORCEOFF = VCC
–0.3
VOH
INVALID, READY output voltage high IOH = –1 mA, FORCEON = GND, FORCEOFF = VCC
VOL
INVALID, READY output voltage low
MAX
UNIT
2.7
V
V
0.3
V
VCC – 0.6
V
IOL = 1.6 mA, FORCEON = GND, FORCEOFF = VCC
0.4
V
Switching Characteristics
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 4)
MIN TYP (1) MAX
PARAMETER
UNIT
tINVH
Propagation delay time, low- to high-level output
1
μs
tINVL
Propagation delay time, high- to low-level output
30
μs
tWU
Supply enable time
100
μs
tAUTOPRDN
Driver or receiver edge to driver's shutdown
(1)
VCC = 5 V
15
30
60
s
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Submit Documentation Feedback
7
MAX3227E
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV IEC ESD PROTECTION
www.ti.com
SLLS715A – FEBRUARY 2006 – REVISED JUNE 2007
PARAMETER MEASUREMENT INFORMATION
3V
Generator
(see Note B)
Input
RS-232
Output
50 Ω
RL
3V
3V
Output
SR(tr) +
tTLH
tTHL
CL
(see Note A)
3V
FORCEOFF
TEST CIRCUIT
0V
−3 V
−3 V
6V
t THL or tTLH
VOH
VOL
VOLTAGE WAVEFORMS
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following characteristics: PRR = 250 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 1. Driver Slew Rate
3V
Generator
(see Note B)
RS-232
Output
50 Ω
RL
Input
1.5 V
1.5 V
0V
CL
(see Note A)
tPHL
tPLH
VOH
3V
FORCEOFF
50%
50%
Output
VOL
TEST CIRCUIT
VOLTAGE WAVEFORMS
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following characteristics: PRR = 250 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 2. Driver Pulse Skew
3 V or 0 V
FORCEON
3V
Input
1.5 V
1.5 V
−3 V
Output
Generator
(see Note B)
tPHL
50 Ω
3V
FORCEOFF
tPLH
CL
(see Note A)
VOH
50%
Output
50%
VOL
TEST CIRCUIT
VOLTAGE WAVEFORMS
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 3. Receiver Propagation Delay Times
8
Submit Documentation Feedback
MAX3227E
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV IEC ESD PROTECTION
www.ti.com
SLLS715A – FEBRUARY 2006 – REVISED JUNE 2007
PARAMETER MEASUREMENT INFORMATION (continued)
Receiver
Inputs
}
Invalid
Region
Transmitter
Inputs
Transmitter
Outputs
INVALID VCC
tINVL
Output
0
tINVH
tWU
tWU
VCC
Output
0
V+
VCC
0
V−
VOLTAGE WAVEFORMS
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Valid RS-232 Level, INVALID High
ROUT
Generator
(see Note B)
2.7 V
50 Ω
Indeterminate
0.3 V
0V
If Signal Remains Within This Region
for More Than 30 µs, INVALID Is Low†
−0.3 V
Auto-Powerdown
Plus
Indeterminate
INVALID
−2.7 V
CL = 30 pF
(see Note A)
Valid RS-232 Level, INVALID High
†
DIN
DOUT
Auto-powerdown disables drivers and reduces supply
current to 1 µA.
TEST CIRCUIT
Figure 4. INVALID Propagation Delay Times and Driver Enabling Time
Submit Documentation Feedback
9
MAX3227E
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV IEC ESD PROTECTION
www.ti.com
SLLS715A – FEBRUARY 2006 – REVISED JUNE 2007
APPLICATION INFORMATION
READY
16
1
2
VCC
C1+
15
+
3
C1
+
+
−
−
AutoPowerdown
Plus
V+
C3†
4
GND
−
14
13
6
C2−
7
RIN
12
C2
11
V−
10
C4
+
DOUT
C2+
+
−
CBYPASS = 0.1 µF
C1−
5
−
FORCEOFF
8
9
FORCEON
DIN
INVALID
ROUT
5 kΩ
†
C3 can be connected to VCC or GND.
NOTES: A. Resistor values shown are nominal.
B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be
connected as shown.
VCC vs CAPACITOR VALUES
VCC
C1
C2, C3, and C4
3.3 V ± 0.3 V
5 V ± 0.5 V
3 V to 5.5 V
0.1 µF
0.047 µF
0.1 µF
0.1 µF
0.33 µF
0.47 µF
Figure 5. Typical Operating Circuit and Capacitor Values
10
Submit Documentation Feedback
PACKAGE OPTION ADDENDUM
www.ti.com
12-Jun-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
MAX3227ECDB
ACTIVE
SSOP
DB
16
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3227ECDBG4
ACTIVE
SSOP
DB
16
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3227ECDBR
ACTIVE
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3227ECDBRG4
ACTIVE
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3227EIDB
ACTIVE
SSOP
DB
16
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3227EIDBG4
ACTIVE
SSOP
DB
16
80
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3227EIDBR
ACTIVE
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3227EIDBRG4
ACTIVE
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Mar-2008
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
Diameter Width
(mm) W1 (mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
MAX3227ECDBR
SSOP
DB
16
2000
330.0
16.4
8.2
6.6
2.5
12.0
16.0
Q1
MAX3227EIDBR
SSOP
DB
16
2000
330.0
16.4
8.2
6.6
2.5
12.0
16.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Mar-2008
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
MAX3227ECDBR
SSOP
DB
16
2000
346.0
346.0
33.0
MAX3227EIDBR
SSOP
DB
16
2000
346.0
346.0
33.0
Pack Materials-Page 2
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated
Similar pages