STMicroelectronics M24C32R4BN3T 64/32 kbit serial iâ²c bus eeprom Datasheet

M24C64
M24C32
64Kbit and 32Kbit Serial I²C Bus EEPROM
FEATURES SUMMARY
■
■
■
■
■
■
■
■
■
■
Two-Wire I2C Serial Interface
Supports 400kHz Protocol
Single Supply Voltage:
– 4.5 to 5.5V for M24Cxx
– 2.5 to 5.5V for M24Cxx-W
– 1.8 to 5.5V for M24Cxx-R
Write Control Input
BYTE and PAGE WRITE (up to 32 Bytes)
RANDOM and SEQUENTIAL READ Modes
Self-Timed Programming Cycle
Automatic Address Incrementing
Enhanced ESD/Latch-Up Protection
More than 1 Million Erase/Write Cycles
More than 40-Year Data Retention
Figure 1. Packages
8
1
PDIP8 (BN)
8
1
SO8 (MN)
150 mil width
Table 1. Product List
Reference
Part Number
M24C64
M24C64
M24C64-W
M24C64-R
TSSOP8 (DW)
169 mil width
M24C32
M24C32
M24C32-W
M24C32-R
UFDFPN8 (MB)
2x3mm² (MLP)
January 2005
1/26
M24C64, M24C32
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 1. Product List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 2. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Power On Reset: VCC Lock-Out Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3. DIP, SO, TSSOP and UFDFPN Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chip Enable (E0, E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 4. Maximum RL Value versus Bus Capacitance (CBUS) for an I2C Bus . . . . . . . . . . . . . . . . 5
Figure 5. I2C Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Device Select Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 4. Most Significant Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 5. Least Significant Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 6. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
DEVICE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Start Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Acknowledge Bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Memory Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 6. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 7. Write Mode Sequences with WC=1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 9
Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Byte Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 8. Write Mode Sequences with WC=0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 9. Write Cycle Polling Flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Minimizing System Delays by Polling On ACK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 10.Read Mode Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Sequential Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2/26
M24C64, M24C32
Acknowledge in Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
INITIAL DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 7. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 8. Operating Conditions (M24Cxx-6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 9. Operating Conditions (M24Cxx-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 10. Operating Conditions (M24Cxx-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 11. AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 11.AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 12. Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 13. DC Characteristics (M24Cxx(1), M24Cxx-W6 and M24Cxx-W3) . . . . . . . . . . . . . . . . . . . 16
Table 14. DC Characteristics (M24Cxx-W6 and M24Cxx-W3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 15. DC Characteristics (M24Cxx-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 16. AC Characteristics (M24Cxx-6, M24Cxx-W6 and M24Cxx-W3) . . . . . . . . . . . . . . . . . . . 18
Table 17. AC Characteristics (M24Cxx-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 12.AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 13.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . . 20
Table 18. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data . . . . . . . . . . 20
Figure 14.SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline . . . . 21
Table 19. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width,
Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 15.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . . 22
Table 20. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data . . . . . . . . . . . . 22
Figure 16.UFDFPN8 (MLP8) – 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm. . . 23
Table 21. UFDFPN8 (MLP8) – 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm,
Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 22. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 23. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3/26
M24C64, M24C32
SUMMARY DESCRIPTION
These I2C-compatible electrically erasable programmable memory (EEPROM) devices are organized as 8192 x 8 bits (M24C64) and 4096 x 8 bits
(M24C32).
Figure 2. Logic Diagram
VCC
3
E0-E2
SCL
SDA
M24C64
M24C32
WC
VSS
AI01844B
I2C uses a two-wire serial interface, comprising a
bi-directional data line and a clock line. The devices carry a built-in 4-bit Device Type Identifier code
(1010) in accordance with the I2C bus definition.
The device behaves as a slave in the I2C protocol,
with all memory operations synchronized by the
serial clock. Read and Write operations are initiated by a Start condition, generated by the bus master. The Start condition is followed by a Device
Select Code and Read/Write bit (RW) (as described in Table 3.), terminated by an acknowledge bit.
When writing data to the memory, the device inserts an acknowledge bit during the 9th bit time,
following the bus master’s 8-bit transmission.
When data is read by the bus master, the bus
master acknowledges the receipt of the data byte
in the same way. Data transfers are terminated by
a Stop condition after an Ack for Write, and after a
NoAck for Read.
4/26
Table 2. Signal Names
E0, E1, E2
Chip Enable
SDA
Serial Data
SCL
Serial Clock
WC
Write Control
VCC
Supply Voltage
VSS
Ground
Power On Reset: VCC Lock-Out Write Protect
In order to prevent data corruption and inadvertent
Write operations during Power-up, a Power On
Reset (POR) circuit is included. At Power-up, the
internal reset is held active until VCC has reached
the Power On Reset (POR) threshold voltage, and
all operations are disabled – the device will not respond to any command. In the same way, when
VCC drops from the operating voltage, below the
Power On Reset (POR) threshold voltage, all operations are disabled and the device will not respond to any command.
A stable and valid VCC (as defined in Table 9. and
Table 10.) must be applied before applying any
logic signal.
Figure 3. DIP, SO, TSSOP and UFDFPN
Connections
M24C64
M24C32
E0
E1
E2
VSS
1
2
3
4
8
7
6
5
VCC
WC
SCL
SDA
AI01845C
Note: See PACKAGE MECHANICAL section for package dimensions, and how to identify pin-1.
M24C64, M24C32
SIGNAL DESCRIPTION
Serial Clock (SCL). This input signal is used to
strobe all data in and out of the device. In applications where this signal is used by slave devices to
synchronize the bus to a slower clock, the bus
master must have an open drain output, and a
pull-up resistor must be connected from Serial
Clock (SCL) to VCC. (Figure 4. indicates how the
value of the pull-up resistor can be calculated). In
most applications, though, this method of synchronization is not employed, and so the pull-up resistor is not necessary, provided that the bus master
has a push-pull (rather than open drain) output.
Serial Data (SDA). This bi-directional signal is
used to transfer data in or out of the device. It is an
open drain output that may be wire-OR’ed with
other open drain or open collector signals on the
bus. A pull up resistor must be connected from Se-
rial Data (SDA) to VCC. (Figure 4. indicates how
the value of the pull-up resistor can be calculated).
Chip Enable (E0, E1, E2). These input signals
are used to set the value that is to be looked for on
the three least significant bits (b3, b2, b1) of the 7bit Device Select Code. These inputs must be tied
to VCC or VSS, to establish the Device Select
Code.
Write Control (WC). This input signal is useful
for protecting the entire contents of the memory
from inadvertent write operations. Write operations are disabled to the entire memory array when
Write Control (WC) is driven High. When unconnected, the signal is internally read as VIL, and
Write operations are allowed.
When Write Control (WC) is driven High, Device
Select and Address bytes are acknowledged,
Data bytes are not acknowledged.
Figure 4. Maximum RL Value versus Bus Capacitance (CBUS) for an I2C Bus
VCC
Maximum RP value (kΩ)
20
16
RL
12
RL
SDA
MASTER
8
fc = 100kHz
4
fc = 400kHz
CBUS
SCL
CBUS
0
10
100
1000
CBUS (pF)
AI01665
5/26
M24C64, M24C32
Figure 5. I2C Bus Protocol
SCL
SDA
SDA
Input
START
Condition
SCL
1
2
SDA
MSB
SDA
Change
STOP
Condition
3
7
8
9
ACK
START
Condition
SCL
1
SDA
MSB
2
3
7
8
9
ACK
STOP
Condition
AI00792B
Table 3. Device Select Code
Device Type Identifier1
Device Select Code
Chip Enable Address2
RW
b7
b6
b5
b4
b3
b2
b1
b0
1
0
1
0
E2
E1
E0
RW
Note: 1. The most significant bit, b7, is sent first.
2. E0, E1 and E2 are compared against the respective external pins on the memory device.
Table 4. Most Significant Byte
b15
6/26
b14
b13
b12
b11
Table 5. Least Significant Byte
b10
b9
b8
b7
b6
b5
b4
b3
b2
b1
b0
M24C64, M24C32
MEMORY ORGANIZATION
The memory is organized as shown in Figure 6..
Figure 6. Block Diagram
WC
E0
E1
High Voltage
Generator
Control Logic
E2
SCL
SDA
I/O Shift Register
Data
Register
Y Decoder
Address Register
and Counter
1 Page
X Decoder
AI06899
7/26
M24C64, M24C32
DEVICE OPERATION
The device supports the I2C protocol. This is summarized in Figure 5.. Any device that sends data
on to the bus is defined to be a transmitter, and
any device that reads the data to be a receiver.
The device that controls the data transfer is known
as the bus master, and the other as the slave device. A data transfer can only be initiated by the
bus master, which will also provide the serial clock
for synchronization. The M24Cxx device is always
a slave in all communication.
Start Condition
Start is identified by a falling edge of Serial Data
(SDA) while Serial Clock (SCL) is stable in the
High state. A Start condition must precede any
data transfer command. The device continuously
monitors (except during a Write cycle) Serial Data
(SDA) and Serial Clock (SCL) for a Start condition,
and will not respond unless one is given.
Stop Condition
Stop is identified by a rising edge of Serial Data
(SDA) while Serial Clock (SCL) is stable and driven High. A Stop condition terminates communication between the device and the bus master. A
Read command that is followed by NoAck can be
followed by a Stop condition to force the device
into the Stand-by mode. A Stop condition at the
end of a Write command triggers the internal Write
cycle.
Acknowledge Bit (ACK)
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter, whether it be
bus master or slave device, releases Serial Data
(SDA) after sending eight bits of data. During the
9th clock pulse period, the receiver pulls Serial
Data (SDA) Low to acknowledge the receipt of the
eight data bits.
Data Input
During data input, the device samples Serial Data
(SDA) on the rising edge of Serial Clock (SCL).
For correct device operation, Serial Data (SDA)
must be stable during the rising edge of Serial
Clock (SCL), and the Serial Data (SDA) signal
must change only when Serial Clock (SCL) is driven Low.
Memory Addressing
To start communication between the bus master
and the slave device, the bus master must initiate
a Start condition. Following this, the bus master
sends the Device Select Code, shown in Table 3.
(on Serial Data (SDA), most significant bit first).
The Device Select Code consists of a 4-bit Device
Type Identifier, and a 3-bit Chip Enable “Address”
(E2, E1, E0). To address the memory array, the 4bit Device Type Identifier is 1010b.
Up to eight memory devices can be connected on
a single I2C bus. Each one is given a unique 3-bit
code on the Chip Enable (E0, E1, E2) inputs.
When the Device Select Code is received, the device only responds if the Chip Enable Address is
the same as the value on the Chip Enable (E0, E1,
E2) inputs.
The 8th bit is the Read/Write bit (RW). This bit is
set to 1 for Read and 0 for Write operations.
If a match occurs on the Device Select code, the
corresponding device gives an acknowledgment
on Serial Data (SDA) during the 9th bit time. If the
device does not match the Device Select code, it
deselects itself from the bus, and goes into Standby mode.
Table 6. Operating Modes
Mode
Current Address Read
RW bit
WC 1
Bytes
1
X
1
0
X
Random Address Read
Initial Sequence
START, Device Select, RW = 1
START, Device Select, RW = 0, Address
1
1
X
Sequential Read
1
X
≥1
Byte Write
0
VIL
1
START, Device Select, RW = 0
Page Write
0
VIL
≤ 32
START, Device Select, RW = 0
Note: 1. X = VIH or VIL.
8/26
reSTART, Device Select, RW = 1
Similar to Current or Random Address Read
M24C64, M24C32
Figure 7. Write Mode Sequences with WC=1 (data write inhibited)
WC
ACK
BYTE ADDR
ACK
BYTE ADDR
NO ACK
DATA IN
STOP
DEV SEL
START
BYTE WRITE
ACK
R/W
WC
ACK
DEV SEL
START
PAGE WRITE
ACK
BYTE ADDR
ACK
BYTE ADDR
NO ACK
DATA IN 1
DATA IN 2
R/W
WC (cont'd)
NO ACK
DATA IN N
STOP
PAGE WRITE
(cont'd)
NO ACK
AI01120C
Write Operations
Following a Start condition the bus master sends
a Device Select Code with the Read/Write bit
(RW) reset to 0. The device acknowledges this, as
shown in Figure 8., and waits for two address
bytes. The device responds to each address byte
with an acknowledge bit, and then waits for the
data byte.
Writing to the memory may be inhibited if Write
Control (WC) is driven High. Any Write instruction
with Write Control (WC) driven High (during a period of time from the Start condition until the end of
the two address bytes) will not modify the memory
contents, and the accompanying data bytes are
not acknowledged, as shown in Figure 7..
Each data byte in the memory has a 16-bit (two
byte wide) address. The Most Significant Byte (Table 4.) is sent first, followed by the Least Significant Byte (Table 5.). Bits b15 to b0 form the
address of the byte in memory.
When the bus master generates a Stop condition
immediately after the Ack bit (in the “10th bit” time
slot), either at the end of a Byte Write or a Page
Write, the internal Write cycle is triggered. A Stop
condition at any other time slot does not trigger the
internal Write cycle.
After the Stop condition, the delay tW, and the successful completion of a Write operation, the device’s internal address counter is incremented
automatically, to point to the next byte address after the last one that was modified.
During the internal Write cycle, Serial Data (SDA)
is disabled internally, and the device does not respond to any requests.
Byte Write
After the Device Select code and the address
bytes, the bus master sends one data byte. If the
addressed location is Write-protected, by Write
Control (WC) being driven High, the device replies
with NoAck, and the location is not modified. If, instead, the addressed location is not Write-protected, the device replies with Ack. The bus master
terminates the transfer by generating a Stop condition, as shown in Figure 8..
9/26
M24C64, M24C32
The bus master sends from 1 to 32 bytes of data,
each of which is acknowledged by the device if
Write Control (WC) is Low. If Write Control (WC) is
High, the contents of the addressed memory location are not modified, and each data byte is followed by a NoAck. After each byte is transferred,
the internal byte address counter (the 5 least significant address bits only) is incremented. The
transfer is terminated by the bus master generating a Stop condition.
Page Write
The Page Write mode allows up to 32 bytes to be
written in a single Write cycle, provided that they
are all located in the same ’row’ in the memory:
that is, the most significant memory address bits
(b12-b5 for M24C64, and b11-b5 for M24C32) are
the same. If more bytes are sent than will fit up to
the end of the row, a condition known as ‘roll-over’
occurs. This should be avoided, as data starts to
become overwritten in an implementation dependent way.
Figure 8. Write Mode Sequences with WC=0 (data write enabled)
WC
ACK
BYTE ADDR
ACK
BYTE ADDR
ACK
DATA IN
STOP
DEV SEL
START
BYTE WRITE
ACK
R/W
WC
ACK
DEV SEL
START
PAGE WRITE
ACK
BYTE ADDR
ACK
BYTE ADDR
ACK
DATA IN 1
DATA IN 2
R/W
WC (cont'd)
ACK
DATA IN N
STOP
PAGE WRITE
(cont'd)
ACK
AI01106C
10/26
M24C64, M24C32
Figure 9. Write Cycle Polling Flowchart using ACK
WRITE Cycle
in Progress
START Condition
DEVICE SELECT
with RW = 0
NO
ACK
Returned
YES
First byte of instruction
with RW = 0 already
decoded by the device
NO
Next
Operation is
Addressing the
Memory
YES
Send Address
and Receive ACK
ReSTART
NO
STOP
START
Condition
YES
DATA for the
WRITE Operation
DEVICE SELECT
with RW = 1
Continue the
WRITE Operation
Continue the
Random READ Operation
Minimizing System Delays by Polling On ACK
During the internal Write cycle, the device disconnects itself from the bus, and writes a copy of the
data from its internal latches to the memory cells.
The maximum Write time (tw) is shown in Table
16. and Table 17., but the typical time is shorter.
To make use of this, a polling sequence can be
used by the bus master.
The sequence, as shown in Figure 9., is:
–
–
–
AI01847C
Initial condition: a Write cycle is in progress.
Step 1: the bus master issues a Start condition
followed by a Device Select Code (the first
byte of the new instruction).
Step 2: if the device is busy with the internal
Write cycle, no Ack will be returned and the
bus master goes back to Step 1. If the device
has terminated the internal Write cycle, it
responds with an Ack, indicating that the
device is ready to receive the second part of
the instruction (the first byte of this instruction
having been sent during Step 1).
11/26
M24C64, M24C32
Figure 10. Read Mode Sequences
ACK
DATA OUT
STOP
START
DEV SEL
NO ACK
R/W
ACK
START
DEV SEL *
ACK
BYTE ADDR
ACK
ACK
DEV SEL *
ACK
R/W
NO ACK
R/W
ACK
BYTE ADDR
ACK
BYTE ADDR
ACK
DEV SEL *
START
START
ACK
R/W
ACK
DATA OUT
DATA OUT N
DATA OUT 1
DEV SEL *
NO ACK
STOP
START
DEV SEL
SEQUENTIAL
RANDOM
READ
BYTE ADDR
R/W
ACK
SEQUENTIAL
CURRENT
READ
ACK
START
RANDOM
ADDRESS
READ
STOP
CURRENT
ADDRESS
READ
ACK
DATA OUT 1
R/W
NO ACK
STOP
DATA OUT N
AI01105C
Note: 1. The seven most significant bits of the Device Select Code of a Random Read (in the 1st and 4th bytes) must be identical.
Read Operations
Read operations are performed independently of
the state of the Write Control (WC) signal.
After the successful completion of a Read operation, the device’s internal address counter is incremented by one, to point to the next byte address.
Random Address Read
A dummy Write is first performed to load the address into this address counter (as shown in Figure 10.) but without sending a Stop condition.
Then, the bus master sends another Start condition, and repeats the Device Select Code, with the
Read/Write bit (RW) set to 1. The device acknowledges this, and outputs the contents of the ad12/26
dressed byte. The bus master must not
acknowledge the byte, and terminates the transfer
with a Stop condition.
Current Address Read
For the Current Address Read operation, following
a Start condition, the bus master only sends a Device Select Code with the Read/Write bit (RW) set
to 1. The device acknowledges this, and outputs
the byte addressed by the internal address
counter. The counter is then incremented. The bus
master terminates the transfer with a Stop condition, as shown in Figure 10., without acknowledging the byte.
M24C64, M24C32
Sequential Read
This operation can be used after a Current Address Read or a Random Address Read. The bus
master does acknowledge the data byte output,
and sends additional clock pulses so that the device continues to output the next byte in sequence.
To terminate the stream of bytes, the bus master
must not acknowledge the last byte, and must
generate a Stop condition, as shown in Figure 10..
The output data comes from consecutive addresses, with the internal address counter automatically
incremented after each byte output. After the last
memory address, the address counter ‘rolls-over’,
and the device continues to output data from
memory address 00h.
Acknowledge in Read Mode
For all Read commands, the device waits, after
each byte read, for an acknowledgment during the
9th bit time. If the bus master does not drive Serial
Data (SDA) Low during this time, the device terminates the data transfer and switches to its Standby mode.
INITIAL DELIVERY STATE
The device is delivered with all bits in the memory
array set to 1 (each byte contains FFh).
13/26
M24C64, M24C32
MAXIMUM RATING
Stressing the device outside the ratings listed in
Table 7. may cause permanent damage to the device. These are stress ratings only, and operation
of the device at these, or any other conditions outside those indicated in the Operating sections of
this specification, is not implied. Exposure to Absolute Maximum Rating conditions for extended
periods may affect device reliability. Refer also to
the STMicroelectronics SURE Program and other
relevant quality documents.
Table 7. Absolute Maximum Ratings
Symbol
Parameter
TSTG
Storage Temperature
TLEAD
Lead Temperature during Soldering
Min.
Max.
Unit
–65
150
°C
See note 1
VIO
Input or Output range
–0.50
6.5
V
VCC
Supply Voltage
–0.50
6.5
V
VESD
Electrostatic Discharge Voltage (Human Body model) 2
–4000
4000
V
ECOPACK®
Note: 1. Compliant with JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST
the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU
2. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500Ω, R2=500Ω)
14/26
°C
7191395 specification, and
M24C64, M24C32
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC
and AC Characteristic tables that follow are derived from tests performed under the Measure-
ment Conditions summarized in the relevant
tables. Designers should check that the operating
conditions in their circuit match the measurement
conditions when relying on the quoted parameters.
Table 8. Operating Conditions (M24Cxx-6)
Symbol
VCC
TA
Parameter
Min.
Max.
Unit
Supply Voltage1
4.5
5.5
V
Ambient Operating Temperature
–40
85
°C
Min.
Max.
Unit
Supply Voltage
2.5
5.5
V
Ambient Operating Temperature (Device Grade 6)
–40
85
°C
Ambient Operating Temperature (Device Grade 3)
–40
125
°C
Min.
Max.
Unit
Supply Voltage
1.8
5.5
V
Ambient Operating Temperature
–40
85
°C
Note: 1. This range is Not for New Design, and will soon be replaced by the M24Cxx-W range.
Table 9. Operating Conditions (M24Cxx-W)
Symbol
VCC
Parameter
TA
Table 10. Operating Conditions (M24Cxx-R)
Symbol
VCC
TA
Parameter
15/26
M24C64, M24C32
Table 11. AC Measurement Conditions
Symbol
CL
Parameter
Min.
Load Capacitance
Max.
Unit
100
Input Rise and Fall Times
pF
50
ns
Input Levels
0.2VCC to 0.8VCC
V
Input and Output Timing Reference Levels
0.3VCC to 0.7VCC
V
Figure 11. AC Measurement I/O Waveform
Input Levels
Input and Output
Timing Reference Levels
0.8VCC
0.7VCC
0.3VCC
0.2VCC
AI00825B
Table 12. Input Parameters
Symbol
Parameter1,2
Test Condition
Min.
Max.
Unit
CIN
Input Capacitance (SDA)
8
pF
CIN
Input Capacitance (other pins)
6
pF
200
kΩ
ZWCL
WC Input Impedance
VIN < 0.3VCC
50
ZWCH
WC Input Impedance
VIN > 0.7VCC
500
tNS
Pulse width ignored
(Input Filter on SCL and SDA)
kΩ
200
ns
Note: 1. TA = 25°C, f = 400kHz
2. Sampled only, not 100% tested.
Table 13. DC Characteristics (M24Cxx(1), M24Cxx-W6 and M24Cxx-W3)
Symbol
Parameter
Test Condition
(in addition to those in Table 8.)
Min.
Max.
Unit
ILI
Input Leakage Current
(SCL, SDA, E2, E1, E0)
VIN = VSS or VCC
device in Stand-by mode
±2
µA
ILO
Output Leakage Current
VOUT = VSS or VCC, SDA in Hi-Z
±2
µA
ICC
Supply Current
VCC=5V, fc=400kHz (rise/fall time < 30ns)
2
mA
ICC1
Stand-by Supply Current
VIN = VSS or VCC, VCC = 5 V
10
µA
VIL
Input Low Voltage
–0.45
0.3VCC
V
VIH
Input High Voltage
0.7VCC
VCC+1
V
VOL
Output Low Voltage
0.4
V
IOL = 3 mA, VCC = 5 V
Note: 1. This range is Not for New Design, and will soon be replaced by the M24Cxx-W range.
16/26
M24C64, M24C32
Table 14. DC Characteristics (M24Cxx-W6 and M24Cxx-W3)
Symbol
Test Condition
(in addition to those in Table 9.)
Parameter
Min.
Max.
Unit
ILI
Input Leakage Current
(SCL, SDA, E2, E1, E0)
VIN = VSS or VCC
device in Stand-by mode
±2
µA
ILO
Output Leakage Current
VOUT = VSS or VCC, SDA in Hi-Z
±2
µA
ICC
Supply Current
VCC =2.5V, fc=400kHz (rise/fall time <
30ns)
1
mA
ICC1
Stand-by Supply Current
VIN = VSS or VCC, VCC = 2.5 V
2
µA
VIL
Input Low Voltage
–0.45
0.3VCC
V
VIH
Input High Voltage
0.7VCC
VCC+1
V
VOL
Output Low Voltage
0.4
V
Max.
Unit
IOL = 2.1 mA, VCC = 2.5 V
Table 15. DC Characteristics (M24Cxx-R)
Symbol
Parameter
Test Condition
(in addition to those in Table 10.)
Min.
ILI
Input Leakage Current
(SCL, SDA, E2, E1, E0)
VIN = VSS or VCC
device in Stand-by mode
±2
µA
ILO
Output Leakage Current
VOUT = VSS or VCC, SDA in Hi-Z
±2
µA
ICC
Supply Current
VCC =1.8V, fc=100kHz (rise/fall time <
30ns)
0.8
mA
ICC1
Stand-by Supply Current
VIN = VSS or VCC, VCC = 1.8 V
0.2
µA
VIL
Input Low Voltage
–0.45
0.3 VCC
V
VIH
Input High Voltage
0.7VCC
VCC+1
V
VOL
Output Low Voltage
0.2
V
IOL = 0.7 mA, VCC = 1.8 V
17/26
M24C64, M24C32
Table 16. AC Characteristics (M24Cxx-6, M24Cxx-W6 and M24Cxx-W3)
Test conditions specified in Table 11. and Table 8. or Table 9.
Symbol
Alt.
Parameter
Min.
Max.
Unit
fC
fSCL
Clock Frequency
400
kHz
tCHCL
tHIGH
Clock Pulse Width High
600
ns
tCLCH
tLOW
Clock Pulse Width Low
1300
ns
tDL1DL2 2
tF
tDXCX
SDA Fall Time
20
tSU:DAT
Data In Set Up Time
100
ns
tCLDX
tHD:DAT
Data In Hold Time
0
ns
tCLQX
tDH
Data Out Hold Time
200
ns
tAA
Clock Low to Next Data Valid (Access Time)
200
tCLQV
3
300
900
ns
ns
tCHDX 1
tSU:STA
Start Condition Set Up Time
600
ns
tDLCL
tHD:STA
Start Condition Hold Time
600
ns
tCHDH
tSU:STO
Stop Condition Set Up Time
600
ns
tDHDL
tBUF
Time between Stop Condition and Next Start Condition
1300
tW
Note: 1.
2.
3.
4.
tWR
Write Time
ns
5
or4
10
ms
For a reSTART condition, or following a Write cycle.
Sampled only, not 100% tested.
To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA.
The Write Time of 5 ms only applies to devices bearing the process letter “B” in the package marking (on the top side of the package), otherwise (for devices bearing the process letter “N”) the Write Time is 10 ms. For further details, please contact your nearest
ST sales office, and ask for a copy of the Product Change Notice PCEE0036.
Table 17. AC Characteristics (M24Cxx-R)
Test conditions specified in Table 11. and Table 10.
Symbol
Alt.
Parameter
Min.
Max.
Unit
fC
fSCL
Clock Frequency
400
kHz
tCHCL
tHIGH
Clock Pulse Width High
600
ns
tCLCH
tLOW
Clock Pulse Width Low
1300
ns
tDL1DL2 2
tF
tDXCX
SDA Fall Time
20
300
tSU:DAT
Data In Set Up Time
100
ns
tCLDX
tHD:DAT
Data In Hold Time
0
ns
tCLQX
tDH
Data Out Hold Time
200
ns
tCLQV 3
tAA
Clock Low to Next Data Valid (Access Time)
200
tCHDX 1
tSU:STA
Start Condition Set Up Time
600
ns
tDLCL
tHD:STA
Start Condition Hold Time
600
ns
tCHDH
tSU:STO
Stop Condition Set Up Time
600
ns
tDHDL
tBUF
Time between Stop Condition and Next Start Condition
1300
ns
tW
tWR
Write Time
900
10
ns
ns
ms
Note: 1. For a reSTART condition, or following a Write cycle.
2. Sampled only, not 100% tested.
3. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA.
18/26
M24C64, M24C32
Figure 12. AC Waveforms
tCHCL
tCLCH
SCL
tDLCL
SDA In
tCHDX
tCLDX
START
Condition
SDA
Input
SDA tDXCX
Change
tCHDH tDHDL
START
STOP
Condition Condition
SCL
SDA In
tCHDH
tW
STOP
Condition
Write Cycle
tCHDX
START
Condition
SCL
tCLQV
SDA Out
tCLQX
Data Valid
AI00795C
19/26
M24C64, M24C32
PACKAGE MECHANICAL
Figure 13. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline
E
b2
A2
A1
b
A
L
c
e
eA
eB
D
8
E1
1
PDIP-B
Note: Drawing is not to scale.
Table 18. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data
millimeters
inches
Symbol
Typ.
Min.
A
Typ.
Min.
5.33
A1
Max.
0.210
0.38
0.015
A2
3.30
2.92
4.95
0.130
0.115
0.195
b
0.46
0.36
0.56
0.018
0.014
0.022
b2
1.52
1.14
1.78
0.060
0.045
0.070
c
0.25
0.20
0.36
0.010
0.008
0.014
D
9.27
9.02
10.16
0.365
0.355
0.400
E
7.87
7.62
8.26
0.310
0.300
0.325
E1
6.35
6.10
7.11
0.250
0.240
0.280
e
2.54
–
–
0.100
–
–
eA
7.62
–
–
0.300
–
–
eB
L
20/26
Max.
10.92
3.30
2.92
3.81
0.430
0.130
0.115
0.150
M24C64, M24C32
Figure 14. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline
h x 45˚
A
C
B
CP
e
D
N
E
H
1
A1
α
L
SO-a
Note: Drawing is not to scale.
Table 19. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width,
Package Mechanical Data
millimeters
inches
Symbol
Typ.
Min.
Max.
A
1.35
A1
Min.
Max.
1.75
0.053
0.069
0.10
0.25
0.004
0.010
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
0.157
–
–
–
–
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
0.90
0.016
0.035
α
0°
8°
0°
8°
N
8
e
CP
1.27
Typ.
0.050
8
0.10
0.004
21/26
M24C64, M24C32
Figure 15. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline
D
8
5
c
E1
1
E
4
α
A1
A
L
A2
L1
CP
b
e
TSSOP8AM
Note: Drawing is not to scale.
Table 20. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data
mm
inches
Symbol
Typ.
Min.
A
0.050
0.150
0.800
1.050
b
0.190
c
0.090
A2
Typ.
Min.
1.200
A1
1.000
CP
Max.
0.0472
0.0020
0.0059
0.0315
0.0413
0.300
0.0075
0.0118
0.200
0.0035
0.0079
0.0394
0.100
0.0039
D
3.000
2.900
3.100
0.1181
0.1142
0.1220
e
0.650
–
–
0.0256
–
–
E
6.400
6.200
6.600
0.2520
0.2441
0.2598
E1
4.400
4.300
4.500
0.1732
0.1693
0.1772
L
0.600
0.450
0.750
0.0236
0.0177
0.0295
L1
1.000
0°
8°
α
22/26
Max.
0.0394
0°
8°
M24C64, M24C32
Figure 16. UFDFPN8 (MLP8) – 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm
e
D
b
L1
L3
E
E2
L
A
D2
ddd
A1
UFDFPN-01
Note: Drawing is not to scale.
Table 21. UFDFPN8 (MLP8) – 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm,
Package Mechanical Data
millimeters
inches
Symbol
A
Typ
Min
Max
Typ
Min
Max
0.55
0.50
0.60
0.022
0.020
0.024
0.00
0.05
0.000
0.002
0.20
0.30
0.008
0.012
0.061
0.065
A1
b
0.25
D
2.00
D2
0.079
1.55
ddd
E
0.010
1.65
0.05
3.00
E2
0.002
0.118
0.15
0.25
0.006
0.010
e
0.50
–
–
0.020
–
–
L
0.45
0.40
0.50
0.018
0.016
0.020
L1
0.15
0.006
L3
0.30
0.012
N
8
8
23/26
M24C64, M24C32
PART NUMBERING
Table 22. Ordering Information Scheme
Example:
M24C32
–
W MN 6
T
P
Device Type
M24 = I2C serial access EEPROM
Device Function
64 = 64 Kbit (8192 x 8)
32 = 32 Kbit (4096 x 8)
Operating Voltage
blank(2) = VCC = 4.5 to 5.5V
W = VCC = 2.5 to 5.5V
R = VCC = 1.8 to 5.5V
Package
BN = PDIP8
MN = SO8 (150 mil width)
DW = TSSOP8 (169 mil width)
MB = UFDFPN8 (MLP8)(3)
Device Grade
6 = Industrial: device tested with standard test flow over –40 to 85 °C
3 = Automotive: device tested with High Reliability Certified Flow(1) over –40 to 125 °C.
Option
blank = Standard Packing
T = Tape and Reel Packing
Plating Technology
blank = Standard SnPb plating
P or G = RoHS compliant
Note: 1. ST strongly recommends the use of the Automotive Grade devices for use in an automotive environment. The High Reliability Certified Flow (HRCF) is described in the quality note QNEE9801. Please ask your nearest ST sales office for a copy.
2. This range is Not for New Design, and will soon be replaced by the M24Cxx-W range.
3. The UFDFPN8 package is available in M24C32 devices only. It is not available in M24C64 devices.
For a list of available options (speed, package,
etc.) or for further information on any aspect of this
24/26
device, please contact your nearest ST Sales Office.
M24C64, M24C32
REVISION HISTORY
Table 23. Document Revision History
Date
Rev.
Description of Revision
22-Dec-1999
2.3
TSSOP8 package in place of TSSOP14 (pp 1, 2, OrderingInfo, PackageMechData).
28-Jun-2000
2.4
TSSOP8 package data corrected
31-Oct-2000
2.5
References to Temperature Range 3 removed from Ordering Information
Voltage range -S added, and range -R removed from text and tables throughout.
20-Apr-2001
2.6
Lead Soldering Temperature in the Absolute Maximum Ratings table amended
Write Cycle Polling Flow Chart using ACK illustration updated
References to PSDIP changed to PDIP and Package Mechanical data updated
16-Jan-2002
2.7
Test condition for ILI made more precise, and value of ILI for E2-E0 and WC added
-R voltage range added
02-Aug-2002
2.8
Document reformatted using new template.
TSSOP8 (3x3mm² body size) package (MSOP8) added.
5ms write time offered for 5V and 2.5V devices
04-Feb-2003
2.9
SO8W package removed. -S voltage range removed
27-May-2003
2.10
TSSOP8 (3x3mm² body size) package (MSOP8) removed
22-Oct-2003
3.0
Table of contents, and Pb-free options added. Minor wording changes in Summary
Description, Power-On Reset, Memory Addressing, Write Operations, Read Operations.
VIL(min) improved to -0.45V.
01-Jun-2004
4.0
Absolute Maximum Ratings for VIO(min) and VCC(min) improved. Soldering temperature
information clarified for RoHS compliant devices. Device Grade clarified
04-Nov-2004
5.0
Product List summary table added. Device Grade 3 added. 4.5-5.5V range is Not for New
Design. Some minor wording changes. AEC-Q100-002 compliance. tNS(max) changed.
VIL(min) is the same on all input pins of the device. ZWCL changed.
05-Jan-2005
6.0
UFDFPN8 package added. Small text changes.
25/26
M24C64, M24C32
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
ECOPACK is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
26/26
Similar pages