240pin DDR3 SDRAM Unbuffered DIMMs DDR3 SDRAM Unbuffered DIMMs Based on 2Gb M version HMT351U6MFR8C HMT351U7MFR8C ** Contents are subject to change without prior notice. Rev. 0.3 / Jan 2009 1 HMT351U6MFR8C HMT351U7MFR8C Revision History Revision No. History Draft Date Remark 0.1 Initial draft for internal review Sep. 2008 Preliminary 0.2 Modified Speed grade Nov. 2008 0.3 Added IDD Spec Jan. 2009 Rev. 0.3 / Jan 2009 2 HMT351U6MFR8C HMT351U7MFR8C Table of Contents 1. Description 1.1 Device Features and Ordering Information 1.1.1 Features 1.1.2 Ordering Information 1.2 Speed Grade & Key Parameters 1.3 Address Table 2. Pin Architecture 2.1 Pin Definition 2.2 Input/Output Functional Description 2.3 Pin Assignment 3. Functional Block Diagram 3.1 4GB, 512Mx64 Module(2Rank of x8) 3.2 4GB, 512Mx72 ECC Module(2Rank of x8) 4. Address Mirroring Feature 4.1 DRAM Pin Wiring for Mirroring 5. Absolute Maximum Ratings 5.1 Absolute Maximum DC Ratings 5.2 Operating Temperature Range 6. AC & DC Operating Conditions 6.1 Recommended DC Operating Conditions 6.2 DC & AC Logic Input Levels 6.2.1 For Single-ended Signals 6.2.2 For Differential Signals 6.2.3 Differential Input Cross Point 6.3 Slew Rate Definition 6.3.1 For Ended Input Signals 6.3.2 For Differential Input Signals 6.4 DC & AC Output Buffer Levels 6.4.1 Single Ended DC & AC Output Levels 6.4.2 Differential DC & AC Output Levels 6.4.3 Single Ended Output Slew Rate 6.4.4 Differential Ended Output Slew Rate 6.5 Overshoot/Undershoot Specification 6.6 Input/Output Capacitance & AC Parametrics 6.7 IDD Specifications & Measurement Conditions 7. Electrical Characteristics and AC Timing 7.1 Refresh Parameters by Device Density 7.2 DDR3 Standard speed bins and AC para 8. DIMM Outline Diagram 8.1 4GB, 512Mx64 Module(2Rank of x8) 8.2 4GB, 512Mx72 ECC Module(2Rank of x8) Rev. 0.3 / Jan 2009 3 HMT351U6MFR8C HMT351U7MFR8C 1. Description This Hynix unbuffered Dual In-Line Memory Module(DIMM) series consists of 2Gb M version. DDR3 SDRAMs in Fine Ball Grid Array(FBGA) packages on a 240 pin glass-epoxy substrate. This DDR3 Unbuffered DIMM series based on 2Gb M ver. provide a high performance 8 byte interface in 133.35mm width form factor of industry standard. It is suitable for easy interchange and addition. 1.1 Device Features & Ordering Information 1.1.1 Features • VDD=VDDQ=1.5V • VDDSPD=3.3V to 3.6V • Fully differential clock inputs (CK, /CK) operation • Differential Data Strobe (DQS, /DQS) • On chip DLL align DQ, DQS and /DQS transition with CK transition • DM masks write data-in at the both rising and falling edges of the data strobe • All addresses and control inputs except data, data strobes and data masks latched on the rising edges of the clock • Programmable CAS latency 5, 6, 7, 8, 9, 10, and (11) supported • Programmable burst length 4/8 with both nibble sequential and interleave mode • BL switch on the fly • 8banks • 8K refresh cycles /64ms • DDR3 SDRAM Package: JEDEC standard 82ball FBGA(x4/x8)) with support balls • Driver strength selected by EMRS • Dynamic On Die Termination supported • Asynchronous RESET pin supported • ZQ calibration supported • TDQS (Termination Data Strobe) supported (x8 only) • Programmable additive latency 0, CL-1, and CL-2 sup ported • Write Levelization supported • Programmable CAS Write latency (CWL) = 5, 6, 7, 8 • On Die Thermal Sensor supported (JEDEC optional) Rev. 0.3 / Jan 2009 • Auto Self Refresh supported 4 HMT351U6MFR8C HMT351U7MFR8C 1.1.2 Ordering Information Part Name # of # of DRAMs ranks Density Org. HMT351U6MFR8C-S6/G7/H9 4GB 512Mx64 16 HMT351U7MFR8C-S6/G7/H9 4GB 512Mx72 18 Rev. 0.3 / Jan 2009 Materials ECC TS 2 Halogen-free None No 2 Halogen-free Yes ECC 5 HMT351U6MFR8C HMT351U7MFR8C 1.2 Speed Grade & Key Parameters MT/S DDR3-800 DDR3-1066 DDR3-1333 Grade -S6 -G7 -H9 tCK(min) 2.5 1.875 1.5 ns CAS Latency 6 7 9 tCK tRCD(min) 15 13.125 13.5 ns tRP(min) 15 13.125 13.5 ns tRAS(min) 37.5 37.5 36 ns tRC(min) 52.5 50.625 49.5 ns CL-tRCD-tRP 6-6-6 7-7-7 9-9-9 tCK Unit 1.3 Address Table HMT351U6MFR8C HMT351U7MFR8C Organization 512M x 64 512M x 72 Refresh Method 8K/64ms 8K/64ms Row Address A0-A14 A0-A14 Column Address A0-A9 A0-A9 Bank Address BA0-BA2 BA0-BA2 Page Size 1KB 1KB # of Rank 2 2 # of Device 16 18 Rev. 0.3 / Jan 2009 6 HMT351U6MFR8C HMT351U7MFR8C 2. Pin Architecture 2.1 Pin Definition Pin Name Description Pin Name Description I2C serial bus clock for EEPROM A0–A14 SDRAM address bus SCL BA0–BA2 SDRAM bank select SDA I2C serial bus data line for EEPROM SA0–SA2 I2C slave address select for EEPROM RAS SDRAM row address strobe CAS SDRAM column address strobe WE SDRAM write enable VDDQ* DIMM Rank Select Lines VREFDQ SDRAM I/O reference supply VREFCA SDRAM command/address reference supply S0–S1 CKE0–CKE1 SDRAM clock enable lines ODT0–ODT1 On-die termination control lines DQ0–DQ63 CB0–CB7 DIMM memory data bus DIMM ECC check bits VDD* VSS VDDSPD NC SDRAM core power supply SDRAM I/O Driver power supply Power supply return (ground) Serial EEPROM positive power supply Spare pins (no connect) DQS0–DQS8 SDRAM data strobes (positive line of differential pair) TEST Memory bus analysis tools (unused on memory DIMMS) DQS0–DQS8 SDRAM data strobes (negative line of differential pair) RESET Set DRAMs to Known State DM0–DM8 SDRAM data masks/high data strobes (x8-based x72 DIMMs) VTT SDRAM I/O termination supply CK0–CK1 SDRAM clocks (positive line of differential pair) RFU Reserved for future use CK0–CK1 SDRAM clocks (negative line of differential pair) - - *The VDD and VDDQ pins are tied common to a single power-plane on these designs Rev. 0.3 / Jan 2009 7 HMT351U6MFR8C HMT351U7MFR8C 2.2 Input/Output Functional Description Symbol Type Polarity Function CK0–CK1 CK0–CK1 SSTL Differential crossing CK and CK are differential clock inputs. All the DDR3 SDRAM addr/cntl inputs are sampled on the crossing of positive edge of CK and negative edge of CK. Output (read) data is reference to the crossing of CK and CK (Both directions of crossing). CKE0–CKE1 SSTL Active High Activates the SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low initiates the Power Down mode, or the Self Refresh mode. S0–S1 SSTL Active Low Enables the associated SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. This signal provides for external rank selection on systems with multiple ranks. RAS, CAS, WE SSTL Active Low RAS, CAS, and WE (ALONG WITH S) define the command being entered. ODT0–ODT1 SSTL Active High When high, termination resistance is enabled for all DQ, DQS, DQS and DM pins, assuming this function is enabled in the Mode Register 1 (MR1). VREFDQ Supply Reference voltage for SSTL15 I/O inputs. VREFCA Supply Reference voltage for SSTL 15 command/address inputs. VDDQ Supply Power supply for the DDR3 SDRAM output buffers to provide improved noise immunity. For all current DDR3 unbuffered DIMM designs, VDDQ shares the same power plane as VDD pins. BA0–BA2 SSTL — Selects which SDRAM bank of eight is activated. During a Bank Activate command cycle, Address input defines the row address (RA0–RA15). A0–A13 SSTL — DQ0–DQ63, CB0–CB7 SSTL — DM0–DM8 SSTL VDD, VSS Supply Rev. 0.3 / Jan 2009 Active High During a Read or Write command cycle, Address input defines the column address. In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is selected and BA0, BA1, BA2 defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a Precharge command cycle, AP is used in conjunction with BA0, BA1, BA2 to control which bank(s) to precharge. If AP is high, all banks will be precharged regardless of the state of BA0, BA1 or BA2. If AP is low, BA0, BA1 and BA2 are used to define which bank to precharge. A12(BC) is sampled during READ and WRITE commands to determine if burst chop (on-the-fly) will be performed (HIGH, no burst chop; LOW, burst chopped). Data and Check Bit Input/Output pins. DM is an input mask signal for write data. Input data is masked when DM is sampled High coincident with that input data during a write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches the DQ and DQS loading. Power and ground for the DDR3 SDRAM input buffers, and core logic. VDD and VDDQ pins are tied to VDD/VDDQ planes on these modules. 8 HMT351U6MFR8C HMT351U7MFR8C Symbol Type Polarity DQS0–DQS8 DQS0–DQS8 SSTL Differential crossing Function Data strobe for input and output data. SA0–SA2 — These signals are tied at the system planar to either VSS or VDDSPD to configure the serial SPD EEPROM address range. SDA — This bidirectional pin is used to transfer data into or out of the SPD EEPROM. An external resistor may be connected from the SDA bus line to VDDSPD to act as a pullup on the system board. SCL — This signal is used to clock data into and out of the SPD EEPROM. An external resistor may be connected from the SCL bus time to VDDSPD to act as a pullup on the system board. VDDSPD Power supply for SPD EEPROM. This supply is separate from the VDD/VDDQ power plane. EEPROM supply is operable from 3.0V to 3.6V. Supply 2.3 Pin Assignment Front Side(left 1–60) Pin x64 # Non-ECC x72 ECC Back Side(right 121–180) Front Side(left 61–120) Back Side(right 181–240) Pin x64 # Non-ECC x72 ECC Pin # x64 Non-ECC x72 ECC Pin # x64 Non-ECC x72 ECC VSS VSS 61 A2 A2 181 A1 A1 1 VREFDQ 2 VSS VSS 122 DQ4 DQ4 62 VDD VDD 182 VDD VDD 3 DQ0 DQ0 123 DQ5 DQ5 63 CK1 CK1 183 VDD VDD 4 DQ1 DQ1 124 VSS VSS 64 CK1 CK1 184 CK0 CK0 5 VSS VSS 125 DM0 DM0 65 VDD VDD 185 CK0 CK0 6 DQS0 DQS0 126 NC NC 66 VDD VDD 186 VDD VDD 7 DQS0 DQS0 127 VSS VSS 67 VREFCA VREFCA 187 NC NC 8 VSS VSS 128 DQ6 DQ6 68 NC NC 188 A0 A0 9 DQ2 DQ2 129 DQ7 DQ7 69 VDD VDD 189 VDD VDD BA12 VREFDQ 121 10 DQ3 DQ3 130 VSS VSS 70 A10 A10 190 BA12 11 VSS VSS 131 DQ12 DQ12 71 BA02 BA02 191 VDD VDD 12 DQ8 DQ8 132 DQ13 DQ13 72 VDD VDD 192 RAS RAS 13 DQ9 DQ9 133 VSS VSS 73 WE WE 193 S0 S0 14 VSS VSS 134 DM1 DM1 74 CAS CAS 194 VDD VDD 15 DQS1 DQS1 135 NC NC 75 VDD VDD 195 ODT0 ODT0 16 DQS1 DQS1 136 VSS VSS 76 S1 S1 196 A13 A13 NC = No Connect; RFU = Reserved Future Use 1. NC pins should not be connected to anything on the DIMM, including bussing within the NC group. 2. Address pins A3–A8 and BA0 and BA1 can be mirrored or not mirrored. Please refer to Section 4.1 for more information on mirrored addresses. Rev. 0.3 / Jan 2009 9 HMT351U6MFR8C HMT351U7MFR8C Front Side(left 1–60) Back Side(right 121–180) Front Side(left 61–120) Back Side(right 181–240) Pin x64 # Non-ECC x72 ECC Pin x64 # Non-ECC x72 ECC Pin # x64 Non-ECC x72 ECC Pin # x64 Non-ECC x72 ECC 17 VSS VSS 137 DQ14 DQ14 77 ODT1 ODT1 197 VDD VDD 18 DQ10 DQ10 138 DQ15 DQ15 78 VDD VDD 198 NC NC 19 DQ11 DQ11 139 VSS VSS 79 NC NC 199 VSS VSS 20 VSS VSS 140 DQ20 DQ20 80 VSS VSS 200 DQ36 DQ36 21 DQ16 DQ16 141 DQ21 DQ21 81 DQ32 DQ32 201 DQ37 DQ37 22 DQ17 DQ17 142 VSS VSS 82 DQ33 DQ33 202 VSS VSS 23 VSS VSS 143 DM2 DM2 83 VSS VSS 203 DM4 DM4 24 DQS2 DQS2 144 NC NC 84 DQS4 DQS4 204 NC NC 25 DQS2 DQS2 145 VSS VSS 85 DQS4 DQS4 205 VSS VSS 26 VSS VSS 146 DQ22 DQ22 86 VSS VSS 206 DQ38 DQ38 27 DQ18 DQ18 147 DQ23 DQ23 87 DQ34 DQ34 207 DQ39 DQ39 28 DQ19 DQ19 148 VSS VSS 88 DQ35 DQ35 208 VSS VSS 29 VSS VSS 149 DQ28 DQ28 89 VSS VSS 209 DQ44 DQ44 30 DQ24 DQ24 150 DQ29 DQ29 90 DQ40 DQ40 210 DQ45 DQ45 31 DQ25 DQ25 151 VSS VSS 91 DQ41 DQ41 211 VSS VSS 32 VSS VSS 152 DM3 DM3 92 VSS VSS 212 DM5 DM5 33 DQS3 DQS3 153 NC NC 93 DQS5 DQS5 213 NC NC 34 DQS3 DQS3 154 VSS VSS 94 DQS5 DQS5 214 VSS VSS 35 VSS VSS 155 DQ30 DQ30 95 VSS VSS 215 DQ46 DQ46 36 DQ26 DQ26 156 DQ31 DQ31 96 DQ42 DQ42 216 DQ47 DQ47 37 DQ27 DQ27 157 VSS VSS 97 DQ43 DQ43 217 VSS VSS 38 VSS VSS 158 NC CB4 98 VSS VSS 218 DQ52 DQ52 39 NC CB0 159 NC CB5 99 DQ48 DQ48 219 DQ53 DQ53 40 NC CB1 160 VSS VSS 100 DQ49 DQ49 220 VSS VSS 41 VSS VSS 161 DM8 DM8 101 VSS VSS 221 DM6 DM6 42 NC DQS8 162 NC NC 102 DQS6 DQS6 222 NC NC 43 NC DQS8 163 VSS VSS 103 DQS6 DQS6 223 VSS VSS 44 VSS VSS 164 NC CB6 104 VSS VSS 224 DQ54 DQ54 45 NC CB2 165 NC CB7 105 DQ50 DQ50 225 DQ55 DQ55 46 NC CB3 166 VSS VSS 106 DQ51 DQ51 226 VSS VSS 47 VSS VSS 167 NC NC 107 VSS VSS 227 DQ60 DQ60 NC = No Connect; RFU = Reserved Future Use 1. NC pins should not be connected to anything on the DIMM, including bussing within the NC group. 2. Address pins A3–A8 and BA0 and BA1 can be mirrored or not mirrored. Please refer to Section 4.1 for more information on mirrored addresses. Rev. 0.3 / Jan 2009 10 HMT351U6MFR8C HMT351U7MFR8C Front Side(left 1–60) Pin x64 # Non-ECC 48 x72 ECC NC NC Back Side(right 121–180) Front Side(left 61–120) Back Side(right 181–240) Pin x64 # Non-ECC x72 ECC Pin # x64 Non-ECC x72 ECC Pin # x64 Non-ECC x72 ECC 168 Reset 108 DQ56 DQ56 228 DQ61 DQ61 109 DQ57 DQ57 229 VSS VSS Reset KEY KEY 49 NC NC 169 CKE1/NC CKE1/NC 110 VSS VSS 230 DM7 DM7 50 CKE0 CKE0 170 VDD VDD 111 DQS7 DQS7 231 NC NC 51 VDD VDD 171 NC NC 112 DQS7 DQS7 232 VSS VSS 52 BA2 BA2 172 NC NC 113 VSS VSS 233 DQ62 DQ62 53 NC NC 173 VDD VDD 114 DQ58 DQ58 234 DQ63 DQ63 54 VDD VDD 174 A12 A12 115 DQ59 DQ59 235 VSS VSS 55 All All 175 A9 A9 116 VSS VSS 236 VDDSPD VDDSPD 56 A72 A72 176 VDD VDD 117 SA0 SA0 237 SA1 SA1 57 VDD VDD 177 A82 A82 118 SCL SCL 238 SDA SDA 58 A52 A52 178 A62 A62 119 SA2 SA2 239 VSS VSS 59 A42 A42 179 VDD VDD 120 VTT VTT 240 VTT VTT 60 VDD VDD 180 A32 A32 NC = No Connect; RFU = Reserved Future Use 1. NC pins should not be connected to anything on the DIMM, including bussing within the NC group. 2. Address pins A3–A8 and BA0 and BA1 can be mirrored or not mirrored. Please refer to Section 4.1 for more information on mirrored addresses. Rev. 0.3 / Jan 2009 11 HMT351U6MFR8C HMT351U7MFR8C 3.1 4GB, 512Mx64 Module(2Rank of x8) S1 S0 DQS0 DQS0 DM0 DQS4 DQS4 DM4 DM DQ0 DQ1 DQ2 DQ3 I/O I/O I/O I/O 0 1 2 3 DQ4 DQ5 DQ6 DQ7 I/O I/O I/O I/O 4 5 6 7 CS DQS DM I/O I/O I/O I/O 0 1 2 3 DQ12 DQ13 DQ14 DQ15 I/O 4 I/O 5 I/O 6 I/O 7 DM DQS3 DQS3 DM3 I/O I/O I/O I/O 0 1 2 3 DQ20 DQ21 DQ22 DQ23 I/O I/O I/O I/O 4 5 6 7 DM BA0–BA2 A0–A15 CKE1 CKE0 RAS CAS WE ODT0 ODT1 CK0 CK0 CK1 CK1 RESET DQ24 DQ25 DQ26 DQ27 I/O I/O I/O I/O 0 1 2 3 DQ28 DQ29 DQ30 DQ31 I/O I/O I/O I/O 4 5 6 7 I/O 1 I/O 2 I/O 3 D0 CS DQS D8 ZQ CS DQS I/O 5 I/O 6 I/O 7 DQS DM I/O I/O I/O I/O D1 0 1 2 3 ZQ CS DQS CS DQS DQS D2 ZQ CS DQS DM I/O I/O I/O I/O 0 1 2 3 I/O I/O I/O I/O 4 5 6 7 DQS D3 ZQ DM I/O I/O I/O I/O 0 1 2 3 I/O I/O I/O I/O 4 5 6 7 ZQ CS DQS I/O I/O I/O I/O DQ40 DQ41 DQ42 DQ43 DM I/O 0 I/O 1 I/O 2 I/O 3 DQ44 DQ45 DQ46 DQ47 I/O 4 I/O 5 I/O 6 I/O 7 DQ48 DQ49 DQ50 DQ51 I/O 0 I/O 1 I/O 2 I/O 3 DQ52 DQ53 DQ54 DQ55 I/O I/O I/O I/O DQ56 DQ57 DQ58 DQ59 I/O I/O I/O I/O 0 1 2 3 DQ60 DQ61 I/O I/O I/O I/O 4 5 6 7 ZQ CS DQS ZQ CS DQS D11 ZQ BA0–BA2: SDRAMs D0–D15 Serial PD A0-A15: SDRAMs D0–D15 SCL CKE: SDRAMs D8–D15 WP CKE: SDRAMs D0–D7 A0 A1 A2 RAS: SDRAMs D0–D15 CAS: SDRAMs D0–D15 SA0 SA1 SA2 WE: SDRAMs D0–D15 VDDSPD ODT: SDRAMs D0–D7 VDD/VDDQ ODT: SDRAMs D8–D15 VREFDQ CK: SDRAMs D0–D7 CK: SDRAMs D0–D7 VSS CK: SDRAMs D8–D15 CK: SDRAMs D8–D15 VREFCA DQ62 DQ63 DQS DM I/O 0 I/O 1 I/O 2 I/O 3 I/O I/O I/O I/O DQS ZQ CS DQS DQS D13 4 5 6 7 DM DQS D12 4 5 6 7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O I/O I/O I/O CS ZQ CS I/O 0 I/O 1 I/O 2 D6 DQS DQS D14 I/O 3 4 5 6 7 DM DQS D5 ZQ DQS7 DQS7 DM7 DQS DQS D4 4 5 6 7 DM DQS ZQ CS DQS DQS6 DQS6 DM6 D10 CS DQS DQ36 DQ37 DQ38 DQ39 DQS D9 I/O 7 DM I/O 0 I/O 1 I/O 2 I/O 3 DQS5 DQS5 DM5 I/O 4 I/O 5 I/O 6 ZQ DQ32 DQ33 DQ34 DQ35 DQS I/O 4 DQS2 DQS2 DM2 DQ16 DQ17 DQ18 DQ19 DM I/O 0 DQS1 DQS1 DM1 DQ8 DQ9 DQ10 DQ11 DQS CS DQS DQS I/O I/O I/O I/O DM I/O I/O I/O I/O D7 ZQ 4 5 6 7 0 1 2 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ CS DQS DQS D15 ZQ Notes: 1. DQ-to-I/O wiring is shown as recommended but may be changed. 2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown. 3. DQ,DM,DQS,DQS resistors;Refer to associated topology diagram. SPD 4. Refer to Section 3.1 of this document for D0–D15 details on address mirroring. D0–D15 5. For each DRAM, a unique ZQ resistor is connected to ground.The ZQ resistor is D0–D15 240ohm+-1% 6. One SPD exists per module. D0–D15 SDA RESET:SDRAMs D0-D3 Rev. 0.3 / Jan 2009 12 HMT351U6MFR8C HMT351U7MFR8C 3.2 4GB, 512Mx72 Module(2Rank of x8) S1 S0 DQS0 DQS0 DM0 DQS4 DQS4 DM4 DM CS DQS DQS I/O 0 I/O 1 D0 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQS1 DQS1 DM1 DM DQS2 DQS2 DM2 DQS3 DQS3 DM3 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DM CS DQS DQS I/O 0 I/O 1 D2 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DM CS DQS DQS I/O 0 I/O 1 D11 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM CS DQS DQS I/O 0 I/O 1 D3 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM CS DQS DQS I/O 0 I/O 1 D12 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 D1 ZQ ZQ DQS8 DQS8 DM8 DM CS DQS DQS I/O 0 I/O 1 D4 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 DM CS DQS DQS I/O 0 I/O 1 D5 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DM CS DQS DQS I/O 0 I/O 1 D6 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 DM CS DQS DQS I/O 0 I/O 1 D7 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS ZQ DQS5 DQS5 DM5 DM CS DQS DQS I/O 0 I/O 1 D10 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 ZQ DQS6 DQS6 DM6 ZQ DQS7 DQS7 DM7 ZQ ZQ SPD(TS integrated) SCL DM CS DQS DQS I/O 0 I/O 1 D8 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CB0 CB1 CB2 CB3 CB4 CB5 CB6 CB7 BA0–BA2 A0–A15 CKE0 CKE1 RAS CAS WE CS DQS DQS DM CS DQS DQS I/O 0 I/O 1 D9 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ ZQ BA0-BA2: SDRAMs D0–D17 A0-A15: SDRAMs D0–D17 CKE: SDRAMs D0–D8 CKE: SDRAMs D9–D17 RAS: SDRAMs D0–D17 CAS: SDRAMs D0–D17 WE: SDRAMs D0–D17 Rev. 0.3 / Jan 2009 DM CS DQS DQS I/O 0 I/O 1 D17 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 EVENT EVENT ZQ D14 ZQ D15 ZQ D16 ZQ SPD VDD/VDDQ D0–D17 SDA VREFDQ D0–D17 A0 A1 A2 Vss D0–D17 SA0 SA1 SA2 VREFCA D0–D17 ZQ ODT0 ODT1 CK0 CK0 CK1 CK1 RESET VDDSPD D13 ODT: SDRAMs D0–D8 ODT: SDRAMs D9–D17 CK: SDRAMs D0–D8 CK: SDRAMs D0–D8 CK: SDRAMs D9–D17 CK: SDRAMs D9–D17 RESET:SDRAMs D0-D17 Notes: 1. DQ-to-I/O wiring is shown as recommended but may be changed. 2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown. 3. DQ,CB,DM/DQS/DQS resistors;Refer to associated topology diagram. 4. Refer to Section 3.1 of this document for details on address mirroring. 5. For each DRAM, a unique ZQ resistor is connected to ground.The ZQ resistor is 240ohm+-1% 6. One SPD exists per module. 13 HMT351U6MFR8C HMT351U7MFR8C 4. Address Mirroring Feature There is a via grid located under the SDRAMs for wiring the CA signals (address, bank address, command, and control lines) to the SDRAM pins. The length of the traces from the via to the SDRAMs places limitations on the bandwidth of the module. The shorter these traces, the higher the bandwidth. To extend the bandwidth of the CA bus for DDR3 modules, a scheme was defined to reduce the length of these traces.The pins on the SDRAM are defined in a manner that allows for these short trace lengths. The CA bus pins in Columns 2 and 8, ignoring the mechanical support pins, do not have any special functions (secondary functions). This allows the most flexibility with these pins. These are address pins A3, A4, A5, A6, A7, A8 and bank address pins BA0 and BA1. Refer to Table . Rank 0 SDRAM pins are wired straight, with no mismatch between the connector pin assignment and the SDRAM pin assignment. Some of the Rank 1 SDRAM pins are cross wired as defined in the table. Pins not listed in the table are wired straight. 4.1 DRAM Pin Wiring for Mirroring Connector Pin SDRAM Pin Rank 0 Rank 1 A3 A3 A4 A4 A4 A3 A5 A5 A6 A6 A6 A5 A7 A7 A8 A8 A8 A7 BA0 BA0 BA1 BA1 BA1 BA0 <Table 4.1: SDRAM Pin Wiring for Mirroring > The table 4.1 illustrates the wiring in both the mirrored and non-mirrored case. The lengths of the traces to the SDRAM pins, is obviously shorter. The via grid is smaller as well. Rev. 0.3 / Jan 2009 14 HMT351U6MFR8C HMT351U7MFR8C No Mirroring Mirroring < Figure 4.1: Wiring Differences for Mirrored and Non-Mirrored Addresses > Since the cross-wired pins have no secondary functions, there is no problem in normal operation. Any data written is read the same way. There are limitations however. When writing to the internal registers with a "load mode" operation, the specific address is required. This requires the controller to know if the rank is mirrored or not. This requires a few rules. Mirroring is done on 2 rank modules and can only be done on the second rank. There is not a requirement that the second rank be mirrored. There is a bit assignment in the SPD that indicates whether the module has been designed with the mirrored feature or not. See the DDR3 UDIMM SPD specification for these details. The controller must read the SPD and have the capability of de-mirroring the address when accessing the second rank. Rev. 0.3 / Jan 2009 15 HMT351U6MFR8C HMT351U7MFR8C 5. ABSOLUTE MAXIMUM RATINGS 5.1 Absolute Maximum DC Ratings Symbol Parameter VDD VDDQ VIN, VOUT TSTG Rating Units Notes Voltage on VDD pin relative to Vss - 0.4 V ~ 1.975 V V ,3 Voltage on VDDQ pin relative to Vss - 0.4 V ~ 1.975 V V ,3 Voltage on any pin relative to Vss - 0.4 V ~ 1.975 V V -55 to +100 ℃ ℃ Storage Temperature ,2 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. 5.2 DRAM Component Operating Temperature Range Symbol TOPER Parameter Rating Units Notes Normal Temperature Range 0 to 85 ℃ ,2 Extended Temperature Range 85 to 95 ℃ 1,3 1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions 3. Some applications require operation of the DRAM in the Extended Temperature Range between 85°… and 95°… case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a) Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. (This double refresh requirement may not apply for some devices.) It is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range. Please refer to supplier data sheet and/ or the DIMM SPD for option avail ability. b) If Self-Refresh operation is required in the Extended Temperature Range, than it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0band MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b). Rev. 0.3 / Jan 2009 16 HMT351U6MFR8C HMT351U7MFR8C 6. AC & DC Operating Conditions 6.1 Recommended DC Operating Conditions Symbol Parameter VDD VDDQ Rating Units Notes 1.575 V 1,2 1.575 V 1,2 Min. Typ. Max. Supply Voltage 1.425 1.500 Supply Voltage for Output 1.425 1.500 1. Under all conditions, VDDQ must be less than or equal to VDD. 2. VDDQ tracks with VDD. AC parameters are measured with VDD abd VDDQ tied together. 6.2 DC & AC Logic Input Levels 6.2.1 DC & AC Logic Input Levels for Single-Ended Signals DDR3-800, DDR3-1066, DDR3-1333 Symbol Parameter Unit Notes - V 1, 2 Vref - 0.100 V 1, 2 - V 1, 2 Vref - 0.175 V 1, 2 Min Max Vref + 0.100 VIH(DC) DC input logic high VIL(DC) DC input logic low VIH(AC) AC input logic high VIL(AC) AC input logic low VRefDQ(DC) Reference Voltage for DQ, DM inputs 0.49 * VDD 0.51 * VDD V 3, 4 VRefCA(DC) Reference Voltage for ADD, CMD inputs 0.49 * VDD 0.51 * VDD V 3, 4 VTT Termination voltage for DQ, DQS outputs VDDQ/2 - TBD VDDQ/2 + TBD V Vref + 0.175 1. For DQ and DM, Vref = VrefDQ. For input ony pins except RESET#, Vref = VrefCA. 2. The “t.b.d.” entries might change based on overshoot and undershoot specification. 3. The ac peak noise on VRef may not allow VRef to deviate from VRef(DC) by more than +/-1% VDD (for reference: approx. +/- 15 mV). For reference: approx. VDD/2 +/- 15 mV. The dc-tolerance limits and ac-noise limits for the reference voltages VRefCA and VRefDQ are illustrated in figure 6.2.1. It shows a valid reference voltage VRef(t) as a function of time. (VRef stands for VRefCA and VRefDQ likewise).VRef(DC) is the linear average of VRef(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements in Table 1. Furthermore VRef(t) may temporarily deviate from VRef(DC) by no more than +/- 1% VDD. Rev. 0.3 / Jan 2009 17 HMT351U6MFR8C HMT351U7MFR8C voltage VDD VRef(t) VRef ac-noise VRef(DC)max VRef(DC) VDD/2 VRef(DC)min VSS time < Figure 6.2.1: Illustration of Vref(DC) tolerance and Vref AC-noise limits > The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VRef. "VRef " shall be understood as VRef(DC), as defined in Figure 6.2.1 This clarifies, that dc-variations of VRef affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VRef(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VRef ac-noise. Timing and voltage effects due to ac-noise on VRef up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings. 6.2.2 DC & AC Logic Input Levels for Differential Signals Symbol Parameter VIHdiff Differential input logic high VILdiff Differential input logic low DDR3-800, DDR3-1066, DDR3-1333 Unit Notes - V 1 - 0.200 V 1 Min Max + 0.200 Note1: Refer to “Overshoot and Undershoot Specification section 6.5 on 26 page Rev. 0.3 / Jan 2009 18 HMT351U6MFR8C HMT351U7MFR8C 6.2.3 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK# and DQS, DQS#) must meet the requirements in Table 6.2.3 The differential input cross point voltage VIX is measured from the actual cross point of true and complement signal to the midlevel between of VDD and VSS. VDD CK#, DQS# VIX VDD/2 VIX VIX CK, DQS VSS < Figure 6.2.3 Vix Definition > DDR3-800, DDR3-1066, DDR3-1333 Symbol VIX Parameter Differential Input Cross Point Voltage relative to VDD/2 Unit Min Max - 150 + 150 Notes mV < Table 6.2.3: Cross point voltage for differential input signals (CK, DQS) > Rev. 0.3 / Jan 2009 19 HMT351U6MFR8C HMT351U7MFR8C 6.3 Slew Rate Definitions 6.3.1 For Single Ended Input Signals - Input Slew Rate for Input Setup Time (tIS) and Data Setup Time (tDS) Setup (tIS and tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VRef and the first crossing of VIH(AC)min. Setup (tIS and tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VRef and the first crossing of VIL(AC)max. - Input Slew Rate for Input Hold Time (tIH) and Data Hold Time (tDH) Hold nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VRef. Hold (tIH and tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VRef. Measured Description Input slew rate for rising edge Min Max Vref VIH(AC)min Input slew rate for falling edge Vref VIL(AC)max Input slew rate for rising edge VIL(DC)max Vref Input slew rate for falling edge VIH(DC)min Vref Defined by Applicable for VIH(AC)min-Vref Delta TRS Vref-VIL(AC)max Setup (tIS, tDS) Delta TFS Vref-VIL(DC)max Delta TFH VIH(DC)min-Vref Hold (tIH, tDH) Delta TRH < Table 6.3.1: Single-Ended Input Slew Rate Definition > Part A: Set up Single Ended input Voltage(DQ,ADD, CMD) Delta TRS vIH(AC)min vIH(DC)min vRefDQ or vRefCA vIL(DC)max vIL(AC)max Delta TFS Rev. 0.3 / Jan 2009 20 HMT351U6MFR8C HMT351U7MFR8C P a rt B : H o ld Single Ended input Voltage(DQ,ADD, CMD) D e lta T R H v IH (A C )m in v IH (D C )m in v R e fD Q o r v R e fC A v IL (D C )m a x v IL (A C )m a x D e lta T F H < Figure 6.3.1: Input Nominal Slew Rate Definition for Single-Ended Signals > 6.3.2 Differential Input Signals Input slew rate for differential signals (CK, CK# and DQS, DQS#) are defined and measured as shown in below Table and Figure . Description Differential input slew rate for rising edge (CK-CK and DQS-DQS) Differential input slew rate for falling edge (CK-CK and DQS-DQS) Measured Min Max VILdiffmax VIHdiffmin VIHdiffmin VILdiffmax Defined by VIHdiffmin-VILdiffmax DeltaTRdiff VIHdiffmin-VILdiffmax DeltaTFdiff Note: The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds. Rev. 0.3 / Jan 2009 21 Differential Input Voltage (i.e. DQS-DQS; CK-CK) HMT351U6MFR8C HMT351U7MFR8C D e lta T R d iff vIH d iffm in 0 vILd iffm a x D e lta T F d iff < Figure 6.3.2: Differential Input Slew Rate Definition for DQS,DQS# and CK,CK# > 6.4 DC & AC Output Buffer Levels 6.4.1 Single Ended DC & AC Output Levels Below table shows the output levels used for measurements of single ended signals. Symbol VOH(DC) VOM(DC) VOL(DC) VOH(AC) VOL(AC) Parameter DC output high measurement level (for IV curve linearity) DC output mid measurement level (for IV curve linearity) DC output low measurement level (for IV curve linearity) AC output high measurement level (for output SR) DDR3-800, 1066, 1333 Unit 0.8 x VDDQ V 0.5 x VDDQ V 0.2 x VDDQ V VTT + 0.1 x VDDQ V Notes 1 AC output low measurement level VTT - 0.1 x VDDQ V 1 (for output SR) 1. The swing of ± 0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT = VDDQ / 2. Rev. 0.3 / Jan 2009 22 HMT351U6MFR8C HMT351U7MFR8C 6.4.2 Differential DC & AC Output Levels Below table shows the output levels used for measurements of differential signals. Symbol VOHdiff (AC) Parameter DDR3-800, 1066, 1333 Unit Notes + 0.2 x VDDQ V 1 AC differential output high measurement level (for output SR) VOLdiff (AC) AC differential output low - 0.2 x VDDQ V 1 measurement level (for output SR) 1. The swing of °æ 0.2 x VDDQ is based on approximately 50% of the static differential output high or low swingwith a driver impedance of 40ߟ and an effective test load of 25ߟ to VTT = VDDQ/2 at each of the differential output 6.4.3 Single Ended Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in below Table and Figure 6.4.3. Description Measured From To Single ended output slew rate for rising edge VOL(AC) VOH(AC) Single ended output slew rate for falling edge VOH(AC) VOL(AC) Defined by VOH(AC)-VOL(AC) DeltaTRse VOH(AC)-VOL(AC) DeltaTFse Note: Output slew rate is verified by design and characterization, and may not be subject to production test. Single Ended Output Voltage(l.e.DQ) D e lt a T R s e vO H (A C ) V∏ vO L(A C ) D e lt a T F s e < Figure 6.4.3: Single Ended Output Slew Rate Definition > Rev. 0.3 / Jan 2009 23 HMT351U6MFR8C HMT351U7MFR8C Parameter Symbol Single-ended Output Slew Rate SRQse DDR3-800 DDR3-1066 DDR3-1333 Min Max Min Max Min Max 2.5 5 2.5 5 2.5 5 Units V/ns *** Description: SR: Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) For Ron = RZQ/7 setting < Table 6.4.3: Output Slew Rate (single-ended) > 6.4.4 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in below Table and Figure 6.4.4 Description Measured Defined by From To Differential output slew rate for rising edge VOLdiff(AC) VOHdiff(AC) Differential output slew rate for falling edge VOHdiff(AC) VOLdiff(AC) VOHdiff(AC)-VOLdiff(AC) DeltaTRdiff VOHdiff(AC)-VOLdiff(AC) DeltaTFdiff Note: Output slew rate is verified by design and characterization, and may not be subject to production test. Differential Output Voltage(i.e. DQS-DQS) D e lta T R d iff v O H d iff(A C ) O v O L d iff(A C ) D e lta T F d iff < Figure 6.4.4: Differential Output Slew Rate Definition > Rev. 0.3 / Jan 2009 24 HMT351U6MFR8C HMT351U7MFR8C DDR3-800 Parameter Differential Output Slew Rate Symbol SRQdiff DDR3-1066 DDR3-1333 Min Max Min Max Min Max 5 10 5 10 5 10 Units V/ns ***Description: SR: Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) diff: Differential Signals For Ron = RZQ/7 setting < Table 6.6.4: Differential Output Slew Rate > 6.5 Overshoot and Undershoot Specifications 6.5.1 Address and Control Overshoot and Undershoot Specifications Description Maximum peak amplitude allowed for overshoot area (see Figure) Maximum peak amplitude allowed for undershoot area (see Figure) Maximum overshoot area above VDD (See Figure) Maximum undershoot area below VSS (See Figure) Specification DDR3-800 DDR3-1066 DDR3-1333 0.4V 0.4V 0.4V 0.4V 0.4V 0.4V 0.67 V-ns 0.5 V-ns 0.4 V-ns 0.67 V-ns 0.5 V-ns 0.4 V-ns < Table 6.5.1: AC Overshoot/Undershoot Specification for Address and Control Pins > < Figure 6.5.1: Address and Control Overshoot and Undershoot Definition > Maximum Amplitude Overshoot Area Volts (V) VDD VSS Undershoot Area Maximum Amplitude Time (ns) Rev. 0.3 / Jan 2009 25 HMT351U6MFR8C HMT351U7MFR8C 6.5.2 Clock,Data,Strobe and Mask Overshoot and Undershoot Specifications Specification Description Maximum peak amplitude allowed for overshoot area (see Figure) Maximum peak amplitude allowed for undershoot area (see Figure) Maximum overshoot area above VDDQ (See Figure) Maximum undershoot area below VSSQ (See Figure) DDR3-800 DDR3-1066 DDR3-1333 0.4V 0.4V 0.4V 0.4V 0.4V 0.4V 0.25 V-ns 0.19 V-ns 0.15 V-ns 0.25 V-ns 0.19 V-ns 0.15 V-ns < Table 6.5.2: AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask > M a x im u m A m p litu d e O v e rsh o o t A re a V o lts (V ) VDDQ VSSQ U n d e rsh o o t A re a M a x im u m A m p litu d e T im e (n s) C lo c k , D a ta S tro b e a n d M a sk O v e rsh o o t a n d U n d e rsh o o t D e fin itio n < Figure 6.5.2: Clock, Data, Strobe and Mask Overshoot and Undershoot Definition > Rev. 0.3 / Jan 2009 26 HMT351U6MFR8C HMT351U7MFR8C 6.6 Pin Capacitance Parameter Symbol Input/output capacitance (DQ, DM, DQS, DQS#, TDQS, TDQS#) DDR3-800 DDR3-1066 DDR3-1333 Units Notes Min Max Min Max Min Max CIO TBD TBD TBD TBD TBD TBD pF 1,2,3 Input capacitance, CK and CK# CCK TBD TBD TBD TBD TBD TBD pF 2,3,5 Input capacitance delta CK and CK# CDCK TBD TBD TBD TBD TBD TBD pF 2,3,4 CI TBD TBD TBD TBD TBD TBD pF 2,3,6 CDDQS TBD TBD TBD TBD TBD TBD pF 2,3,12 CDI_CTRL TBD TBD TBD TBD TBD TBD pF 2,3,7,8 Input capacitance delta CDI_ADD_ (All ADD/CMD input-only pins) CMD TBD TBD TBD TBD TBD TBD pF 2,3,9, 10 Input/output capacitance delta (DQ, DM, DQS, DQS#) TBD TBD TBD TBD TBD TBD pF 2,3,11 Input capacitance (All other input-only pins) Input capacitance delta, DQS and DQS# Input capacitance delta (All CTRL input-only pins) CDIO Notes: 1. TDQS/TDQS# are not necessarily input function but since TDQS is sharing DM pin and the parasitic characterization of TDQS/TDQS# should be close as much as possible, Cio&Cdio requirement is applied (recommend deleting note or changing to “Although the DM, TDQS and TDQS# pins have different functions, the loading matches DQ and DQS.”) 2. This parameter is not subject to production test. It is verified by design and characterization. Input capacitance is measured according to JEP147(“PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER(VNA)”) with VDD, VDDQ, VSS,VSSQ applied and all other pins floating (except the pin under test, CKE, RESET# and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off. 3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here 4. Absolute value of CCK-CCK#. 5. The minimum CCK will be equal to the minimum CI. 6. Input only pins include: ODT, CS, CKE, A0-A15, BA0-BA2, RAS#, CAS#, WE#. 7. CTRL pins defined as ODT, CS and CKE. 8. CDI_CTRL=CI(CNTL) - 0.5 * CI(CLK) + CI(CLK#)) 9. ADD pins defined as A0-A15, BA0-BA2 and CMD pins are defined as RAS#, CAS# and WE#. 10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK#)) 11. CDIO=CIO(DQ) - 0.5*(CIO(DQS)+CIO(DQS#)) 12. Absolute value of CIO(DQS) - CIO(DQS#) Rev. 0.3 / Jan 2009 27 HMT351U6MFR8C HMT351U7MFR8C 6.7 IDD Specifications(TCASE: 0 to 95oC) 4GB, 512M x 64 U-DIMM: HMT351U6MFR8C Symbol IDD0 IDD1 IDD2N IDD2NT IDDQ2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDDQ4R IDD4W IDD5B IDD6 IDD6ET IDD6TC IDD7 DDR3 800 1152 1320 848 864 1232 208 400 832 912 512 1680 920 1456 2488 192 192 192 2560 DDR3 1066 1376 1536 1072 1104 1264 208 528 1056 1152 672 2096 1048 1856 2704 192 192 192 2888 DDR3 1333 1552 1704 1232 1264 1248 208 560 1200 1328 752 2456 1136 2176 2864 192 192 192 3472 Unit mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA note DDR3 1066 1548 1728 1206 1242 1422 234 594 1188 1296 756 2358 1179 2088 3042 216 216 216 3249 DDR3 1333 1746 1917 1386 1422 1404 234 630 1350 1494 846 2763 1278 2448 3222 216 216 216 3906 Unit mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA note 4GB, 512M x 72 U-DIMM: HMT351U7MFR8C Symbol IDD0 IDD1 IDD2N IDD2NT IDDQ2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDDQ4R IDD4W IDD5B IDD6 IDD6ET IDD6TC IDD7 Rev. 0.3 / Jan 2009 DDR3 800 1296 1485 954 972 1386 234 450 936 1026 576 1890 1035 1638 2799 216 216 216 2880 28 HMT351U6MFR8C HMT351U7MFR8C 6.7 IDD Measurement Conditions In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 1. shows the setup and test load for IDD and IDDQ measurements. • IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and IDD7) are measured as time-averaged currents with all VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents. • IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ currents. Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one merged-power layer in Module PCB. For IDD and IDDQ measurements, the following definitions apply: • ”0” and “LOW” is defined as VIN <= VILAC(max). • ”1” and “HIGH” is defined as VIN >= VIHAC(max). • “FLOATING” is defined as inputs are VREF - VDD/2. • Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1 on Page 26. • Basic IDD and IDDQ Measurement Conditions are described in Table 2 on page 26. • Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 on page 30 through Table 10 on page 36. • IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting RON = RZQ/7 (34 Ohm in MR1); Qoff = 0B (Output Buffer enabled in MR1); RTT_Nom = RZQ/6 (40 Ohm in MR1); RTT_Wr = RZQ/2 (120 Ohm in MR2); TDQS Feature disabled in MR1 • Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started. • Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW} • Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH} Rev. 0.3 / Jan 2009 29 HMT351U6MFR8C HMT351U7MFR8C IDDQ (optional) IDD VDD VDDQ RESET CK/CK DDR3 SDRAM CKE CS RAS, CAS, WE A, BA ODT ZQ VSS DQS, DQS DQ, DM, TDQS, TDQS RTT = 25 Ohm VDDQ/2 VSSQ Figure 1 - Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements [Note: DIMM level Output test load condition may be different from above] Application specific memory channel environment Channel IO Power Simulation IDDQ Test Load IDDQ Simulation IDDQ Simulation Correction Channel IO Power Number Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement Rev. 0.3 / Jan 2009 30 HMT351U6MFR8C HMT351U7MFR8C Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns Symbol DDR3-800 DDR3-1066 DDR3-1333 5-5-5 7-7-7 9-9-9 Unit tCK 2.5 1.875 1.5 ns CL 5 7 9 nCK nRCD 5 7 9 nCK nRC 20 27 33 nCK nRAS 15 20 24 nCK 5 7 9 nCK x4/x8 16 20 20 nCK x16 20 27 30 nCK x4/x8 4 4 4 nCK x16 4 6 5 nCK nRFC -512Mb 36 48 60 nCK nRFC-1 Gb 44 59 74 nCK nRFC- 2 Gb 64 86 107 nCK nRFC- 4 Gb 120 160 200 nCK nRFC- 8 Gb 140 187 234 nCK nRP nFAW nRRD Table 2 -Basic IDD and IDDQ Measurement Conditions Symbol Description Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: High IDD0 between ACT and PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3 on page 30; Data IO: FLOATING; DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3 on page 30); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 3 on page 30 Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: IDD1 High between ACT, RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to Table 4 on page 31; DM: stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table 4 on page 31); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 4 page 31 Rev. 0.3 / Jan 2009 31 HMT351U6MFR8C HMT351U7MFR8C Precharge Standby Current CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, IDD2N Address, Bank Address Inputs: partially toggling according to Table 5 on page 32; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 5 on page 32 Precharge Standby ODT Current CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, IDD2NT Address, Bank Address Inputs: partially toggling according to Table 6 on page 32; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: toggling according to Table 6 on page 32; Pattern Details: see Table 6 on page 32 IDDQ2NT Precharge Standby ODT IDDQ Current (optional Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current ) Precharge Power-Down Current Slow Exit CKE: Low; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, IDD2P0 Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exitc) Precharge Power-Down Current Fast Exit CKE: Low; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, IDD2P1 Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exitc) Precharge Quiet Standby Current IDD2Q CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 IDDQ4R Operating Burst Read IDDQ Current (optional Same definition like for IDD4R, however measuring IDDQ current instead of IDD current ) Rev. 0.3 / Jan 2009 32 HMT351U6MFR8C HMT351U7MFR8C Active Standby Current CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, IDD3N Address, Bank Address Inputs: partially toggling according to Table 5 on page 32; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 5 on page 32 Active Power-Down Current IDD3P CKE: Low; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling according to Table 7 on page 33; Data IO: IDD4R seamless read data burst with different data between one burst and the next one according to Table 7 on page 33; DM: stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7 on page 33); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 7 on page 33 Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially toggling according to Table 8 on page 34; Data IO: IDD4W seamless read data burst with different data between one burst and the next one according to Table 8 on page 34; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8 on page 34); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at HIGH; Pattern Details: see Table 8 on page 34 Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: see Table 1 on page 26; BL: 8a); AL: 0; CS: High between IDD5B REF; Command, Address, Bank Address Inputs: partially toggling according to Table 9 on page 35; Data IO: FLOATING; DM: stable at 0; Bank Activity: REF command every nREF (see Table 9 on page 35); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 9 on page 35 Rev. 0.3 / Jan 2009 33 HMT351U6MFR8C HMT351U7MFR8C Self-Refresh Current: Normal Temperature Range TCASE: 0 - 85 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale); IDD6 CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1 on page 26; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: FLOATING; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING Self-Refresh Current: Extended Temperature Range (optional)f) TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Extend- IDD6ET ede); CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1 on page 26; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: FLOATING; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING Auto Self-Refresh Current (optional)f) TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Enabledd);Self-Refresh Temperature Range (SRT): Normale); IDD6TC CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1 on page 26; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: FLOATING; DM: stable at 0; Bank Activity: Auto SelfRefresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1 on page 26; BL: 8a); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially tog- IDD7 gling according to Table 10 on page 36; Data IO: read data burst with different data between one burst and the next one according to Table 10 on page 36; DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,...7) with different addressing, wee Table 10 on page 36; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 10 on page 36 a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature range f) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device Rev. 0.3 / Jan 2009 34 HMT351U6MFR8C HMT351U7MFR8C Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] Datab) 0 ACT 0 0 1 1 0 0 00 0 0 0 0 - 1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 - D, D 1 1 1 1 0 0 00 0 0 0 0 - 0 0 0 - 0 F 0 - 0 - 0 Cycle Number Sub-Loop CKE CK, CK Table 3 - IDD0 Measurement-Loop Patterna) 3,4 ... nRAS ... Static High toggling 1*nRC+0 ... 1*nRC+nRAS repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 repeat pattern 1...4 until nRC - 1, truncate if necessary ACT 0 0 1 1 0 00 00 0 repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 0 ... repeat pattern 1...4 until 2*nRC - 1, truncate if necessary 1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead F a) DM must be driven LOW all the time. DQS, DQS are FLOATING. b) DQ signals are FLOATING. Rev. 0.3 / Jan 2009 35 HMT351U6MFR8C HMT351U7MFR8C A[6:3] A[2:0] 1 0 0 00 0 0 0 0 - 0 0 0 0 00 0 0 0 0 - 3,4 D, D 1 1 1 1 0 0 00 0 0 0 0 - 0 0 0 0000000 0 0 0 0 - nRAS ... A[10] 1 0 ... A[9:7] A[15:11] 0 1 nRCD Static High BA[2:0] 0 D, D ODT ACT 1,2 WE 0 CAS RAS Datab) ... toggling Command CS 0 Cycle Number Sub-Loop CKE CK, CK Table 4 - IDD1 Measurement-Loop Patterna) repeat pattern 1...4 until nRCD - 1, truncate if necessary RD 0 1 0 1 0 0 00 0 repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC+0 ACT 0 0 1 1 0 0 00 0 0 F 0 - 1*nRC+1,2 D, D 1 0 0 0 0 0 00 0 0 F 0 - D, D 1 1 1 1 0 0 00 0 0 F 0 - 1*nRC+3,4 ... 1*nRC+nRCD ... 1*nRC+nRAS repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary RD 0 1 0 1 0 0 00 0 0 F 0 0011001 1 repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 0 F ... repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary 1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead 0 - a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise FLOATING. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are FLOATING. Rev. 0.3 / Jan 2009 36 HMT351U6MFR8C HMT351U7MFR8C 0 Static High A[2:0] A[6:3] A[9:7] A[10] A[15:11] BA[2:0] ODT WE CAS RAS CS Datab) 0 D 1 0 0 0 0 0 0 0 0 0 0 - 1 D 1 0 0 0 0 0 0 0 0 0 0 - 2 D 1 1 1 1 0 0 0 0 0 F 0 - D 1 1 1 1 0 0 0 0 0 F 0 - 3 toggling Command Cycle Number Sub-Loop CKE CK, CK Table 5 - IDD2N and IDD3N Measurement-Loop Patterna) 1 4-7 repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 8-11 repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 12-15 repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 16-19 repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 20-23 repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 24-17 repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 28-31 repeat Sub-Loop 0, use BA[2:0] = 7 instead a) DM must be driven LOW all the time. DQS, DQS are FLOATING. b) DQ signals are FLOATING. Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] Datab) 0 D 1 0 0 0 0 0 0 0 0 0 0 - 1 D 1 0 0 0 0 0 0 0 0 0 0 - 2 D 1 1 1 1 0 0 0 0 0 F 0 - 0 0000000 0 0 Cycle Number Sub-Loop CKE CK, CK Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Patterna) Static High toggling 3 D 1 1 1 1 0 0 0 1 4-7 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1 2 8-11 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2 3 12-15 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3 4 16-19 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4 5 20-23 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5 6 24-17 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6 7 28-31 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7 0 0 F a) DM must be driven LOW all the time. DQS, DQS are FLOATING. b) DQ signals are FLOATING. Rev. 0.3 / Jan 2009 37 HMT351U6MFR8C HMT351U7MFR8C Static High toggling 1 CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 Command 0 Cycle Number Sub-Loop CKE CK, CK Table 7 - IDD4R and IDDQ24RMeasurement-Loop Patterna) Datab) RD 0 1 0 1 0 0 00 0 0 0 0 000000 00 D 1 0 0 0 0 0 00 0 0 0 0 - 2,3 D,D 1 1 1 1 0 0 00 0 0 0 0 - 4 RD 0 1 0 1 0 0 00 0 0 F 0 001100 11 5 D 1 0 0 0 0 0 00 0 0 F 0 - D,D 1 1 1 1 0 0 00 0 0 F 0 - 6,7 1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1 2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2 3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3 4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4 5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5 6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6 7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7 a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise FLOATING. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are FLOATING. Rev. 0.3 / Jan 2009 38 HMT351U6MFR8C HMT351U7MFR8C Static High toggling 1 WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 CAS WR RAS CS 0 Command 0 Cycle Number Sub-Loop CKE CK, CK Table 8 - IDD4W Measurement-Loop Patterna) Datab) 1 0 0 1 0 00 0 0 0 0 000000 00 D 1 0 0 0 1 0 00 0 0 0 0 - 2,3 D,D 1 1 1 1 1 0 00 0 0 0 0 - 4 WR 0 1 0 0 1 0 00 0 0 F 0 001100 11 5 D 1 0 0 0 1 0 00 0 0 F 0 - D,D 1 1 1 1 1 0 00 0 0 F 0 - 6,7 1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1 2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2 3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3 4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4 5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5 6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6 7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7 a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise FLOATING. b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are FLOATING. Rev. 0.3 / Jan 2009 39 HMT351U6MFR8C HMT351U7MFR8C Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 0 REF 0 0 0 1 0 0 0 0 0 0 0 - 1 1.2 D, D 1 0 0 0 0 0 00 0 0 0 0 - 3,4 D, D 1 1 1 1 0 0 00 0 0 F 0 - 2 Cycle Number Sub-Loop CKE Datab) Static High toggling CK, CK Table 9 - IDD5B Measurement-Loop Patterna) 5...8 repeat cycles 1...4, but BA[2:0] = 1 9...12 repeat cycles 1...4, but BA[2:0] = 2 13...16 repeat cycles 1...4, but BA[2:0] = 3 17...20 repeat cycles 1...4, but BA[2:0] = 4 21...24 repeat cycles 1...4, but BA[2:0] = 5 25...28 repeat cycles 1...4, but BA[2:0] = 6 29...32 repeat cycles 1...4, but BA[2:0] = 7 33...nRFC-1 repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary. a) DM must be driven LOW all the time. DQS, DQS are FLOATING. b) DQ signals are FLOATING. Rev. 0.3 / Jan 2009 40 HMT351U6MFR8C HMT351U7MFR8C Table 10 - IDD7 Measurement-Loop Patterna) 0 1 2 3 4 Static High toggling 5 6 7 8 9 10 11 12 13 14 15 16 17 18 14 A[2:0] A[6:3] A[9:7] A[10] A[15:11] BA[2:0] ODT WE CAS RAS CS Command Cycle Number Sub-Loop CKE CK, CK ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9 Datab) 0 ACT 0 0 1 1 0 0 00 0 0 0 0 RDA 0 1 0 1 0 0 00 1 0 0 0 00000000 D 1 0 0 0 0 0 00 0 0 0 0 repeat above D Command until nRRD - 1 ACT 0 0 1 1 0 1 00 0 0 F 0 RDA 0 1 0 1 0 1 00 1 0 F 0 00110011 D 1 0 0 0 0 1 00 0 0 F 0 repeat above D Command until 2* nRRD - 1 repeat Sub-Loop 0, but BA[2:0] = 2 repeat Sub-Loop 1, but BA[2:0] = 3 D 1 0 0 0 0 3 00 0 0 F 0 4*nRRD ... Assert and repeat above D Command until nFAW - 1, if necessary nFAW repeat Sub-Loop 0, but BA[2:0] = 4 nFAW+nRRD repeat Sub-Loop 1, but BA[2:0] = 5 nFAW+2*nRRD repeat Sub-Loop 0, but BA[2:0] = 6 nFAW+3*nRRD repeat Sub-Loop 1, but BA[2:0] = 7 D 1 0 0 0 0 7 00 0 0 F 0 nFAW+4*nRRD ... Assert and repeat above D Command until 2* nFAW - 1, if necessary 2*nFAW+0 ACT 0 0 1 1 0 0 00 0 0 F 0 2*nFAW+1 RDA 0 1 0 1 0 0 00 1 0 F 0 00110011 D 1 0 0 0 0 0 00 0 0 F 0 2&nFAW+2 Repeat above D Command until 2* nFAW + nRRD - 1 2*nFAW+nRRD ACT 0 0 1 1 0 1 00 0 0 0 0 2*nFAW+nRRD+1 RDA 0 1 0 1 0 1 00 1 0 0 0 00000000 D 1 0 0 0 0 1 00 0 0 0 0 2&nFAW+nRRD+ 2 Repeat above D Command until 2* nFAW + 2* nRRD - 1 2*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 2 2*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 3 D 1 0 0 0 0 0 00 0 0 0 0 2*nFAW+4*nRRD Assert and repeat above D Command until 3* nFAW - 1, if necessary 3*nFAW repeat Sub-Loop 10, but BA[2:0] = 4 3*nFAW+nRRD repeat Sub-Loop 11, but BA[2:0] = 5 3*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 6 3*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 7 D 1 0 0 0 0 0 00 0 0 0 0 3*nFAW+4*nRRD Assert and repeat above D Command until 4* nFAW - 1, if necessary 1 2 ... nRRD nRRD+1 nRRD+2 ... 2*nRRD 3*nRRD a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise FLOATING. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are FLOATING. Rev. 0.3 / Jan 2009 41 HMT351U6MFR8C HMT351U7MFR8C 7. Electrical Characteristics and AC Timing 7.1 Refresh Parameters by Device Density Parameter Symbol 512Mb 1Gb 2Gb 4Gb 8Gb Units tRFC 90 110 160 300 350 ns 0 ×C < TCASE < 85 ×C 7.8 7.8 7.8 7.8 7.8 ms 85 ×C < TCASE < 95 ×C 3.9 3.9 3.9 3.9 3.9 ms REF command to ACT or REF command time Average periodic refresh interval tREFI 7.2 DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin DDR3 800 Speed Bin DDR3-800E CL - nRCD - nRP Unit 6-6-6 Symbol min max Internal read command to first data tAA 15 20 ns ACT to internal read or write delay time tRCD 15 — ns PRE command period tRP 15 — ns ACT to ACT or REF command period tRC 52.5 — ns ACT to PRE command period tRAS 37.5 9 * tREFI ns Parameter CL = 5 CWL = 5 tCK(AVG) CL = 6 CWL = 5 tCK(AVG) Reserved 2.5 3.3 ns 1)2)3)4) ns 1)2)3) Supported CL Settings 6 nCK Supported CWL Settings 5 nCK Rev. 0.3 / Jan 2009 Notes 42 HMT351U6MFR8C HMT351U7MFR8C DDR3 1066 Speed Bin DDR3-1066F CL - nRCD - nRP 7-7-7 Unit Parameter Symbol min max Internal read command to first data tAA 13.125 20 ns ACT to internal read or write delay time tRCD 13.125 — ns PRE command period tRP 13.125 — ns ACT to ACT or REF command period tRC 50.625 — ns ACT to PRE command period tRAS 37.5 9 * tREFI ns CL = 5 CL = 6 CL = 7 CL = 8 Note CWL = 5 tCK(AVG) Reserved ns 1)2)3)4)6) CWL = 6 tCK(AVG) Reserved ns 4) CWL = 5 tCK(AVG) ns 1)2)3)6) CWL = 6 tCK(AVG) Reserved ns 1)2)3)4) CWL = 5 tCK(AVG) Reserved ns 4) CWL = 6 tCK(AVG) ns 1)2)3)4) CWL = 5 tCK(AVG) ns 4) CWL = 6 tCK(AVG) ns 1)2)3) 2.5 3.3 1.875 < 2.5 Reserved 1.875 < 2.5 Supported CL Settings 6, 7, 8 nCK Supported CWL Settings 5, 6 nCK Rev. 0.3 / Jan 2009 43 HMT351U6MFR8C HMT351U7MFR8C DDR3 1333 Speed Bin DDR3-1333H CL - nRCD - nRP 9-9-9 Unit Parameter Symbol min max Internal read command to first tAA 13.125 20 ns ACT to internal read or write delay time tRCD 13.125 — ns PRE command period tRP 13.125 — ns ACT to ACT or REF command period tRC 49.125 — ns ACT to PRE command period tRAS 36 9 * tREFI ns CL = 5 Note tCK(AVG) Reserved ns 1,2,3,4,7 CWL = 6, 7 tCK(AVG) Reserved ns 4 ns 1,2,3,7 CWL = 5 CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,7 CWL = 7 tCK(AVG) Reserved ns 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1,2,3,4,7 CWL = 7 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1,2,3,7 CWL = 7 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5, 6 tCK(AVG) Reserved ns 4 ns 1,2,3,4 ns 4 ns 1,2,3 (Optional) ns 5 Supported CL Settings 6, 7, 8, 9 nCK Supported CWL Settings 5, 6, 7 nCK CL = 6 CL = 7 CL = 8 CL = 9 CWL = 7 tCK(AVG) 2.5 1.875 CWL = 7 tCK(AVG) < 2.5 1.875 < 2.5 1.5 CWL = 5, 6 tCK(AVG) CL = 10 3.3 <1.875 Reserved 1.5 <1.875 *Speed Bin Table Notes* Rev. 0.3 / Jan 2009 44 HMT351U6MFR8C HMT351U7MFR8C Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V); Notes: 1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting. 2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next ‘Supported CL’. 3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CLSELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CLSELECTED. 4. ‘Reserved’ settings are not allowed. User must program a different value. 5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier’s data sheet and SPD information if and how this setting is supported. 6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. Rev. 0.3 / Jan 2009 45 HMT351U6MFR8C HMT351U7MFR8C 8. Dimm Outline Diagram 8.1 512Mx64 - HMT351U6MFR8C Front 2.10 ± 0.15 Min 1.45 Max R0.70 4 x 3.00 ± 0.10 30.00 SPD 17.30 2 x φ 2.50 ± 0.10 DETAIL-A DETAIL-B 9.50 2 x 2.30 ± 0.10 47.00 5.175 71.00 128.95 133.35 Back Detail - A Detail - B 4.00 2.50 ± 0.20 3.80 0.35 0.05 1.27 ± 0.10 FULL R 2.50 0.80 ± 0.05 0.3 ± 0.15 Side 1.00 0.3~1.0 1.50 ±0.10 5.00 Note) All dimensions are in millimeters unless otherwise stated. Rev. 0.3 / Jan 2009 46 HMT351U6MFR8C HMT351U7MFR8C 8.2 512Mx72 - HMT351U7MFR8C Front 2.10 ± 0.15 Min 1.45 Max R0.70 4 x 3.00 ± 0.10 30.00 SPD 17.30 DETAIL-A 2 x φ 2.50 ± 0.10 DETAIL-B 9.50 2 x 2.30 ± 0.10 47.00 5.175 71.00 128.95 133.35 Back Detail - A Detail - B 4.00 2.50 ± 0.20 3.80 0.35 0.05 1.27 ± 0.10 FULL R 2.50 0.80 ± 0.05 0.3 ± 0.15 Side 1.00 0.3~1.0 1.50 ±0.10 5.00 Note) All dimensions are in millimeters unless otherwise stated. Rev. 0.3 / Jan 2009 47