ATMEL MEGA32C1-ESMZ 8-bit microcontroller with 16k/32k/64k bytes in-system programmable flash Datasheet

Features
• High Performance, Low Power AVR ® 8-bit Microcontroller
• Advanced RISC Architecture
•
•
•
•
•
•
•
•
•
1.
– 131 Powerful Instructions - Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 1 MIPS throughput per MHz
– On-chip 2-cycle Multiplier
Data and Non-Volatile Program Memory
– 16K/32K/64K Bytes Flash of In-System Programmable Program Memory
• Endurance: 10,000 Write/Erase Cycles
– Optional Boot Code Section with Independent Lock Bits
– In-System Programming by On-chip Boot Program
• True Read-While-Write Operation
– 512/1024/2048 Bytes of In-System Programmable EEPROM
• Endurance: 50,000 Write/Erase Cycles
Programming Lock for Flash Program and EEPROM Data Security
1024/2048/4096 Bytes Internal SRAM
On Chip Debug Interface (debugWIRE)
CAN 2.0A/B with 6 Message Objects - ISO 16845 Certified (1)
LIN 2.1 and 1.3 Controller or 8-Bit UART
One 12-bit High Speed PSC (Power Stage Controller) (only ATmega16/32/64M1)
• Non Overlapping Inverted PWM Output Pins With Flexible Dead-Time
• Variable PWM duty Cycle and Frequency
• Synchronous Update of all PWM Registers
• Auto Stop Function for Emergency Event
Peripheral Features
– One 8-bit General purpose Timer/Counter with Separate Prescaler, Compare Mode
and Capture Mode
– One 16-bit General purpose Timer/Counter with Separate Prescaler, Compare
Mode and Capture Mode
– One Master/Slave SPI Serial Interface
– 10-bit ADC
• Up To 11 Single Ended Channels and 3 Fully Differential ADC Channel Pairs
• Programmable Gain (5x, 10x, 20x, 40x) on Differential Channels
• Internal Reference Voltage
• Direct Power Supply Voltage Measurement
– 10-bit DAC for Variable Voltage Reference (Comparators, ADC)
– Four Analog Comparators with Variable Threshold Detection
– 100µA ±3% Current Source (LIN Node Identification)
– Interrupt and Wake-up on Pin Change
– Programmable Watchdog Timer with Separate On-Chip Oscillator
– On-chipTemperature Sensor
Special Microcontroller Features
– Low Power Idle, Noise Reduction, and Power Down Modes
– Power On Reset and Programmable Brown Out Detection
– In-System Programmable via SPI Port
– High Precision Crystal Oscillator for CAN Operations (16 MHz)
See certification on Atmel web site. And note on Section 16.4.3 on page 175.
8-bit
Microcontroller
with
16K/32K/64K
Bytes In-System
Programmable
Flash
ATmega16M1
ATmega32M1
ATmega64M1
ATmega32C1
ATmega64C1
Automotive
Preliminary
Summary
7647DS–AVR–08/08
ATmega16/32/64/M1/C1
– Internal Calibrated RC Oscillator ( 8 MHz)
– On-chip PLL for fast PWM ( 32 MHz, 64 MHz) and CPU (16 MHz)
• Operating Voltage: 2.7V - 5.5V
• Extended Operating Temperature:
– -40°C to +125°C
• Core Speed Grade:
– 0 - 8MHz @ 2.7 - 4.5V
– 0 - 16MHz @ 4.5 - 5.5V
ATmega32/64/M1/C1 Product Line-up
Part number
ATmega32C1
ATmega64C1
ATmega16M1
ATmega32M1
ATmega64M1
Flash Size
32 Kbyte
64 Kbyte
16 Kbyte
32 Kbyte
64 Kbyte
RAM Size
2048 bytes
4096 bytes
1024 bytes
2048 bytes
4096 bytes
EEPROM Size
1024 bytes
2048 bytes
512 bytes
1024 bytes
2048 bytes
8-bit Timer
Yes
16-bit Timer
Yes
PSC
No
Yes
PWM Outputs
4
4
10
10
10
Fault Inputs (PSC)
0
0
3
3
3
PLL
32/64 MHz
10-bit ADC Channels
11 single
3 Differential
10-bit DAC
Yes
Analog Comparators
4
Current Source
Yes
CAN
Yes
LIN/UART
Yes
On-Chip Temp. Sensor
Yes
SPI Interface
Yes
3
7647DS–AVR–08/08
1. Pin Configurations
ATmega16/32/64M1 TQFP32/QFN32 (7*7 mm) Package.
PD0 (PCINT16/PSCOUT0A)
PC0(PCINT8/INT3/PSCOUT1A)
PE0 (PCINT24/RESET/OCD)
32
31
30
29
28
27
26
25
PD1(PCINT17/PSCIN0/CLKO)
ATmega32/64M1 TQFP32/QFN32
PB7 (ADC4/PSCOUT0B/SCK/PCINT7)
PB6 (ADC7/PSCOUT1B/PCINT6)
PB5 (ADC6/INT2/ACMPN1/AMP2-/PCINT5)
PC7 (D2A/AMP2+/PCINT15)
Figure 1-1.
24
23
22
21
20
19
18
17
1
2
3
4
5
6
7
8
PB4 (AMP0+/PCINT4)
PB3 (AMP0-/PCINT3)
PC6 (ADC10/ACMP1/PCINT14)
AREF(ISRC)
AGND
AVCC
PC5 (ADC9/ACMP3/AMP1+/PCINT13)
PC4 (ADC8/ACMPN3/AMP1-/PCINT12)
(PCINT1/MOSI/PSCOUT2B) PB1
(PCINT25/OC0B/XTAL1) PE1
(PCINT26/ADC0/XTAL2) PE2
(PCINT20/ADC1/RXD/RXLIN/ICP1A/SCK_A) PD4
(ADC2/ACMP2/PCINT21) PD5
(ADC3/ACMPN2/INT0/PCINT22) PD6
(ACMP0/PCINT23) PD7
(ADC5/INT1/ACMPN0/PCINT2) PB2
9
10
11
12
13
14
15
16
(PCINT18/PSCIN2/OC1A/MISO_A) PD2
(PCINT19/TXD/TXLIN/OC0A/SS/MOSI_A) PD3
(PCINT9/PSCIN1/OC1B/SS_A) PC1
VCC
GND
(PCINT10/T0/TXCAN) PC2
(PCINT11/T1/RXCAN/ICP1B) PC3
(PCINT0/MISO/PSCOUT2A) PB0
Note:
4
On the engineering samples (Parts marked AT90PWM324), the ACMPN3 alternate function is not
located on PC4. It is located on PE2.
ATmega16/32/64/M1/C1
7647DS–AVR–08/08
ATmega16/32/64/M1/C1
ATmega32/64C1 TQFP32/QFN32 (7*7 mm) Package
PD0 (PCINT16)
PC0(PCINT8/INT3)
PE0 (PCINT24/RESET/OCD)
32
31
30
29
28
27
26
25
PD1(PCINT17/CLKO)
ATmega32/64C1 TQFP32/QFN32
PB7 (ADC4/SCK/PCINT7)
PB6 (ADC7PCINT6)
PB5 (ADC6/INT2/ACMPN1/AMP2-/PCINT5)
PC7 (D2A/AMP2+/PCINT15)
Figure 1-2.
24
23
22
21
20
19
18
17
1
2
3
4
5
6
7
8
PB4 (AMP0+/PCINT4)
PB3 (AMP0-/PCINT3)
PC6 (ADC10/ACMP1/PCINT14)
AREF(ISRC)
AGND
AVCC
PC5 (ADC9/ACMP3/AMP1+/PCINT13)
PC4 (ADC8/ACMPN3/AMP1-/PCINT12)
(PCINT1/MOSI) PB1
(PCINT25/OC0B/XTAL1) PE1
(PCINT26/ADC0/XTAL2) PE2
(PCINT20/ADC1/RXD/RXLIN/ICP1A/SCK_A) PD4
(ADC2/ACMP2/PCINT21) PD5
(ADC3/ACMPN2/INT0/PCINT22) PD6
(ACMP0/PCINT23) PD7
(ADC5/INT1/ACMPN0/PCINT2) PB2
9
10
11
12
13
14
15
16
(PCINT18/OC1A/MISO_A) PD2
(PCINT19/TXD/TXLIN/OC0A/SS/MOSI_A) PD3
(PCINT9/OC1B/SS_A) PC1
VCC
GND
(PCINT10/T0/TXCAN) PC2
(PCINT11/T1/RXCAN/ICP1B) PC3
(PCINT0/MISO) PB0
Note:
On the first engineering samples (Parts marked AT90PWM324), the ACMPN3 alternate function is
not located on PC4. It is located on PE2.
5
7647DS–AVR–08/08
1.1
Pin Descriptions
:
Table 1-1.
Pin out description
QFN32 Pin
Number
Mnemonic
Type
5
GND
Power
Ground: 0V reference
20
AGND
Power
Analog Ground: 0V reference for analog part
4
VCC
Power
Power Supply
19
AVCC
Power
Analog Power Supply: This is the power supply voltage for analog
part
Name, Function & Alternate Function
For a normal use this pin must be connected.
21
AREF
Power
Analog Reference : reference for analog converter . This is the
reference voltage of the A/D converter. As output, can be used by
external analog
ISRC (Current Source Output)
MISO (SPI Master In Slave Out)
8
PB0
I/O
PSCOUT2A(1) (PSC Module 2 Output A)
PCINT0 (Pin Change Interrupt 0)
MOSI (SPI Master Out Slave In)
9
PB1
I/O
PSCOUT2B(1) (PSC Module 2 Output B)
PCINT1 (Pin Change Interrupt 1)
ADC5 (Analog Input Channel 5 )
16
PB2
I/O
INT1 (External Interrupt 1 Input)
ACMPN0 (Analog Comparator 0 Negative Input)
PCINT2 (Pin Change Interrupt 2)
23
PB3
I/O
24
PB4
I/O
AMP0- (Analog Differential Amplifier 0 Negative Input)
PCINT3 (Pin Change Interrupt 3)
AMP0+ (Analog Differential Amplifier 0 Positive Input)
PCINT4 (Pin Change Interrupt 4)
ADC6 (Analog Input Channel 6)
INT2 (External Interrupt 2 Input)
26
PB5
I/O
ACMPN1 (Analog Comparator 1 Negative Input)
AMP2- (Analog Differential Amplifier 2 Negative Input)
PCINT5 (Pin Change Interrupt 5)
ADC7 (Analog Input Channel 7)
27
PB6
I/O
PSCOUT1B(1) (PSC Module 1 Output A)
PCINT6 (Pin Change Interrupt 6)
ADC4 (Analog Input Channel 4)
28
PB7
I/O
PSCOUT0B(1) (PSC Module 0 Output B)
SCK (SPI Clock)
PCINT7 (Pin Change Interrupt 7)
PSCOUT1A(1) (PSC Module 1 Output A)
30
PC0
I/O
INT3 (External Interrupt 3 Input)
PCINT8 (Pin Change Interrupt 8)
6
ATmega16/32/64/M1/C1
7647DS–AVR–08/08
ATmega16/32/64/M1/C1
Table 1-1.
QFN32 Pin
Number
Pin out description (Continued)
Mnemonic
Type
Name, Function & Alternate Function
PSCIN1 (PSC Digital Input 1)
3
PC1
I/O
OC1B (Timer 1 Output Compare B)
SS_A (Alternate SPI Slave Select)
PCINT9 (Pin Change Interrupt 9)
T0 (Timer 0 clock input)
6
PC2
I/O
TXCAN (CAN Transmit Output)
PCINT10 (Pin Change Interrupt 10)
T1 (Timer 1 clock input)
7
PC3
I/O
RXCAN (CAN Receive Input)
ICP1B (Timer 1 input capture alternate B input)
PCINT11 (Pin Change Interrupt 11)
ADC8 (Analog Input Channel 8)
17
PC4
I/O
AMP1- (Analog Differential Amplifier 1 Negative Input)
ACMPN3 (Analog Comparator 3 Negative Input )
PCINT12 (Pin Change Interrupt 12)
ADC9 (Analog Input Channel 9)
18
PC5
I/O
AMP1+ (Analog Differential Amplifier 1 Positive Input)
ACMP3 (Analog Comparator 3 Positive Input)
PCINT13 (Pin Change Interrupt 13)
ADC10 (Analog Input Channel 10)
22
PC6
I/O
ACMP1 (Analog Comparator 1 Positive Input )
PCINT14 (Pin Change Interrupt 14)
D2A (DAC output )
25
PC7
I/O
AMP2+ (Analog Differential Amplifier 2 Positive Input)
PCINT15 (Pin Change Interrupt 15)
29
PD0
I/O
32
PD1
I/O
PSCOUT0A(1) (PSC Module 0 Output A)
PCINT16 (Pin Change Interrupt 16)
PSCIN0 (PSC Digital Input 0)
CLKO (System Clock Output)
PCINT17 (Pin Change Interrupt 17)
OC1A (Timer 1 Output Compare A)
1
PD2
I/O
PSCIN2 (PSC Digital Input 2)
MISO_A (Programming & alternate SPI Master In Slave Out)
PCINT18 (Pin Change Interrupt 18)
TXD (UART Tx data)
TXLIN (LIN Transmit Output)
2
PD3
I/O
OC0A (Timer 0 Output Compare A)
SS (SPI Slave Select)
MOSI_A (Programming & alternate Master Out SPI Slave In)
PCINT19 (Pin Change Interrupt 19)
7
7647DS–AVR–08/08
Table 1-1.
QFN32 Pin
Number
Pin out description (Continued)
Mnemonic
Type
Name, Function & Alternate Function
ADC1 (Analog Input Channel 1)
RXD (UART Rx data)
12
PD4
I/O
RXLIN (LIN Receive Input)
ICP1A (Timer 1 input capture alternate A input)
SCK_A (Programming & alternate SPI Clock)
PCINT20 (Pin Change Interrupt 20)
ADC2 (Analog Input Channel 2)
13
PD5
I/O
ACMP2 (Analog Comparator 2 Positive Input )
PCINT21 (Pin Change Interrupt 21)
ADC3 (Analog Input Channel 3 )
14
PD6
I/O
ACMPN2 (Analog Comparator 2 Negative Input)
INT0 (External Interrupt 0 Input)
PCINT22 (Pin Change Interrupt 22)
15
PD7
I/O
31
PE0
I/O or I
ACMP0 (Analog Comparator 0 Positive Input )
PCINT23 (Pin Change Interrupt 23)
RESET (Reset Input)
OCD (On Chip Debug I/O)
PCINT24 (Pin Change Interrupt 24)
XTAL1 (XTAL Input)
10
PE1
I/O
OC0B (Timer 0 Output Compare B)
PCINT25 (Pin Change Interrupt 25)
XTAL2 (XTAL Output)
11
PE2
I/O
ADC0 (Analog Input Channel 0)
PCINT26 (Pin Change Interrupt 26)
Note:
1. Only for ATmega32/64M1.
2. On the first engineering samples (Parts marked AT90PWM324), the ACMPN3 alternate function is not located on PC4. It is located on PE2.
2. Overview
The ATmega16/32/64/M1/C1 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the
ATmega16/32/64/M1/C1 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
8
ATmega16/32/64/M1/C1
7647DS–AVR–08/08
ATmega16/32/64/M1/C1
2.1
Block Diagram
Figure 2-1.
Block Diagram
Data Bus 8-bit
Flash Program
Memory
Program
Counter
Status
and Control
Interrupt
Unit
SPI
Unit
32 x 8
General
Purpose
Registrers
Instruction
Register
4 Analog
Comparators
Indirect Addressing
Direct Addressing
Instruction
Decoder
Control Lines
Watchdog
Timer
ALU
HW LIN/UART
Timer 0
Timer 1
Data
SRAM
ADC
EEPROM
DAC
I/O Lines
PSC
Current Source
CAN
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
The ATmega16/32/64/M1/C1 provides the following features: 16K/32K/64K bytes of In-System
Programmable Flash with Read-While-Write capabilities, 512/1024/2048 bytes EEPROM,
1024/2048/4096 bytes SRAM, 27 general purpose I/O lines, 32 general purpose working registers, one Motor Power Stage Controller, two flexible Timer/Counters with compare modes and
PWM, one UART with HW LIN, an 11-channel 10-bit ADC with two differential input stages with
programmable gain, a 10-bit DAC, a programmable Watchdog Timer with Internal Individual
Oscillator, an SPI serial port, an On-chip Debug system and four software selectable power saving modes.
9
7647DS–AVR–08/08
The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI ports, CAN,
LIN/UART and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or
Hardware Reset. The ADC Noise Reduction mode stops the CPU and all I/O modules except
ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up
combined with low power consumption.
The device is manufactured using Atmel’s high-density nonvolatile memory technology. The Onchip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial
interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program
running on the AVR core. The boot program can use any interface to download the application
program in the application Flash memory. Software in the Boot Flash section will continue to run
while the Application Flash section is updated, providing true Read-While-Write operation. By
combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip,
the Atmel ATmega16/32/64/M1/C1 is a powerful microcontroller that provides a highly flexible
and cost effective solution to many embedded control applications.
The ATmega16/32/64/M1/C1 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit
emulators, and evaluation kits.
2.2
Automotive Quality Grade
The ATmega16/32/64/M1/C1 have been developed and manufactured according to the most
stringent requirements of the international standard ISO-TS-16949. This data sheet contains
limit values extracted from the results of extensive characterization (Temperature and Voltage).
The quality and reliability of the ATmega16/32/64/M1/C1 have been verified during regular product qualification as per AEC-Q100 grade 1.
As indicated in the ordering information paragraph, the products are available in only one temperature grade.
Table 2-1.
Temperature
Temperature Grade Identification for Automotive Products
Temperature
Identifier
-40 ; +125
2.3
2.3.1
Z
Comments
Full AutomotiveTemperature Range
Pin Descriptions
VCC
Digital supply voltage.
2.3.2
GND
Ground.
10
ATmega16/32/64/M1/C1
7647DS–AVR–08/08
ATmega16/32/64/M1/C1
2.3.3
Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B also serves the functions of various special features of the ATmega16/32/64/M1/C1 as
listed on page 68.
2.3.4
Port C (PC7..PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port C also serves the functions of special features of the ATmega16/32/64/M1/C1 as listed on
page 72.
2.3.5
Port D (PD7..PD0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port D also serves the functions of various special features of the ATmega16/32/64/M1/C1 as
listed on page 75.
2.3.6
Port E (PE2..0) RESET/ XTAL1/
XTAL2
Port E is an 3-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
If the RSTDISBL Fuse is programmed, PE0 is used as an I/O pin. Note that the electrical characteristics of PE0 differ from those of the other pins of Port E.
If the RSTDISBL Fuse is unprogrammed, PE0 is used as a Reset input. A low level on this pin
for longer than the minimum pulse length will generate a Reset, even if the clock is not running.
The minimum pulse length is given in Table 7-1 on page 46. Shorter pulses are not guaranteed
to generate a Reset.
Depending on the clock selection fuse settings, PE1 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Depending on the clock selection fuse settings, PE2 can be used as output from the inverting
Oscillator amplifier.
11
7647DS–AVR–08/08
The various special features of Port E are elaborated in “Alternate Functions of Port E” on page
78 and “Clock Systems and their Distribution” on page 29.
2.3.7
AVCC
AVCC is the supply voltage pin for the A/D Converter, D/A Converter, Current source. It should
be externally connected to VCC, even if the ADC, DAC are not used. If the ADC is used, it should
be connected to VCC through a low-pass filter.
2.3.8
AREF
This is the analog reference pin for the A/D Converter.
2.4
About Code Examples
This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.
12
ATmega16/32/64/M1/C1
7647DS–AVR–08/08
ATmega16/32/64/M1/C1
3. Register Summary
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
(0xFF)
Reserved
–
–
–
–
–
–
–
–
Page
(0xFE)
Reserved
–
–
–
–
–
–
–
–
(0xFD)
Reserved
–
–
–
–
–
–
–
–
(0xFC)
Reserved
–
–
–
–
–
–
–
–
(0xFB)
Reserved
–
–
–
–
–
–
–
–
(0xFA)
CANMSG
MSG 7
MSG 6
MSG 5
MSG 4
MSG 3
MSG 2
MSG 1
MSG 0
page 199
(0xF9)
CANSTMPH
TIMSTM15
TIMSTM14
TIMSTM13
TIMSTM12
TIMSTM11
TIMSTM10
TIMSTM9
TIMSTM8
page 199
(0xF8)
CANSTMPL
TIMSTM7
TIMSTM6
TIMSTM5
TIMSTM4
TIMSTM3
TIMSTM2
TIMSTM1
TIMSTM0
page 199
(0xF7)
CANIDM1
IDMSK28
IDMSK27
IDMSK26
IDMSK25
IDMSK24
IDMSK23
IDMSK22
IDMSK21
page 198
(0xF6)
CANIDM2
IDMSK20
IDMSK19
IDMSK18
IDMSK17
IDMSK16
IDMSK15
IDMSK14
IDMSK13
page 198
(0xF5)
CANIDM3
IDMSK12
IDMSK11
IDMSK10
IDMSK9
IDMSK8
IDMSK7
IDMSK6
IDMSK5
page 198
(0xF4)
CANIDM4
IDMSK4
IDMSK3
IDMSK2
IDMSK1
IDMSK0
RTRMSK
–
IDEMSK
page 198
(0xF3)
CANIDT1
IDT28
IDT27
IDT26
IDT25
IDT24
IDT23
IDT22
IDT21
page 196
(0xF2)
CANIDT2
IDT20
IDT19
IDT18
IDT17
IDT16
IDT15
IDT14
IDT13
page 196
(0xF1)
CANIDT3
IDT12
IDT11
IDT10
IDT9
IDT8
IDT7
IDT6
IDT5
page 196
(0xF0)
CANIDT4
IDT4
IDT3
IDT2
IDT1
IDT0
RTRTAG
RB1TAG
RB0TAG
page 196
(0xEF)
CANCDMOB
CONMOB1
CONMOB0
RPLV
IDE
DLC3
DLC2
DLC1
DLC0
page 195
(0xEE)
CANSTMOB
DLCW
TXOK
RXOK
BERR
SERR
CERR
FERR
AERR
page 194
(0xED)
CANPAGE
MOBNB3
MOBNB2
MOBNB1
MOBNB0
AINC
INDX2
INDX1
INDX0
page 194
(0xEC)
CANHPMOB
HPMOB3
HPMOB2
HPMOB1
HPMOB0
CGP3
CGP2
CGP1
CGP0
page 193
(0xEB)
CANREC
REC7
REC6
REC5
REC4
REC3
REC2
REC1
REC0
page 193
(0xEA)
CANTEC
TEC7
TEC6
TEC5
TEC4
TEC3
TEC2
TEC1
TEC0
page 193
(0xE9)
CANTTCH
TIMTTC15
TIMTTC14
TIMTTC13
TIMTTC12
TIMTTC11
TIMTTC10
TIMTTC9
TIMTTC8
page 193
(0xE8)
CANTTCL
TIMTTC7
TIMTTC6
TIMTTC5
TIMTTC4
TIMTTC3
TIMTTC2
TIMTTC1
TIMTTC0
page 193
(0xE7)
CANTIMH
CANTIM15
CANTIM14
CANTIM13
CANTIM12
CANTIM11
CANTIM10
CANTIM9
CANTIM8
page 193
(0xE6)
CANTIML
CANTIM7
CANTIM6
CANTIM5
CANTIM4
CANTIM3
CANTIM2
CANTIM1
CANTIM0
page 193
(0xE5)
CANTCON
TPRSC7
TPRSC6
TPRSC5
TPRSC4
TPRSC3
TPRSC2
TRPSC1
TPRSC0
page 192
(0xE4)
CANBT3
–
PHS22
PHS21
PHS20
PHS12
PHS11
PHS10
SMP
page 192
(0xE3)
CANBT2
–
SJW1
SJW0
–
PRS2
PRS1
PRS0
–
page 191
(0xE2)
CANBT1
–
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
–
page 190
(0xE1)
CANSIT1
–
–
–
–
–
–
–
–
page 190
(0xE0)
CANSIT2
–
–
SIT5
SIT4
SIT3
SIT2
SIT1
SIT0
page 190
(0xDF)
CANIE1
–
–
–
–
–
–
–
–
page 190
(0xDE)
CANIE2
–
–
IEMOB5
IEMOB4
IEMOB3
IEMOB2
IEMOB1
IEMOB0
page 190
(0xDD)
CANEN1
–
–
–
–
–
–
–
–
page 189
(0xDC)
CANEN2
–
–
ENMOB5
ENMOB4
ENMOB3
ENMOB2
ENMOB1
ENMOB0
page 189
(0xDB)
CANGIE
ENIT
ENBOFF
ENRX
ENTX
ENERR
ENBX
ENERG
ENOVRT
page 188
(0xDA)
CANGIT
CANIT
BOFFIT
OVRTIM
BXOK
SERG
CERG
FERG
AERG
page 187
(0xD9)
CANGSTA
–
OVRG
–
TXBSY
RXBSY
ENFG
BOFF
ERRP
page 186
page 185
(0xD8)
CANGCON
ABRQ
OVRQ
TTC
SYNTTC
LISTEN
TEST
ENA/STB
SWRES
(0xD7)
Reserved
–
–
–
–
–
–
–
–
(0xD6)
Reserved
–
–
–
–
–
–
–
–
(0xD5)
Reserved
–
–
–
–
–
–
–
–
(0xD4)
Reserved
–
–
–
–
–
–
–
–
(0xD3)
Reserved
–
–
–
–
–
–
–
–
(0xD2)
LINDAT
LDATA7
LDATA6
LDATA5
LDATA4
LDATA3
LDATA2
LDATA1
LDATA0
(0xD1)
LINSEL
–
–
–
–
/LAINC
LINDX2
LINDX1
LINDX0
page 226
(0xD0)
LINIDR
LP1
LP0
LID5 / LDL1
LID4 / LDL0
LID3
LID2
LID1
LID0
page 225
page 226
(0xCF)
LINDLR
LTXDL3
LTXDL2
LTXDL1
LTXDL0
LRXDL3
LRXDL2
LRXDL1
LRXDL0
page 224
(0xCE)
LINBRRH
–
–
–
–
LDIV11
LDIV10
LDIV9
LDIV8
page 224
(0xCD)
LINBRRL
LDIV7
LDIV6
LDIV5
LDIV4
LDIV3
LDIV2
LDIV1
LDIV0
page 224
(0xCC)
LINBTR
LDISR
–
LBT5
LBT4
LBT3
LBT2
LBT1
LBT0
page 224
(0xCB)
LINERR
LABORT
LTOERR
LOVERR
LFERR
LSERR
LPERR
LCERR
LBERR
page 223
(0xCA)
LINENIR
–
–
–
–
LENERR
LENIDOK
LENTXOK
LENRXOK
page 222
(0xC9)
LINSIR
LIDST2
LIDST1
LIDST0
LBUSY
LERR
LIDOK
LTXOK
LRXOK
page 221
(0xC8)
LINCR
LSWRES
LIN13
LCONF1
LCONF0
LENA
LCMD2
LCMD1
LCMD0
page 220
(0xC7)
Reserved
–
–
–
–
–
–
–
–
(0xC6)
Reserved
–
–
–
–
–
–
–
–
(0xC5)
Reserved
–
–
–
–
–
–
–
–
(0xC4)
Reserved
–
–
–
–
–
–
–
–
(0xC3)
Reserved
–
–
–
–
–
–
–
–
(0xC2)
Reserved
–
–
–
–
–
–
–
–
(0xC1)
Reserved
–
–
–
–
–
–
–
–
(0xC0)
Reserved
–
–
–
–
–
–
–
–
(0xBF)
Reserved
–
–
–
–
–
–
–
–
13
7647DS–AVR–08/08
14
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
(0xBE)
Reserved
–
–
–
–
–
–
–
–
Page
(0xBD)
Reserved
–
–
–
–
–
–
–
–
(0xBC)(5)
PIFR
–
–
–
–
PEV2
PEV1
PEV0
PEOP
page 155
(0xBB)(5)
PIM
–
–
–
–
PEVE2
PEVE1
PEVE0
PEOPE
page 155
(0xBA)(5)
PMIC2
POVEN2
PISEL2
PELEV2
PFLTE2
PAOC2
PRFM22
PRFM21
PRFM20
page 154
(0xB9)(5)
PMIC1
POVEN1
PISEL1
PELEV1
PFLTE1
PAOC1
PRFM12
PRFM11
PRFM10
page 154
(0xB8)(5)
PMIC0
POVEN0
PISEL0
PELEV0
PFLTE0
PAOC0
PRFM02
PRFM01
PRFM00
page 154
(0xB7)(5)
PCTL
PPRE1
PPRE0
PCLKSEL
–
–
–
PCCYC
PRUN
page 153
(0xB6)(5)
POC
–
–
POEN2B
POEN2A
POEN1B
POEN1A
POEN0B
POEN0A
page 149
(0xB5)(5)
PCNF
–
–
PULOCK
PMODE
POPB
POPA
–
–
page 152
(0xB4)(5)
PSYNC
–
–
PSYNC21
PSYNC20
PSYNC11
PSYNC10
PSYNC01
PSYNC00
page 150
(0xB3)(5)
POCR_RBH
–
–
–
–
POCR_RB11
POCR_RB10
POCR_RB9
POCR_RB8
page 152
(0xB2)(5)
POCR_RBL
POCR_RB7
POCR_RB6
POCR_RB5
POCR_RB4
POCR_RB3
POCR_RB2
POCR_RB1
POCR_RB0
page 152
(0xB1)(5)
POCR2SBH
–
–
–
–
POCR2SB11
POCR2SB10
POCR2SB9
POCR2SB8
page 152
(0xB0)(5)
POCR2SBL
POCR2SB7
POCR2SB6
POCR2SB5
POCR2SB4
POCR2SB3
POCR2SB2
POCR2SB1
POCR2SB0
page 152
(0xAF)(5)
POCR2RAH
–
–
–
–
POCR2RA11
POCR2RA10
POCR2RA9
POCR2RA8
page 151
(0xAE)(5)
POCR2RAL
POCR2RA7
POCR2RA6
POCR2RA5
POCR2RA4
POCR2RA3
POCR2RA2
POCR2RA1
POCR2RA0
page 151
(0xAD)(5)
POCR2SAH
–
–
–
–
POCR2SA11
POCR2SA10
POCR2SA9
POCR2SA8
page 151
(0xAC)(5)
POCR2SAL
POCR2SA7
POCR2SA6
POCR2SA5
POCR2SA4
POCR2SA3
POCR2SA2
POCR2SA1
POCR2SA0
page 151
(0xAB)(5)
POCR1SBH
–
–
–
–
POCR1SB11
POCR1SB10
POCR1SB9
POCR1SB8
page 152
(0xAA)(5)
POCR1SBL
POCR1SB7
POCR1SB6
POCR1SB5
POCR1SB4
POCR1SB3
POCR1SB2
POCR1SB1
POCR1SB0
page 152
(0xA9)(5)
POCR1RAH
–
–
–
–
POCR1RA11
POCR1RA10
POCR1RA9
POCR1RA8
page 151
(0xA8)(5)
POCR1RAL
POCR1RA7
POCR1RA6
POCR1RA5
POCR1RA4
POCR1RA3
POCR1RA2
POCR1RA1
POCR1RA0
page 151
(0xA7)(5)
POCR1SAH
–
–
–
–
POCR1SA11
POCR1SA10
POCR1SA9
POCR1SA8
page 151
(0xA6)(5)
POCR1SAL
POCR1SA7
POCR1SA6
POCR1SA5
POCR1SA4
POCR1SA3
POCR1SA2
POCR1SA1
POCR1SA0
page 151
(0xA5)(5)
POCR0SBH
–
–
–
–
POCR0SB11
POCR0SB10
POCR0SB9
POCR0SB8
page 152
(0xA4)(5)
POCR0SBL
POCR0SB7
POCR0SB6
POCR0SB5
POCR0SB4
POCR0SB3
POCR0SB2
POCR0SB1
POCR0SB0
page 152
(0xA3)(5)
POCR0RAH
–
–
–
–
POCR0RA11
POCR0RA10
POCR0RA9
POCR0RA8
page 151
(0xA2)(5)
POCR0RAL
POCR0RA7
POCR0RA6
POCR0RA5
POCR0RA4
POCR0RA3
POCR0RA2
POCR0RA1
POCR0RA0
page 151
(0xA1)(5)
POCR0SAH
–
–
–
–
POCR0SA11
POCR0SA10
POCR0SA9
POCR0SA8
page 151
(0xA0)(5)
POCR0SAL
POCR0SA7
POCR0SA6
POCR0SA5
POCR0SA4
POCR0SA3
POCR0SA2
POCR0SA1
POCR0SA0
page 151
(0x9F)
Reserved
–
–
–
–
–
–
–
–
(0x9E)
Reserved
–
–
–
–
–
–
–
–
(0x9D)
Reserved
–
–
–
–
–
–
–
–
(0x9C)
Reserved
–
–
–
–
–
–
–
–
(0x9B)
Reserved
–
–
–
–
–
–
–
–
(0x9A)
Reserved
–
–
–
–
–
–
–
–
(0x99)
Reserved
–
–
–
–
–
–
–
–
(0x98)
Reserved
–
–
–
–
–
–
–
–
(0x97)
AC3CON
AC3EN
AC3IE
AC3IS1
AC3IS0
–
AC3M2
AC3M1
AC3M0
(0x96)
AC2CON
AC2EN
AC2IE
AC2IS1
AC2IS0
–
AC2M2
AC2M1
AC2M0
page 263
(0x95)
AC1CON
AC1EN
AC1IE
AC1IS1
AC1IS0
AC1ICE
AC1M2
AC1M1
AC1M0
page 262
(0x94)
AC0CON
AC0EN
AC0IE
AC0IS1
AC0IS0
ACCKSEL
AC0M2
AC0M1
AC0M0
page 261
(0x93)
Reserved
–
–
–
–
–
–
–
–
page 263
(0x92)
DACH
- / DAC9
- / DAC8
- / DAC7
- / DAC6
- / DAC5
- / DAC4
DAC9 / DAC3
DAC8 / DAC2
page 270
(0x91)
DACL
DAC7 / DAC1
DAC6 /DAC0
DAC5 / -
DAC4 / -
DAC3 / -
DAC2 / -
DAC1 / -
DAC0 /
page 270
(0x90)
DACON
DAATE
DATS2
DATS1
DATS0
–
DALA
DAOE
DAEN
page 269
(0x8F)
Reserved
–
–
–
–
–
–
–
–
(0x8E)
Reserved
–
–
–
–
–
–
–
–
(0x8D)
Reserved
–
–
–
–
–
–
–
–
(0x8C)
Reserved
–
–
–
–
–
–
–
–
(0x8B)
OCR1BH
OCR1B15
OCR1B14
OCR1B13
OCR1B12
OCR1B11
OCR1B10
OCR1B9
OCR1B8
page 131
(0x8A)
OCR1BL
OCR1B7
OCR1B6
OCR1B5
OCR1B4
OCR1B3
OCR1B2
OCR1B1
OCR1B0
page 132
(0x89)
OCR1AH
OCR1A15
OCR1A14
OCR1A13
OCR1A12
OCR1A11
OCR1A10
OCR1A9
OCR1A8
page 131
(0x88)
OCR1AL
OCR1A7
OCR1A6
OCR1A5
OCR1A4
OCR1A3
OCR1A2
OCR1A1
OCR1A0
page 131
(0x87)
ICR1H
ICR115
ICR114
ICR113
ICR112
ICR111
ICR110
ICR19
ICR18
page 133
(0x86)
ICR1L
ICR17
ICR16
ICR15
ICR14
ICR13
ICR12
ICR11
ICR10
page 133
(0x85)
TCNT1H
TCNT115
TCNT114
TCNT113
TCNT112
TCNT111
TCNT110
TCNT19
TCNT18
page 131
(0x84)
TCNT1L
TCNT17
TCNT16
TCNT15
TCNT14
TCNT13
TCNT12
TCNT11
TCNT10
page 131
(0x83)
Reserved
–
–
–
–
–
–
–
–
(0x82)
TCCR1C
FOC1A
FOC1B
–
–
–
–
–
–
page 131
(0x81)
TCCR1B
ICNC1
ICES1
–
WGM13
WGM12
CS12
CS11
CS10
page 130
(0x80)
TCCR1A
COM1A1
COM1A0
COM1B1
COM1B0
–
–
WGM11
WGM10
page 127
(0x7F)
DIDR1
–
AMP2PD
ACMP0D
AMP0PD
AMP0ND
ADC10D
ADC9D
ADC8D
page 246
(0x7E)
DIDR0
ADC7D
ADC6D
ADC5D
ADC4D
ADC3D
ADC2D
ADC1D
ADC0D
page 246
(0x7D)
Reserved
–
–
–
–
–
–
–
–
ATmega16/32/64/M1/C1
7647DS–AVR–08/08
ATmega16/32/64/M1/C1
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Page
(0x7C)
ADMUX
REFS1
REFS0
ADLAR
–
MUX3
MUX2
MUX1
MUX0
page 242
(0x7B)
ADCSRB
ADHSM
ISRCEN
AREFEN
–
ADTS3
ADTS2
ADTS1
ADTS0
page 244
(0x7A)
ADCSRA
ADEN
ADSC
ADATE
ADIF
ADIE
ADPS2
ADPS1
ADPS0
page 243
(0x79)
ADCH
- / ADC9
- / ADC8
- / ADC7
- / ADC6
- / ADC5
- / ADC4
ADC9 / ADC3
ADC8 / ADC2
page 245
(0x78)
ADCL
ADC7 / ADC1
ADC6 / ADC0
ADC5 / -
ADC4 / -
ADC3 / -
ADC2 / -
ADC1 / -
ADC0 /
page 245
(0x77)
AMP2CSR
AMP2EN
AMP2IS
AMP2G1
AMP2G0
AMPCMP2
AMP2TS2
AMP2TS1
AMP2TS0
page 252
(0x76)
AMP1CSR
AMP1EN
AMP1IS
AMP1G1
AMP1G0
AMPCMP1
AMP1TS2
AMP1TS1
AMP1TS0
page 252
(0x75)
AMP0CSR
AMP0EN
AMP0IS
AMP0G1
AMP0G0
AMPCMP0
AMP0TS2
AMP0TS1
AMP0TS0
page 251
(0x74)
Reserved
–
–
–
–
–
–
–
–
(0x73)
Reserved
–
–
–
–
–
–
–
–
(0x72)
Reserved
–
–
–
–
–
–
–
–
(0x71)
Reserved
–
–
–
–
–
–
–
–
(0x70)
Reserved
–
–
–
–
–
–
–
–
(0x6F)
TIMSK1
–
–
ICIE1
–
–
OCIE1B
OCIE1A
TOIE1
page 133
(0x6E)
TIMSK0
–
–
–
–
–
OCIE0B
OCIE0A
TOIE0
page 105
(0x6D)
PCMSK3
–
–
–
–
–
PCINT26
PCINT25
PCINT24
page 85
(0x6C)
PCMSK2
PCINT23
PCINT22
PCINT21
PCINT20
PCINT19
PCINT18
PCINT17
PCINT16
page 86
(0x6B)
PCMSK1
PCINT15
PCINT14
PCINT13
PCINT12
PCINT11
PCINT10
PCINT9
PCINT8
page 86
(0x6A)
PCMSK0
PCINT7
PCINT6
PCINT5
PCINT4
PCINT3
PCINT2
PCINT1
PCINT0
page 86
(0x69)
EICRA
ISC31
ISC30
ISC21
ISC20
ISC11
ISC10
ISC01
ISC00
page 83
(0x68)
PCICR
–
–
–
–
PCIE3
PCIE2
PCIE1
PCIE0
page 84
(0x67)
Reserved
–
–
–
–
–
–
–
–
(0x66)
OSCCAL
–
CAL6
CAL5
CAL4
CAL3
CAL2
CAL1
CAL0
(0x65)
Reserved
–
–
–
–
–
–
–
–
(0x64)
PRR
–
PRCAN
PRPSC
PRTIM1
PRTIM0
PRSPI
PRLIN
PRADC
(0x63)
Reserved
–
–
–
–
–
–
–
–
(0x62)
Reserved
–
–
–
–
–
–
–
–
(0x61)
CLKPR
CLKPCE
–
–
–
CLKPS3
CLKPS2
CLKPS1
CLKPS0
page 38
(0x60)
WDTCSR
WDIF
WDIE
WDP3
WDCE
WDE
WDP2
WDP1
WDP0
page 53
0x3F (0x5F)
SREG
I
T
H
S
V
N
Z
C
page 14
0x3E (0x5E)
SPH
SP15
SP14
SP13
SP12
SP11
SP10
SP9
SP8
page 16
0x3D (0x5D)
SPL
SP7
SP6
SP5
SP4
SP3
SP2
SP1
SP0
page 16
0x3C (0x5C)
Reserved
–
–
–
–
–
–
–
–
0x3B (0x5B)
Reserved
–
–
–
–
–
–
–
–
0x3A (0x5A)
Reserved
–
–
–
–
–
–
–
–
0x39 (0x59)
Reserved
–
–
–
–
–
–
–
–
0x38 (0x58)
Reserved
–
–
–
–
–
–
–
–
0x37 (0x57)
SPMCSR
SPMIE
RWWSB
SIGRD
RWWSRE
BLBSET
PGWRT
PGERS
SPMEN
0x36 (0x56)
Reserved
–
–
–
–
–
–
–
–
page 33
page 42
page 281
0x35 (0x55)
MCUCR
SPIPS
–
–
PUD
–
–
IVSEL
IVCE
page 59 & page 68
0x34 (0x54)
MCUSR
–
–
–
–
WDRF
BORF
EXTRF
PORF
page 49
0x33 (0x53)
SMCR
–
–
–
–
SM2
SM1
SM0
SE
0x32 (0x52)
MSMCR
0x31 (0x51)
MONDR
0x30 (0x50)
ACSR
Monitor Stop Mode Control Register
Monitor Data Register
AC3IF
AC2IF
AC1IF
AC0IF
AC3O
page 40
reserved
reserved
AC2O
AC1O
AC0O
page 265
0x2F (0x4F)
Reserved
–
–
–
–
–
–
–
–
0x2E (0x4E)
SPDR
SPD7
SPD6
SPD5
SPD4
SPD3
SPD2
SPD1
SPD0
0x2D (0x4D)
SPSR
SPIF
WCOL
–
–
–
–
–
SPI2X
page 164
0x2C (0x4C)
SPCR
SPIE
SPE
DORD
MSTR
CPOL
CPHA
SPR1
SPR0
page 163
0x2B (0x4B)
Reserved
–
–
–
–
–
–
–
–
0x2A (0x4A)
Reserved
–
–
–
–
–
–
–
–
0x29 (0x49)
PLLCSR
-
-
-
-
-
PLLF
PLLE
PLOCK
page 36
0x28 (0x48)
OCR0B
OCR0B7
OCR0B6
OCR0B5
OCR0B4
OCR0B3
OCR0B2
OCR0B1
OCR0B0
page 105
page 165
0x27 (0x47)
OCR0A
OCR0A7
OCR0A6
OCR0A5
OCR0A4
OCR0A3
OCR0A2
OCR0A1
OCR0A0
page 105
0x26 (0x46)
TCNT0
TCNT07
TCNT06
TCNT05
TCNT04
TCNT03
TCNT02
TCNT01
TCNT00
page 105
0x25 (0x45)
TCCR0B
FOC0A
FOC0B
–
–
WGM02
CS02
CS01
CS00
page 103
0x24 (0x44)
TCCR0A
COM0A1
COM0A0
COM0B1
COM0B0
–
–
WGM01
WGM00
page 101
0x23 (0x43)
GTCCR
TSM
ICPSEL1
–
–
–
–
–
PSRSYNC
page 88
0x22 (0x42)
EEARH
–
–
–
–
–
–
EEAR9
EEAR8
page 23
0x21 (0x41)
EEARL
EEAR7
EEAR6
EEAR5
EEAR4
EEAR3
EEAR2
EEAR1
EEAR0
page 23
0x20 (0x40)
EEDR
EEDR7
EEDR6
EEDR5
EEDR4
EEDR3
EEDR2
EEDR1
EEDR0
page 23
0x1F (0x3F)
EECR
–
–
–
–
EERIE
EEMWE
EEWE
EERE
page 23
0x1E (0x3E)
GPIOR0
GPIOR07
GPIOR06
GPIOR05
GPIOR04
GPIOR03
GPIOR02
GPIOR01
GPIOR00
page 28
0x1D (0x3D)
EIMSK
–
–
–
–
INT3
INT2
INT1
INT0
page 83
0x1C (0x3C)
EIFR
–
–
–
–
INTF3
INTF2
INTF1
INTF0
page 84
0x1B (0x3B)
PCIFR
–
–
–
–
PCIF3
PCIF2
PCIF1
PCIF0
page 85
15
7647DS–AVR–08/08
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Page
0x1A (0x3A)
GPIOR2
GPIOR27
GPIOR26
GPIOR25
GPIOR24
GPIOR23
GPIOR22
GPIOR21
GPIOR20
page 28
0x19 (0x39)
GPIOR1
GPIOR17
GPIOR16
GPIOR15
GPIOR14
GPIOR13
GPIOR12
GPIOR11
GPIOR10
page 28
0x18 (0x38)
Reserved
–
–
–
–
–
–
–
–
0x17 (0x37)
Reserved
–
–
–
–
–
–
–
–
0x16 (0x36)
TIFR1
–
–
ICF1
–
–
OCF1B
OCF1A
TOV1
page 134
0x15 (0x35)
TIFR0
–
–
–
–
–
OCF0B
OCF0A
TOV0
page 106
0x14 (0x34)
Reserved
–
–
–
–
–
–
–
–
0x13 (0x33)
Reserved
–
–
–
–
–
–
–
–
0x12 (0x32)
Reserved
–
–
–
–
–
–
–
–
0x11 (0x31)
Reserved
–
–
–
–
–
–
–
–
0x10 (0x30)
Reserved
–
–
–
–
–
–
–
–
0x0F (0x2F)
Reserved
–
–
–
–
–
–
–
–
0x0E (0x2E)
PORTE
–
–
–
–
–
PORTE2
PORTE1
PORTE0
page 81
0x0D (0x2D)
DDRE
–
–
–
–
–
DDE2
DDE1
DDE0
page 81
0x0C (0x2C)
PINE
–
–
–
–
–
PINE2
PINE1
PINE0
page 81
0x0B (0x2B)
PORTD
PORTD7
PORTD6
PORTD5
PORTD4
PORTD3
PORTD2
PORTD1
PORTD0
page 80
0x0A (0x2A)
DDRD
DDD7
DDD6
DDD5
DDD4
DDD3
DDD2
DDD1
DDD0
page 80
0x09 (0x29)
PIND
PIND7
PIND6
PIND5
PIND4
PIND3
PIND2
PIND1
PIND0
page 81
0x08 (0x28)
PORTC
PORTC7
PORTC6
PORTC5
PORTC4
PORTC3
PORTC2
PORTC1
PORTC0
page 80
0x07 (0x27)
DDRC
DDC7
DDC6
DDC5
DDC4
DDC3
DDC2
DDC1
DDC0
page 80
0x06 (0x26)
PINC
PINC7
PINC6
PINC5
PINC4
PINC3
PINC2
PINC1
PINC0
page 80
0x05 (0x25)
PORTB
PORTB7
PORTB6
PORTB5
PORTB4
PORTB3
PORTB2
PORTB1
PORTB0
page 80
0x04 (0x24)
DDRB
DDB7
DDB6
DDB5
DDB4
DDB3
DDB2
DDB1
DDB0
page 80
page 80
0x03 (0x23)
PINB
PINB7
PINB6
PINB5
PINB4
PINB3
PINB2
PINB1
PINB0
0x02 (0x22)
Reserved
–
–
–
–
–
–
–
–
0x01 (0x21)
Reserved
–
–
–
–
–
–
–
–
0x00 (0x20)
Reserved
–
–
–
–
–
–
–
–
Note:
1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.
4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the
ST/STS/STD and LD/LDS/LDD instructions can be used.
5. These registers are only available on ATmega32/64M1. For other products described in this datasheet, these locations are
reserved.
16
ATmega16/32/64/M1/C1
7647DS–AVR–08/08
ATmega16/32/64/M1/C1
4. Instruction Set Summary
Mnemonics
Operands
Description
Operation
Flags
#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD
Rd, Rr
Add two Registers
Rd ← Rd + Rr
Z,C,N,V,H
1
ADC
Rd, Rr
Add with Carry two Registers
Rd ← Rd + Rr + C
Z,C,N,V,H
1
ADIW
Rdl,K
Add Immediate to Word
Rdh:Rdl ← Rdh:Rdl + K
Z,C,N,V,S
2
SUB
Rd, Rr
Subtract two Registers
Rd ← Rd - Rr
Z,C,N,V,H
1
SUBI
Rd, K
Subtract Constant from Register
Rd ← Rd - K
Z,C,N,V,H
1
SBC
Rd, Rr
Subtract with Carry two Registers
Rd ← Rd - Rr - C
Z,C,N,V,H
1
SBCI
Rd, K
Subtract with Carry Constant from Reg.
Rd ← Rd - K - C
Z,C,N,V,H
1
SBIW
Rdl,K
Subtract Immediate from Word
Rdh:Rdl ← Rdh:Rdl - K
Z,C,N,V,S
2
AND
Rd, Rr
Logical AND Registers
Rd ← Rd • Rr
Z,N,V
1
ANDI
Rd, K
Logical AND Register and Constant
Rd ← Rd • K
Z,N,V
1
1
OR
Rd, Rr
Logical OR Registers
Rd ← Rd v Rr
Z,N,V
ORI
Rd, K
Logical OR Register and Constant
Rd ← Rd v K
Z,N,V
1
EOR
Rd, Rr
Exclusive OR Registers
Rd ← Rd ⊕ Rr
Z,N,V
1
COM
Rd
One’s Complement
Rd ← 0xFF − Rd
Z,C,N,V
1
NEG
Rd
Two’s Complement
Rd ← 0x00 − Rd
Z,C,N,V,H
1
SBR
Rd,K
Set Bit(s) in Register
Rd ← Rd v K
Z,N,V
1
CBR
Rd,K
Clear Bit(s) in Register
Rd ← Rd • (0xFF - K)
Z,N,V
1
1
INC
Rd
Increment
Rd ← Rd + 1
Z,N,V
DEC
Rd
Decrement
Rd ← Rd − 1
Z,N,V
1
TST
Rd
Test for Zero or Minus
Rd ← Rd • Rd
Z,N,V
1
CLR
Rd
Clear Register
Rd ← Rd ⊕ Rd
Z,N,V
1
SER
Rd
Set Register
Rd ← 0xFF
None
1
MUL
Rd, Rr
Multiply Unsigned
R1:R0 ← Rd x Rr
Z,C
2
MULS
Rd, Rr
Multiply Signed
R1:R0 ← Rd x Rr
Z,C
2
MULSU
Rd, Rr
Multiply Signed with Unsigned
R1:R0 ← Rd x Rr
Z,C
2
FMUL
Rd, Rr
Fractional Multiply Unsigned
R1:R0 ← (Rd x Rr) << 1
Z,C
2
FMULS
Rd, Rr
Fractional Multiply Signed
R1:R0 ← (Rd x Rr) << 1
Z,C
2
FMULSU
Rd, Rr
Fractional Multiply Signed with Unsigned
R1:R0 ← (Rd x Rr) << 1
Z,C
2
RJMP
k
2
BRANCH INSTRUCTIONS
IJMP
Relative Jump
PC ← PC + k + 1
None
Indirect Jump to (Z)
PC ← Z
None
2
JMP(*)
k
Direct Jump
PC ← k
None
3
RCALL
k
Relative Subroutine Call
PC ← PC + k + 1
None
3
Indirect Call to (Z)
PC ← Z
None
3
Direct Subroutine Call
PC ← k
None
4
RET
Subroutine Return
PC ← STACK
None
4
RETI
Interrupt Return
PC ← STACK
I
4
ICALL
CALL(*)
k
CPSE
Rd,Rr
Compare, Skip if Equal
if (Rd = Rr) PC ← PC + 2 or 3
None
1/2/3
CP
Rd,Rr
Compare
Rd − Rr
Z, N,V,C,H
1
CPC
Rd,Rr
Compare with Carry
Rd − Rr − C
Z, N,V,C,H
1
CPI
Rd,K
Compare Register with Immediate
Rd − K
Z, N,V,C,H
1
SBRC
Rr, b
Skip if Bit in Register Cleared
if (Rr(b)=0) PC ← PC + 2 or 3
None
1/2/3
SBRS
Rr, b
Skip if Bit in Register is Set
if (Rr(b)=1) PC ← PC + 2 or 3
None
1/2/3
SBIC
P, b
Skip if Bit in I/O Register Cleared
if (P(b)=0) PC ← PC + 2 or 3
None
1/2/3
1/2/3
SBIS
P, b
Skip if Bit in I/O Register is Set
if (P(b)=1) PC ← PC + 2 or 3
None
BRBS
s, k
Branch if Status Flag Set
if (SREG(s) = 1) then PC←PC+k + 1
None
1/2
BRBC
s, k
Branch if Status Flag Cleared
if (SREG(s) = 0) then PC←PC+k + 1
None
1/2
1/2
BREQ
k
Branch if Equal
if (Z = 1) then PC ← PC + k + 1
None
BRNE
k
Branch if Not Equal
if (Z = 0) then PC ← PC + k + 1
None
1/2
BRCS
k
Branch if Carry Set
if (C = 1) then PC ← PC + k + 1
None
1/2
1/2
BRCC
k
Branch if Carry Cleared
if (C = 0) then PC ← PC + k + 1
None
BRSH
k
Branch if Same or Higher
if (C = 0) then PC ← PC + k + 1
None
1/2
BRLO
k
Branch if Lower
if (C = 1) then PC ← PC + k + 1
None
1/2
BRMI
k
Branch if Minus
if (N = 1) then PC ← PC + k + 1
None
1/2
BRPL
k
Branch if Plus
if (N = 0) then PC ← PC + k + 1
None
1/2
BRGE
k
Branch if Greater or Equal, Signed
if (N ⊕ V= 0) then PC ← PC + k + 1
None
1/2
BRLT
k
Branch if Less Than Zero, Signed
if (N ⊕ V= 1) then PC ← PC + k + 1
None
1/2
BRHS
k
Branch if Half Carry Flag Set
if (H = 1) then PC ← PC + k + 1
None
1/2
BRHC
k
Branch if Half Carry Flag Cleared
if (H = 0) then PC ← PC + k + 1
None
1/2
BRTS
k
Branch if T Flag Set
if (T = 1) then PC ← PC + k + 1
None
1/2
BRTC
k
Branch if T Flag Cleared
if (T = 0) then PC ← PC + k + 1
None
1/2
BRVS
k
Branch if Overflow Flag is Set
if (V = 1) then PC ← PC + k + 1
None
1/2
BRVC
k
Branch if Overflow Flag is Cleared
if (V = 0) then PC ← PC + k + 1
None
1/2
17
7647DS–AVR–08/08
Mnemonics
Operands
Description
Operation
Flags
BRIE
k
Branch if Interrupt Enabled
if ( I = 1) then PC ← PC + k + 1
None
#Clocks
1/2
BRID
k
Branch if Interrupt Disabled
if ( I = 0) then PC ← PC + k + 1
None
1/2
SBI
P,b
Set Bit in I/O Register
I/O(P,b) ← 1
None
2
CBI
P,b
Clear Bit in I/O Register
I/O(P,b) ← 0
None
2
LSL
Rd
Logical Shift Left
Rd(n+1) ← Rd(n), Rd(0) ← 0
Z,C,N,V
1
LSR
Rd
Logical Shift Right
Rd(n) ← Rd(n+1), Rd(7) ← 0
Z,C,N,V
1
ROL
Rd
Rotate Left Through Carry
Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7)
Z,C,N,V
1
ROR
Rd
Rotate Right Through Carry
Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0)
Z,C,N,V
1
ASR
Rd
Arithmetic Shift Right
Rd(n) ← Rd(n+1), n=0..6
Z,C,N,V
1
SWAP
Rd
Swap Nibbles
Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0)
None
1
BSET
s
Flag Set
SREG(s) ← 1
SREG(s)
1
BCLR
s
Flag Clear
SREG(s) ← 0
SREG(s)
1
BST
Rr, b
Bit Store from Register to T
T ← Rr(b)
T
1
BLD
Rd, b
Bit load from T to Register
Rd(b) ← T
None
1
BIT AND BIT-TEST INSTRUCTIONS
SEC
Set Carry
C←1
C
1
CLC
Clear Carry
C←0
C
1
SEN
Set Negative Flag
N←1
N
1
CLN
Clear Negative Flag
N←0
N
1
SEZ
Set Zero Flag
Z←1
Z
1
CLZ
Clear Zero Flag
Z←0
Z
1
SEI
Global Interrupt Enable
I←1
I
1
CLI
Global Interrupt Disable
I←0
I
1
SES
Set Signed Test Flag
S←1
S
1
CLS
Clear Signed Test Flag
S←0
S
1
SEV
Set Twos Complement Overflow.
V←1
V
1
CLV
Clear Twos Complement Overflow
V←0
V
1
SET
Set T in SREG
T←1
T
1
CLT
Clear T in SREG
T←0
T
1
SEH
CLH
Set Half Carry Flag in SREG
Clear Half Carry Flag in SREG
H←1
H←0
H
H
1
1
Rd ← Rr
Rd+1:Rd ← Rr+1:Rr
None
1
None
1
1
DATA TRANSFER INSTRUCTIONS
MOV
Rd, Rr
Move Between Registers
MOVW
Rd, Rr
Copy Register Word
LDI
Rd, K
Load Immediate
Rd ← K
None
LD
Rd, X
Load Indirect
Rd ← (X)
None
2
LD
Rd, X+
Load Indirect and Post-Inc.
Rd ← (X), X ← X + 1
None
2
2
LD
Rd, - X
Load Indirect and Pre-Dec.
X ← X - 1, Rd ← (X)
None
LD
Rd, Y
Load Indirect
Rd ← (Y)
None
2
LD
Rd, Y+
Load Indirect and Post-Inc.
Rd ← (Y), Y ← Y + 1
None
2
2
LD
Rd, - Y
Load Indirect and Pre-Dec.
Y ← Y - 1, Rd ← (Y)
None
LDD
Rd,Y+q
Load Indirect with Displacement
Rd ← (Y + q)
None
2
LD
Rd, Z
Load Indirect
Rd ← (Z)
None
2
LD
Rd, Z+
Load Indirect and Post-Inc.
Rd ← (Z), Z ← Z+1
None
2
LD
Rd, -Z
Load Indirect and Pre-Dec.
Z ← Z - 1, Rd ← (Z)
None
2
LDD
Rd, Z+q
Load Indirect with Displacement
Rd ← (Z + q)
None
2
LDS
Rd, k
Load Direct from SRAM
Rd ← (k)
None
2
ST
X, Rr
Store Indirect
(X) ← Rr
None
2
ST
X+, Rr
Store Indirect and Post-Inc.
(X) ← Rr, X ← X + 1
None
2
ST
- X, Rr
Store Indirect and Pre-Dec.
X ← X - 1, (X) ← Rr
None
2
ST
Y, Rr
Store Indirect
(Y) ← Rr
None
2
2
ST
Y+, Rr
Store Indirect and Post-Inc.
(Y) ← Rr, Y ← Y + 1
None
ST
- Y, Rr
Store Indirect and Pre-Dec.
Y ← Y - 1, (Y) ← Rr
None
2
STD
Y+q,Rr
Store Indirect with Displacement
(Y + q) ← Rr
None
2
ST
Z, Rr
Store Indirect
(Z) ← Rr
None
2
ST
Z+, Rr
Store Indirect and Post-Inc.
(Z) ← Rr, Z ← Z + 1
None
2
ST
-Z, Rr
Store Indirect and Pre-Dec.
Z ← Z - 1, (Z) ← Rr
None
2
STD
Z+q,Rr
Store Indirect with Displacement
(Z + q) ← Rr
None
2
STS
k, Rr
LPM
(k) ← Rr
None
2
R0 ← (Z)
None
3
LPM
Rd, Z
Load Program Memory
Rd ← (Z)
None
3
LPM
Rd, Z+
Load Program Memory and Post-Inc
Rd ← (Z), Z ← Z+1
None
3
Store Program Memory
(Z) ← R1:R0
None
-
In Port
Rd ← P
None
1
SPM
18
Store Direct to SRAM
Load Program Memory
IN
Rd, P
OUT
P, Rr
Out Port
P ← Rr
None
1
PUSH
Rr
Push Register on Stack
STACK ← Rr
None
2
ATmega16/32/64/M1/C1
7647DS–AVR–08/08
ATmega16/32/64/M1/C1
Mnemonics
Operands
Description
Operation
Flags
#Clocks
POP
Rd
Pop Register from Stack
Rd ← STACK
None
2
None
1
MCU CONTROL INSTRUCTIONS
NOP
No Operation
SLEEP
Sleep
(see specific descr. for Sleep function)
None
1
WDR
BREAK
Watchdog Reset
Break
(see specific descr. for WDR/timer)
For On-chip Debug Only
None
None
1
N/A
Note:
1. These Instructions are only available in “16K and 32K parts”
19
7647DS–AVR–08/08
5. Errata
5.1
5.1.1
Errata Summary
ATmega32M1/C1 Rev. C (Mask Revision)
• The AMPCMPx bits return 0
5.1.2
ATmega32M1/C1 Rev. B (Mask Revision)
• The AMPCMPx bits return 0
• No comparison when amplifier is used as comparator input and ADC input
• CRC calculation of diagnostic frames in LIN 2.x.
• Wrong TSOFFSET manufacturing calibration value
• PD0-PD3 set to outputs and PD4 pulled down following power-on with external reset active.
5.1.3
ATmega32M1/C1 Rev. A (Mask Revision)
• Inopportune reset of the CANIDM registers.
• The AMPCMPx bits return 0
• No comparison when amplifier is used as comparator input and ADC input
• CRC calculation of diagnostic frames in LIN 2.x.
• PD0-PD3 set to outputs and PD4 pulled down following power-on with external reset active.
5.1.4
Errata Description
1. Inopportune reset of the CANIDM registers
After the reception of a CAN frame in a MOb, the ID mask registers are reset.
Problem fix / workaround
Before enabling a MOb in reception, re-initialize the ID mask registers - CANIDM[4..1].
2. The AMPCMPx bits return 0
When they are read the AMPCMPx bits in AMPxCSR registers return 0.
Problem fix / workaround
If the reading of the AMPCMPx bits is required, store the AMPCMPx value in a variable in
memory before writing in the AMPxCSR register and read the variable when necessary.
3. No comparison when amplifier is used as comparator input and ADC input
When it is selected as ADC input, an amplifier receives no clock signal when the ADC is
stopped. In that case, if the amplifier is also used as comparator input, no analog signal is
propagated and no comparison is done.
Problem fix / workaround
Select another ADC channel rather than the working amplified channel.
4. CRC calculation of diagnostic frames in LIN 2.x.
Diagnostic frames of LIN 2.x use “classic checksum” calculation. Unfortunately, the setting
of the checksum model is enabled when the HEADER is transmitted/received. Usually, in
LIN 2.x the LIN/UART controller is initialized to process “enhanced checksums” and a slave
task does not know what kind of frame it will work on before checking the ID.
Problem fix / workaround
This workaround is to be implemented only in case of transmission/reception of diagnostics
frames.
20
ATmega16/32/64/M1/C1
7647DS–AVR–08/08
ATmega16/32/64/M1/C1
a. Slave task of master node:
Before enabling the HEADER, the master must set the appropriate LIN13 bit value in
LINCR register.
b.
For slaves nodes, the workaround is in 2 parts:
– Before enabling the RESPONSE, use the following function:
void lin_wa_head(void) {
unsigned char temp;
temp = LINBTR;
LINCR = 0x00;
// It is not a RESET !
LINBTR = (1<<LDISR)|temp;
LINCR = (1<<LIN13)|(1<<LENA)|(0<<LCMD2)|(0<<LCMD1)|(0<<LCMD0);
LINDLR = 0x88;
// If it isn't already done
}
– Once the RESPONSE is received or sent (having RxOK or TxOK as well as
LERR), use the following function:
void lin_wa_tail(void) {
LINCR = 0x00;
// It is not a RESET !
LINBTR = 0x00;
LINCR = (0<<LIN13)|(1<<LENA)|(0<<LCMD2)|(0<<LCMD1)|(0<<LCMD0);
}
The time-out counter is disabled during the RESPONSE when the workaround is set.
5. Wrong TSOFFSET manufacturing calibration value.
Erroneous value of TSOFFSET programmed in signature byte.
(TSOFFSET was introduced from REVB silicon).
Problem fix / workaround
To identify RevB with wrong TSOFFSET value, check device signature byte at address
0X3F if value is not 0X42 (Ascii code ‘B’) then use the following formula.
TS_OFFSET(True) = (150*(1-TS_GAIN))+TS_OFFSET.
6. PD0-PD3 set to outputs and PD4 pulled down following power-on with external reset
active.
At power-on with the external reset signal active the four I/O lines PD0-PD3 may be forced
into an output state. Normally these lines should be in an input state. PD4 may be pulled
down with internal 220 kOhm resistor. Following release of the reset line (whatever is the
startup time) with the clock running the I/Os PD0-PD4 will adopt their intended input state.
Problem fix / workaround
None
21
7647DS–AVR–08/08
6. Ordering Information
Figure 6-1.
Memory Size
PSC
Power Supply
32K
No
32K
Note:
22
ATmega32M1 engineering samples delivery only. Automotive qualification not yet fully completed.
Ordering Code
Package
Operation Range
2.7 - 5.5V
MEGA32C1-15AZ
MA
-40⋅C to 125⋅C
No
2.7 - 5.5V
MEGA32C1-15MZ
PV
-40⋅C to 125⋅C
32K
No
2.7 - 5.5V
MEGA32C1-ESAZ
MA
Engineering Samples
32K
No
2.7 - 5.5V
MEGA32C1-ESMZ
PV
Engineering Samples
32K
Yes
2.7 - 5.5V
MEGA32M1-15AZ
MA
-40⋅C to 125⋅C
32K
Yes
2.7 - 5.5V
MEGA32M1-15MZ
PV
-40⋅C to 125⋅C
32K
Yes
2.7 - 5.5V
MEGA32M1-ESAZ
MA
Engineering Samples
32K
Yes
2.7 - 5.5V
MEGA32M1-ESMZ
PV
Engineering Samples
All packages are Pb free, fully LHF
ATmega16/32/64/M1/C1
7647DS–AVR–08/08
ATmega16/32/64/M1/C1
7. Package Information
Package Type
MA
MA, 32 - Lead, 7x7 mm Body Size, 1.0 mm Body Thickness
0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
PV
PV, 32-Lead, 5.0x5.0 mm Body, 0.50 mm Pitch
Quad Flat No Lead Package (QFN)
23
7647DS–AVR–08/08
7.1
24
TQFP32
ATmega16/32/64/M1/C1
7647DS–AVR–08/08
ATmega16/32/64/M1/C1
7.2
QFN32
25
7647DS–AVR–08/08
Headquarters
International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-enYvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Technical Support
[email protected]
Sales Contact
www.atmel.com/contacts
Product Contact
Web Site
www.atmel.com
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2008 Atmel Corporation. All rights reserved. Atmel ®, logo and combinations thereof, AVR ® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
7647DS–AVR–08/08
Similar pages