Freescale MPX5500 Integrated silicon pressure sensor on-chip signal conditioned, temperature compensated and calibrated Datasheet

Freescale Semiconductor
Technical Data
MPX5500
Rev 6, 05/2005
MPX5500
SERIES
Integrated Silicon Pressure Sensor
On-Chip Signal Conditioned,
Temperature Compensated and
Calibrated
INTEGRATED
PRESSURE SENSOR
0 to 500 kPa (0 to 72.5 psi)
0.2 to 4.7 V Output
The MPX5500 series piezoresistive transducer is a state-of-the-art monolithic
silicon pressure sensor designed for a wide range of applications, but particularly
those employing a microcontroller or microprocessor with A/D inputs. This
patented, single element transducer combines advanced micromachining
techniques, thin-film metallization, and bipolar processing to provide an accurate,
high level analog output signal that is proportional to the applied pressure.
Features
•
•
•
•
•
2.5% Maximum Error over 0° to 85°C
Ideally suited for Microprocessor or Microcontroller-Based Systems
Patented Silicon Shear Stress Strain Gauge
Durable Epoxy Unibody Element
Available in Differential and Gauge Configurations
MPX5500D
CASE 867-08
ORDERING INFORMATION
Device
Type
Case
Type
Options
Basic Element
Differential
867
Ported Elements
Differential Dual Ports
MPX Series
Order Number
Device Marking
MPX5500D
MPX5500D
867C MPX5500DP
MPX5500DP
VS
MPX5500DP
CASE 867C-05
Thin Film
Temperature
Compensation
and
Gain Stage #1
Sensing
Element
GND
Gain Stage #2
and
Ground
Reference
Shift Circuitry
Vout
Pins 4, 5, and 6 are NO CONNECTS
Figure 1. Fully Integrated Pressure Sensor Schematic
© Freescale Semiconductor, Inc., 2005. All rights reserved.
PIN NUMBERS(1)
1
Vout
4
N/C
2
GND
5
N/C
3
VS
6
N/C
1. Pins 4, 5, and 6 are internal device
connections. Do not connect to external
circuitry or ground. Pin 1 is noted by the
notch in the lead.
Table 1. Maximum Ratings(1)
Rating
Symbol
Value
Unit
P1max
2000
kPa
Storage Temperature
Tstg
–40 to +125
°C
Operating Temperature
TA
–40 to +125
°C
(2)
Maximum Pressure
(P2 ≤ 1 Atmosphere)
1. Maximum Ratings apply to Case 867 only. Extended exposure at the specified limits may cause permanent damage or degradation to the
device.
2. This sensor is designed for applications where P1 is always greater than, or equal to P2. P2 maximum is 500 kPa.
Table 2. Operating Characteristics (VS = 5.0 Vdc, TA = 25°C unless otherwise noted, P1 > P2. Decoupling circuit shown in
Figure 4. required to meet electrical specifications.)
Characteristic
Symbol
Min
Typ
Max
Unit
POP
0
—
500
kPa
Supply Voltage
VS
4.75
5.0
5.25
Vdc
Supply Current
IO
—
7.0
10
mAdc
(0 to 85°C)
Voff
0.088
0.20
0.313
Vdc
Full Scale Output
(0 to 85°C)
VFSO
4.587
4.70
4.813
Vdc
Span(5)
(0 to 85°C)
VFSS
—
4.50
—
Vdc
(0 to 85°C)
—
—
—
±2.5
%VFSS
V/P
—
9.0
—-
mV/kPa
tR
—
1.0
—-
ms
IO+
—
0.1
—-
mAdc
—
—
20
—-
ms
Pressure
Range(1)
(2)
Zero Pressure
Offset(3)
(4)
Full Scale
Accuracy(6)
Sensitivity
Response Time
(7)
Output Source Current at Full Scale Output
Warm-Up
Time(8)
1. 1.0 kPa (kiloPascal) equals 0.145 psi.
2. Device is ratiometric within this specified excitation range.
3. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
4. Full Scale Output (VFSO) is defined as the output voltage at the maximum or full rated pressure.
5. Full Scale Span (VFSS) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the
minimum rated pressure.
6. Accuracy (error budget) consists of the following:
• Linearity:
Output deviation from a straight line relationship with pressure over the specified pressure range.
• Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to
and from the minimum or maximum operating temperature points, with zero differential pressure applied.
• Pressure Hysteresis:
Output deviation at any pressure within the specified range, when this pressure is cycled to and from the
minimum or maximum rated pressure, at 25°C.
• TcSpan:
Output deviation over the temperature range of 0° to 85°C, relative to 25°C.
• TcOffset:
Output deviation with minimum rated pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.
• Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of VFSS, at 25°C.
7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a
specified step change in pressure.
8. Warm-up Time is defined as the time required for the device to meet the specified output voltage after the pressure has been stabilized.
Table 3. Mechanical Characteristics
Characteristics
Weight, Basic Element (Case 867)
Typ
Unit
4.0
grams
MPX5500
2
Sensors
Freescale Semiconductor
Figure 3 illustrates the Differential/Gauge basic chip
carrier (Case 867). A fluorosilicone gel isolates the die
surface and wire bonds from the environment, while allowing
the pressure signal to be transmitted to the sensor
diaphragm. (For use of the MPX5500D in a high pressure,
cyclic application, consult the factory.)
The MPX5500 series pressure sensor operating
characteristics, and internal reliability and qualification tests
are based on use of dry air as the pressure media. Media,
other than dry air, may have adverse effects on sensor
performance and long-term reliability. Contact the factory for
information regarding media compatibility in your application.
5.0
Transfer Function:
Vout = VS*(0.0018*P+0.04) ± Error
VS = 5.0 Vdc
Temperature = 0 to 85°C
4.5
4.0
3.5
Output (V)
Figure 2 shows the sensor output signal relative to
pressure input. Typical, minimum, and maximum output
curves are shown for operation over a temperature range of
0° to 85°C using the decoupling circuit shown in Figure 4.
The output will saturate outside of the specified pressure
range.
Figure 4 shows the recommended decoupling circuit for
interfacing the output of the integrated sensor to the A/D input
of a microprocessor or microcontroller. Proper decoupling of
the power supply is recommended.
TYPICAL
3.0
2.5
MAX
2.0
MIN
1.5
1.0
0.5
0
0
50
100
150 200 250 300 350 400
Differential Pressure (kPa)
450
500
550
Figure 2. Output versus Pressure Differential
Fluoro Silicone
Die Coat
Stainless Steel
Metal Cover
Die
P1
Wire Bond
Lead Frame
RTV Die
Bond
P2
Epoxy Case
Figure 3. Cross-Sectional Diagrams (not to scale)
+5 V
Vout
Output
Vs
IPS
1.0 µF
0.01 µF
GND
470 pF
Figure 4. Recommended Power Supply Decoupling and Output Filtering
(For additional output filtering, please refer to Application Note AN1646)
MPX5500
Sensors
Freescale Semiconductor
3
PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE
Freescale designates the two sides of the pressure sensor
as the Pressure (P1) side and the Vacuum (P2) side. The
Pressure (P1) side is the side containing fluoro silicone gel
which protects the die from harsh media. The Freescale MPX
pressure sensor is designed to operate with positive
differential pressure applied, P1 > P2.
The Pressure (P1) side may be identified by using the
table below:
Part Number
MPX5500D
MPX5500DP
Case Type
867
867C
Pressure (P1)
Side Identifier
Stainless Steel Cap
Side with Part Marking
MPX5500
4
Sensors
Freescale Semiconductor
PACKAGE DIMENSIONS
C
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION -A- IS INCLUSIVE OF THE MOLD
STOP RING. MOLD STOP RING NOT TO EXCEED
16.00 (0.630).
R
POSITIVE PRESSURE
(P1)
M
B
-AN
PIN 1
SEATING
PLANE
1
2
3
4
5
DIM
A
B
C
D
F
G
J
L
M
N
R
S
L
6
-TG
J
S
F
D 6 PL
0.136 (0.005)
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
STYLE 2:
PIN 1.
2.
3.
4.
5.
6.
VOUT
GROUND
VCC
V1
V2
VEX
M
T A
M
STYLE 3:
PIN 1.
2.
3.
4.
5.
6.
OPEN
GROUND
-VOUT
VSUPPLY
+VOUT
OPEN
INCHES
MILLIMETERS
MAX
MIN
MAX MIN
16.00
0.595
0.630 15.11
13.56
0.514
0.534 13.06
5.59
0.200
0.220
5.08
0.84
0.027
0.033
0.68
1.63
0.048
0.064
1.22
0.100 BSC
2.54 BSC
0.40
0.014
0.016
0.36
18.42
0.695
0.725 17.65
30˚ NOM
30˚ NOM
12.57
0.475
0.495 12.07
11.43
0.430
0.450 10.92
0.090
0.105
2.29
2.66
OPEN
GROUND
+VOUT
+VSUPPLY
-VOUT
OPEN
CASE 867-08
ISSUE N
BASIC ELEMENT
P
0.25 (0.010)
M
T Q
-A-
M
U
W
X
R
PORT #1
POSITIVE
PRESSURE
(P1)
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCH.
L
V
PORT #2 VACUUM (P2)
PORT #1 POSITIVE
PRESSURE (P1)
N
-Q-
PORT #2
VACUUM
(P2)
B
PIN 1
1
C
SEATING
PLANE
-T-
-TJ
2
3
4
5
K
6
S
SEATING
PLANE
G
F
D 6 PL
0.13 (0.005)
M
A
M
DIM
A
B
C
D
F
G
J
K
L
N
P
Q
R
S
U
V
W
X
INCHES
MIN
MAX
1.145
1.175
0.685
0.715
0.405
0.435
0.027
0.033
0.048
0.064
0.100 BSC
0.014
0.016
0.695
0.725
0.290
0.300
0.420
0.440
0.153
0.159
0.153
0.159
0.063
0.083
0.220
0.240
0.910 BSC
0.182
0.194
0.310
0.330
0.248
0.278
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
MILLIMETERS
MIN
MAX
29.08
29.85
17.40
18.16
10.29
11.05
0.68
0.84
1.22
1.63
2.54 BSC
0.36
0.41
17.65
18.42
7.37
7.62
10.67
11.18
3.89
4.04
3.89
4.04
1.60
2.11
5.59
6.10
23.11 BSC
4.62
4.93
7.87
8.38
6.30
7.06
VOUT
GROUND
VCC
V1
V2
VEX
CASE 867C-05
ISSUE F
PRESSURE AND VACUUM SIDES PORTED (DP)
MPX5500
Sensors
Freescale Semiconductor
5
NOTES
MPX5500
6
Sensors
Freescale Semiconductor
NOTES
MPX5500
Sensors
Freescale Semiconductor
7
How to Reach Us:
Home Page:
www.freescale.com
E-mail:
[email protected]
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
[email protected]
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
[email protected]
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
[email protected]
MPX5500
Rev. 6
05/2005
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2005. All rights reserved.
Similar pages