AD OP297FS-REEL Dual low bias current precision operational amplifier Datasheet

Dual Low Bias Current
Precision Operational Amplifier
OP297
FEATURES
Low Offset Voltage: 50 ␮V Max
Low Offset Voltage Drift: 0.6 ␮V/ⴗC Max
Very Low Bias Current: 100 pA Max
Very High Open-Loop Gain: 2000 V/mV Min
Low Supply Current (Per Amplifier): 625 ␮A Max
Operates From ⴞ2 V to ⴞ20 V Supplies
High Common-Mode Rejection: 120 dB Min
Pin Compatible to LT1013, AD706, AD708, OP221,
LM158, and MC1458/1558 with Improved Performance
8
V+
7
OUTB
+INA 3
6
–INB
V– 4
5
+INB
OUTA 1
–INA
2
A
B
Precision performance of the OP297 includes very low offset,
under 50 µV, and low drift, below 0.6 µV/°C. Open-loop gain
exceeds 2000 V/mV, ensuring high linearity in every application.
APPLICATIONS
Strain Gage and Bridge Amplifiers
High Stability Thermocouple Amplifiers
Instrumentation Amplifiers
Photo-Current Monitors
High Gain Linearity Amplifiers
Long-Term Integrators/Filters
Sample-and-Hold Amplifiers
Peak Detectors
Logarithmic Amplifiers
Battery-Powered Systems
Errors due to common-mode signals are eliminated by the
OP297’s common-mode rejection of over 120 dB, which minimizes offset voltage changes experienced in battery-powered
systems. Supply current of the OP297 is under 625 µA per
amplifier, and the part can operate with supply voltages as low
as ± 2 V.
GENERAL DESCRIPTION
The OP297 is the first dual op amp to pack precision performance
into the space-saving, industry-standard, 8-lead SOIC package.
Its combination of precision with low power and extremely low
input bias current makes the dual OP297 useful in a wide variety
of applications.
60
PIN CONNECTIONS
The OP297 uses a super-beta input stage with bias current
cancellation to maintain picoamp bias currents at all temperatures.
This is in contrast to FET input op amps whose bias currents
start in the picoamp range at 25°C, but double for every 10°C
rise in temperature, to reach the nanoamp range above 85°C.
Input bias current of the OP297 is under 100 pA at 25°C and is
under 450 pA over the military temperature range.
Combining precision, low power, and low bias current, the OP297
is ideal for a number of applications, including instrumentation
amplifiers, log amplifiers, photodiode preamplifiers, and longterm integrators. For a single device, see the OP97; for a quad,
see the OP497.
VS = ⴞ15V
VCM = 0V
400
1200 UNITS
TA = 25ⴗC
VS = ⴞ15V
VCM = 0V
300
20
NUMBER OF UNITS
INPUT CURRENT (pA)
40
IB–
0
IB+
–20
IOS
100
–40
–60
–75
200
–50
–25
0
25
50
TEMPERATURE (ⴗC)
75
100
125
0
–100 –80
–60
–40
–20
0
20
40
60
INPUT OFFSET VOLTAGE (␮V)
80
100
Figure 1. Low Bias Current over Temperature
Figure 2. Very Low Offset
REV. E
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective companies.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© 2003 Analog Devices, Inc. All rights reserved.
OP297–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
(@ VS = ⴞ15 V, TA = 25ⴗC, unless otherwise noted.)
Parameter
Symbol Conditions
Input Offset Voltage
Long-Term Input
Voltage Stability
Input Offset Current
Input Bias Current
Input Noise Voltage
Input Noise Voltage Density
VOS
IOS
IB
en p-p
en
Input Noise Current Density
Input Resistance
Differential Mode
Input Resistance
Common-Mode
Large-Signal
Voltage Gain
Input Voltage Range*
Common-Mode Rejection
Power Supply Rejection
Output Voltage Swing
in
AVO
VCM
CMRR
PSRR
VO
Supply Current per Amplifier
Supply Voltage
Slew Rate
Gain Bandwidth Product
Channel Separation
ISY
VS
SR
GBWP
CS
Input Capacitance
CIN
OP297E
OP297F
OP297G
Typ
Max Min Typ Max Min Typ Max
Min
25
0.1
20
20
0.5
20
17
20
VCM = 0 V
VCM = 0 V
0.1 Hz to 10 Hz
fO = 10 Hz
fO = 1000 Hz
fO = 10 Hz
RIN
RINCM
VO = ± 10 V
RL = 2 kΩ
2000
± 13
120
VCM = ± 13 V
VS = ± 2 V to ± 20 V 120
RL = 10 kΩ
± 13
± 13
RL = 2 kΩ
No Load
Operating Range
±2
0.05
AV = +1
VO = 20 V p-p
fO = 10 Hz
50
50
0.1
35
35
0.5
20
17
20
100
± 100
100
150
± 150
Unit
µV
80
200
0.1
50
50
0.5
20
17
20
µV/mo
200 pA
± 200 pA
µV p-p
nV/√Hz
nV/√Hz
fA/√Hz
30
30
30
MΩ
500
500
500
GΩ
3200
± 14
135
125
± 14
± 13.7
525 625
± 20
0.15
500
150
V/mV
V
dB
dB
V
V
µA
V
V/µs
kHz
dB
3
pF
4000
± 14
140
130
± 14
± 13.7
525
1500
± 13
114
114
± 13
± 13
625
± 20
0.15
500
150
±2
0.05
3
3200
± 14
135
125
± 14
± 13.7
525 625
± 20
0.15
500
150
1200
± 13
114
114
± 13
± 13
±2
0.05
3
*Guaranteed by CMR test.
Specifications subject to change without notice.
ELECTRICAL CHARACTERISTICS
(@ VS = ⴞ15 V, –40ⴗC ⱕ TA ⱕ +85ⴗC for OP297E/F/G, unless otherwise noted.)
Parameter
Symbol Conditions
Input Offset Voltage
Average Input Offset
Voltage Drift
Input Offset Current
Input Bias Current
Large-Signal Voltage Gain
VOS
TCVOS
IOS
IB
AVO
Input Voltage Range*
Common-Mode Rejection
Power Supply Rejection
VCM
CMRR
PSRR
Output Voltage Swing
Supply Current per Amplifier
Supply Voltage
VO
ISY
VS
VCM = 0 V
VCM = 0 V
VO = ± 10 V,
RL = 2 kΩ
VCM = ± 13
VS = ± 2.5 V
to ± 20 V
RL = 10 kΩ
No Load
Operating Range
Min
OP297E
Typ
Max
Min
OP297F
OP297G
Typ
Max Min Typ
Max
Unit
µV
35
100
80
300
110
400
0.2
50
50
0.6
450
± 450
0.5
80
80
2.0
750
± 750
0.6
80
80
2.0
µV/°C
750 pA
± 750 pA
1200 3200
± 13 ± 13.5
114 130
1000 2500
± 13 ± 13.5
108 130
800
± 13
108
114
± 13
108
± 13
108
± 13
0.15
± 13.4
550
± 2.5
750
± 20
± 2.5
0.15
± 13.4
550
750
± 20
2500
± 13.5
130
0.3
± 13.4
550
750
± 2.5
± 20
V/mV
V
dB
dB
V
µA
V
*Guaranteed by CMR test.
Specifications subject to change without notice.
–2–
REV. E
OP297
ABSOLUTE MAXIMUM RATINGS 1
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 V
Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 V
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . 40 V
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . Indefinite
Storage Temperature Range
Z Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C
P, S Packages . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C
Operating Temperature Range
OP297E (Z) . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C
OP297F, OP297G (P, S) . . . . . . . . . . . . . . –40°C to +85°C
Junction Temperature
Z Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C
P, S Packages . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C
Package Types
␪JA3
␪JC
Unit
8-Lead CERDIP (Z)
8-Lead PDIP (P)
8-Lead SOIC (S)
134
96
150
12
37
41
°C/W
°C/W
°C/W
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; and functional operation
of the device at these or any other conditions above those indicated in the
operational section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2
For supply voltages less than ± 20 V, the absolute maximum input voltage is equal
to the supply voltage.
3
JA is specified for worst case mounting conditions, i.e., JA is specified for device
in socket for CERDIP and PDIP, packages; JA is specified for device soldered to
printed circuit board for SOIC package.
ORDERING GUIDE
Model
Temperature Range
Package Description
Package Options
OP297EZ
OP297FP
OP297FS
OP297FS-REEL
OP297FS-REEL7
OP297GP
OP297GS
OP297GS-REEL
OP297GS-REEL7
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
8-Lead CERDIP
8-Lead PDIP
8-Lead SOIC
8-Lead SOIC
8-Lead SOIC
8-Lead PDIP
8-Lead SOIC
8-Lead SOIC
8-Lead SOIC
Q-8
N-8
R-8
R-8
R-8
N-8
R-8
R-8
R-8
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although the
OP297 features proprietary ESD protection circuitry, permanent damage may occur on devices
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended
to avoid performance degradation or loss of functionality.
1/2
OP297
V1 20Vp-p @ 10Hz
2k⍀
50k⍀
50⍀
1/2
OP297
V2
CHANNEL SEPARATION = 20 log
)
V1
V2 /10000
)
Figure 3. Channel Separation Test Circuit
REV. E
–3–
OP297–Typical Performance Characteristics
TA = 25ⴗC
VS = ⴞ15V
VCM = 0V
1200 UNITS
TA = 25ⴗC
VS = ⴞ15V
VCM = 0V
1200 UNITS
200
TA = 25ⴗC
VS = ⴞ15V
VCM = 0V
1200 UNITS
200
NUMBER OF UNITS
300
300
NUMBER OF UNITS
NUMBER OF UNITS
400
250
400
150
100
200
100
100
50
0
–100 –80 –60 –40 –20 0 20 40 60 80 100
INPUT OFFSET VOLTAGE (pA)
0
–100 –80 –60 –40 –20 0 20 40 60 80 100
INPUT BIAS CURRENT (pA)
TPC 2. Typical Distribution of
Input Bias Current
60
60
VS = ⴞ15V
VCM = 0V
ⴞ3
VS = ⴞ15V
VCM = 0V
IB–
20
INPUT CURRENT (pA)
INPUT CURRENT (pA)
40
IB–
0
IB +
–20
IOS
–50 –25 0
25
50 75
TEMPERATURE (ⴗC)
EFFECTIVE OFFSET VOLTAGE DRIFT (␮V/ⴗC)
EFFECTIVE OFFSET VOLTAGE (␮V)
BALANCED OR UNBALANCED
VS = ⴞ15V
VCM = 0V
1000
100
+125ⴗC
TA = +25ⴗC
10
10
100
1k
10k
100k
1M
SOURCE RESISTANCE (⍀)
–10
–5
0
5
10
COMMON-MODE VOLTAGE (V)
TA = 25ⴗC
VS = ⴞ15V
VCM = 0V
ⴞ2
ⴞ1
0
15
TPC 5. Input Bias, Offset Current vs.
Common-Mode Voltage
10000
TA
IOS
–40
–15
100 125
TPC 4. Input Bias, Offset
Current vs. Temperature
–55ⴗC
0
–20
–40
–60
–75
IB +
20
10M
TPC 7. Effective Offset Voltage
vs. Source Resistance
100
10
1
1k
10k
100k
1M
10M
SOURCE RESISTANCE (⍀)
TPC 8. Effective TCVOS vs.
Source Resistance
–4–
1
2
3
4
5
TIME AFTER POWER APPLIED (Minutes)
35
BALANCED OR UNBALANCED
VS = ⴞ15V
VCM = 0V
0.1
100
0
TPC 6. Input Offset Voltage
Warm-Up Drift
SHORT-CIRCUIT CURRENT (mA)
40
TPC 3. Typical Distribution of
Input Offset Current
DEVIATION FROM FINAL VALUE (␮V)
TPC 1. Typical Distribution of
Input Offset Voltage
0
–100 –80 –60 –40 –20 0 20 40 60 80 100
INPUT OFFSET VOLTAGE (pA)
100M
TA = –55ⴗC
30
25
20
15
10
5
TA = +25ⴗC
TA = +125ⴗC
VS = ⴞ15V
OUTPUT SHORTED
TO GROUND
0
–5
–10
–15
–20
–25
–30
–35
TA = +125ⴗC
TA = +25ⴗC
TA = –55ⴗC
0
1
2
3
4
TIME FROM OUTPUT SHORT (Minutes)
TPC 9. Short Circuit Current
vs. Time, Temperature
REV. E
OP297
160
160
COMMON-MODE REJECTION (dB)
1200
1100
TA = +25ⴗC
1000
TA = –55ⴗC
900
800
ⴞ5
ⴞ10
ⴞ15
SUPPLY VOLTAGE (V)
0
TPC 10. Total Supply Current
vs. Supply Voltage
100
CURRENT
NOISE
VOLTAGE
NOISE
10
100
80
60
1
100
1k
10k
FREQUENCY (Hz)
10
100k
10
TA = 25ⴗC
VS = ⴞ15V
⌬VS = 10Vp-p
140
120
100
80
60
40
0.1
1M
10
1000
TA = 25ⴗC
VS = ⴞ2V TO ⴞ15V
100
120
TPC 11. Common-Mode Rejection
Frequency
CURRENT NOISE DENSITY (fA/ Hz)
VOLTAGE NOISE DENSITY (nV/ Hz)
1000
140
40
ⴞ20
TA = 25ⴗC
VS = ⴞ15V
1
10
100
FREQUENCY (Hz)
1
1000
TA = +25ⴗC
1
10Hz
1kHz
0.1
0.01
102
1000
107
1
TA = +25ⴗC
0
TA = –55ⴗC
25
–5
0
5
10
OUTPUT VOLTAGE (V)
TPC 16. Differential Input
Voltage vs. Output Voltage
REV. E
15
TA = 25ⴗC
VS = ⴞ15V
AVCL = +1
1%THD
fO = 1kHz
RL = 10k⍀
30
20
15
10
25
20
15
10
5
0
–10
20
35
TA = 25ⴗC
VS = ⴞ15V
AVCL = +1
1%THD
fO = 1kHz
5
–15
3 4 5
10
2
LOAD RESISTANCE (k⍀)
TPC 15. Open-Loop Gain vs.
Load Resistance
OUTPUT SWING (Vp-p)
OUTPUT SWING (Vp-p)
DIFFERENTIAL INPUT VOLTAGE (10␮V/DIV)
100
103
104
105
106
SOURCE RESISTANCE (⍀)
TPC 14. Total Noise Density
vs. Source Resistance
30
TA = +125ⴗC
TA = –55ⴗC
VS = ⴞ15V
VO = ⴞ10V
35
RL = 10k⍀
VS = ⴞ15V
VCM = 0V
100k 1M
TA = +125ⴗC
1kHz
TPC 13. Voltage Noise Density and
Current Noise Density vs. Frequency
10
100
1k
10k
FREQUENCY (Hz)
10000
TA = 25ⴗC
VS = ⴞ2V TO ⴞ20V
10Hz
1
1
TPC 12. Power Supply Rejection vs.
Frequency
OPEN-LOOP GAIN (V/mV)
TA = +125ⴗC
TOTAL NOISE DENSITY (nV/ Hz)
TOTAL SUPPLY CURRENT (␮A)
NO LOAD
POWER SUPPLY REJECTION (dB)
1300
10
100
1k
LOAD RESISTANCE (⍀)
10k
TPC 17. Output Swing vs. Load
Resistance
–5–
0
100
1k
10k
FREQUENCY (Hz)
TPC 18. Maximum Output
Swing vs. Frequency
100k
OP297
70
VS = ⴞ15V
CL = 30pF
RL = 1M⍀
40
PHASE
TA = –55ⴗC
20
0
OVERSHOOT (%)
OPEN-LOOP GAIN (dB)
GAIN
60
60
PHASE SHIFT (Deg)
80
1000
TA = 25ⴗC
VS = ⴞ15V
AVCL = +1
VOUT = 100mV p-p
–20
50
TA = 25ⴗC
VS = ⴞ15V
100
–EDGE
OUTPUT IMPEDANCE (⍀)
100
40
+EDGE
30
20
10
1
0.1
0.01
10
TA = +125ⴗC
–40
100
0.001
10
0
1k
100
10k
FREQUENCY (Hz)
1M
10M
0
TPC 19. Open Loop Gain, Phase
vs. Frequency
100
1000
LOAD CAPACITANCE (pF)
10000
TPC 20. Small-Signal Overshoot vs. Load Capacitance
100
1k
10k
100k
FREQUENCY (Hz)
1M
TPC 21. Open Loop Output
Impedance vs Frequency
APPLICATIONS INFORMATION
Extremely low bias current over a wide temperature range makes
the OP297 attractive for use in sample-and-hold amplifiers,
peak detectors, and log amplifiers that must operate over a wide
temperature range. Balancing input resistances is unnecessary
with the OP297. Offset voltage and TCVOS are degraded only
minimally by high source resistance, even when unbalanced.
100
90
The input pins of the OP297 are protected against large differential voltage by back-to-back diodes and current-limiting
resistors. Common-mode voltages at the inputs are not restricted
and may vary over the full range of the supply voltages used.
10
0%
20mV
The OP297 requires very little operating headroom about the
supply rails and is specified for operation with supplies as low as
2 V. Typically, the common-mode range extends to within 1 V
of either rail. The output typically swings to within 1 V of the
rails when using a 10 kΩ load.
5␮s
Figure 5. Small-Signal Transient Response
(CLOAD = 1000 pF, AVCL = 1)
AC PERFORMANCE
The OP297’s ac characteristics are highly stable over its full
operating temperature range. Unity gain small-signal response is
shown in Figure 4. Extremely tolerant of capacitive loading on
the output, the OP297 displays excellent response with 1000 pF
loads (Figure 5).
100
90
10
0%
20mV
100
5␮s
90
Figure 6. Large-Signal Transient Response
(AVCL = 1)
10
0%
20mV
5␮s
Figure 4. Small-Signal Transient Response
(CLOAD = 100 pF, AVCL = 1)
–6–
REV. E
OP297
UNITY-GAIN FOLLOWER
APPLICATIONS
PRECISION ABSOLUTE VALUE AMPLIFIER
NONINVERTING AMPLIFIER
1/2
OP297
The circuit of Figure 9 is a precision absolute value amplifier with
an input impedance of 30 MΩ. The high gain and low TCVOS
of the OP297 ensure accurate operation with microvolt input
signals. In this circuit, the input always appears as a commonmode signal to the op amps. The CMR of the OP297 exceeds
120 dB, yielding an error of less than 2 ppm.
1/2
OP297
+15V
C2
0.1␮F
MINI-DIP
BOTTOM VIEW
INVERTING AMPLIFIER
8
R1
1k⍀
1
C1
30pF
A
2
1/2
OP297
R3
1k⍀
B
VIN
3
1/2
OP297
4
5
D1
1N4148
8
1
6
D2
1N4148
C3
0.1␮F
1/2
OP297
7
0V
VOUT
10V
R2
2k⍀
–15V
Figure 7. Guard Ring Layout and Connections
Figure 9. Precision Absolute Value Amplifier
GUARDING AND SHIELDING
To maintain the extremely high input impedances of the OP297,
care must be taken in circuit board layout and manufacturing.
Board surfaces must be kept scrupulously clean and free of moisture. Conformal coating is recommended to provide a humidity
barrier. Even a clean PC board can have 100 pA of leakage
currents between adjacent traces, so guard rings should be used
around the inputs. Guard traces are operated at a voltage close to
that on the inputs, as shown in Figure 7, so that leakage currents
become minimal. In noninverting applications, the guard ring
should be connected to the common-mode voltage at the inverting
input. In inverting applications, both inputs remain at ground,
so the guard trace should be grounded. Guard traces should be
on both sides of the circuit board.
PRECISION CURRENT PUMP
Maximum output current of the precision current pump shown
in Figure 10 is ±10 mA. Voltage compliance is ±10 V with ±15 V
supplies. Output impedance of the current transmitter exceeds
3 MΩ with linearity better than 16 bits.
R3
10k⍀
R1
10k⍀
VIN
R2
10k⍀
2
3
1/2
OP297
R6
10k⍀
1
+15V
R4
10k⍀
OPEN-LOOP GAIN LINEARITY
The OP297 has both an extremely high gain of 2000 V/mV
minimum and constant gain linearity. This enhances the precision
of the OP297 and provides for very high accuracy in high closed
loop gain applications. Figure 8 illustrates the typical open-loop
gain linearity of the OP297 over the military temperature range.
IOUT =
VIN
R5
=
VIN
100⍀
8
7
1/2
OP297
5
6
= 10mA/V
–15V
DIFFERENTIAL INPUT VOLTAGE (10␮V/DIV)
Figure 10. Precision Current Pump
RL = 10k⍀
VS = ⴞ15V
VCM = 0V
TA = +125ⴗC
TA = +25ⴗC
0
TA = –55ⴗC
–15
–10
–5
0
5
10
OUTPUT VOLTAGE (V)
15
Figure 8. Open-Loop Linearity of the OP297
REV. E
–7–
IOUT
10mA
OP297
All the transistors of the MAT04 are precisely matched and at
the same temperature, so the IS and VT terms cancel, giving
PRECISION POSITIVE PEAK DETECTOR
In Figure 11, the CH must be of polystyrene, Teflon®, or polyethylene to minimize dielectric absorption and leakage. The
droop rate is determined by the size of CH and the bias current
of the OP297.
2 ln IIN = ln IO + ln IREF = ln(IO × IREF )
Exponentiating both sides of the equation leads to
1k⍀
IO =
+15V
1N4148
2
VIN
1k⍀
3
6
1
1k⍀
5
1/2
OP297
1k⍀
7
VOUT
Op amp A2 forms a current-to-voltage converter, which gives
VOUT = R2 × IO. Substituting (VIN/R1) for IIN and the above
equation for IO yields
2
 R 2   VIN 
VOUT = 


 IREF   R1 
0.1␮F
CH
RESET
IREF
0.1␮F
8
1/2
OP297
(IIN )2
2N930
–15V
A similar analysis made for the square-root circuit of Figure 14
leads to its transfer function
Figure 11. Precision Positive Peak Detector
VOUT = R 2
SIMPLE BRIDGE CONDITIONING AMPLIFIER
(VIN )(IREF )
R1
Figure 12 shows a simple bridge conditioning amplifier using the
OP297. The transfer function is
C2
100pF
 ∆R  RF
VOUT = VREF 

 R + ∆R  R
R2
33k⍀
6
The REF43 provides an accurate and stable reference voltage for
the bridge. To maintain the highest circuit accuracy, RF should
be 0.1% or better with a low temperature coefficient.
2
IO
1
Q1
3
7
Q2
5
6
15V
8
C1
100pF V+
REF43
2
4
R + ⌬R
3
1/2
OP297
1/2
OP297
1
VIN
VOUT
R1
33k⍀
3
Q3
10
1/2
OP297
IREF
9
8
2
5
8
1/2
OP297
7
VOUT = VREF
RF
R + ⌬R
R
14
13
Q4
R3
50k⍀
1
R4
50k⍀
–15V
V–
⌬R
VOUT
12
4
6
7
MAT04E
RF
VREF
5
Figure 13. Squaring Amplifier
4
R2
33k⍀
Figure 12. A Simple Bridge Conditioning Amplifier
Using the OP297
C2
100pF
6
NONLINEAR CIRCUITS
Due to its low input bias currents, the OP297 is an ideal log
amplifier in nonlinear circuits such as the square and squareroot circuits shown in Figures 13 and 14. Using the squaring
circuit of Figure 13 as an example, the analysis begins by writing a
voltage loop equation across transistors Q1, Q2, Q3, and Q4.
IO
Q1
VIN
2
3
8
1/2
OP297
1
Q2
5
7
13
8
Q3
10
14
Q4
12
9
R3
50k⍀
R4
50k⍀
4
V–
VOUT
IREF
MAT04E
1
7
6
V+
R1
33k⍀
1/2
OP297
3
C1
100pF
I 
I

I 
I 
VT1 ln  IN  + VT 2 ln  IN  = VT 3 ln  O  + VT 4 ln  REF 
 I S1 
 IS 2 
 IS 3 
 IS 4 
5
–15V
Figure 14. Square-Root Amplifier
–8–
REV. E
OP297
In these circuits, IREF is a function of the negative power supply.
To maintain accuracy, the negative supply should be well regulated. For applications where very high accuracy is required, a
voltage reference may be used to set IREF. An important consideration for the squaring circuit is that a sufficiently large input voltage
can force the output beyond the operating range of the output
op amp. Resistor R4 can be changed to scale IREF, or R1, and R2
can be varied to keep the output voltage within the usable range.
OP297 SPICE MACRO MODEL
Figures 14 and 15 show the node end net list for a SPICE macro
model of the OP297. The model is a simplified version of the
actual device and simulates important dc parameters such as VOS,
IOS, IB, AVO, CMR, VO, and ISY. AC parameters such as slew
rate, gain and phase response, and CMR change with frequency
are also simulated by the model.
The model uses typical parameters for the OP297. The poles
and zeros in the model were determined from the actual openand closed-loop gain and phase response of the OP297. In this
way, the model presents an accurate ac representation of the actual
device. The model assumes an ambient temperature of 25°C.
Unadjusted accuracy of the square-root circuit is better than 0.1%
over an input voltage range of 100 mV to 10 V. For a similar
input voltage range, the accuracy of the squaring circuit is better
than 0.5%.
99
V2
R3
R4
13
C2
5
6
12
15
–IN
2
RIN2
8
Q1
R1
CIN
+IN
IOS
1
RIN1
3
R2
7
D1
D2
G1
Q2
10
11
R5
4
R6
C3
R7
D4
14
I1
R10
C5
V3
C6
C7
R11
R13
E2
R12
E3
R14
G3
R15
C8
98
9
99
D7
R16
ISYS
G6
D8
D5 26
V4
D6 27
V5
22
23
25
L1
G7
D9
G4
G5
D10
50
Figure 15. Macro Model
REV. E
R18
28 29
R17
–9–
16
R9
98
50
G1
R8
E1
9
EOS
C4
D3
R19
EREF
OP297
SPICE Net List
*OP297 SPICE MACRO-MODEL
*
*NODE ASSIGNMENTS
NONINVERTING INPUT
INVERTING INPUT
OUTPUT
POSITIVE SUPPLY
NEGATIVE SUPPLY
*SUBCKT OP297
1
2
30 99 50
*
*INPUT STAGE & POLE AT 6 MHz
*
RIN1
1
7
2500
RIN2
2
8
2500
R1
8
3
5E11
R2
7
3
5E11
R3
5
99
612
R4
6
99
612
CIN
7
8
3E-12
C2
5
6
21.67E-12
I1
4
50
0.1E-3
IOS
7
8
20E-12
EOS
9
7
POLY(1) 19 23 25E-6 1
Q1
5
8
10
QX
Q2
6
9
11
QX
R5
10
4
96
R6
11
4
96
D1
8
9
DX
D2
9
8
DX
*
EREF
98
0
23 0 1
*
*GAIN STAGE & DOMINANT POLE AT 0.13 HZ
*
R7
12
98
2.45E9
C3
12
98
500E-12
G1
98
12
56
1.634E-3
V2
99
13
1.5
V3
14
50
1.5
D3
12
13
DX
D4
14
12
DX
*
*NEGATIVE ZERO AT -1.8 MHz
*
R8
15
16
1E6
C4
15
16
–88.4E-15
R9
16
98
1
E1
15
98
12 23 1E6
*
*POLE AT 1.8 MHz
*
R10
17
98
1E6
C5
17
98
88 4E-15
G2
98
17
16 23 1 E-6
*
*COMMON-MODE GAIN NETWORK WITH ZERO AT 50 HZ
*
R11
18
19
1E6
C6
18
19
3.183E-9
R12
19
98
1
E2
18
98
3 23 100E-3
*
*POLE AT 6 MHz
*
R15
22
98
1E6
C8
22
98
26.53E-15
G3
98
22
17 23 1 E-6
*
*OUTPUT STAGE
*
R16
23
99
160E3
R17
23
50
160E3
ISY
99
50
331E-6
R18
25
99
200
R19
25
50
200
L1
25
30
1E-7
G4
28
50
22 25 5E-3
G5
29
50
25 22 5E-3
G6
25
99
99 22 5E-3
G7
50
25
22 50 5E-3
V4
26
25
1.8
V5
25
27
1.3
D5
22
26
DX
D6
27
22
DX
D7
99
28
DX
D8
99
29
DX
D9
50
28
DY
D10
50
29
DY
*
*MODELS USED
*
.MODEL QX NPN BF=2.5E6)
.MODEL DX D IS = 1E-15)
.MODEL DY D IS = 1E-15 BV = 50)
.ENDS OP297
–10–
REV. E
OP297
OUTLINE DIMENSIONS
8-Lead Plastic Dual In-Line Package [PDIP]
P-Suffix
(N-8)
8-Lead Ceramic Dual In-Line Package [CERDIP]
Z-Suffix
(Q-8)
Dimensions shown in inches and (millimeters)
Dimensions shown in inches and (millimeters)
0.005 (0.13)
MIN
0.375 (9.53)
0.365 (9.27)
0.355 (9.02)
0.055 (1.40)
MAX
8
8
1
5
4
0.295 (7.49)
0.285 (7.24)
0.275 (6.98)
0.180
(4.57)
MAX
0.150 (3.81)
0.130 (3.30)
0.110 (2.79)
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
0.310 (7.87)
0.220 (5.59)
PIN 1
1
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.100 (2.54)
BSC
5
0.015
(0.38)
MIN
0.100 (2.54) BSC
0.150 (3.81)
0.135 (3.43)
0.120 (3.05)
0.060 (1.52)
0.015 (0.38)
0.200 (5.08)
MAX
0.150 (3.81)
MIN
0.200 (5.08)
0.125 (3.18)
0.023 (0.58)
0.014 (0.36)
SEATING
0.070 (1.78) PLANE
0.030 (0.76)
8-Lead Standard Small Outline Package (SOIC)
Narrow Body
S-Suffix
(R-8)
Dimensions shown in millimeters and (inches)
5.00 (0.1968)
4.80 (0.1890)
8
5
1
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
SEATING
0.10
PLANE
6.20 (0.2440)
5.80 (0.2284)
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
0.50 (0.0196)
ⴛ 45ⴗ
0.25 (0.0099)
8ⴗ
0.25 (0.0098) 0ⴗ 1.27 (0.0500)
0.40 (0.0157)
0.17 (0.0067)
COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
REV. E
15
0
0.015 (0.38)
0.008 (0.20)
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
COMPLIANT TO JEDEC STANDARDS MO-095AA
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
4.00 (0.1574)
3.80 (0.1497)
0.320 (8.13)
0.290 (7.37)
0.405 (10.29) MAX
0.015 (0.38)
0.010 (0.25)
0.008 (0.20)
SEATING
PLANE
0.060 (1.52)
0.050 (1.27)
0.045 (1.14)
4
–11–
OP297
Revision History
Location
Page
7/03—Data Sheet changed from REV. D to REV. E.
Edits to Figures 12 and 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Changes to NONLINEAR CIRCUITS Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
10/02—Data Sheet changed from REV. C to REV. D.
Edits to Figure 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
10/02—Data Sheet changed from REV. B to REV. C.
Edits to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Deleted WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Deleted DICE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Deleted ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
–12–
REV. E
C00300–0–7/03(E)
Changes to TPCS 13 and 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Similar pages