FastIRFET™ IRFHM4234TRPbF HEXFET® Power MOSFET VDSS RDS(on) max (@ VGS = 10V) (@ VGS = 4.5V) Qg (typical) ID (@TC (Bottom) = 25°C) 25 Top View V 4.4 m 7.1 8.2 nC 60 D 5 4 G D 6 3 S D 7 2 S D 8 1 S A PQFN 3.3 x 3.3 mm Applications Control MOSFET for synchronous buck converter Features Low Charge (typical 8.2 nC) Low RDSon (<4.4 m) Low Thermal Resistance to PCB (<4.4°C/W) Low Profile (<0.9 mm) Industry-Standard Pinout Compatible with Existing Surface Mount Techniques RoHS Compliant, Halogen-Free MSL1, Industrial Qualification Base part number Package Type IRFHM4234PbF PQFN 3.3mm x 3.3mm Benefits Low Switching Losses Lower Conduction Losses Enable better Thermal Dissipation results in Increased Power Density Multi-Vendor Compatibility Easier Manufacturing Environmentally Friendlier Increased Reliability Standard Pack Form Quantity Tape and Reel 4000 Orderable Part Number IRFHM4234TRPbF Absolute Maximum Ratings Parameter Max. Units V VGS Gate-to-Source Voltage ± 20 ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 20 ID @ TC(Bottom) = 25°C Continuous Drain Current, VGS @ 10V 63 ID @ TC(Bottom) = 100°C Continuous Drain Current, VGS @ 10V 44 IDM Continuous Drain Current, VGS @ 10V (Source Bonding Technology Limited) Pulsed Drain Current PD @TA = 25°C Power Dissipation ID @ TC = 25°C PD @TC(Bottom) = 25°C Power Dissipation A 60 270 2.8 W 28 Linear Derating Factor 0.022 TJ Operating Junction and -55 to + 150 TSTG Storage Temperature Range W/°C °C Notes through are on page 9 1 2016-2-26 IRFHM4234TRPbF Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient BVDSS/TJ RDS(on) Static Drain-to-Source On-Resistance VGS(th) VGS(th) IDSS IGSS Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage gfs Forward Transconductance Qg Total Gate Charge Qg Total Gate Charge Qgs1 Pre-Vth Gate-to-Source Charge Qgs2 Post-Vth Gate-to-Source Charge Qgd Gate-to-Drain Charge Qgodr Gate Charge Overdrive Qsw Switch Charge (Qgs2 + Qgd) Qoss Output Charge RG Gate Resistance td(on) Turn-On Delay Time tr Rise Time td(off) Turn-Off Delay Time Fall Time tf Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Avalanche Characteristics Parameter EAS Single Pulse Avalanche Energy IAR Avalanche Current Diode Characteristics Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current (Body Diode) VSD Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge Min. 25 ––– ––– ––– 1.1 ––– ––– ––– ––– 60 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 21 3.5 5.6 1.6 -5.5 ––– ––– ––– ––– 17 8.2 1.6 1.6 3.1 1.9 4.7 7.7 1.8 7.8 30 8.0 5.3 1011 286 83 Max. ––– ––– 4.4 7.1 2.1 ––– 1.0 100 -100 ––– ––– 12.3 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Units Conditions V VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA VGS = 10V, ID = 30A m VGS = 4.5V, ID = 30A V V = VGS, ID = 25µA mV/°C DS µA VDS = 20V, VGS = 0V VGS = 20V nA VGS = -20V S VDS = 5.0V, ID = 30A nC VGS = 10V, VDS = 13V, ID = 30A nC nC VDS = 13V VGS = 4.5V ID = 30A VDS = 16V, VGS = 0V ns VDD = 13V, VGS = 4.5V ID = 30A RG=1.8 pF VGS = 0V VDS = 13V ƒ = 1.0MHz Typ. ––– ––– Min. Typ. Max. ––– ––– 60 ––– ––– 270 ––– ––– ––– ––– 10 11 1.0 15 17 Max. 39 30 Units Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 30A, VGS = 0V TJ = 25°C, IF = 30A, VDD = 13V di/dt = 200A/µs D A G S V ns nC Thermal Resistance Parameter RJC (Bottom) Junction-to-Case Junction-to-Case RJC (Top) Typ. ––– Max. 4.4 Units ––– 40 °C/W RJA Junction-to-Ambient ––– 45 RJA (<10s) Junction-to-Ambient ––– 31 2 2016-2-26 IRFHM4234TRPbF 1000 1000 100 BOTTOM 10 60µs PULSE WIDTH 2.75V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.25V 3.0V 2.75V 100 BOTTOM 10 2.75V 60µs PULSE WIDTH Tj = 150°C Tj = 25°C 1 1 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 100 1.8 100 TJ = 150°C 10 TJ = 25°C V DS = 10V 60µs PULSE WIDTH RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 2. Typical Output Characteristics 1000 1.0 ID = 30A V GS = 10V 1.6 1.4 1.2 1.0 0.8 0.6 1.0 2.0 3.0 4.0 5.0 6.0 7.0 -60 -40 -20 0 V GS, Gate-to-Source Voltage (V) 100000 Fig 4. Normalized On-Resistance vs. Temperature 14.0 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd V GS, Gate-to-Source Voltage (V) ID= 30A Coss = Cds + Cgd 10000 Ciss Coss 1000 Crss 100 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 12.0 V DS= 20V 10.0 V DS= 13V V DS= 5.0V 8.0 6.0 4.0 2.0 0.0 10 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 3 VGS 10V 5.0V 4.5V 4.0V 3.5V 3.25V 3.0V 2.75V 0 5 10 15 20 25 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 2016-2-26 IRFHM4234TRPbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100 TJ = 150°C 10 TJ = 25°C 1 OPERATION IN THIS AREA LIMITED BY RDS(on) 100 100µsec 1msec 10 Limited by package 1 10msec 0.1 Tc = 25°C Tj = 150°C Single Pulse V GS = 0V DC 0.01 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.1 1.6 1 10 100 VDS , Drain-to-Source Voltage (V) V SD, Source-to-Drain Voltage (V) Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 2.8 70 Limited by package V GS(th) , Gate threshold Voltage (V) ID, Drain Current (A) 60 50 40 30 20 10 2.4 2.0 1.6 ID = 25µA ID = 250µA 1.2 ID = 1.0mA ID = 1.0A 0.8 0 25 50 75 100 125 -75 -50 -25 150 0 25 50 75 100 125 150 TJ , Temperature ( °C ) TC , Case Temperature (°C) Fig 10. Drain-to-Source Breakdown Voltage Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) °C/W 10 D = 0.50 1 0.20 0.10 0.05 0.02 0.01 0.1 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 2016-2-26 IRFHM4234TRPbF 160 ID = 30A EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m ) 10.0 8.0 TJ = 125°C 6.0 4.0 TJ = 25°C 2.0 ID 7.5A 17A BOTTOM 30A TOP 120 80 40 0 2 4 6 8 10 12 14 16 18 20 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) V GS, Gate -to -Source Voltage (V) Fig 13. Maximum Avalanche Energy vs. Drain Current Fig 12. On– Resistance vs. Gate Voltage Avalanche Current (A) 1000 Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 125°C and Tstart =25°C (Single Pulse) 10 1 0.1 1.0E-06 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 125°C. 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 tav (sec) Fig 14. Typical Avalanche Current vs. Pulsewidth 5 2016-2-26 IRFHM4234TRPbF Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp 15V L VDS D.U.T RG IAS 20V tp DRIVER + V - DD A I AS 0.01 Fig 16a. Unclamped Inductive Test Circuit Fig 16b. Unclamped Inductive Waveforms Fig 17b. Switching Time Waveforms Fig 17a. Switching Time Test Circuit Id Vds Vgs VDD Vgs(th) Qgs1 Qgs2 Fig 18. Gate Charge Test Circuit 6 Qgd Qgodr Fig 19. Gate Charge Waveform 2016-2-26 IRFHM4234TRPbF PQFN 3.3 x 3.3 Outline “B” Package Details For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf For more information on package inspection techniques, please refer to application note AN-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN 3.3 x 3.3 Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER XXXX ?YWW? XXXXX PART NUMBER MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 7 2016-2-26 IRFHM4234TRPbF PQFN 3.3mm x 3.3mm Outline Tape and Reel REEL DIMENSIONS TAPE DIMENSIONS CODE Ao Bo Ko DIMENSION (MM) MIN MAX 3.50 3.70 3.50 3.70 1.10 1.30 7.90 P1 11.80 W 12.30 W1 Qty Reel Diameter QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE CODE Ao Bo Ko W P1 DIMENSION (INCH) MIN MAX .138 .146 .138 .146 .043 .051 8.10 12.20 12.50 .311 .465 .484 .319 .480 .492 4000 13 Inches DESCRIPTION Dimension design to accommodate the component width Dimension design to accommodate the component lenght Dimension design to accommodate the component thickness Overall width of the carrier tape Pitch between successive cavity centers Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 2016-2-26 IRFHM4234TRPbF Qualification Information† Qualification Level Moisture Sensitivity Level RoHS Compliant Industrial (per JEDEC JESD47F†† guidelines) PQFN 3.3mm x 3.3mm MSL1 (per JEDEC J-STD-020D††) Yes † Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability †† Applicable version of JEDEC standard at the time of product release. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.087mH, RG = 50, IAS = 30A. Pulse width 400µs; duty cycle 2%. R is measured at TJ of approximately 90°C. When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: http://www.irf.com/technical-info/appnotes/an-994.pdf Calculated continuous current based on maximum allowable junction temperature. Current is limited to 60A by source bonding technology for 1 inch square FR-4, or 85A for large area 6 oz. copper on a large area copper Insulated Metal Substrate (IMS). 9 2016-2-26 IRFHM4234TRPbF Revision History Date Comments 6/21/2013 Updated figure 10 ID label from 1.0mA to 1.0A, on page 4. 8/15/2013 Added “FastIRFET™” above the part number, on page 1. Updated schematic on page 1. Updated tape and reel on page 8. Updated Id @ Tc 25C from “40A” to “60A”-pg1& 2. Updated Id @ Tc (bottom) 100c from “40A” to “44A”-pg1. Updated fig 8 & 9 on page 4. Updated note 7 on page 9. Updated datasheet with corporate template. Removed package outline “Punched Version” on page 7. 6/6/2014 7/24/2014 2/26/2016 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved. IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. 10 2016-2-26