ON NCV8440A Protected power mosfet Datasheet

NCV8440, NCV8440A
Protected Power MOSFET
2.6 A, 52 V, N−Channel, Logic Level,
Clamped MOSFET w/ ESD Protection
Features
•
•
•
•
•
•
www.onsemi.com
Diode Clamp Between Gate and Source
ESD Protection − Human Body Model 5000 V
Active Over−Voltage Gate to Drain Clamp
Scalable to Lower or Higher RDS(on)
Internal Series Gate Resistance
These are Pb−Free Devices
VDSS
(Clamped)
RDS(ON) TYP
ID MAX
52 V
95 mW @ 10 V
2.6 A
Drain (Pins 2, 4)
Benefits
• High Energy Capability for Inductive Loads
• Low Switching Noise Generation
Overvoltage
Protection
Gate
(Pin 1)
Applications
ESD Protection
• Automotive and Industrial Markets:
Solenoid Drivers, Lamp Drivers, Small Motor Drivers
• NCV Prefix for Automotive and Other Applications Requiring
Source (Pin 3)
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
MARKING
DIAGRAM
DRAIN
4
SOT−223
CASE 318E
STYLE 3
1 = Gate
2 = Drain
3 = Source
A
Y
W
xxxxx
G
AYW
xxxxx G
G
1
GATE
2
3
SOURCE
DRAIN
= Assembly Location
= Year
= Work Week
= V8440 or 8440A
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 8 of this data sheet.
© Semiconductor Components Industries, LLC, 2016
May, 2016 − Rev. 7
1
Publication Order Number:
NCV8440/D
NCV8440, NCV8440A
MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)
Rating
Symbol
Value
Unit
Drain−to−Source Voltage Internally Clamped
VDSS
52−59
V
Gate−to−Source Voltage − Continuous
VGS
±15
V
2.6
10
A
IDM
PD
1.69
W
Drain Current
ID
− Continuous @ TA = 25°C
− Single Pulse (tp = 10 ms) (Note 1)
Total Power Dissipation @ TA = 25°C (Note 1)
TJ, Tstg
−55 to 150
°C
Single Pulse Drain−to−Source Avalanche Energy
(VDD = 50 V, ID(pk) = 1.17 A, VGS = 10 V, L = 160 mH, RG = 25 W)
EAS
110
mJ
Load Dump Voltage (VGS = 0 and 10 V, RI = 2.0 W, RL = 9.0 W, td = 400 ms)
VLD
60
Operating and Storage Temperature Range
V
°C/W
Thermal Resistance,
Junction−to−Ambient (Note 1)
Junction−to−Ambient (Note 2)
Maximum Lead Temperature for Soldering
Purposes, 1/8″ from Case for 10 Seconds
RqJA
RqJA
74
169
TL
260
°C
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
1. When surface mounted to a FR4 board using 1″ pad size, (Cu area 1.127 in2).
2. When surface mounted to a FR4 board using minimum recommended pad size, (Cu area 0.412 in2).
+
ID
DRAIN
IG
+
VDS
GATE
SOURCE
VGS
−
−
Figure 1. Voltage and Current Convention
www.onsemi.com
2
NCV8440, NCV8440A
MOSFET ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)
Symbol
Characteristic
Min
Typ
Max
Unit
52
50.8
55
54
−9.3
59
59.5
V
V
mV/°C
OFF CHARACTERISTICS
V(BR)DSS
Drain−to−Source Breakdown Voltage (Note 3)
(VGS = 0 V, ID = 1.0 mA, TJ = 25°C)
(VGS = 0 V, ID = 1.0 mA, TJ = −40°C to 125°C) (Note 4)
Temperature Coefficient (Negative)
Zero Gate Voltage Drain Current
(VDS = 40 V, VGS = 0 V)
(VDS = 40 V, VGS = 0 V, TJ = 125°C) (Note 4)
IDSS
Gate−Body Leakage Current
(VGS = ±8 V, VDS = 0 V)
(VGS = ±14 V, VDS = 0 V)
IGSS
mA
10
25
±35
±10
mA
ON CHARACTERISTICS (Note 3)
Gate Threshold Voltage (Note 3)
(VDS = VGS, ID = 100 mA)
Threshold Temperature Coefficient (Negative)
VGS(th)
Static Drain−to−Source On−Resistance (Note 3)
(VGS = 3.5 V, ID = 0.6 A)
(VGS = 4.0 V, ID = 1.5 A)
(VGS = 10 V, ID = 2.6 A)
RDS(on)
1.1
Forward Transconductance (Note 3) (VDS = 15 V, ID = 2.6 A)
1.5
−4.1
1.9
150
135
95
180
160
110
V
mV/°C
mW
gFS
3.8
Mhos
Ciss
155
pF
Coss
60
Crss
25
Ciss
170
Coss
70
Crss
30
DYNAMIC CHARACTERISTICS
Input Capacitance
Output Capacitance
VDS = 35 V, VGS = 0 V,
f = 10 kHz
Transfer Capacitance
Input Capacitance
Output Capacitance
VDS = 25 V, VGS = 0 V,
f = 10 kHz
Transfer Capacitance
pF
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Pulse Test: Pulse Width ≤ 300 ms, Duty Cycle ≤ 2%.
4. Not subject to production testing.
5. Switching characteristics are independent of operating junction temperatures.
www.onsemi.com
3
NCV8440, NCV8440A
MOSFET ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
SWITCHING CHARACTERISTICS (Note 5)
Turn−On Delay Time
Rise Time
Turn−Off Delay Time
VGS = 4.5 V, VDD = 40 V,
ID = 2.6 A, RD = 15.4 W
Fall Time
Turn−On Delay Time
Rise Time
Turn−Off Delay Time
VGS = 4.5 V, VDD = 40 V,
ID = 1.0 A, RD = 40 W
Fall Time
Turn−On Delay Time
Rise Time
VGS = 10 V, VDD = 15 V,
ID = 2.6 A, RD = 5.8 W
Turn−Off Delay Time
Fall Time
Gate Charge
VGS = 4.5 V, VDS = 40 V,
ID = 2.6 A (Note 3)
Gate Charge
VGS = 4.5 V, VDS = 15 V,
ID = 1.5 A (Note 3)
td(on)
375
tr
1525
td(off)
1530
tf
1160
td(on)
325
tr
1275
td(off)
1860
tf
1150
td(on)
190
tr
710
td(off)
2220
tf
1180
QT
4.5
Q1
0.9
Q2
2.6
QT
3.9
Q1
1.0
Q2
1.7
VSD
0.81
0.66
trr
730
ta
200
tb
530
QRR
6.3
ns
ns
ns
nC
nC
SOURCE−DRAIN DIODE CHARACTERISTICS
Forward On−Voltage
IS = 2.6 A, VGS = 0 V (Note 3)
IS = 2.6 A, VGS = 0 V, TJ = 125°C
Reverse Recovery Time
IS = 1.5 A, VGS = 0 V,
dIs/dt = 100 A/ms (Note 3)
Reverse Recovery Stored Charge
1.5
V
ns
mC
ESD CHARACTERISTICS (Note 4)
Electro−Static Discharge Capability
Human Body Model (HBM)
Machine Model (MM)
ESD
5000
V
500
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Pulse Test: Pulse Width ≤ 300 ms, Duty Cycle ≤ 2%.
4. Not subject to production testing.
5. Switching characteristics are independent of operating junction temperatures.
www.onsemi.com
4
NCV8440, NCV8440A
10
100
25°C
Emax, MAX SWITCHING ENERGY (mJ)
ILmax, MAX SWITCH−OFF CURRENT (A)
TYPICAL PERFORMANCE CURVES
100°C
150°C
1
0.1
1
10
100
150°C
10
0.1
1
10
100
L, LOAD INDUCTANCE (mH)
Figure 1. Single Pulse Maximum Switch−off
Current vs. Load Inductance
Figure 2. Single Pulse Maximum Switching
Energy vs. Load Inductance
10
5V
8
VDS ≥ 10 V
4V
3.8 V
TJ = 25°C
ID, DRAIN CURRENT (AMPS)
VGS = 10 V
ID, DRAIN CURRENT (AMPS)
100°C
L, LOAD INDUCTANCE (mH)
10
3.6 V
6
3.4 V
3.2 V
4
3V
2.8 V
2
2.6 V
2.4 V
0
25°C
0
1
2
3
4
8
6
4
TJ = 25°C
0
5
TJ = 150°C
2
1
1.5
TJ = −40°C
2.5
3
2
3.5
4
VDS, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
VGS, GATE−TO−SOURCE VOLTAGE (VOLTS)
Figure 3. On−State Output Characteristics
Figure 4. Transfer Characteristics
300
350
ID = 2 A
300
250
150°C, VGS = 5 V
250
RDS(on) (mW)
RDS(on) (mW)
150°C
200
25°C
150
150°C, VGS = 10 V
150
25°C, VGS = 5 V
25°C, VGS = 10 V
100
100
50
200
−40°C, VGS = 5 V
−40°C
3
4
5
6
7
8
9
50
10
1
2
3
4
−40°C, VGS = 10 V
5
6
7
8
VGS, GATE−TO−SOURCE VOLTAGE (V)
ID, DRAIN CURRENT (A)
Figure 5. RDS(on) vs. Gate−Source Voltage
Figure 6. RDS(on) vs. Drain Current
www.onsemi.com
5
9
10
NCV8440, NCV8440A
TYPICAL PERFORMANCE CURVES
2.00
1.2
ID = 100 mA,
VDS = VGS
ID = 2 A
NORMALIZED VGS(th) (V)
NORMALIZED RDS(on)
1.75
1.50
VGS = 5 V
1.25
1.00
VGS = 10 V
0.75
0.50
−40 −20
0
20
40
60
80
100
120
1.1
1.0
0.9
0.8
0.7
0.6
−40 −20
140
TJ, JUNCTION TEMPERATURE (°C)
0
20
40
60
80
120 140
100
TJ, JUNCTION TEMPERATURE (°C)
Figure 7. Normalized RDS(on) vs. Temperature
Figure 8. Normalized Threshold Voltage vs.
Temperature
10
1000
VGS = 0 V
IS, SOURCE CURRENT (A)
100
IDSS (mA)
10
1
0.1
150°C
100°C
0.01
8
6
4
2
150°C
25°C
25°C
0.001
10
15
20
25
30
35
0.7
0.8
0.9
1
Figure 10. Source−Drain Diode Forward
Characteristics
TJ = 25°C
400 VDS = 0 V
VGS = 0 V
Crss
200
Ciss
100
Coss
Crss
5
VGS
0
VDS
5
10
15
20
25
30
35
VGS, GATE−TO−SOURCE VOLTAGE (VOLTS)
Figure 9. Drain−to−Source Leakage Current
5
50
QT
VDS
4
QGS
QGD
3
30
2
20
1
10
ID = 2.6 A
TJ = 25°C
0
0
1
2
4
3
QG, TOTAL GATE CHARGE (nC)
GATE−TO−SOURCE OR DRAIN−TO−SOURCE VOLTAGE (VOLTS)
Figure 11. Capacitance Variation
Figure 12. Gate−to−Source Voltage vs. Total
Gate Charge
www.onsemi.com
6
40
VGS
0
5
VDS, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
C, CAPACITANCE (pF)
0.6
VSD, SOURCE−TO−DRAIN VOLTAGE (V)
Ciss
0
10
−40°C
0
0.5
50
VDS , DRAIN−TO−SOURCE VOLTAGE (V)
500
300
45
40
NCV8440, NCV8440A
TYPICAL PERFORMANCE CURVES
3000
VDD = 40 V
VDD = 15 V
2500
10,000
td(off)
VDD = 40 V
VDD = 15 V
td(off)
ID = 2.6 A
RG = 0 W
TIME (ns)
TIME (ns)
2000
1500
tf
1000
tf
tr
1000
td(on)
tr
500
td(on)
100
0
4
5
6
7
8
9
1
10
10
100
VGS (V)
1000
10,000
RG (W)
Figure 13. Resistive Load Switching Time vs.
Gate−Source Voltage
Figure 14. Resistive Load Switching Time vs.
Gate Resistance (VGS = 5 V, ID = 2.6 A)
110
10,000
VDD = 40 V
VDD = 15 V
100
RqJA (°C/W)
TIME (ns)
td(off)
tf
1000
tr
td(on)
90
PCB Cu thickness, 1.0 oz
80
70
60
PCB Cu thickness, 2.0 oz
100
50
1
10
100
1000
10,000
0
50
100 150 200 250 300 350 400 450 500
RG (W)
COPPER HEAT SPREADER AREA (mm2)
Figure 15. Resistive Load Switching Time vs.
Gate Resistance (VGS = 10 V, ID = 2.6 A)
Figure 16. RqJA vs. Copper Area
100
50% Duty Cycle
RqJA 788 mm2 C°/W
20%
10
10%
5%
2%
1
1%
Single Pulse
0.1
0.000001
0.00001
0.0001
0.001
0.01
0.1
PULSE TIME (sec)
Figure 17. Transient Thermal Resistance
www.onsemi.com
7
1
10
100
1000
NCV8440, NCV8440A
ORDERING INFORMATION
Package
Shipping†
NCV8440STT1G
SOT−223
(Pb−Free)
1000 / Tape & Reel
NCV8440ASTT1G
SOT−223
(Pb−Free)
1000 / Tape & Reel
NCV8440STT3G
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCV8440ASTT3G
SOT−223
(Pb−Free)
4000 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
www.onsemi.com
8
NCV8440, NCV8440A
PACKAGE DIMENSIONS
SOT−223 (TO−261)
CASE 318E−04
ISSUE N
D
b1
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCH.
4
HE
DIM
A
A1
b
b1
c
D
E
e
e1
L
L1
HE
E
1
2
3
b
e1
e
0.08 (0003)
A1
C
q
A
MIN
1.50
0.02
0.60
2.90
0.24
6.30
3.30
2.20
0.85
0.20
1.50
6.70
0°
q
L
L1
SOLDERING FOOTPRINT*
STYLE 3:
PIN 1.
2.
3.
4.
MILLIMETERS
NOM
MAX
1.63
1.75
0.06
0.10
0.75
0.89
3.06
3.20
0.29
0.35
6.50
6.70
3.50
3.70
2.30
2.40
0.94
1.05
−−−
−−−
1.75
2.00
7.00
7.30
−
10°
MIN
0.060
0.001
0.024
0.115
0.009
0.249
0.130
0.087
0.033
0.008
0.060
0.264
0°
INCHES
NOM
0.064
0.002
0.030
0.121
0.012
0.256
0.138
0.091
0.037
−−−
0.069
0.276
−
MAX
0.068
0.004
0.035
0.126
0.014
0.263
0.145
0.094
0.041
−−−
0.078
0.287
10°
GATE
DRAIN
SOURCE
DRAIN
3.8
0.15
2.0
0.079
2.3
0.091
2.3
0.091
6.3
0.248
2.0
0.079
mm Ǔ
1.5
ǒinches
SCALE 6:1
0.059
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
9
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NCV8440/D
Similar pages