N-Channel Enhancement Mode Field Effect Transistor CEP3100 PRELIMINARY FEATURES 30V, 47A,RDS(ON) = 12mΩ @VGS = 10V. RDS(ON) = 21mΩ @VGS = 4.5V. Super high dense cell design for extremely low RDS(ON). D High power and current handing capability. Lead-free plating ; RoHS compliant. TO-220 package. G G D S CEP SERIES TO-220 ABSOLUTE MAXIMUM RATINGS Parameter S Tc = 25 C unless otherwise noted Symbol Limit Drain-Source Voltage VDS Gate-Source Voltage VGS Drain Current-Continuous@ TC = 25 C ID @ TC = 100 C Drain Current-Pulsed a IDM Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C Operating and Store Temperature Range 30 Units V ±20 V 47 A 33 A 188 A 48 W 0.32 W/ C TJ,Tstg -55 to 175 C Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 3.1 C/W Thermal Resistance, Junction-to-Ambient RθJA 62.5 C/W This is preliminary information on a new product in development now . Details are subject to change without notice . 1 Rev 1. 2012.Mar http://www.cetsemi.com CEP3100 Electrical Characteristics Parameter TA = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 30 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 30V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA Off Characteristics V On Characteristics c Gate Threshold Voltage Static Drain-Source On-Resistance VGS(th) RDS(on) VGS = VDS, ID = 250µA 3 V VGS = 10V, ID = 23A 1 9 12 mΩ VGS = 4.5V, ID =11A 16 21 mΩ Dynamic Characteristics d Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 15V, VGS = 0V, f = 1.0 MHz 895 pF 215 pF 160 pF Switching Characteristics d Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 15V, ID = 10A, VGS = 10V, RGEN = 3Ω 11 22 ns 7 14 ns ns 31 62 Turn-Off Fall Time tf 5 10 ns Total Gate Charge Qg 21 27 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 15V, ID = 10A, VGS = 10V 2 nC 6 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current b IS Drain-Source Diode Forward Voltage c VSD VGS = 0V, IS = 40A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Surface Mounted on FR4 Board, t < 10 sec. c.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. d.Guaranteed by design, not subject to production testing. 2 40 A 1.2 V CEP3100 75 VGS=10,8,6V 32 ID, Drain Current (A) ID, Drain Current (A) 40 24 16 8 60 45 30 25 C TJ=125 C 15 -55 C VGS=3V 0 0 1 2 3 0 4 RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) 630 420 Coss 210 Crss 0 5 10 15 20 25 2.2 1.9 ID=23A VGS=10V 1.6 1.3 1.0 0.7 0.4 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage 8 Figure 2. Transfer Characteristics Ciss 1.1 1.0 0.9 0.8 0.7 0.6 -50 6 Figure 1. Output Characteristics 840 1.2 4 VGS, Gate-to-Source Voltage (V) 1050 1.3 2 VDS, Drain-to-Source Voltage (V) 1260 0 0 -25 0 25 50 75 100 125 150 VGS=0V 10 2 10 1 10 0 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 10 VDS=15V ID=10A 6 4 2 0 0 3 RDS(ON)Limit 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEP3100 4 8 12 16 10 100ms 1ms 10ms 10 10 20 2 DC 1 TC=25 C TJ=175 C Single Pulse 0 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 PDM 0.1 -1 t1 0.05 0.02 0.01 Single Pulse 10 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 -2 10 -5 10 t2 -4 10 -3 10 -2 10 -1 Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 0 10 1 2