Lattice LFECP1E-4F484I Latticeecp/ec family data sheet Datasheet

LatticeECP/EC Family Data Sheet
Version 01.3
LatticeECP/EC Family Data Sheet
Introduction
November 2004
Preliminary Data Sheet
Features
−
−
−
−
−
−
■ Extensive Density and Package Options
• 1.5K to 41K LUT4s
• 65 to 576 I/Os
• Density migration supported
■ sysDSP™ Block (LatticeECP™ Versions)
■ Dedicated DDR Memory Support
• High performance multiply and accumulate
• 4 to 10 blocks
− 4 to 10 36x36 multipliers or
– 16 to 40 18x18 multipliers or
− 32 to 80 9x9 multipliers
• Implements interface up to DDR400 (200MHz)
■ sysCLOCK™ PLLs
• Up to 4 analog PLLs per device
• Clock multiply, divide and phase shifting
■ System Level Support
■ Embedded and Distributed Memory
• IEEE Standard 1149.1 Boundary Scan, plus
ispTRACY™ internal logic analyzer capability
• SPI boot flash interface
• 1.2V power supply
• 18 Kbits to 645 Kbits sysMEM™ Embedded
Block RAM (EBR)
• Up to 163 Kbits distributed RAM
• Flexible memory resources:
− Distributed and block memory
■ Low Cost FPGA
• Features optimized for mainstream applications
• Low cost TQFP and PQFP packaging
■ Flexible I/O Buffer
• Programmable sysIO™ buffer supports wide
range of interfaces:
Table 1-1. LatticeECP/EC Family Selection Guide
Device
LFEC1
LFEC3
LFEC6/
LFECP6
12
16
24
PFU/PFF Rows
LVCMOS 3.3/2.5/1.8/1.5/1.2
LVTTL
SSTL 3/2 Class I, II, SSTL18 Class I
HSTL 18 Class I, II, III, HSTL15 Class I, III
PCI
LVDS, Bus-LVDS, LVPECL, RSDS
LFEC10/ LFEC15/ LFEC20/ LFEC33/ LFEC40/
LFECP10 LFECP15 LFECP20 LFECP33 LFECP40
32
40
44
64
64
PFU/PFF Columns
16
24
32
40
48
56
64
80
PFUs/PFFs
192
384
768
1280
1920
2464
4096
5120
LUTs (K)
1.5
3.1
6.1
10.2
15.4
19.7
32.8
41.0
Distributed RAM (Kbits)
6
12
25
41
61
79
131
164
EBR SRAM (Kbits)
18
55
92
277
350
424
535
645
EBR SRAM Blocks
2
6
10
30
38
46
58
70
1
—
—
4
5
6
7
8
10
18x18 Multipliers1
—
—
16
20
24
28
32
40
VCC Voltage (V)
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
Number of PLLs
2
2
2
4
4
4
4
4
67
67
360
360
400
496
sysDSP Blocks
Packages and I/O Combinations:
100-pin TQFP (14 x 14 mm)
144-pin TQFP (20 x 20 mm)
97
97
97
208-pin PQFP (28 x 28 mm)
112
145
147
256-ball fpBGA (17 x 17 mm)
484-ball fpBGA (23 x 23 mm)
160
147
195
195
195
224
288
352
672-ball fpBGA (27 x 27 mm)
900-ball fpBGA (31 x 31 mm)
496
576
1. LatticeECP devices only.
© 2004 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
1-1
Introduction_01.2
Introduction
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Introduction
The LatticeECP/EC family of FPGA devices has been optimized to deliver mainstream FPGA features at low cost.
For maximum performance and value, the LatticeECP (EConomy Plus) FPGA concept combines an efficient FPGA
fabric with high-speed dedicated functions. Lattice’s first family to implement this approach is the LatticeECP-DSP
(EConomy Plus DSP) family, providing dedicated high-performance DSP blocks on-chip. The LatticeEC™ (EConomy) family supports all the general purpose features of LatticeECP devices without dedicated function blocks to
achieve lower cost solutions.
The LatticeECP/EC FPGA fabric, which was designed from the outset with low cost in mind, contains all the critical
FPGA elements: LUT-based logic, distributed and embedded memory, PLLs and support for mainstream I/Os.
Dedicated DDR memory interface logic is also included to support this memory that is becoming increasingly prevalent in cost-sensitive applications.
The ispLEVER® design tool from Lattice allows large complex designs to be efficiently implemented using the LatticeECP/EC family of FPGA devices. Synthesis library support for LatticeECP/EC is available for popular logic synthesis tools. The ispLEVER tool uses the synthesis tool output along with the constraints from its floor planning
tools to place and route the design in the LatticeECP/EC device. The ispLEVER tool extracts the timing from the
routing and back-annotates it into the design for timing verification.
Lattice provides many pre-designed IP (Intellectual Property) ispLeverCORE™ modules for the LatticeECP/EC
family. By using these IPs as standardized blocks, designers are free to concentrate on the unique aspects of their
design, increasing their productivity.
1-2
LatticeECP/EC Family Data Sheet
Architecture
November 2004
Preliminary Data Sheet
Architecture Overview
The LatticeECP™-DSP and LatticeEC™ architectures contain an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM
(EBR) as shown in Figures 2-1 and 2-2. In addition, LatticeECP-DSP supports an additional row of DSP blocks as
shown in Figure 2-2.
There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional unit
without RAM/ROM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM and register functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks
are optimized for flexibility allowing complex designs to be implemented quickly and efficiently. Logic Blocks are
arranged in a two-dimensional array. Only one type of block is used per row. The PFU blocks are used on the outside rows. The rest of the core consists of rows of PFF blocks interspersed with rows of PFU blocks. For every
three rows of PFF blocks there is a row of PFU blocks.
Each PIC block encompasses two PIOs (PIO pairs) with their respective sysIO interfaces. PIO pairs on the left and
right edges of the device can be configured as LVDS transmit/receive pairs. sysMEM EBRs are large dedicated fast
memory blocks. They can be configured as RAM or ROM.
The PFU, PFF, PIC and EBR Blocks are arranged in a two-dimensional grid with rows and columns as shown in
Figure 2-1. The blocks are connected with many vertical and horizontal routing channel resources. The place and
route software tool automatically allocates these routing resources.
At the end of the rows containing the sysMEM Blocks are the sysCLOCK Phase Locked Loop (PLL) Blocks. These
PLLs have multiply, divide and phase shifting capability; they are used to manage the phase relationship of the
clocks. The LatticeECP/EC architecture provides up to four PLLs per device.
Every device in the family has a JTAG Port with internal Logic Analyzer (ispTRACY) capability. The sysCONFIG™
port which allows for serial or parallel device configuration. The LatticeECP/EC devices use 1.2V as their core voltage.
© 2004 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
2-1
Architecture_01.3
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Figure 2-1. Simplified Block Diagram, LatticeECP/EC Device (Top Level)
Programmable I/O Cell
(PIC) includes sysIO
Interface
sysMEM Embedded
Block RAM (EBR)
JTAG Port
sysCONFIG Programming
Port (includes dedicated
and dual use pins)
PFF (PFU without
RAM)
sysCLOCK PLL
Programmable
Functional Unit (PFU)
Figure 2-2. Simplified Block Diagram, LatticeECP-DSP Device (Top Level)
Programmable I/O Cell
(PIC) includes sysIO
Interface
sysMEM Embedded
Block RAM (EBR)
JTAG Port
sysCONFIG Programming
Port (includes dedicated
and dual use pins)
PFF (Fast PFU
without RAM/ROM)
sysDSP Block
sysCLOCK PLL
Programmable
Functional Unit (PFU)
2-2
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
PFU and PFF Blocks
The core of the LatticeECP/EC devices consists of PFU and PFF blocks. The PFUs can be programmed to perform
Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform
Logic, Arithmetic and ROM functions. Except where necessary, the remainder of the data sheet will use the term
PFU to refer to both PFU and PFF blocks.
Each PFU block consists of four interconnected slices, numbered 0-3 as shown in Figure 2-3. All the interconnections to and from PFU blocks are from routing. There are 53 inputs and 25 outputs associated with each PFU block.
Figure 2-3. PFU Diagram
From
Routing
LUT4 &
CARRY
LUT4 &
CARRY
LUT4 &
CARRY
Slice 0
D
FF/
Latch
D
FF/
Latch
LUT4 &
CARRY
LUT4 &
CARRY
Slice 1
D
FF/
Latch
LUT4 &
CARRY
LUT4 &
CARRY
Slice 3
Slice 2
D
FF/
Latch
D
FF/
Latch
LUT4 &
CARRY
D
FF/
Latch
D
FF/
Latch
D
FF/
Latch
To
Routing
Slice
Each slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and
some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and
LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock
select, chip-select and wider RAM/ROM functions. Figure 2-4 shows an overview of the internal logic of the slice.
The registers in the slice can be configured for positive/negative and edge/level clocks.
There are 14 input signals: 13 signals from routing and one from the carry-chain (from adjacent slice or PFU).
There are 7 outputs: 6 to routing and one to carry-chain (to adjacent PFU). Table 2-1 lists the signals associated
with each slice.
2-3
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Figure 2-4. Slice Diagram
To / From
Different slice / PFU
Slice
OFX1
A1
B1
C1
D1
From
Routing
CO
LUT4 &
CARRY
F1
F
D
SUM
Q1
FF/
Latch
CI
To
Routing
M1
M0
CO
A0
OFX0
LUT
Expansion
Mux
B0
C0
D0
LUT4 &
CARRY
F0
F
SUM
OFX0
CI
D
Q0
FF/
Latch
Control Signals CE
selected and
CLK
inverted per
LSR
slice in routing
Interslice signals
are not shown
To / From
Different slice / PFU
Table 2-1. Slice Signal Descriptions
Function
Type
Input
Data signal
A0, B0, C0, D0 Inputs to LUT4
Signal Names
Description
Input
Data signal
A1, B1, C1, D1 Inputs to LUT4
Input
Multi-purpose
M0
Multipurpose Input
Input
Multi-purpose
M1
Multipurpose Input
Input
Control signal
CE
Clock Enable
Input
Control signal
LSR
Local Set/Reset
Input
Control signal
CLK
System Clock
Input
Inter-PFU signal
FCIN
Fast Carry In1
Output
Data signals
F0, F1
LUT4 output register bypass signals
Output
Data signals
Q0, Q1
Register Outputs
Output
Data signals
OFX0
Output of a LUT5 MUX
Output
Data signals
OFX1
Output of a LUT6, LUT7, LUT82 MUX depending on the slice
Output
Inter-PFU signal
FCO
For the right most PFU the fast carry chain output1
1. See Figure 2-3 for connection details.
2. Requires two PFUs.
2-4
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Modes of Operation
Each Slice is capable of four modes of operation: Logic, Ripple, RAM and ROM. The Slice in the PFF is capable of
all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.
Table 2-2. Slice Modes
Logic
Ripple
RAM
ROM
PFU Slice
LUT 4x2 or LUT 5x1
2-bit Arithmetic Unit
SPR16x2
ROM16x1 x 2
PFF Slice
LUT 4x2 or LUT 5x1
2-bit Arithmetic Unit
N/A
ROM16x1 x 2
Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables. A LUT4
can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this
lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup
tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other Slices.
Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:
•
•
•
•
•
•
•
Addition 2-bit
Subtraction 2-bit
Add/Subtract 2-bit using dynamic control
Up counter 2-bit
Down counter 2-bit
Ripple mode multiplier building block
Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B
Two additional signals: Carry Generate and Carry Propagate are generated per Slice in this mode, allowing fast
arithmetic functions to be constructed by concatenating Slices.
RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x1-bit memory.
Through the combination of LUTs and Slices, a variety of different memories can be constructed.
The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3
shows the number of Slices required to implement different distributed RAM primitives. Figure 2-5 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices, one Slice functions
as the read-write port. The other companion Slice supports the read-only port. For more information on using RAM
in LatticeECP/EC devices, please see details of additional technical documentation at the end of this data sheet.
Table 2-3. Number of Slices Required For Implementing Distributed RAM
SPR16x2
DPR16x2
1
2
Number of slices
Note: SPR = Single Port RAM, DPR = Dual Port RAM
2-5
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Figure 2-5. Distributed Memory Primitives
SPR16x2
DPR16x2
AD0
AD1
AD2
AD3
WAD0
WAD1
WAD2
WAD3
DO0
DO1
DI0
DI1
WRE
DI0
DI1
WCK
WRE
CK
RAD0
RAD1
RAD2
RAD3
RDO0
RDO1
WDO0
WDO1
ROM16x1
AD0
AD1
AD2
AD3
DO0
ROM Mode: The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is
accomplished through the programming interface during configuration.
PFU Modes of Operation
Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the
functionality possible at the PFU level.
Table 2-4. PFU Modes of Operation
Logic
Ripple
RAM1
ROM
LUT 4x8 or
MUX 2x1 x 8
2-bit Add x 4
SPR16x2 x 4
DPR16x2 x 2
ROM16x1 x 8
LUT 5x4 or
MUX 4x1 x 4
2-bit Sub x 4
SPR16x4 x 2
DPR16x4 x 1
ROM16x2 x 4
LUT 6x 2 or
MUX 8x1 x 2
2-bit Counter x 4
SPR16x8 x 1
ROM16x4 x 2
LUT 7x1 or
MUX 16x1 x 1
2-bit Comp x 4
ROM16x8 x 1
1. These modes are not available in PFF blocks
2-6
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Routing
There are many resources provided in the LatticeECP/EC devices to route signals individually or as busses with
related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing)
segments.
The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) and x6 (spans seven PFU).
The x1 and x2 connections provide fast and efficient connections in horizontal and vertical directions. The x2 and
x6 resources are buffered allowing both short and long connections routing between PFUs.
The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the
place and route tool is completely automatic, although an interactive routing editor is available to optimize the
design.
Clock Distribution Network
The clock inputs are selected from external I/O, the sysCLOCK™ PLLs or routing. These clock inputs are fed
through the chip via a clock distribution system.
Primary Clock Sources
LatticeECP/EC devices derive clocks from three primary sources: PLL outputs, dedicated clock inputs and routing.
LatticeECP/EC devices have two to four sysCLOCK PLLs, located on the left and right sides of the device. There
are four dedicated clock inputs, one on each side of the device. Figure 2-6 shows the 20 primary clock sources.
Figure 2-6. Primary Clock Sources
From Routing
PLL Input
From Routing
PLL
PLL
20 Primary Clock Sources
To Quadrant Clock Selection
Clock Input
PLL Input
Clock Input
Clock Input
PLL
PLL
From Routing
Clock Input
Note: Smaller devices have two PLLs.
2-7
From Routing
PLL Input
PLL Input
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Secondary Clock Sources
LatticeECP/EC devices have four secondary clock resources per quadrant. The secondary clock branches are
tapped at every PFU. These secondary clock networks can also be used for controls and high fanout data. These
secondary clocks are derived from four clock input pads and 16 routing signals as shown in Figure 2-7.
Figure 2-7. Secondary Clock Sources
From
Routing
From
Routing
From
Routing
From
Routing
From Routing
From Routing
From Routing
From Routing
20 Secondary Clock Sources
To Quadrant Clock Selection
From Routing
From Routing
From Routing
From Routing
From
Routing
From
Routing
From
Routing
From
Routing
Clock Routing
The clock routing structure in LatticeECP/EC devices consists of four Primary Clock lines and a Secondary Clock
network per quadrant. The primary clocks are generated from MUXs located in each quadrant. Figure 2-8 shows
this clock routing. The four secondary clocks are generated from MUXs located in each quadrant as shown in
Figure 2-9. Each slice derives its clock from the primary clock lines, secondary clock lines and routing as shown in
Figure 2-10.
2-8
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Figure 2-8. Per Quadrant Primary Clock Selection
20 Primary Clock Sources: 12 PLLs + 4 PIOs + 4 Routing1
DCS
DCS
4 Primary Clocks (CLK0, CLK1, CLK2, CLK3) per Quadrant
1. Smaller devices have fewer PLL related lines.
Figure 2-9. Per Quadrant Secondary Clock Selection
20 Secondary Clock Feedlines : 4 Clock Input Pads + 16 Routing Signals
4 Secondary Clocks per Quadrant
Figure 2-10. Slice Clock Selection
Primary Clock
Secondary Clock
4
3
Clock to Slice
Routing
GND
sysCLOCK Phase Locked Loops (PLLs)
The PLL clock input, from pin or routing, feeds into an input clock divider. There are three sources of feedback signal to the feedback divider: from the CLKOP, from the clock net, or from an external pin. There is a PLL_LOCK signal to indicate that VCO has locked on to the input clock signal. Figure 2-11 shows the sysCLOCK PLL diagram.
The setup and hold times of the device can be improved by programming a delay in the feedback or input path of
the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after
2-9
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
adjustment and not relock until the tLOCK parameter has been satisfied. Additionally, the phase and duty cycle block
allows the user to adjust the phase and duty cycle of the CLKOS output.
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated
with it: input clock divider, feedback divider, post scalar divider and secondary clock divider. The input clock divider
is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post
scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.
Figure 2-11. PLL Diagram
Dynamic Delay Adjustment
LOCK
CLKI
(from routing or
external pin)
Input Clock
Divider
(CLKI)
Delay
Adjust
Voltage
VCO
Controlled
Oscillator
Post Scalar
Divider
(CLKOP)
Phase/Duty
Select
CLKOS
CLKOP
RST
Secondary
Clock
Divider
(CLKOK)
Feedback
Divider
(CLKFB)
CLKFB
(from CLKOP,
clock net or
external pin)
CLKOK
Figure 2-12 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block.
Figure 2-12. PLL Primitive
CLKI
CLKFB
EPLLB
CLKOP
LOCK
RST
CLKOP
CLKI
CLKOS
CLKFB
CLKOK
DDA MODE
DDAIZR
DDAILAG
DDAIDEL[2:0]
2-10
EHXPLLB
LOCK
DDAOZR
DDAOLAG
DDAODEL[2:0]
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Table 2-5. PLL Signal Descriptions
Signal
I/O
Description
CLKI
I
Clock input from external pin or routing
CLKFB
I
PLL feedback input from CLKOP, clocknet, or external pin
RST
I
“1” to reset PLL
CLKOS
O
PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP
O
PLL output clock to clock tree (No phase shift)
CLKOK
O
PLL output to clock tree through secondary clock divider
LOCK
O
“1” indicates PLL LOCK to CLKI
DDAMODE
I
Dynamic Delay Enable. “1”: Pin control (dynamic), “0”: Fuse Control (static)
DDAIZR
I
Dynamic Delay Zero. “1”: delay = 0, “0”: delay = on
DDAILAG
I
Dynamic Delay Lag/Lead. “1”: Lead, “0”: Lag
DDAIDEL[2:0]
I
Dynamic Delay Input
DDAOZR
O
Dynamic Delay Zero Output
DDAOLAG
O
Dynamic Delay Lag/Lead Output
DDAODEL[2:0]
O
Dynamic Delay Output
For more information on the PLL, please see details of additional technical documentation at the end of this data
sheet.
Dynamic Clock Select (DCS)
The DCS is a global clock buffer with smart multiplexer functions. It takes two independent input clock sources and
outputs a clock signal without any glitches or runt pulses. This is achieved irrespective of where the select signal is
toggled. There are eight DCS blocks per device, located in pairs at the center of each side. Figure 2-13 illustrates
the DCS Block Macro.
Figure 2-13. DCS Block Primitive
CLK0
CLK1
DCS
DCSOUT
SEL
Figure 2-14 shows timing waveforms of the default DCS operating mode. The DCS block can be programmed to
other modes. For more information on the DCS, please see details of additional technical documentation at the end
of this data sheet.
2-11
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Figure 2-14. DCS Waveforms
CLK0
CLK1
SEL
DCSOUT
sysMEM Memory
The LatticeECP/EC family of devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers.
sysMEM Memory Block
The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in
a variety of depths and widths as shown in Table 2-6.
Table 2-6. sysMEM Block Configurations
Memory Mode
Configurations
Single Port
8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9
512 x 18
256 x 36
True Dual Port
8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9
512 x 18
Pseudo Dual Port
8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9
512 x 18
256 x 36
Bus Size Matching
All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB
word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for
each port varies, this mapping scheme applies to each port.
RAM Initialization and ROM Operation
If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block
during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a
ROM.
2-12
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Memory Cascading
Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools
cascade memory transparently, based on specific design inputs.
Single, Dual and Pseudo-Dual Port Modes
Figure 2-15 shows the four basic memory configurations and their input/output names. In all the sysMEM RAM
modes the input data and address for the ports are registered at the input of the memory array. The output data of
the memory is optionally registered at the output.
Figure 2-15. sysMEM EBR Primitives
AD[12:0]
DI[35:0]
CLK
CE
RST
WE
CS[2:0]
EBR
ADA[12:0]
DIA[17:0]
CLKA
CEA
DO[35:0]
RSTA
WEA
CSA[2:0]
DOA[17:0]
True Dual Port RAM
Single Port RAM
AD[12:0]
CLK
CE
RST
CS[2:0]
EBR
EBR
ADB[12:0]
DIB[17:0]
CEB
CLKB
RSTB
WEB
CSB[2:0]
DOB[17:0]
ADW[12:0]
DI[35:0]
CLKW
CEW
DO[35:0]
WE
RST
CS[2:0]
ROM
ADR[12:0]
EBR
DO[35:0]
CER
CLKR
Pseudo-Dual Port RAM
The EBR memory supports three forms of write behavior for single port or dual port operation:
1. Normal – data on the output appears only during read cycle. During a write cycle, the data (at the current
address) does not appear on the output.
2. Write Through – a copy of the input data appears at the output of the same port, during a write cycle.
3. Read-Before-Write – when new data is being written, the old content of the address appears at the output.
Memory Core Reset
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A
and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated
resets for both ports are as shown in Figure 2-16.
2-13
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Figure 2-16. Memory Core Reset
Memory Core
D
SET
Q
Port A[17:0]
LCLR
Output Data
Latches
D
SET
Q
Port B[17:0]
LCLR
RSTA
RSTB
GSRN
Programmable Disable
For further information on sysMEM EBR block, please see the details of additional technical documentation at the
end of this data sheet.
sysDSP Block
The LatticeECP-DSP family provides a sysDSP block making it ideally suited for low cost, high performance Digital
Signal Processing (DSP) applications. Typical functions used in these applications are Finite Impulse Response
(FIR) filters; Fast Fourier Transforms (FFT) functions, correlators, Reed-Solomon/Turbo/Convolution encoders and
decoders. These complex signal processing functions use similar building blocks such as multiply-adders and multiply-accumulators.
sysDSP Block Approach Compare to General DSP
Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with
fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by
higher clock speeds. The LatticeECP, on the other hand, has many DSP blocks that support different data-widths.
This allows the designer to use highly parallel implementations of DSP functions. The designer can optimize the
DSP performance vs. area by choosing appropriate level of parallelism. Figure 2-17 compares the serial and the
parallel implementations.
2-14
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Figure 2-17. Comparison of General DSP and LatticeECP-DSP Approaches
Operand
A
Operand
A
Operand
A
Operand
B
Operand
A
Operand
B
Operand
B
Operand
B
x
Single
Multiplier
x
Accumulator
Σ
x
x
Multiplier 0
Multiplier 1
M loops
Multiplier
(k-1)
m/k
loops
Σ
Accumulator
Function implemented in
General purpose DSP
Output
Function implemented
in LatticeECP
sysDSP Block Capabilities
The sysDSP block in the LatticeECP-DSP family supports four functional elements in three 9, 18 and 36 data path
widths. The user selects a function element for a DSP block and then selects the width and type (signed/unsigned)
of its operands. The operands in the LatticeECP-DSP family sysDSP Blocks can be either signed or unsigned but
not mixed within a function element. Similarly, the operand widths cannot be mixed within a block.
The resources in each sysDSP block can be configured to support the following four elements:
•
•
•
•
MULT
MAC
MULTADD
MULTADDSUM
(Multiply)
(Multiply, Accumulate)
(Multiply, Addition/Subtraction)
(Multiply, Addition/Subtraction, Accumulate)
The number of elements available in each block depends in the width selected from the three available options x9,
x18, and x36. A number of these elements are concatenated for highly parallel implementations of DSP functions.
Table 2-1 shows the capabilities of the block.
Table 2-7. Maximum Number of Elements in a Block
Width of Multiply
x9
x18
x36
MULT
8
4
1
MAC
4
2
—
MULTADD
4
2
—
MULTADDSUM
2
1
—
Some options are available in four elements. The input register in all the elements can be directly loaded or can be
loaded as shift register from previous operand registers. In addition by selecting ‘dynamic operation’ in the ‘Signed/
Unsigned’ options the operands can be switched between signed and unsigned on every cycle. Similarly by selecting ‘Dynamic operation’ in the ‘Add/Sub’ option the Accumulator can be switched between addition and subtraction
on every cycle.
2-15
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
MULT sysDSP Element
This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, A and B,
are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers.
Figure 2-18 shows the MULT sysDSP element.
Figure 2-18. MULT sysDSP Element
Shift Register B In
Shift Register A In
Multiplicand
m
m
n
n
Multiplier
m
Input Data
Register A
n
x
n
Input Data
Register B
m+n
(default)
Output
Register
Multiplier
m
m+n
Output
Pipeline
Register
m
n
Signed
Input
Register
To
Multiplier
CLK (CLK0,CLK1,CLK2,CLK3)
CE (CE0,CE1,CE2,CE3)
RST(RST0,RST1,RST2,RST3)
Shift Register B Out
Shift Register A Out
MAC sysDSP Element
In this case the two operands, A and B, are multiplied and the result is added with the previous accumulated value.
This accumulated value is available at the output. The user can enable the input and pipeline registers but the output register is always enabled. The output register is used to store the accumulated value. A registered overflow
signal is also available. The overflow conditions are provided later in this document. Figure 2-19 shows the MAC
sysDSP element.
Figure 2-19. MAC sysDSP Element
Shift Register B In
Shift Register A In
Accumulator
m
n
n
m
Input Data
Register A
n
Input Data
Register B
m
n
n
Addn
Accumsload
x
m+n
(default)
Pipeline
Register
n
SignedAB
Multiplier
Input
Register
Pipeline
Register
Input
Register
Pipeline
Register
To
Accumulator
Input
Register
Pipeline
Register
To
Accumulator
To
Accumulator
m+n+16 bits
(default)
Output
Register
Multiplier
m
m+n+16 bits
(default)
Overflow
Register
Multiplicand
CLK (CLK0,CLK1,CLK2,CLK3)
CE (CE0,CE1,CE2,CE3)
RST(RST0,RST1,RST2,RST3)
Shift Register B Out
Shift Register A Out
2-16
Output
Overflow
signal
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
MULTADD sysDSP Element
In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multiplier operation of operands A1 and A2. The user can enable the input, output and pipeline registers. Figure 2-20
shows the MULTADD sysDSP element.
Figure 2-20. MULTADD
Shift Register B In
Shift Register A In
Multiplicand A0
m
CLK (CLK0,CLK1,CLK2,CLK3)
m
CE (CE0,CE1,CE2,CE3)
Multiplier B0
n
n
RST(RST0,RST1,RST2,RST3)
m
Input Data
Register A
n
Multiplier
m
x
n
Input Data
Register B
Pipeline
Register
m
m+n
(default)
Add/Sub
Multiplicand A1
Multiplier B1
m
m+n+1
(default)
m
n
Input Data
Register A
n
Addn
n
x
n
Input Data
Register B
Signed
Multiplier
m
Output
m+n+1
(default)
m+n
(default)
Pipeline
Register
m
Input
Register
Pipeline
Pipe
Register
Reg
To Add/Sub
Input
Register
Pipeline
Pipe
Register
Reg
To Add/Sub
Shift Register B Out
Output
Register
n
Shift Register A Out
MULTADDSUM sysDSP Element
In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multiplier operation of operands A1 and B1. Additionally the operands A2 and B2 are multiplied and the result is added/
subtracted with the result of the multiplier operation of operands A3 and B3. The result of both addition/subtraction
are added in a summation block. The user can enable the input, output and pipeline registers. Figure 2-21 shows
the MULTADDSUM sysDSP element.
2-17
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Figure 2-21. MULTADDSUM
Shift Register B In
Shift Register A In
Multiplicand A0
m
m
CLK (CLK0,CLK1,CLK2,CLK3)
n
CE (CE0,CE1,CE2,CE3)
Input Data
Register A
n
x
n
Input Data
Register B
m+n
(default)
Pipeline
Register
m
RST(RST0,RST1,RST2,RST3)
Add/Sub0
n
Multiplicand A1
Multiplier B1
Multiplier
m
m
m+n
(default)
m
n
Input Data
Register A
n
m+n+1
x
n
Input Data
Register B
Multiplicand A2
Multiplier
n
SUM
Pipeline
Register
m
m
m+n+2
Multiplier B2
m
n
n
Input Data
Register A
n
x
n
Input Data
Register B
m+n
(default)
m+n+1
Pipeline
Register
m
Output
m+n+2
Add/Sub1
n
Multiplicand A3
Multiplier B3
Multiplier
m
Output
Register
Multiplier B0
m
n
m
m
n
Input Data
Register A
n
Input Data
Register B
Signed
Addn0
Addn1
Shift Register B Out
m+n
(default)
n
Multiplier
m
x
n
Pipeline
Register
m
Input
Register
Pipeline
Register
To Add/Sub0, Add/Sub1
Input
Register
Pipeline
Register
To Add/Sub0
Input
Register
Pipeline
Register
To Add/Sub1
Shift Register A Out
Clock, Clock Enable and Reset Resources
Global Clock, Clock Enable and Reset signals from routing are available to every DSP block. Four Clock, Reset
and Clock Enable signals are selected for the sysDSP block. From four clock sources (CLK0, CLK1, CLK2, CLK3)
one clock is selected for each input register, pipeline register and output register. Similarly Clock enable (CE) and
Reset (RST) are selected from their four respective sources (CE0, CE1, CE2, CE3 and RST0, RST1, RST2, RST3)
at each input register, pipeline register and output register.
Signed and Unsigned with Different Widths
The DSP block supports different widths of signed and unsigned multipliers besides x9, x18 and x36 widths. For
unsigned operands, unused upper data bits should be filled to create a valid x9, x18 or x36 operand. For signed
two’s complement operands, sign extension of the most significant bit should be performed until x9, x18 or x36
width is reached. Table 2-8 provides an example of this.
2-18
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Table 2-8. An Example of Sign Extension
Number Unsigned
Unsigned
9-bit
Unsigned
18-bit
Signed
Two’s Complement
Signed 9-Bits
Two’s Complement
Signed 18-bits
+5
0101
000000101
000000000000000101
0101
000000101
000000000000000101
-6
0110
000000110
000000000000000110
1010
111111010
111111111111111010
OVERFLOW Flag from MAC
The sysDSP block provides an overflow output to indicate that the accumulator has overflowed. When two
unsigned numbers are added and the result is a smaller number then accumulator roll over is said to occur and
overflow signal is indicated. When two positive numbers are added with a negative sum and when two negative
numbers are added with a positive sum, then the accumulator “roll-over” is said to have occurred and an overflow
signal is indicated. Note when overflow occurs the overflow flag is present for only one cycle. By counting these
overflow pulses in FPGA logic, larger accumulators can be constructed. The conditions overflow signal for signed
and unsigned operands are listed in Figure 2-22.
Figure 2-22. Accumulator Overflow/Underflow Conditions
0101111100
0101111101
0101111110
0101111111
1010000000
1010000001
1010000010
252
253
254
255
256
257
258
000000011
000000010
000000001
000000000
3
2
1
0
111111111
111111110
111111101
511
510
509
Carry signal is generated for
one cycle when this
boundary is crossed
Unsigned Operation
0101111100
000000011
000000010
000000001
000000000
111111111
111111110
111111101
252
Overflow signal is generated 0101111101 253
0101111110 254
for one cycle when this
0101111111 255
boundary is crossed
1010000000 256
1010000001 255
1010000010 254
+3
+2
+1
0
-1
-2
-3
Signed Operation
ispLEVER Module Manager
The user can access the sysDSP block via the ispLEVER Module Manager, which has options to configure each
DSP module (or group of modules) or through direct HDL instantiation. Additionally Lattice has partnered Mathworks to support instantiation in the Simulink tool, which is a Graphical Simulation Environment. Simulink works
with ispLEVER and dramatically shortens the DSP design cycle in Lattice FPGAs.
2-19
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Optimized DSP Functions
Lattice provides a library of optimized DSP IP functions. Some of the IPs planned for LatticeECP DSP are: Bit Correlators, Fast Fourier Transform, Finite Impulse Response (FIR) Filter, Reed-Solomon Encoder/ Decoder, Turbo
Encoder/Decoders and Convolutional Encoder/Decoder. Please contact Lattice to obtain the latest list of available
DSP IPs.
Resources Available in the LatticeECP Family
Table 2-9 shows the maximum number of multipliers for each member of the LatticeECP family. Table 2-10 shows
the maximum available EBR RAM Blocks in each of the LatticeECP family. EBR blocks, together with Distributed
RAM can be used to store variables locally for the fast DSP operations.
Table 2-9. Number of DSP Blocks in LatticeECP Family
Device
DSP Block
9x9 Multiplier
18x18 Multiplier
36x36 Multiplier
LFECP6
4
32
16
4
LFECP10
5
40
20
5
LFECP15
6
48
24
6
LFECP20
7
56
28
7
LFECP33
8
64
32
8
LFECP40
10
80
40
10
EBR SRAM Block
Total EBR SRAM
(Kbits)
Table 2-10. Embedded SRAM in LatticeECP Family
Device
LFECP6
10
92
LFECP10
30
276
LFECP15
38
350
LFECP20
46
424
LFECP33
58
535
LFECP40
70
645
DSP Performance of the LatticeECP Family
Table 2-11 lists the maximum performance in millions of MAC operations per second (MMAC) for each member of
the LatticeECP family.
Table 2-11. DSP Block Performance of LatticeECP Family
Device
DSP Block
DSP Performance
MMAC
LFECP6
4
3680
LFECP10
5
4600
LFECP15
6
5520
LFECP20
7
6440
LFECP33
8
7360
LFECP40
10
9200
For further information on the sysDSP block, please see details of additional technical information at the end of this
data sheet.
2-20
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Programmable I/O Cells (PIC)
Each PIC contains two PIOs connected to their respective sysIO Buffers which are then connected to the PADs as
shown in Figure 2-23. The PIO Block supplies the output data (DO) and the Tri-state control signal (TO) to sysIO
buffer, and receives input from the buffer.
Figure 2-23. PIC Diagram
PIO A
TD
D0
D1
DDRCLK
TD
OPOS1
ONEG1
IOLT0
Tristate
Register Block
(2 Flip Flops)
D0
D1
DDRCLK
OPOS0
ONEG0
PADA
"T"
IOLD0
Output
Register Block
(2 Flip Flops)
INCK
INDD
INFF
IPOS0
IPOS1
INCK
INDD
INFF
IPOS0
IPOS1
Control
Muxes
CLK
CE
LSR
GSRN
DQS
DDRCLKPOL
CLKO
CEO
LSR
GSR
CLKI
CEI
sysIO
Buffer
DI
Input
Register Block
(5 Flip Flops)
PADB
"C"
PIO B
Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as “T” and “C”) as shown in Figure 2-24.
The PAD Labels “T” and “C” distinguish the two PIOs. Only the PIO pairs on the left and right edges of the device
can be configured as LVDS transmit/receive pairs.
One of every 16 PIOs contains a delay element to facilitate the generation of DQS signals. The DQS signal feeds
the DQS bus which spans the set of 16 PIOs. Figure 2-24 shows the assignment of DQS pins in each set of 16
PIOs. The exact DQS pins are shown in a dual function in the Logic Signal Connections table at the end of this data
sheet. Additional detail is provided in the Signal Descriptions table at the end of this data sheet. The DQS signal
from the bus is used to strobe the DDR data from the memory into input register blocks. This interface is designed
for memories that support one DQS strobe per eight bits of data.
2-21
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Table 2-12. PIO Signal List
Name
Type
Description
CE0, CE1
Control from the core
Clock enables for input and output block FFs.
CLK0, CLK1
Control from the core
System clocks for input and output blocks.
LSR
Control from the core
Local Set/Reset.
GSRN
Control from routing
Global Set/Reset (active low).
INCK
Input to the core
Input to Primary Clock Network or PLL reference inputs.
DQS
Input to PIO
DQS signal from logic (routing) to PIO.
INDD
Input to the core
Unregistered data input to core.
INFF
Input to the core
Registered input on positive edge of the clock (CLK0).
IPOS0, IPOS1
Input to the core
DDRX registered inputs to the core.
ONEG0
Control from the core
Output signals from the core for SDR and DDR operation.
OPOS0,
Control from the core
Output signals from the core for DDR operation
OPOS1 ONEG1
Tristate control from the core
Signals to Tristate Register block for DDR operation.
TD
Tristate control from the core
Tristate signal from the core used in SDR operation.
DDRCLKPOL
Control from clock polarity bus
Controls the polarity of the clock (CLK0) that feed the DDR input block.
Figure 2-24. DQS Routing
PIO A
PADA "T"
PIO B
PADB "C"
PIO A
PADA "T"
LVDS Pair
LVDS Pair
PIO B
PADB "C"
PIO A
PADA "T"
LVDS Pair
PADB "C"
PIO B
PIO A
PADA "T"
LVDS Pair
PADB "C"
PIO B
DQS
PIO A
sysIO
Buffer
Delay
PIO B
PIO A
Assigned
DQS Pin
PADA "T"
LVDS Pair
PADB "C"
PADA "T"
LVDS Pair
PIO B
PADB "C"
PIO A
PADA "T"
LVDS Pair
PIO B
PADB "C"
PIO A
PADA "T"
PIO B
LVDS Pair
PADB "C"
PIO
The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic
block. These blocks contain registers for both single data rate (SDR) and double data rate (DDR) operation along
with the necessary clock and selection logic. Programmable delay lines used to shift incoming clock and data signals are also included in these blocks.
2-22
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Input Register Block
The input register block contains delay elements and registers that can be used to condition signals before they are
passed to the device core. Figure 2-25 shows the diagram of the input register block.
Input signals are fed from the sysIO buffer to the input register block (as signal DI). If desired the input signal can
bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and
in selected blocks the input to the DQS delay block. If one of the bypass options is not chosen, the signal first
passes through an optional delay block. This delay, if selected, reduces input-register hold-time requirement when
using a global clock.
The input block allows two modes of operation. In the single data rate (SDR) the data is registered, by one of the
registers in the single data rate sync register block, with the system clock. In the DDR Mode two registers are used
to sample the data on the positive and negative edges of the DQS signal creating two data streams, D0 and D2.
These two data streams are synchronized with the system clock before entering the core. Further discussion on
this topic is in the DDR Memory section of this data sheet.
Figure 2-26 shows the input register waveforms for DDR operation and Figure 2-27 shows the design tool primitives. The SDR/SYNC registers have reset and clock enable available.
The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred from the DQS to system clock domain. For further discussion on this topic,
see the DDR Memory section of this data sheet.
Figure 2-25. Input Register Diagram
DI
(From sysIO
Buffer)
INCK
INDD
Delay Block
Fixed Delay
SDR & Sync
Registers
DDR Registers
D0
D
Q
D
D-Type
/LATCH
Q
D-Type
D2
D
Q
D1
D-Type
DQS Delayed
(From DQS
Bus)
CLK0
(From Routing)
DDRCLKPOL
(From DDR
Polarity Control Bus)
2-23
D
Q
D-Type
D
Q
D-Type
/LATCH
To Routing
IPOS0
IPOS1
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Figure 2-26. Input Register DDR Waveforms
DI
(In DDR Mode)
A
B
C
D
F
E
DQS
DQS
Delayed
D0
B
D
D2
A
C
Figure 2-27. INDDRXB Primitive
D
ECLK
LSR
SCLK
QA
IDDRXB
QB
CE
DDRCLKPOL
Output Register Block
The output register block provides the ability to register signals from the core of the device before they are passed
to the sysIO buffers. The block contains a register for SDR operation that is combined with an additional latch for
DDR operation. Figure 2-28 shows the diagram of the Output Register Block.
In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG0 is fed into one register on the positive edge of the clock and OPOS0 is
latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).
Figure 2-29 shows the design tool DDR primitives. The SDR output register has reset and clock enable available.
The additional register for DDR operation does not have reset or clock enable available.
2-24
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Figure 2-28. Output Register Block
OUTDDN
Q
D
D-Type
/LATCH
ONEG0
0
0
DO
1
From
Routing
To sysIO
Buffer
1
OPOS0
Q
D
Latch
LE*
CLK1
Programmed
Control
*Latch is transparent when input is low.
Figure 2-29. ODDRXB Primitive
DA
DB
CLK
ODDRXB
Q
LSR
Tristate Register Block
The tristate register block provides the ability to register tri-state control signals from the core of the device before
they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for
DDR operation. Figure 2-30 shows the diagram of the Tristate Register Block.
In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG1 is fed into one register on the positive edge of the clock and OPOS1 is
latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).
2-25
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Figure 2-30. Tristate Register Block
TD
OUTDDN
Q
D
D-Type
/LATCH
ONEG1
0
0
From
Routing
TO
1
To sysIO
Buffer
1
OPOS1
D
Q
Latch
LE*
CLK1
Programmed
Control
*Latch is transparent when input is low.
Control Logic Block
The control logic block allows the selection and modification of control signals for use in the PIO block. A clock is
selected from one of the clock signals provided from the general purpose routing and a DQS signal provided from
the programmable DQS pin. The clock can optionally be inverted.
The clock enable and local reset signals are selected from the routing and optionally inverted. The global tristate
signal is passed through this block.
DDR Memory Support
Implementing high performance DDR memory interfaces requires dedicated DDR register structures in the input
(for read operations) and in the output (for write operations). As indicated in the PIO Logic section, the EC devices
provide this capability. In addition to these registers, the EC devices contain two elements to simplify the design of
input structures for read operations: the DQS delay block and polarity control logic.
DLL Calibrated DQS Delay Block
Source Synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at
the input register. For most interfaces a PLL is used for this adjustment, however in DDR memories the clock
(referred to as DQS) is not free running so this approach cannot be used. The DQS Delay block provides the
required clock alignment for DDR memory interfaces.
The DQS signal (selected PIOs only) feeds from the PAD through a DQS delay element to a dedicated DQS routing resource. The DQS signal also feeds polarity control logic which controls the polarity of the clock to the sync
registers in the input register blocks. Figures 2-31 and 2-32 show how the DQS transition signals are routed to the
PIOs.
The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration
(6-bit bus) signals from two DLLs on opposite sides of the device. Each DLL compensates DQS Delays in its half of
the device as shown in Figure 2-32. The DLL loop is compensated for temperature, voltage and process variations
by the system clock and feedback loop.
2-26
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Figure 2-31. DQS Local Bus.
PIO
Delay
Control
Bus
Polarity
Control
Bus
DQS
Bus
DQS
GSR
CLKI
CEI
DQS
DDR
Datain
PAD
sysIO
Buffer
Input
Register Block
( 5 Flip Flops)
To Sync.
Reg.
DI
To DDR
Reg.
PIO
DQS
Strobe
PAD
sysIO
Buffer
Polarity Control
Logic
DI
DQS
DQSDEL
Calibration Bus
from DLL
Figure 2-32. DLL Calibration Bus and DQS/DQS Transition Distribution
Delay Control Bus
Polarity Control Bus
DQS Bus
DLL
DLL
2-27
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Polarity Control Logic
In a typical DDR Memory interface design, the phase relation between the incoming delayed DQS strobe and the
internal system Clock (during the READ cycle) is unknown.
The LatticeECP/EC family contains dedicated circuits to transfer data between these domains. To prevent setup
and hold violations at the domain transfer between DQS (delayed) and the system Clock a clock polarity selector is
used. This changes the edge on which the data is registered in the synchronizing registers in the input register
block. This requires evaluation at the start of each READ cycle for the correct clock polarity.
Prior to the READ operation in DDR memories DQS is in tristate (pulled by termination). The DDR memory device
drives DQS low at the start of the preamble state. A dedicated circuit detects this transition. This signal is used to
control the polarity of the clock to the synchronizing registers.
sysIO Buffer
Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the
periphery of the device in eight groups referred to as Banks. The sysIO buffers allow users to implement the wide
variety of standards that are found in today’s systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.
sysIO Buffer Banks
LatticeECP/EC devices have eight sysIO buffer banks; each is capable of supporting multiple I/O standards. Each
sysIO bank has its own I/O supply voltage (VCCIO), and two voltage references VREF1 and VREF2 resources allowing each bank to be completely independent from each other. Figure 2-33 shows the eight banks and their associated supplies.
In the LatticeECP/EC devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS, PCI and PCIX) are powered using VCCIO. LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold
input independent of VCCIO. In addition to the bank VCCIO supplies, the LatticeECP/EC devices have a VCC core logic
power supply, and a VCCAUX supply that power all differential and referenced buffers.
Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the referenced input buffers. In the LatticeECP/EC devices, some dedicated I/O pins in a bank can be configured to be a
reference voltage supply pin. Each I/O is individually configurable based on the bank’s supply and reference voltages.
2-28
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Figure 2-33. LatticeECP/EC Banks
GND
VREF2(1)
VREF1(1)
VCCIO1
Bank 7
Bank 1
VCCIO2
Bank 2
VREF2(7)
GND
VREF2(0)
VREF1(7)
VREF1(0)
VCCIO0
Bank 0
VCCIO7
VREF1(2)
VREF2(2)
GND
VCCIO6
VCCIO3
V REF1(6)
VREF1(3)
Bank 6
VREF2(3)
GND
GND
VREF2(4)
VREF1(4)
VCCIO4
Bank 4
GND
Bank 5
VREF2(5)
M
VCCIO5
GND
VREF1(5)
V REF2(6)
Bank 3
GND
Note: N and M are the maximum number of I/Os per bank.
LatticeECP/EC devices contain two types of sysIO buffer pairs.
1. Top and Bottom sysIO Buffer Pair (Single-Ended Outputs Only)
The sysIO buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and
two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also be
configured as a differential input.
The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of
the differential input buffer.
Only the I/Os on the top and bottom banks have PCI clamp.
2. Left and Right sysIO Buffer Pair (Differential and Single-Ended Outputs)
The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two
sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. The referenced input buffer can also be configured as a differential input. In these banks the two pads in the pair are
described as “true” and “comp”, where the true pad is associated with the positive side of the differential I/O,
and the comp (complementary) pad is associated with the negative side of the differential I/O.
Only the left and right banks have LVDS differential output drivers.
Supported Standards
The LatticeECP/EC sysIO buffer supports both single-ended and differential standards. Single-ended standards
can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2,
1.5, 1.8, 2.5 and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable
2-29
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
options for drive strength, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain.
Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS,
BLVDS, LVPECL, RSDS, differential SSTL and differential HSTL. Tables 2-13 and 2-14 show the I/O standards
(together with their supply and reference voltages) supported by the LatticeECP/EC devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical information at the end of this data sheet.
Table 2-13. Supported Input Standards
Input Standard
VREF (Nom.)
VCCIO1 (Nom.)
Single Ended Interfaces
LVTTL
—
—
LVCMOS332
—
—
LVCMOS252
—
—
LVCMOS18
—
1.8
LVCMOS15
—
1.5
LVCMOS122
—
—
PCI
—
3.3
HSTL18 Class I, II
0.9
—
HSTL18 Class III
1.08
—
HSTL15 Class I
0.75
—
HSTL15 Class III
0.9
—
SSTL3 Class I, II
1.5
—
SSTL2 Class I, II
1.25
—
SSTL18 Class I
0.9
—
Differential SSTL18 Class I
—
—
Differential SSTL2 Class I, II
—
—
Differential SSTL3 Class I, II
—
—
Differential HSTL15 Class I, III
—
—
Differential HSTL18 Class I, II, III
—
—
LVDS, LVPECL, BLVDS, RSDS
—
—
Differential Interfaces
1. When not specified VCCIO can be set anywhere in the valid operating range.
2. JTAG inputs do not have a fixed threshold option and always follow VCCJ.
2-30
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Table 2-14. Supported Output Standards
Output Standard
Drive
VCCIO (Nom.)
4mA, 8mA, 12mA, 16mA, 20mA
3.3
LVCMOS33
4mA, 8mA, 12mA 16mA, 20mA
3.3
LVCMOS25
4mA, 8mA, 12mA, 16mA, 20mA
2.5
LVCMOS18
4mA, 8mA, 12mA, 16mA
1.8
LVCMOS15
4mA, 8mA
1.5
Single-ended Interfaces
LVTTL
LVCMOS12
2mA, 6mA
1.2
LVCMOS33, Open Drain
4mA, 8mA, 12mA 16mA, 20mA
—
LVCMOS25, Open Drain
4mA, 8mA, 12mA 16mA, 20mA
—
LVCMOS18, Open Drain
4mA, 8mA, 12mA 16mA
—
LVCMOS15, Open Drain
4mA, 8mA
—
LVCMOS12, Open Drain
2mA, 6mA
—
PCI33
N/A
3.3
HSTL18 Class I, II, III
N/A
1.8
HSTL15 Class I, III
N/A
1.5
SSTL3 Class I, II
N/A
3.3
SSTL2 Class I, II
N/A
2.5
SSTL18 Class I
N/A
1.8
N/A
3.3
Differential Interfaces
Differential SSTL3, Class I, II
Differential SSTL2, Class I, II
N/A
2.5
Differential SSTL18, Class I
N/A
1.8
Differential HSTL18, Class I, II, III
N/A
1.8
Differential HSTL15, Class I, III
N/A
1.5
LVDS
N/A
2.5
BLVDS1
N/A
2.5
N/A
3.3
N/A
2.5
LVPECL
1
RSDS1
1. Emulated with external resistors.
Hot Socketing
The LatticeECP/EC devices have been carefully designed to ensure predictable behavior during power-up and
power-down. Power supplies can be sequenced in any order. During power up and power-down sequences, the
I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition,
leakage into I/O pins is controlled to within specified limits, this allows for easy integration with the rest of the
system. These capabilities make the LatticeECP/EC ideal for many multiple power supply and hot-swap applications.
Recommended Power Up Sequence: As described in the previous paragraph, the supplies can be sequenced
in any order. However, once internal power good is achieved (determined by VCC, VCCAUX, VCCIO bank 5) the
part releases I/Os from tri-state and the management of I/Os becomes the designers responsibility. To simplify a
system design it is therefore recommended that supplies be sequenced VCCIO, VCC, VCCAUX.
2-31
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Configuration and Testing
The following section describes the configuration and testing features of the LatticeECP/EC family of devices.
IEEE 1149.1-Compliant Boundary Scan Testability
All LatticeECP/EC devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test
access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a
serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to
be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test
access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage
VCCJ and can operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards.
For more details on boundary scan test, please see information regarding additional technical documentation at
the end of this data sheet.
Device Configuration
All LatticeECP/EC devices contain two possible ports that can be used for device configuration. The test access
port (TAP), which supports bit-wide configuration, and the sysCONFIG port that supports both byte-wide and serial
configuration.
The TAP supports both the IEEE Std. 1149.1 Boundary Scan specification and the IEEE Std. 1532 In-System Configuration specification. The sysCONFIG port is a 20-pin interface with six of the I/Os used as dedicated pins and
the rest being dual-use pins. When sysCONFIG mode is not used, these dual-use pins are available for general
purpose I/O. There are four configuration options for LatticeECP/EC devices:
1. Industry standard SPI memories.
2. Industry standard byte wide flash and ispMACH 4000 for control/addressing.
3. Configuration from system microprocessor via the configuration bus or TAP.
4. Industry standard FPGA board memory.
On power-up, the FPGA SRAM is ready to be configured with the sysCONFIG port active. The IEEE 1149.1 serial
mode can be activated any time after power-up by sending the appropriate command through the TAP port. Once a
configuration port is selected, that port is locked and another configuration port cannot be activated until the next
power-up sequence.
For more information on device configuration, please see details of additional technical documentation at the end
of this data sheet.
Internal Logic Analyzer Capability (ispTRACY)
All LatticeECP/EC devices support an internal logic analyzer diagnostic feature. The diagnostic features provide
capabilities similar to an external logic analyzer, such as programmable event and trigger condition and deep trace
memory. This feature is enabled by Lattice’s ispTRACY. The ispTRACY utility is added into the user design at compile time.
For more information on ispTRACY, please see information regarding additional technical documentation at the
end of this data sheet.
External Resistor
LatticeECP/EC devices require a single external, 10K ohm +/- 1% value between the XRES pin and ground.
Device configuration will not be completed if this resistor is missing. There is no boundary scan register on the
external resistor pad.
2-32
Architecture
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Oscillator
Every LatticeECP/EC device has an internal CMOS oscillator which is used to derive a master serial clock for configuration. The oscillator and the master serial clock run continuously. The default value of the master serial clock is
2.5MHz. Table 2-15 lists all the available Master Serial Clock frequencies. When a different Master Serial Clock is
selected during the design process, the following sequence takes place:
1. User selects a different Master Serial Clock frequency.
2. During configuration the device starts with the default (2.5MHz) Master Serial Clock frequency.
3. The clock configuration settings are contained in the early configuration bit stream.
4. The Master Serial Clock frequency changes to the selected frequency once the clock configuration bits are
received.
For further information on the use of this oscillator for configuration, please see details of additional technical documentation at the end of this data sheet.
Table 2-15. Selectable Master Serial Clock (CCLK) Frequencies During Configuration
CCLK (MHz)
CCLK (MHz)
CCLK (MHz)
2.5*
13
45
4.3
15
51
5.4
20
55
6.9
26
60
8.1
30
130
9.2
34
—
10.0
41
—
Density Shifting
The LatticeECP/EC family has been designed to ensure that different density devices in the same package have
the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration
from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design
targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.
2-33
LatticeECP/EC Family Data Sheet
DC and Switching Characteristics
November 2004
Preliminary Data Sheet
Absolute Maximum Ratings1, 2, 3
Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 1.32V
Supply Voltage VCCAUX . . . . . . . . . . . . . . . . . . . . . -0.5 to 3.75V
Supply Voltage VCCJ . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 3.75V
Output Supply Voltage VCCIO . . . . . . . . . . . . . . . . -0.5 to 3.75V
Input Voltage Applied4 . . . . . . . . . . . . . . . . . . . . . . -0.5 to 4.25V
I/O Tristate Voltage Applied 4 . . . . . . . . . . . . . . . . . -0.5 to 3.75V
Storage Temperature (Ambient) . . . . . . . . . . . . . . -65 to 150°C
Junction Temp. (Tj) +125°C
1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
2. Compliance with the Lattice Thermal Management document is required.
3. All voltages referenced to GND.
4. Overshoot and undershoot of -2V to (VIHMAX + 2) volts is permitted for a duration of <20ns.
Recommended Operating Conditions
Symbol
Min.
Max.
Units
Core Supply Voltage
1.14
1.26
V
VCCAUX
Auxiliary Supply Voltage
3.135
3.465
V
VCCIO1, 2
I/O Driver Supply Voltage
1.140
3.465
V
VCCJ
Supply Voltage for IEEE 1149.1 Test Access Port
1.140
3.465
V
tJCOM
Junction Commercial Operation
0
+85
°C
tJIND
Junction Industrial Operation
-40
100
°C
VCC
1
Parameter
1. If VCCIO or VCCJ is set to 1.2V, they must be connected to the same power supply as VCC. If VCCIO or VCCJ is set to 3.3V, they must be connected to the same power supply as VCCAUX.
2. See recommended voltages by I/O standard in subsequent table.
Hot Socketing Specifications1, 2, 3, 4
Symbol
IDK
1.
2.
3.
4.
Parameter
Input or I/O leakage Current
Condition
0 ≤ VIN ≤ VIH (MAX)
Min.
Typ.
Max
Units
—
—
+/-1000
µA
Insensitive to sequence of VCC, VCCAUX and VCCIO. However, assumes monotonic rise/fall rates for VCC, VCCAUX and VCCIO.
0 ≤ VCC ≤ VCC (MAX), 0 ≤ VCCIO ≤ VCCIO (MAX) or 0 ≤ VCCAUX ≤ VCCAUX (MAX).
IDK is additive to IPU, IPW or IBH.
LVCMOS and LVTTL only.
© 2004 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
3-1
DC and Switching_01.2
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
DC Electrical Characteristics
Over Recommended Operating Conditions
Symbol
Parameter
IIL, IIH1
Input or I/O Low leakage
Condition
Min.
Typ.
Max.
Units
0 ≤ VIN ≤ (VCCIO - 0.2V)
—
—
10
µA
(VCCIO - 0.2V) ≤ VIN ≤ 3.6V
—
—
40
µA
IPU
I/O Active Pull-up Current
0 ≤ VIN ≤ 0.7 VCCIO
30
—
150
µA
IPD
I/O Active Pull-down Current
VIL (MAX) ≤ VIN ≤ VIH (MAX)
-30
—
-150
µA
IBHLS
Bus Hold Low sustaining current
VIN = VIL (MAX)
30
—
—
µA
IBHHS
-30
—
—
µA
IBHLO
Bus Hold High sustaining current VIN = 0.7VCCIO
Bus Hold Low Overdrive current 0 ≤ VIN ≤ VIH (MAX)
—
—
150
µA
IBHLH
Bus Hold High Overdrive current
0 ≤ VIN ≤ VIH (MAX)
—
—
-150
µA
VBHT
Bus Hold trip Points
0 ≤ VIN ≤ VIH (MAX)
2
C1
I/O Capacitance
C2
Dedicated Input Capacitance2
VIL (MAX)
—
VIH (MIN)
V
VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V,
VCC = 1.2V, VIO = 0 to VIH (MAX)
—
8
—
pf
VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V,
VCC = 1.2V, VIO = 0 to VIH (MAX)
—
6
—
pf
1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured
with the output driver active. Bus maintenance circuits are disabled.
2. TA 25oC, f = 1.0MHz
3-2
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Supply Current (Standby)1, 2, 3, 4
Over Recommended Operating Conditions
Symbol
ICC
Parameter
Core Power Supply Current
Devices
Auxiliary Power Supply Current
PLL Power Supply Current
(per PLL)
ICCIO
ICCJ
1.
2.
3.
4.
5.
6.
Units
mA
LFEC3
mA
LFECP6/LFEC6
mA
LFECP10/LFEC10
mA
LFECP15/LFEC15
mA
100
mA
LFECP33/LFEC33
mA
LFECP40/LFEC40
mA
LFEC1
mA
LFEC3
mA
LFECP6/LFEC6
mA
LFECP10/LFEC10
mA
LFECP15/LFEC15
LFECP20/LFEC20
ICCPLL
Max.
LFEC1
LFECP20/LFEC20
ICCAUX
Typ.5
mA
15
mA
LFECP33/LFEC33
mA
LFECP40/LFEC40
mA
LFEC1, LFEC3, LFEC6, LFECP6, LFECP10,
LFECP15, LFECP20, LFECP33, LFECP40,
LFEC10, LFEC15, LFEC20, LFEC33, LFEC40,
8
mA
Bank Power Supply Current6
2
mA
VCCJ Power Supply Current
5
mA
For further information on supply current, please see details of additional technical documentation at the end of this data sheet.
Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the VCCIO or GND.
Frequency 0MHz.
Pattern represents typical design with 65% logic, 55% EBR, 10% routing utilization.
TJ=25oC, power supplies at nominal voltage.
Per bank.
3-3
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Initialization Supply Current1,2,3,4,5,6
Over Recommended Operating Conditions
Symbol
ICC
Parameter
Core Power Supply Current
Devices
Auxiliary Power Supply Current
PLL Power Supply Current
(per PLL)
ICCIO
ICCJ
1.
2.
3.
4.
5.
6.
7.
Units
mA
LFEC3
mA
LFECP6/LFEC6
mA
LFECP10/LFEC10
mA
LFECP15/LFEC15
mA
150
mA
LFECP33/LFEC33
mA
LFECP40/LFEC40
mA
LFEC1
mA
LFEC3
mA
LFECP6/LFECP6
mA
LFECP10/LFEC10
mA
LFECP15/LFEC15
LFECP20/LFEC20
ICCPLL
Max.
LFEC1
LFECP20/LFEC20
ICCAUX
Typ.6
mA
25
mA
LFECP33/LFEC33
mA
LFECP40/LFEC40
mA
LFEC1, LFEC3, LFEC6, LFECP6, LFECP10,
LFECP15, LFECP20, LFECP33, LFECP40,
LFEC10, LFEC15, LFEC20, LFEC33, LFEC40,
12
mA
Bank Power Supply Current7
5
mA
VCCJ Power Supply Current
10
mA
Until DONE signal is active.
For further information on supply current, please see details of additional technical documentation at the end of this data sheet.
Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the VCCIO or GND.
Frequency 0MHz.
Pattern represents typical design with 65% logic, 55% EBR, 10% routing utilization.
TJ=25oC, power supplies at nominal voltage.
Per bank.
3-4
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
sysIO Recommended Operating Conditions
VCCIO
Standard
VREF (V)
Min.
Typ.
Max.
Min.
Typ.
Max.
LVCMOS 3.3
3.135
3.3
3.465
—
—
—
LVCMOS 2.5
2.375
2.5
2.625
—
—
—
LVCMOS 1.8
1.71
1.8
1.89
—
—
—
LVCMOS 1.5
1.425
1.5
1.575
—
—
—
LVCMOS 1.2
1.14
1.2
1.26
—
—
—
LVTTL
3.135
3.3
3.465
—
—
—
PCI
3.135
3.3
3.465
—
—
—
SSTL18 Class I
1.71
2.5
1.89
1.15
1.25
1.35
SSTL2 Class I, II
2.375
2.5
2.625
1.15
1.25
1.35
SSTL3 Class I, II
3.135
3.3
3.465
1.3
1.5
1.7
HSTL15 Class I
1.425
1.5
1.575
0.68
0.75
0.9
HSTL15 Class III
1.425
1.5
1.575
—
0.9
—
HSTL 18 Class I, II
1.71
1.8
1.89
—
0.9
—
HSTL 18 Class III
1.71
1.8
1.89
—
1.08
—
LVDS
2.375
2.5
2.625
—
—
—
LVPECL1
3.135
3.3
3.465
—
—
—
2.375
2.5
2.625
—
—
—
2.375
2.5
2.625
—
—
—
BLVDS
RSDS1
1
1. Inputs on chip. Outputs are implemented with the addition of external resistors.
3-5
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
sysIO Single-Ended DC Electrical Characteristics
Input/Output
Standard
LVCMOS 3.3
LVTTL
LVCMOS 2.5
LVCMOS 1.8
LVCMOS 1.5
VIL
VIH
Min. (V)
Max. (V)
Min. (V)
-0.3
0.8
2.0
-0.3
-0.3
-0.3
-0.3
0.8
0.7
0.35VCCIO
0.35VCCIO
0.35VCC
2.0
1.7
0.65VCCIO
0.65VCCIO
LVCMOS 1.2
-0.3
PCI
-0.3
SSTL3 class I
-0.3
SSTL3 class II
-0.3
SSTL2 class I
-0.3
SSTL2 class II
-0.3
VREF - 0.18
SSTL18 class I
-0.3
HSTL15 class I
-0.3
HSTL15 class III
-0.3
VREF - 0.1
VREF + 0.1
HSTL18 class I
-0.3
VREF - 0.1
HSTL18 class II
-0.3
VREF - 0.1
HSTL18 class III
-0.3
VREF - 0.1
VOH Min.
(V)
IOL1
(mA)
IOH1
(mA)
0.4
VCCIO - 0.4
20, 16, 12,
8, 4
-20, -16, -12,
-8, -4
0.2
VCCIO - 0.2
0.1
-0.1
0.4
VCCIO - 0.4
20, 16, 12,
8, 4
-20, -16, -12,
-8, -4
0.2
VCCIO - 0.2
0.1
-0.1
0.4
VCCIO - 0.4
20, 16, 12,
8, 4
-20, -16, -12,
-8, -4
0.2
VCCIO - 0.2
0.1
-0.1
0.4
VCCIO - 0.4
16, 12, 8, 4
-16, -12, -8, -4
0.2
VCCIO - 0.2
0.1
-0.1
0.4
VCCIO - 0.4
8, 4
-8, -4
0.2
VCCIO - 0.2
0.1
-0.1
0.4
VCCIO - 0.4
6, 2
-6, -2
0.2
VCCIO - 0.2
0.1
-0.1
VOL Max.
(V)
Max. (V)
3.6
3.6
3.6
3.6
3.6
0.65VCC
3.6
0.3VCCIO
0.5VCCIO
3.6
0.1VCCIO
0.9VCCIO
1.5
-0.5
VREF - 0.2
VREF + 0.2
3.6
0.7
VCCIO - 1.1
8
-8
VREF - 0.2
VREF + 0.2
3.6
0.5
VCCIO - 0.9
16
-16
VREF - 0.18
VREF + 0.18
3.6
0.54
VCCIO - 0.62
7.6
-7.6
VREF + 0.18
3.6
0.35
VCCIO - 0.43
15.2
-15.2
VREF - 0.125 VREF + 0.125
VREF + 0.1
VREF - 0.1
3.6
0.4
VCCIO - 0.4
6.7
-6.7
3.6
0.4
VCCIO - 0.4
8
-8
3.6
0.4
VCCIO - 0.4
24
-8
VREF + 0.1
3.6
0.4
VCCIO - 0.4
9.6
-9.6
VREF + 0.1
3.6
0.4
VCCIO - 0.4
16
-16
VREF + 0.1
3.6
0.4
VCCIO - 0.4
24
-8
1. The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end of an I/O bank, as
shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between bank GND connections or
between the last GND in a bank and the end of a bank.
Rev F 0.17
3-6
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
sysIO Differential Electrical Characteristics
LVDS
Over Recommended Operating Conditions
Parameter
Symbol
Parameter Description
Test Conditions
VINP, VINM
Input voltage
VTHD
Differential input threshold
VCM
Input common mode voltage
IIN
Input current
Power on or power off
Min.
Typ.
Max.
Units
0
—
2.4
V
+/-100
—
—
mV
100mV ≤ VTHD
VTHD/2
1.2
1.8
V
200mV ≤ VTHD
VTHD/2
1.2
1.9
V
350mV ≤ VTHD
VTHD/2
1.2
2.0
V
—
—
+/-10
µA
VOH
Output high voltage for VOP or VOM
RT = 100 Ohm
—
1.38
1.60
V
VOL
Output low voltage for VOP or VOM
RT = 100 Ohm
0.9V
1.03
—
V
VOD
Output voltage differential
(VOP - VOM), RT = 100 Ohm
250
350
450
mV
∆VOD
Change in VOD between high and
low
—
—
50
mV
VOS
Output voltage offset
1.125
1.25
1.375
V
∆VOS
Change in VOS between H and L
—
—
50
mV
—
—
6
mA
IOSD
Output short circuit current
(VOP - VOM)/2, RT = 100 Ohm
VOD = 0V Driver outputs
shorted
3-7
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Differential HSTL and SSTL
Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.
BLVDS
The LatticeECP/EC devices support BLVDS standard. This standard is emulated using complementary LVCMOS
outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when
multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-1 is one
possible solution for bi-directional multi-point differential signals.
Figure 3-1. BLVDS Multi-point Output Example
Heavily loaded backplane, effective Zo ~ 45 to 90 ohms differential
2.5V
2.5V
80
45-90 ohms
45-90 ohms
80
2.5V
2.5V
80
...
80
2.5V
2.5V
+
+
-
-
80
80
+
-
2.5V
+
80
2.5V
-
Table 3-1. BLVDS DC Conditions1
Over Recommended Operating Conditions
Typical
Parameter
Description
Zo = 45
Zo = 90
Units
ZOUT
Output impedance
100
100
ohm
RTLEFT
Left end termination
45
90
ohm
RTRIGHT
Right end termination
45
90
ohm
VOH
Output high voltage
1.375
1.48
V
VOL
Output low voltage
1.125
1.02
V
VOD
Output differential voltage
0.25
0.46
V
VCM
Output common mode voltage
1.25
1.25
V
IDC
DC output current
11.2
10.2
mA
1. For input buffer, see LVDS table.
3-8
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LVPECL
The LatticeECP/EC devices support differential LVPECL standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in
Figure 3-2 is one possible solution for point-to-point signals.
Figure 3-2. Differential LVPECL
3.3V
100 ohms
+
100 ohms
~150 ohms
3.3V
-
100 ohms
Transmission line, Zo = 100 ohm differential
Off-chip
Table 3-2. LVPECL DC Conditions1
Over Recommended Operating Conditions
Typical
Units
ZOUT
Parameter
Output impedance
Description
100
ohm
RP
Driver parallel resistor
150
ohm
RT
Receiver termination
100
ohm
VOH
Output high voltage
2.03
V
VOL
Output low voltage
1.27
V
VOD
Output differential voltage
0.76
V
VCM
Output common mode voltage
1.65
V
ZBACK
Back impedance
85.7
ohm
IDC
DC output current
12.7
mA
1. For input buffer, see LVDS table.
For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical information at the end of this data sheet.
3-9
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
RSDS
The LatticeECP/EC devices support differential RSDS standard. This standard is emulated using complementary
LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-3
is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for
RSDS operation. Resistor values in Figure 3-3 are industry standard values for 1% resistors.
Figure 3-3. RSDS (Reduced Swing Differential Standard)
VCCIO = 2.5V
294
Zo = 100
+
VCCIO = 2.5V
121
100
-
294
On-chip
Off-chip
Emulated
RSDS Buffer
Table 3-3. RSDS DC Conditions
Parameter
Description
Typical
Units
ZOUT
Output impedance
20
ohm
RS
Driver series resistor
294
ohm
RP
Driver parallel resistor
121
ohm
RT
Receiver termination
100
ohm
VOH
Output high voltage
1.35
V
VOL
Output low voltage
1.15
V
VOD
Output differential voltage
0.20
V
VCM
Output common mode voltage
1.25
V
ZBACK
Back impedance
101.5
ohm
IDC
DC output current
3.66
mA
5V Tolerant Input Buffer
The input buffers of the LatticeECP/EC family of devices can support 5V signals by using a PCI Clamp and an
external series resistor as shown in Figure 3-4.
Figure 3-4. 5 V Tolerant Input Buffer
VCCIO
5V Signals from
Legacy Systems
External
Resistor
3-10
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Figure 3-5. Typical PCI Clamp Current
400
350
Current (mA)
300
250
200
150
100
50
0
0
1
2
3
4
5
Voltage (V)
3-11
6
7
8
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Typical Building Block Function Performance
Pin-to-Pin Performance (LVCMOS25 12mA Drive)
Function
-5 Timing
Units
16 bit decoder
6.2
ns
32 bit decoder
7.2
ns
64 bit decoder
7.7
ns
4:1 MUX
4.8
ns
Basic Functions
8:1 MUX
5.1
ns
16:1 MUX
6.1
ns
32:1 MUX
6.5
ns
Combinatorial (pin to LUT to pin)
5.3
ns
-5 Timing
Units
16 bit decoder
331
MHz
32 bit decoder
277
MHz
64 bit decoder
240
MHz
4:1 MUX
727
MHz
8:1 MUX
482
MHz
16:1 MUX
439
MHz
32:1 MUX
382
MHz
Register-to-Register Performance
Function
Basic Functions
8-bit adder
391
MHz
16-bit adder
337
MHz
64-bit adder
190
MHz
16-bit counter
410
MHz
32-bit counter
315
MHz
64-bit counter
215
MHz
64-bit accumulator
155
MHz
256x36 Single Port RAM
280
MHz
512x18 True-Dual Port RAM
280
MHz
549
MHz
Embedded Memory Functions
Distributed Memory Functions
16x2 Single Port RAM
64x2 Single Port RAM
259
MHz
128x4 Single Port RAM
205
MHz
32x2 Pseudo-Dual Port RAM
360
MHz
64x4 Pseudo-Dual Port RAM
301
MHz
9x9 Pipelined Multiply/Accumulate
250
MHz
18x18 Pipelined Mutiply/Accumulate
230
MHz
36x36 Pipelined Mutiply
210
MHz
1
DSP Function
1. Applies to LatticeECP devices only.
2. The above timing numbers were generated using ispLEVER tool, exact performance may vary with design and tool version. The tool uses
internal parameters that have been characterized but are not tested on every device.
3-12
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Derating Timing Tables
Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst-case
numbers in the operating range. Actual delays at nominal temperature and voltage for best-case process, can be
much better than the values given in the tables. To calculate logic timing numbers at a particular temperature and
voltage multiply the noted numbers with the derating factors provided below.
The junction temperature for the FPGA depends on the power dissipation by the device, the package thermal characteristics (ΘJA), and the ambient temperature, as calculated with the following equation:
TJMAX = TAMAX + (Power * ΘJA)
The user must determine this temperature and then use it to determine the derating factor based on the following
derating tables: TJ °C.
Table 3-4. Delay Derating Table for Internal Blocks
Power Supply Voltage
TJ °C
Commercial
TJ °C
Industrial
1.14V
1.2V
1.26V
—
-40
0.82
0.77
0.71
—
-25
0.82
0.76
0.71
0
20
0.89
0.83
0.78
25
45
0.93
0.87
0.81
85
105
1.00
0.94
0.89
100
115
1.00
0.95
0.90
110
—
1.00
0.95
0.90
125
—
1.02
0.96
0.91
3-13
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LatticeECP/EC External Switching Characteristics
Over Recommended Operating Conditions
-5
Parameter
Description
Device
-4
Min.
Max.
-3
Min.
Max.
Min.
Max.
Units
General I/O Pin Parameters (Using Primary Clock without PLL)1
tCO
Clock to Output - PIO Output Register
LFEC20
—
5.71
—
6.85
—
7.99
ns
tSU
Clock to Data Setup - PIO Input Register
LFEC20
0.00
—
0.00
—
0.00
—
ns
tH
Clock to Data Hold - PIO Input Register
LFEC20
3.41
—
4.09
—
4.77
—
ns
tSU_DEL
Clock to Data Setup - PIO Input Register
with data input delay
LFEC20
3.84
—
4.62
—
5.38
—
ns
tH_DEL
Clock to Data Hold - PIO Input Register
with Input Data Delay
LFEC20
-0.44
—
-0.54
—
-0.61
—
ns
fMAX_IO
LVDS I/O Buffer Frequency
LFEC20
—
420
—
378
—
340
MHz
2, 3
DDR I/O Pin Parameters
tDVADQ4
Data Valid After DQS (DDR Read)
LFEC20
—
0.192
—
0.192
—
0.192
UI
4
tDVEDQ
Data Hold After DQS (DDR Read)
LFEC20
0.668
—
0.668
—
0.668
—
UI
tDQVBS
Data Valid Before DQS
LFEC20
0.2
—
0.2
—
0.2
—
UI
tDQVAS
Data Valid After DQS
LFEC20
0.2
—
0.2
—
0.2
—
UI
fMAX_DDR
DDR Clock Frequency
LFEC20
95
200
95
166
95
133
MHz
420
—
378
—
340
MHz
Primary and Secondary Clock
fMAX_PRI
Frequency for Primary Clock Tree
LFEC20
—
tW_PRI
Clock Pulse Width for Primary Clock
LFEC20
1.19
—
1.19
—
1.19
—
ns
tSKEW_PRI
Primary Clock Skew within an I/O Bank
LFEC20
—
250
—
300
—
350
ps
1. General timing numbers based on LVCMOS2.5V, 12 mA.
2. DDR timing numbers based on SSTL I/O.
3. DDR specifications are characterized but not tested.
4. UI is average bit period.
Rev F 0.17
Figure 3-6. DDR Timings
DQ and DQS Read Timings
DQS
DQ
tDVADQ
tDVEDQ
DQ and DQS Write Timings
DQS
DQ
tDQVBS
tDQVAS
3-14
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LatticeECP/EC Internal Timing Parameters1
Over Recommended Operating Conditions
-5
Parameter
Description
-4
-3
Min.
Max.
Min.
Max.
Min.
Max.
Units
PFU/PFF Logic Mode Timing
tLUT4_PFU
LUT4 delay (A to D inputs to F output)
-
0.25
-
0.31
-
0.36
ns
tLUT6_PFU
LUT6 delay (A to D inputs to OFX output)
-
0.55
-
0.66
-
0.77
ns
tLSR_PFU
Set/Reset to output of PFU
-
0.81
-
0.98
-
1.14
ns
tSUM_PFU
Clock to Mux (M0,M1) input setup time
0.08
-
0.10
-
0.11
-
ns
tHM_PFU
Clock to Mux (M0,M1) input hold time
-0.06
-
-0.07
-
-0.08
-
ns
tSUD_PFU
Clock to D input setup time
0.11
-
0.14
-
0.16
-
ns
tHD_PFU
Clock to D input hold time
-0.04
-
-0.04
-
-0.05
-
ns
tCK2Q_PFU
Clock to Q delay, D-type register configuration
-
0.43
-
0.51
-
0.60
tLE2Q_PFU
Clock to Q delay latch configuration
-
0.54
-
0.65
-
0.76
tLD2Q_PFU
D to Q throughput delay when latch is
enabled
-
0.50
-
0.60
-
0.69
-
0.43
-
0.51
-
0.60
ns
ns
ns
PFU Memory Mode Timing
tCORAM_PFU
Clock to Output
ns
tSUDATA_PFU
Data Setup Time
-0.25
-
-0.30
-
-0.34
-
ns
tHDATA_PFU
Data Hold Time
-0.06
-
-0.07
-
-0.08
-
ns
tSUADDR_PFU
Address Setup Time
-0.66
-
-0.79
-
-0.92
-
ns
tHADDR_PFU
Address Hold Time
-0.27
-
-0.33
-
-0.38
-
ns
tSUWREN_PFU
Write/Read Enable Setup Time
-0.30
-
-0.36
-
-0.42
-
ns
tHWREN_PFU
Write/Read Enable Hold Time
-0.21
-
-0.25
-
-0.29
-
ns
PIC Timing
PIO Input/Output Buffer Timing
tIN_PIO
Input Buffer Delay
-
0.56
-
0.67
-
0.78
ns
tOUT_PIO
Output Buffer Delay
-
2.07
-
2.49
-
2.90
ns
IOLOGIC Input/Output Timing
tSUI_PIO
Input Register Setup Time (Data Before
Clock)
-
0.12
-
0.14
-
0.17
tHI_PIO
Input Register Hold Time (Data after Clock)
-
-0.09
-
-0.11
-
-0.13
tCOO_PIO
Output Register Clock to Output Delay
-
0.82
-
0.98
-
1.15
ns
tSUCE_PIO
Input Register Clock Enable Setup Time
-
-0.02
-
-0.02
-
-0.03
ns
tHCE_PIO
Input Register Clock Enable Hold Time
-
0.12
-
0.14
-
0.17
ns
tSULSR_PIO
Set/Reset Setup Time
0.10
-
0.12
-
0.14
-
ns
tHLSR_PIO
Set/Reset Hold Time
-0.24
-
-0.29
-
-0.34
-
ns
ns
ns
EBR Timing
tCO_EBR
Clock to output from Address or Data
-
3.82
-
4.58
-
5.34
ns
tCOO_EBR
Clock to output from EBR output Register
-
0.74
-
0.88
-
1.03
ns
tSUDATA_EBR
Setup Data to EBR Memory
-0.34
-
-0.41
-
-0.48
-
ns
tHDATA_EBR
Hold Data to EBR Memory
0.37
-
0.44
-
0.52
-
ns
tSUADDR_EBR
Setup Address to EBR Memory
-0.34
-
-0.41
-
-0.48
-
ns
tHADDR_EBR
Hold Address to EBR Memory
0.37
-
0.45
-
0.52
-
ns
tSUWREN_EBR
Setup Write/Read Enable to PFU Memory
-0.22
-
-0.26
-
-0.30
-
ns
3-15
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LatticeECP/EC Internal Timing Parameters1 (Continued)
Over Recommended Operating Conditions
-5
Parameter
Description
-4
-3
Min.
Max.
Min.
Max.
Min.
Max.
Units
ns
tHWREN_EBR
Hold Write/Read Enable to PFU Memory
0.23
-
0.28
-
0.33
-
tSUCE_EBR
Clock Enable Setup Time to EBR Output
Register
0.28
-
0.34
-
0.40
-
tHCE_EBR
Clock Enable Hold Time to EBR Output
Register
-0.24
-
-0.29
-
-0.34
-
tRSTO_EBR
Reset To Output Delay Time from EBR Output Register
-
1.00
-
1.20
-
1.40
tRSTREC
Reset Recovery to Rising Clock
-
tRSTSU
Reset Signal Setup Time
tRSTW
Reset Signal Pulse Width
ns
ns
ns
PLL Parameters
10.0
-
-
10.0
-
ns
-
ns
10.0
-
ns
DSP Block Timing2
tSUI_DSP
Input Register Setup Time
-
-0.44
-
-0.35
-
-0.27
ns
tHI_DSP
Input Register Hold Time
-
0.80
-
0.96
-
1.12
ns
tSUP_DSP
Pipeline Register Setup Time
-
3.31
-
3.98
-
4.64
ns
tHP_DSP
Pipeline Register Hold Time
-
0.80
-
0.96
-
1.12
ns
tSUO_DSP
Output Register Setup Time
-
6.72
-
8.07
-
9.41
ns
tHO_DSP
Output Register Hold Time
-
0.80
-
0.96
-
1.12
ns
tCOI_DSP
Input Register Clock to Output Time
-
8.33
-
10.35
-
12.07
ns
tCOP_DSP
Pipeline Register Clock to Output Time
-
4.80
-
5.89
-
6.87
ns
tCOO_DSP
Output Register Clock to Output Time
-
1.47
-
1.77
-
2.06
ns
tCOOVRFL_DSP
Overflow Register Clock to Output Time
-
1.47
-
1.77
-
2.06
ns
tSUADSUB
AdSub Setup Time
-
3.31
-
3.98
-
4.64
ns
tHADSUB
AdSub Hold Time
-
0.71
-
0.86
-
1.00
ns
tSUSIGN
Sign Setup Time
-
3.31
-
3.98
-
4.64
ns
tHSIGN
Sign Hold Time
-
0.80
-
0.96
-
1.12
ns
tSUACCSLOAD
Accumulator Load Setup Time
-
3.31
-
3.98
-
4.64
ns
tHACCSLOAD
Accumulator Load Hold Time
-
0.80
-
0.96
-
1.12
ns
1. Internal parameters are characterized but not tested on every device.
2. These parameters apply to LatticeECP devices only.
Rev F 0.17
3-16
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Timing Diagrams
PFU Timing Diagrams
Figure 3-7. Slice Single/Dual Port Write Cycle Timing
CK
WRE
AD[3:0]
AD
DI[1:0]
D
DO[1:0]
Old Data
D
Figure 3-8. Slice Single /Dual Port Read Cycle Timing
WRE
AD[3:0]
AD
DO[1:0]
Old Data
D
3-17
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
EBR Memory Timing Diagrams
Figure 3-9. Read/Write Mode (Normal)
CLKA
CSA
WEA
A0
ADA
A1
A0
A1
A0
tSU tH
DIA
D1
D0
tACCESS
tACCESS
D0
DOA
D1
D0
Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.
Figure 3-10. Read/Write Mode with Input and Output Registers
CLKA
CSA
WEA
ADA
A0
tSU
DIA
DOA
A1
A0
A1
A0
tH
D0
D1
D1
D0
Mem(n) data from previous read
D0
DOA
tACCESS
DOA (Regs)
Mem(n) data from previous read
output is only updated during a read cycle
3-18
tACCESS
D0
D1
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Figure 3-11. Read Before Write (SP Read/Write on Port A, Input Registers Only)
CLKA
CSA
WEA
ADA
A0
tSU
DIA
A1
A0
A1
A0
D3
D1
tH
D2
D1
D0
tACCESS
old A0 Data
DOA
tACCESS
tACCESS
old A1 Data
tACCESS
tACCESS
D0
D1
D2
Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.
Figure 3-12. Write Through (SP Read/Write On Port A, Input Registers Only)
CLKA
CSA
WEA
Three consecutive writes to A0
ADA
A0
tSU
DIA
A1
tH
D0
D2
D1
tACCESS
DOA
A0
Data from Prev Read
or Write
tACCESS
D0
D3
D4
tACCESS
D1
tACCESS
D2
D3
D4
Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.
3-19
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LatticeECP/EC Family Timing Adders1, 2, 3
Over Recommended Operating Conditions
Buffer Type
Description
-5
-4
-3
Units
0.41
0.50
0.58
ns
Input Adjusters
LVDS25
LVDS
BLVDS25
BLVDS
0.41
0.50
0.58
ns
LVPECL33
LVPECL
0.50
0.60
0.70
ns
HSTL18_I
HSTL_18 class I
0.41
0.49
0.57
ns
HSTL18_II
HSTL_18 class II
0.41
0.49
0.57
ns
HSTL18_III
HSTL_18 class III
0.41
0.49
0.57
ns
HSTL18D_I
Differential HSTL 18 class I
0.37
0.44
0.52
ns
HSTL18D_II
Differential HSTL 18 class II
0.37
0.44
0.52
ns
HSTL18D_III
Differential HSTL 18 class III
0.37
0.44
0.52
ns
HSTL15_I
HSTL_15 class I
0.40
0.48
0.56
ns
HSTL15_III
HSTL_15 class III
0.40
0.48
0.56
ns
HSTL15D_I
Differential HSTL 15 class I
0.37
0.44
0.51
ns
HSTL15D_III
Differential HSTL 15 class III
0.37
0.44
0.51
ns
SSTL33_I
SSTL_3 class I
0.46
0.55
0.64
ns
SSTL33_II
SSTL_3 class II
0.46
0.55
0.64
ns
SSTL33D_I
Differential SSTL_3 class I
0.39
0.47
0.55
ns
SSTL33D_II
Differential SSTL_3 class II
0.39
0.47
0.55
ns
SSTL25_I
SSTL_2 class I
0.43
0.51
0.60
ns
SSTL25_II
SSTL_2 class II
0.43
0.51
0.60
ns
SSTL25D_I
Differential SSTL_2 class I
0.38
0.45
0.53
ns
SSTL25D_II
Differential SSTL_2 class II
0.38
0.45
0.53
ns
SSTL18_I
SSTL_18 class I
0.40
0.48
0.56
ns
SSTL18D_I
Differential SSTL_18 class I
0.37
0.44
0.51
ns
LVTTL33
LVTTL
0.07
0.09
0.10
ns
LVCMOS33
LVCMOS 3.3
0.07
0.09
0.10
ns
LVCMOS25
LVCMOS 2.5
0.00
0.00
0.00
ns
LVCMOS18
LVCMOS 1.8
0.07
0.09
0.10
ns
LVCMOS15
LVCMOS 1.5
0.24
0.29
0.33
ns
LVCMOS12
LVCMOS 1.2
1.27
1.52
1.77
ns
PCI33
PCI
0.07
0.09
0.10
ns
Output Adjusters
LVDS25E
LVDS 2.5 E
-0.03
-0.04
-0.04
ns
LVDS25
LVDS 2.5
-0.59
-0.71
-0.83
ns
BLVDS25
BLVDS 2.5
0.18
0.22
0.26
ns
LVPECL33
LVPECL 3.3
0.05
0.06
0.07
ns
HSTL18_I
HSTL_18 class I
-0.25
-0.30
-0.35
ns
HSTL18_II
HSTL_18 class II
-0.09
-0.11
-0.13
ns
HSTL18_III
HSTL_18 class III
0.00
0.01
0.01
ns
HSTL18D_I
Differential HSTL 18 class I
-0.25
-0.30
-0.35
ns
HSTL18D_II
Differential HSTL 18 class II
-0.09
-0.11
-0.13
ns
HSTL18D_III
Differential HSTL 18 class III
0.00
0.01
0.01
ns
3-20
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LatticeECP/EC Family Timing Adders1, 2, 3 (Continued)
Over Recommended Operating Conditions
Buffer Type
Description
-5
-4
-3
Units
-0.07
-0.08
-0.09
ns
0.00
0.00
ns
-0.06
-0.07
ns
-0.08
-0.09
ns
-0.06
-0.07
ns
-0.20
-0.24
-0.28
ns
0.25
0.30
0.35
ns
Differential SSTL_3 class I
-0.20
-0.24
-0.28
ns
Differential SSTL_3 class II
0.25
0.30
0.35
ns
SSTL25_I
SSTL_2 class I
-0.10
-0.11
-0.13
ns
SSTL25_II
SSTL_2 class II
0.10
0.12
0.14
ns
SSTL25D_I
Differential SSTL_2 class I
-0.10
-0.11
-0.13
ns
SSTL25D_II
Differential SSTL_2 class II
0.10
0.12
0.14
ns
HSTL15_I
HSTL_15 class I
HSTL15_II
HSTL_15 class II
0.00
HSTL15_III
HSTL_15 class III
-0.05
HSTL15D_I
Differential HSTL 15 class I
-0.07
HSTL15D_III
Differential HSTL 15 class III
-0.05
SSTL33_I
SSTL_3 class I
SSTL33_II
SSTL_3 class II
SSTL33D_I
SSTL33D_II
SSTL18_I
SSTL_1.8 class I
-0.14
-0.17
-0.20
ns
SSTL18D_I
Differential SSTL_1.8 class I
-0.14
-0.17
-0.20
ns
LVTTL33_4mA
LVTTL 4mA drive
-0.06
-0.07
-0.09
ns
LVTTL33_8mA
LVTTL 8mA drive
-0.05
-0.07
-0.08
ns
LVTTL33_12mA
LVTTL 12mA drive
-0.06
-0.07
-0.08
ns
LVTTL33_16mA
LVTTL 16mA drive
-0.05
-0.07
-0.08
ns
LVTTL33_20mA
LVTTL 20mA drive
-0.07
-0.09
-0.10
ns
LVCMOS33_4mA
LVCMOS 3.3 4mA drive
-0.06
-0.07
-0.09
ns
LVCMOS33_8mA
LVCMOS 3.3 8mA drive
-0.05
-0.07
-0.08
ns
LVCMOS33_12mA
LVCMOS 3.3 12mA drive
-0.06
-0.07
-0.08
ns
LVCMOS33_16mA
LVCMOS 3.3 16mA drive
-0.05
-0.07
-0.08
ns
LVCMOS33_20mA
LVCMOS 3.3 20mA drive
-0.07
-0.09
-0.10
ns
LVCMOS25_4mA
LVCMOS 2.5 4mA drive
0.04
0.05
0.05
ns
LVCMOS25_8mA
LVCMOS 2.5 8mA drive
0.03
0.03
0.04
ns
LVCMOS25_12mA
LVCMOS 2.5 12mA drive
0.00
0.00
0.00
ns
LVCMOS25_16mA
LVCMOS 2.5 16mA drive
0.03
0.03
0.04
ns
LVCMOS25_20mA
LVCMOS 2.5 20mA drive
-0.05
-0.06
-0.07
ns
LVCMOS18_4mA
LVCMOS 1.8 4mA drive
0.07
0.08
0.10
ns
LVCMOS18_8mA
LVCMOS 1.8 8mA drive
0.07
0.08
0.09
ns
LVCMOS18_12mA
LVCMOS 1.8 12mA drive
0.06
0.07
0.09
ns
LVCMOS18_16mA
LVCMOS 1.8 16mA drive
0.07
0.08
0.09
ns
LVCMOS15_4mA
LVCMOS 1.5 4mA drive
0.12
0.14
0.16
ns
LVCMOS15_8mA
LVCMOS 1.5 8mA drive
0.11
0.13
0.15
ns
LVCMOS12_2mA
LVCMOS 1.2 2mA drive
0.22
0.26
0.31
ns
LVCMOS12_6mA
LVCMOS 1.2 6mA drive
0.21
0.25
0.29
ns
LVCMOS12_4mA
LVCMOS 1.2 4mA drive
0.22
0.26
0.31
ns
PCI33
PCI33
2.00
2.40
2.80
ns
1. Timing adders are characterized but not tested on every device.
2. LVCMOS timing measured with the load specified in Switching Test Conditions table.
3. All other standards according to the appropriate specification.
Rev F 0.17
3-21
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
sysCLOCK PLL Timing
Over Recommended Operating Conditions
Parameter
Descriptions
Conditions
Min.
Typ.
Max.
Units
fIN
Input Clock Frequency (CLKI, CLKFB)
25
—
420
MHz
fOUT
Output Clock Frequency (CLKOP, CLKOS)
25
—
420
MHz
fOUT2
K-Divider Output Frequency (CLKOK)
0.195
—
210
MHz
fVCO
PLL VCO Frequency
420
—
840
MHz
fPFD
Phase Detector Input Frequency
25
—
—
MHz
45
50
55
%
—
—
TBD
UI
Fout >= 100MHz
—
—
+/- 125
ps
Fout < 100MHz
—
—
0.02
UIPP
AC Characteristics
Output Clock Duty Cycle
tDT
4
Default duty cycle elected3
tPH
Output Phase Accuracy
tOPJIT1
Output Clock Period Jitter
tSK
Input Clock to Output Clock skew
Divider ratio = integer
—
—
+/- 200
ps
tW
Output Clock Pulse Width
At 90% or 10%3
1
—
—
ns
2
tLOCK
PLL Lock-in Time
tPA
Programmable Delay Unit
tIPJIT
Input Clock Period Jitter
tFBKDLY
External Feedback Delay
tHI
Input Clock High Time
90% to 90%
tLO
Input Clock Low Time
10% to 10%
tRST
RST Pulse Width
1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock.
2. Output clock is valid after tLOCK for PLL reset and dynamic delay adjustment.
3. Using LVDS output buffers.
4. Relative to CLKOP.
Rev F 0.17
3-22
—
—
150
us
100
250
400
ps
—
—
+/- 200
ps
—
—
10
ns
0.5
—
—
ns
0.5
—
—
ns
10
—
—
ns
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LatticeECP/EC sysCONFIG Port Timing Specifications
Over Recommended Operating Conditions
Parameter
Description
Min
Max
Units
7
—
ns
sysCONFIG Byte Data Flow
tSUCBDI
Byte D[0:7] Setup Time to CCLK
tHCBDI
Byte D[0:7] Hold Time to CCLK
1
—
ns
tCODO
Clock to Dout in Flowthrough Mode
—
TBD
ns
tSUCS
CS[0:1] Setup Time to CCLK
7
—
ns
tHCS
CS[0:1] Hold Time to CCLK
1
—
ns
tSUWD
Write Signal Setup Time to CCLK
7
—
ns
tHWD
Write Signal Hold Time to CCLK
1
—
ns
tDCB
CCLK to BUSY Delay Time
—
12
ns
tCORD
Clock to out for read Data
—
12
ns
6
—
ns
sysCONFIG Byte Slave Clocking
tBSCH
Byte Slave Clock Minimum High Pulse
tBSCL
Byte Slave Clock Minimum Low Pulse
6
—
ns
tBSCYC
Byte Slave Clock Cycle Time
15
—
ns
7
—
ns
sysCONFIG Serial (Bit) Data Flow
tSUSCDI
Din Setup Time to CCLK Slave Mode
tHSCDI
Din Hold Time to CCLK Slave Mode
1
—
ns
tCODO
Clock to Dout in Flowthrough Mode
—
12
ns
tSUMCDI
Din Setup Time to CCLK Master Mode
7
—
ns
tHMCDI
Din Hold Time to CCLK Master Mode
1
—
ns
sysCONFIG Serial Slave Clocking
tSSCH
Serial Slave Clock Minimum High Pulse
6
—
ns
tSSCL
Serial Slave Clock Minimum Low Pulse
6
—
ns
sysCONFIG POR, Initialization and Wake Up
tICFG
Minimum Vcc to INIT High
—
50
ms
tVMC
Time from tICFG to valid Master Clock
—
2
us
tPRGMRJ
PROGRAMB Pin Pulse Rejection
—
10
ns
tPRGM
PROGRAMB Low Time to Start Configuration
25
—
ns
tDINIT
PROGRAMB High to INIT High Delay
—
1
ms
tDPPINIT
Delay Time from PROGRAMB Low to INIT Low
—
37
ns
tDPPDONE
Delay Time from PROGRAMB Low to DONE Low
—
37
ns
tIODISS
User I/O Disable from PROGRAMB Low
—
25
ns
tIOENSS
User I/O Enabled Time from CCLK Edge During Wake-up Sequence
tMWC
Additional Wake Master Clock Signals after Done Pin High
—
25
ns
120
—
cycles
µs
sysCONFIG SPI Port
tCFGX
Init High to CCLK Low
—
1
tCSSPI
Init High to CSSPIN Low
—
2
us
tCSCCLK
CCLK Low before CSSPIN Low
0
-
ns
tSOCDO
CCLK Low to Output Valid
—
15
ns
tSOE
CSSPIN Active Setup Time
300
—
ns
tCSPID
CSSPIN Low to First Clock Edge Setup Time
300+3cyc
600+6cyc
ns
fMAXSPI
Max Frequency for SPI
—
20
MHz
3-23
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LatticeECP/EC sysCONFIG Port Timing Specifications (Continued)
Over Recommended Operating Conditions
Parameter
Description
tSUSPI
SOSPI Data Setup Time Before CCLK
tHSPI
SOSPI Data Hold Time After CCLK
Master Clock Frequency
Min
Max
Units
7
—
ns
2
—
ns
Selected
value -30%
Selected
value +30%
MHz
40
60
%
Duty Cycle
Rev F 0.18
Figure 3-13. sysCONFIG SPI Port Sequence
Capture
CFGx
Capture
OPCODE
Clock 127
Clock 128
tICFG
VCC
tPRGM
PROGRAMN
tDPPDONE
DONE
tDPPINT
INITN
CSSPIN
CCLK
tDINT
tCSSPI
tCSPID
tCFGX
tCSCCLK
0
tSOE
SISPI/BUSY
1
2
3
4
5
6
7
tSOCDO
D7
D6 D5 D4 D3 D2 D1 D0
D7/SPID0
0
XXX
3-24
Valid Bitstream
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
JTAG Port Timing Specifications
Over Recommended Operating Conditions
Symbol
Parameter
Min.
Max.
Units
fMAX
TCK Clock Frequency
-
25
MHz
tBTCP
TCK [BSCAN] clock pulse width
40
-
ns
tBTCPH
TCK [BSCAN] clock pulse width high
20
-
ns
tBTCPL
TCK [BSCAN] clock pulse width low
20
-
ns
tBTS
TCK [BSCAN] setup time
8
-
ns
tBTH
TCK [BSCAN] hold time
10
-
ns
tBTRF
TCK [BSCAN] rise/fall time
50
-
mV/ns
tBTCO
TAP controller falling edge of clock to valid output
-
10
ns
tBTCODIS
TAP controller falling edge of clock to valid disable
-
10
ns
tBTCOEN
TAP controller falling edge of clock to valid enable
-
10
ns
tBTCRS
BSCAN test capture register setup time
8
-
ns
tBTCRH
BSCAN test capture register hold time
25
-
ns
tBUTCO
BSCAN test update register, falling edge of clock to valid output
-
25
ns
tBTUODIS
BSCAN test update register, falling edge of clock to valid disable
-
25
ns
tBTUPOEN
BSCAN test update register, falling edge of clock to valid enable
-
25
ns
Rev F 0.17
3-25
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Switching Test Conditions
Figure 3-14 shows the output test load that is used for AC testing. The specific values for resistance, capacitance,
voltage, and other test conditions are shown in Table 3-5.
Figure 3-14. Output Test Load, LVTTL and LVCMOS Standards
VT
R1
DUT
Test Point
CL*
*CL Includes Test Fixture and Probe Capacitance
Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces
Test Condition
LVTTL and other LVCMOS settings (L -> H, H -> L)
R1
∞
CL
0pF
Timing Ref.
LVCMOS 3.3 = 1.5V
—
LVCMOS 2.5 = VCCIO/2
—
LVCMOS 1.8 = VCCIO/2
—
LVCMOS 1.5 = VCCIO/2
—
LVCMOS 1.2 = VCCIO/2
LVCMOS 2.5 I/O (Z -> H)
LVCMOS 2.5 I/O (Z -> L)
LVCMOS 2.5 I/O (H -> Z)
188Ω
LVCMOS 2.5 I/O (L -> Z)
0pF
—
VCCIO/2
VOL
VCCIO/2
VOH
VOH - 0.15
VOL
VOL + 0.15
VOH
Note: Output test conditions for all other interfaces are determined by the respective standards.
3-26
VT
LatticeECP/EC Family Data Sheet
Pinout Information
November 2004
Preliminary Data Sheet
Signal Descriptions
Signal Name
I/O
Descriptions
General Purpose
[Edge] indicates the edge of the device on which the pad is located. Valid
edge designations are L (Left), B (Bottom), R (Right), T (Top).
[Row/Column Number] indicates the PFU row or the column of the device on
which the PIC exists. When Edge is T (Top) or (Bottom), only need to specify
Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
P[Edge] [Row/Column Number*]_[A/B]
I/O
[A/B] indicates the PIO within the PIC to which the pad is connected.
Some of these user-programmable pins are shared with special function
pins. These pin when not used as special purpose pins can be programmed
as I/Os for user logic.
During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after
configuration.
GSRN
I
Global RESET signal (active low). Any I/O pin can be GSRN.
NC
—
No connect.
GND
—
Ground. Dedicated pins.
VCC
—
Power supply pins for core logic. Dedicated pins.
VCCAUX
—
Auxiliary power supply pin. It powers all the differential and referenced input
buffers. Dedicated pins.
VCCIOx
—
Power supply pins for I/O bank x. Dedicated pins.
VREF1_x, VREF2_x
—
Reference supply pins for I/O bank x. Pre-determined pins in each bank are
as assigned VREF inputs. When not used, they may be used as I/O pins.
XRES
—
10K ohm +/-1% resistor must be connected between this pad and ground.
PLL and Clock Functions (Used as user programmable I/O pins when not in use for PLL or clock pins)
[LOC][num]_PLL[T, C]_IN_A
I
Reference clock (PLL) input pads: ULM, LLM, URM, LRM, num = row from
center, T = true and C = complement, index A,B,C...at each side.
[LOC][num]_PLL[T, C]_FB_A
I
Optional feedback (PLL) input pads: ULM, LLM, URM, LRM, num = row from
center, T = true and C = complement, index A,B,C...at each side.
PCLK[T, C]_[n:0]_[3:0]
I
Primary Clock pads, T = true and C = complement, n per side, indexed by
bank and 0,1,2,3 within bank.
[LOC]DQS[num]
I
DQS input pads: T (Top), R (Right), B (Bottom), L (Left), DQS, num = ball
function number. Any pad can be configured to be output.
TMS
I
Test Mode Select input, used to control the 1149.1 state machine. Pull-up is
enabled during configuration.
TCK
I
Test Clock input pin, used to clock the 1149.1 state machine. No pull-up
enabled.
Test and Programming (Dedicated pins)
© 2004 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
4-1
Pinout Information_01.2
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Signal Descriptions (Cont.)
Signal Name
TDI
I/O
I
Descriptions
Test Data in pin. Used to load data into device using 1149.1 state machine.
After power-up, this TAP port can be activated for configuration by sending
appropriate command. (Note: once a configuration port is selected it is
locked. Another configuration port cannot be selected until the power-up
sequence). Pull-up is enabled during configuration.
TDO
O
Output pin. Test Data out pin used to shift data out of device using 1149.1.
VCCJ
—
VCCJ - The power supply pin for JTAG Test Access Port.
Configuration Pads (used during sysCONFIG)
CFG[2:0]
INITN
I
Mode pins used to specify configuration modes values latched on rising edge
of INITN. During configuration, a pull-up is enabled. These are dedicated
pins.
I/O
Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled. It is a dedicated pin.
I
Initiates configuration sequence when asserted low. This pin always has an
active pull-up. This is a dedicated pin.
DONE
I/O
Open Drain pin. Indicates that the configuration sequence is complete, and
the startup sequence is in progress. This is a dedicated pin.
CCLK
I/O Configuration Clock for configuring an FPGA in sysCONFIG mode.
BUSY/SISPI
I/O Read control command in SPI3 or SPIX mode.
PROGRAMN
CSN
I
sysCONFIG chip select (Active low). During configuration, a pull-up is
enabled.
CS1N
I
sysCONFIG chip select (Active low). During configuration, a pull-up is
enabled.
WRITEN
I
Write Data on Parallel port (Active low).
D[7:0]/SPID[0:7]
I/O sysCONFIG Port Data I/O.
DOUT/CSON
O
Output for serial configuration data (rising edge of CCLK) when using
sysCONFIG port.
DI/CSSPIN
I
Input for serial configuration data (clocked with CCLK) when using sysCONFIG port. During configuration, a pull-up is enabled.
4-2
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin
PICs Associated
with DQS Strobe
P[Edge] [n-4]
P[Edge] [n-3]
P[Edge] [n-2]
P[Edge] [n-1]
P[Edge] [n]
P[Edge] [n+1]
P[Edge] [n+2]
P[Edge] [n+3]
PIO Within PIC
DDR Strobe (DQS) and
Data (DQ) Pins
A
DQ
B
DQ
A
DQ
B
DQ
A
DQ
B
DQ
A
DQ
B
DQ
A
[Edge]DQSn
B
DQ
A
DQ
B
DQ
A
DQ
B
DQ
A
DQ
B
DQ
Notes:
1. “n” is a Row/Column PIC number
2. The DDR interface is designed for memories that support one DQS strobe per eight bits of
data. In some packages, all the potential DDR data (DQ) pins may not be available.
3. PIC numbering definitions are provided in the “Signal Names” column of the Signal Descriptions table.
4-3
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Pin Information Summary
LFECP6/EC6
Pin Type
Single Ended User I/O
Differential Pair User I/O
Configuration
256-fpBGA
484-fpBGA
484-fpBGA
672-fpBGA
147
195
224
360
400
72
97
97
112
180
200
13
13
13
13
13
Muxed
48
48
48
48
56
56
5
5
5
5
5
5
110
160
208
373
373
509
4
4
10
20
20
32
VCC
2
4
2
12
12
20
Bank0
2
3
2
4
4
6
Bank1
2
2
2
4
4
6
Bank2
1
2
2
4
4
6
Bank3
2
2
2
4
4
6
Bank4
2
2
2
4
4
6
Bank5
2
3
2
4
4
6
Bank6
2
2
2
4
4
6
VCCAUX
Bank7
GND, GND0-GND7
NC
VCCJ
208-PQFP
97
13
Dedicated (total without supplies)
Single Ended/
Differential I/O
per Bank
144-TQFP
Dedicated
TAP
VCCIO
LFECP20/EC20
1
2
2
4
4
6
14
18
20
44
44
63
0
4
0
139
3
96
Bank0
14
26
32
32
48
64
Bank1
13
17
18
32
48
48
Bank2
8
14
16
16
40
40
Bank3
13
16
32
32
44
48
Bank4
14
17
17
32
48
48
Bank5
13
26
32
32
48
64
Bank6
14
16
32
32
44
48
Bank7
8
15
16
16
40
40
1
1
1
1
1
1
Note: During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not
bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.
4-4
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Power Supply and NC Connections
Signals
144 TQFP
208 PQFP
256 fpBGA
VCC
11, 13, 92, 99
24, 26, 128, 135
E12, E5, E8, M12, M5, M9,
F6, F11, L11, L6
VCCIO0
136, 143
187, 197, 208
F7, F8
VCCIO1
110, 125
157, 176
F9, F10
VCCIO2
108
145, 155
G11, H11
VCCIO3
73, 84
106, 120
J11, K11
VCCIO4
55, 71
85, 104
L9, L10
VCCIO5
38, 44
53, 64, 74
L7, L8
VCCIO6
24, 36
37, 51
J6, K6
VCCIO7
1
2, 13
G6, H6
VCCJ
19
32
L4
VCCAUX
54, 126
22, 84, 136, 177
B15, R2
GND, GND0-GND7
12, 15, 28, 37, 52, 63, 72, 80, 1, 18, 25, 28, 41, 52, 72, 82,
96, 98, 109, 117, 128, 144
93, 105, 116, 132, 134, 138,
156, 168, 179, 189
A1, A16, G10, G7, G8, G9,
H10, H7, H8, H9, J10, J7, J8,
J9, K10, K7, K8, K9, T1, T16
NC
-
-
-
4-5
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
Power Supply and NC Connections
Signals
484 fpBGA
672 fpBGA
VCC
J6, J7, J16, J17, K6, K7, K16, K17, L6, H8, H9, H10, H11, H16, H17, H18, H19,
L17, M6, M17, N6, N7, N16, N17, P6, P7, J9, J18, K8, K19, L8, L19, M19, N7, R7,
P16, P17
R20, T19, U8, U19, V8, V18, V9, W8, W9,
W10, W11, W16, W17, W18, W19
VCCIO0
G11, H9, H10, H11
H12, H13, J10, J11, J12, J13
VCCIO1
G12, H12, H13, H14
H14, H15, J14, J15, J16, J17
VCCIO2
J15, K15, L15, L16
K17, K18, L18, M18, N18, N19
VCCIO3
M15, M16, N15, P15
P18, P19, R18, R19, T8, U18
VCCIO4
R12, R13, R14, T12
V14, V15, V16, V17, W14, W15
VCCIO5
R9, R10, R11, T11
V10, V11, V12, V13, W12, W13
VCCIO6
M7, M8, N8, P8
P8, P9, R8, R9, T9, U9
VCCIO7
J8, K8, L7, L8
K9, L9, M8, M9, N8, N9
VCCJ
U2
U6
VCCAUX
G7, G8, G15, G16, H7, H16, R7, R16,
T7, T8, T15, T16
G13, H7, H20, J8, J19, K7, L20, M7,
M20, N20, P7, P20, T7, T8, T20, V7, V19,
W20, Y7, Y13
GND, GND0-GND7
A1, A22, AB1, AB22, H8, H15, J9, J10,
J11, J12, J13, J14, K9, K10, K11, K12,
K13, K14, L9, L10, L11, L12, L13, L14,
M9, M10, M11, M12, M13, M14, N9, N10,
N11, N12, N13, N14, P9, P10, P11, P12,
P13, P14, R8, R15
K10, K11, K12, K13, K14, K15, K16, L10,
L11, L12, L13, L14, L15, L16, L17, M10,
M11, M12, M13, M14, M15, M16, M17,
N10, N11, N12, N13, N14, N15, N16,
N17, P10, P11, P12, P13, P14, P15,
P16, P17, R10, R11, R12, R13, R14,
R15, R16, R17, T10, T11, T12, T13, T14,
T15, T16, T17, U10, U11, U12, U13, U14,
U15, U16, U17
NC
ECP6/EC6: C3, B2, E5, F5, D3, C2, F4,
G4, E3, D2, B1, C1, F3, E2, G5, H6, G3,
H4, J5, H5, F2, F1, E1, D1, R6, P5, P3,
P4, R1, R2, R5, R4, T1, T2, R3, T3, A2,
AB2, A21
A25, B2, B23, B24, B25, B26, C2, C3,
C19, C20, C21, C22, C23, C24, D3, D5,
D20, D21, D22, D24, E5, E19, E21, E22,
E24, E25, E26, F4, F5, F20, F22, F23,
F24, F26, G5, G20, G26, H2, H3, H5, H6,
H22, J2, J3, J7, J21, J22, J23, W5, W7,
Y5, Y6, Y19, Y20, Y21, Y22, Y23, Y24,
AA2, AA3, AA4, AA5, AA21, AA22,
AA23, AA24, AB3, AB5, AB19, AB20,
AB21, AB22, AB23, AB24, AC2, AC3,
AC19, AC20, AC21, AC22, AD1, AD2,
AD3, AD19, AD20, AD21, AD22, AD23,
AD24, AD25, AD26, AE1, AE24, AE25,
AE26, AF25
ECP/EC20: A2, AB2, A21
4-6
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6 Logic Signal Connections: 144 TQFP
Pin Number
Pin Function
Bank
LVDS
Dual Function
1
VCCIO7
7
2
PL2A
7
T
VREF2_7
3
4
PL2B
7
C
VREF1_7
PL7A
7
T
5
PL7B
7
C
6
PL8A
7
T
7
PL8B
7
C
8
PL9A
7
T
PCLKT7_0
C
PCLKC7_0
LLM0_PLLT_IN_A
9
PL9B
7
10
XRES
6
11
VCC
-
12
GND
-
13
VCC
-
14
TCK
6
15
GND
-
16
TDI
6
17
TMS
6
18
TDO
6
19
VCCJ
6
20
PL20A
6
T
21
PL20B
6
C
LLM0_PLLC_IN_A
22
PL21A
6
T
LLM0_PLLT_FB_A
23
PL21B
6
C
LLM0_PLLC_FB_A
24
VCCIO6
6
25
PL22A
6
T
26
PL22B
6
C
27
PL23A
6
T
28
GND6
6
29
PL23B
6
C
30
PL24A
6
T
31
PL24B
6
C
32
PL25A
6
T
33
PL25B
6
C
34
PL27A
6
T
VREF1_6
35
PL27B
6
C
VREF2_6
36
VCCIO6
6
37*
GND5, GND6
38
VCCIO5
5
39
PB10A
5
T
40
PB10B
5
C
41
PB11A
5
T
42
PB11B
5
C
43
PB13B
5
4-7
LDQS24
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6 Logic Signal Connections: 144 TQFP (Cont.)
Pin Number
Pin Function
Bank
44
VCCIO5
5
LVDS
Dual Function
45
PB14A
5
T
BDQS14
46
47
PB14B
5
C
PB15A
5
T
48
PB15B
5
C
49
PB16A
5
T
50
PB16B
5
C
VREF1_5
51
PB17A
5
T
PCLKT5_0
52
GND5
5
53
PB17B
5
C
PCLKC5_0
54
VCCAUX
-
55
VCCIO4
4
56
PB18A
4
T
WRITEN
57
PB18B
4
C
CS1N
58
PB19A
4
T
VREF1_4
59
PB19B
4
C
CSN
60
PB20A
4
T
VREF2_4
61
PB20B
4
C
D0/SPID7
62
PB21A
4
T
D2/SPID5
63
GND4
4
64
PB21B
4
C
D1/SPID6
65
PB22A
4
T
BDQS22
66
PB22B
4
C
D3/SPID4
67
PB23A
4
T
68
PB23B
4
C
69
PB24B
4
D5/SPID2
70
PB25B
4
D6/SPID1
71
VCCIO4
4
72*
GND3, GND4
73
VCCIO3
3
74
PR27A
3
75
PR25B
3
76
PR25A
3
T
77
PR24B
3
C
78
PR24A
3
T
RDQS24
79
PR23B
3
C
RLM0_PLLC_FB_A
VREF2_5
D4/SPID3
VREF1_3
C
80
GND3
3
81
PR23A
3
T
RLM0_PLLT_FB_A
82
PR22B
3
C
RLM0_PLLC_IN_A
83
PR22A
3
T
RLM0_PLLT_IN_A
84
VCCIO3
3
85
PR21B
3
C
DI/CSSPIN
86
PR21A
3
T
DOUT/CSON
87
PR20B
3
C
BUSY/SISPI
4-8
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6 Logic Signal Connections: 144 TQFP (Cont.)
Pin Number
Pin Function
Bank
LVDS
Dual Function
88
PR20A
3
T
D7/SPID0
89
CFG2
3
90
CFG1
3
91
CFG0
3
92
VCC
-
93
PROGRAMN
3
94
CCLK
3
95
INITN
3
96
GND
-
97
DONE
3
98
GND
-
99
VCC
-
100
PR9B
2
C
PCLKC2_0
101
PR9A
2
T
PCLKT2_0
102
PR8B
2
C
103
PR8A
2
T
104
PR7B
2
C
105
PR7A
2
T
106
PR2B
2
C
VREF1_2
107
PR2A
2
T
VREF2_2
2
108
VCCIO2
109*
GND1, GND2
110
VCCIO1
1
111
PT25B
1
C
112
PT25A
1
T
113
PT23A
1
114
PT22B
1
115
PT22A
1
T
116
PT21B
1
C
117
GND1
1
118
PT21A
1
T
119
PT20B
1
C
120
PT20A
1
T
121
PT19B
1
C
VREF2_1
122
PT19A
1
T
VREF1_1
123
PT18B
1
C
124
PT18A
1
T
125
VCCIO1
1
126
VCCAUX
-
127
PT17B
0
128
GND0
0
129
PT17A
130
PT16B
131
PT16A
C
TDQS22
C
PCLKC0_0
0
T
PCLKT0_0
0
C
VREF1_0
0
T
VREF2_0
4-9
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6 Logic Signal Connections: 144 TQFP (Cont.)
Pin Number
Pin Function
Bank
LVDS
132
PT15B
0
C
133
PT15A
0
T
134
PT14B
0
C
135
PT14A
0
T
136
VCCIO0
0
137
PT13B
0
138
PT13A
0
T
139
PT12B
0
C
140
PT12A
0
T
141
PT10B
0
C
T
142
PT10A
0
143
VCCIO0
0
144*
GND0, GND7
* Double bonded to the pin.
4-10
C
Dual Function
TDQS14
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6 Logic Signal Connections: 208 PQFP
Pin Number
Pin Function
Bank
LVDS
Dual Function
1*
GND0, GND7
2
VCCIO7
7
3
PL2A
7
T
VREF2_7
4
PL2B
7
C
VREF1_7
5
NC
-
6
NC
-
7
PL3B
7
8
PL4A
7
T
9
PL4B
7
C
10
PL5A
7
T
11
PL5B
7
C
12
PL6A
7
T
13
VCCIO7
7
14
PL6B
7
15
PL7A
7
T
16
PL7B
7
C
17
PL8A
7
T
18
GND7
7
19
PL8B
7
C
20
PL9A
7
T
PCLKT7_0
21
PL9B
7
C
PCLKC7_0
22
VCCAUX
-
23
XRES
6
24
VCC
-
25
GND
-
26
VCC
-
27
TCK
6
28
GND
-
29
TDI
6
30
TMS
6
LDQS6
C
31
TDO
6
32
VCCJ
6
33
PL20A
6
T
LLM0_PLLT_IN_A
34
PL20B
6
C
LLM0_PLLC_IN_A
35
PL21A
6
T
LLM0_PLLT_FB_A
36
PL21B
6
C
LLM0_PLLC_FB_A
37
VCCIO6
6
38
PL22A
6
T
39
PL22B
6
C
40
PL23A
6
T
41
GND6
6
42
PL23B
6
C
43
PL24A
6
T
4-11
LDQS24
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6 Logic Signal Connections: 208 PQFP (Cont.)
Pin Number
Pin Function
Bank
LVDS
44
PL24B
6
C
Dual Function
45
PL25A
6
T
46
PL25B
6
C
47
PL26A
6
T
48
PL26B
6
C
49
PL27A
6
T
VREF1_6
50
PL27B
6
C
VREF2_6
51
VCCIO6
6
52*
GND5, GND6
53
VCCIO5
5
54
PB2A
5
T
55
PB2B
5
C
56
PB3A
5
T
57
PB3B
5
C
58
PB4A
5
T
59
PB4B
5
C
60
PB5A
5
T
61
PB5B
5
C
62
PB6A
5
T
C
BDQS6
63
PB6B
5
64
VCCIO5
5
65
PB10A
5
T
66
PB10B
5
C
67
PB11A
5
T
68
PB11B
5
C
69
PB12A
5
T
70
PB12B
5
C
71
PB13A
5
T
72
GND5
5
73
PB13B
5
74
VCCIO5
5
75
PB14A
5
T
76
PB14B
5
C
77
PB15A
5
T
78
PB15B
5
C
79
PB16A
5
T
VREF2_5
80
PB16B
5
C
VREF1_5
81
PB17A
5
T
PCLKT5_0
82
GND5
5
83
PB17B
5
C
PCLKC5_0
84
VCCAUX
-
85
VCCIO4
4
86
PB18A
4
T
WRITEN
87
PB18B
4
C
CS1N
4-12
C
BDQS14
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6 Logic Signal Connections: 208 PQFP (Cont.)
Pin Number
Pin Function
Bank
LVDS
Dual Function
88
PB19A
4
T
VREF1_4
89
PB19B
4
C
CSN
90
PB20A
4
T
VREF2_4
91
PB20B
4
C
D0/SPID7
92
PB21A
4
T
D2/SPID5
93
GND4
4
94
PB21B
4
C
D1/SPID6
95
PB22A
4
T
BDQS22
96
PB22B
4
C
D3/SPID4
97
PB23A
4
T
98
PB23B
4
C
99
PB24A
4
T
100
PB24B
4
C
101
PB25A
4
T
102
PB25B
4
C
D6/SPID1
103
PB33A
4
4
C
VREF2_3
VREF1_3
D4/SPID3
D5/SPID2
104
VCCIO4
105*
GND3, GND4
106
VCCIO3
3
107
PR27B
3
108
PR27A
3
T
109
PR26B
3
C
110
PR26A
3
T
111
PR25B
3
C
112
PR25A
3
T
113
PR24B
3
C
114
PR24A
3
T
RDQS24
115
PR23B
3
C
RLM0_PLLC_FB_A
116
GND3
3
117
PR23A
3
T
RLM0_PLLT_FB_A
118
PR22B
3
C
RLM0_PLLC_IN_A
119
PR22A
3
T
RLM0_PLLT_IN_A
120
VCCIO3
3
121
PR21B
3
C
DI/CSSPIN
122
PR21A
3
T
DOUT/CSON
123
PR20B
3
C
BUSY/SISPI
124
PR20A
3
T
D7/SPID0
125
CFG2
3
126
CFG1
3
127
CFG0
3
128
VCC
-
129
PROGRAMN
3
130
CCLK
3
131
INITN
3
4-13
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6 Logic Signal Connections: 208 PQFP (Cont.)
Pin Number
Pin Function
Bank
132
GND
-
LVDS
Dual Function
133
DONE
3
134
GND
-
135
VCC
-
136
VCCAUX
-
137
PR9B
2
C
PCLKC2_0
138
GND2
2
139
PR9A
2
T
PCLKT2_0
140
141
PR8B
2
C
PR8A
2
T
142
PR7B
2
C
143
PR7A
2
T
144
PR6B
2
C
145
VCCIO2
2
146
PR6A
2
T
147
PR5B
2
C
148
PR5A
2
T
149
PR4B
2
C
150
PR4A
2
T
151
NC
-
RDQS6
152
NC
-
153
PR2B
2
C
VREF1_2
154
PR2A
2
T
VREF2_2
155
VCCIO2
2
156*
GND1, GND2
157
VCCIO1
1
158
PT33A
1
159
PT25B
1
160
PT25A
1
T
161
PT24B
1
C
162
PT24A
1
T
163
PT23B
1
C
164
PT23A
1
T
165
PT22B
1
C
166
PT22A
1
T
167
PT21B
1
C
168
GND1
1
169
PT21A
1
T
170
PT20B
1
C
171
PT20A
1
T
172
PT19B
1
C
VREF2_1
173
PT19A
1
T
VREF1_1
174
PT18B
1
C
175
PT18A
1
T
4-14
C
TDQS22
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6 Logic Signal Connections: 208 PQFP (Cont.)
Pin Number
Pin Function
Bank
176
VCCIO1
1
LVDS
Dual Function
177
VCCAUX
-
178
PT17B
0
179
GND0
0
C
PCLKC0_0
180
PT17A
181
PT16B
0
T
PCLKT0_0
0
C
VREF1_0
182
PT16A
183
PT15B
0
T
VREF2_0
0
C
184
PT15A
0
T
185
PT14B
0
C
T
186
PT14A
0
187
VCCIO0
0
188
PT13B
0
189
GND0
0
190
PT13A
0
T
191
PT12B
0
C
192
PT12A
0
T
193
PT11B
0
C
194
PT11A
0
T
195
PT10B
0
C
T
C
196
PT10A
0
197
VCCIO0
0
198
PT6B
0
C
199
PT6A
0
T
200
PT5B
0
C
201
PT5A
0
T
202
PT4B
0
C
203
PT4A
0
T
204
PT3B
0
C
205
PT3A
0
T
206
PT2B
0
C
207
PT2A
0
T
208
VCCIO0
0
* Double bonded to the pin.
4-15
TDQS14
TDQS6
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6 Logic Signal Connections: 256 fpBGA
Ball Number
Ball Function
Bank
LVDS
Dual Function
GND
GND7
7
D4
PL2A
7
T
VREF2_7
D3
C3
PL2B
7
C
VREF1_7
PL3A
7
T
C2
PL3B
7
C
B1
PL4A
7
T
C1
PL4B
7
C
E3
PL5A
7
T
E4
PL5B
7
C
F4
PL6A
7
T
F5
PL6B
7
C
G4
PL7A
7
T
LDQS6
G3
PL7B
7
C
D2
PL8A
7
T
GND
GND7
7
D1
PL8B
7
E1
PL9A
7
T
PCLKT7_0
E2
PL9B
7
C
PCLKC7_0
C
F3
XRES
6
G5
PL11A
6
T
H5
PL11B
6
C
F2
PL12A
6
T
F1
PL12B
6
C
H4
PL13A
6
T
H3
PL13B
6
C
G2
PL14A
6
T
GND
GND6
6
G1
PL14B
6
J4
PL15A
6
T
J3
PL15B
6
C
C
J5
PL16A
6
T
K5
PL16B
6
C
H2
PL17A
6
T
H1
PL17B
6
C
T
J2
PL18A
6
GND
GND6
6
J1
PL18B
6
K4
TCK
6
K3
TDI
6
L3
TMS
6
L5
TDO
6
L4
VCCJ
6
K2
PL20A
6
4-16
LDQS15
C
T
LLM0_PLLT_IN_A
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6 Logic Signal Connections: 256 fpBGA (Cont.)
Ball Number
Ball Function
Bank
LVDS
Dual Function
K1
PL20B
6
C
LLM0_PLLC_IN_A
L2
PL21A
6
T
LLM0_PLLT_FB_A
LLM0_PLLC_FB_A
L1
PL21B
6
C
M2
PL22A
6
T
M1
PL22B
6
C
T
N1
PL23A
6
GND
GND6
6
N2
PL23B
6
C
M4
PL24A
6
T
M3
PL24B
6
C
P1
PL25A
6
T
R1
PL25B
6
C
P2
PL26A
6
T
LDQS24
P3
PL26B
6
C
N3
PL27A
6
T
VREF1_6
C
VREF2_6
N4
PL27B
6
GND
GND6
6
GND
GND5
5
P4
PB2A
5
T
N5
PB2B
5
C
P5
PB3A
5
T
P6
PB3B
5
C
R4
PB4A
5
T
R3
PB4B
5
C
T2
PB5A
5
T
T3
PB5B
5
C
R5
PB6A
5
T
R6
PB6B
5
C
T4
PB7A
5
T
T5
PB7B
5
C
N6
PB8A
5
T
M6
PB8B
5
C
T6
PB9A
5
T
GND
GND5
5
T7
PB9B
5
C
P7
PB10A
5
T
N7
PB10B
5
C
R7
PB11A
5
T
R8
PB11B
5
C
M7
PB12A
5
T
M8
PB12B
5
C
T
T8
PB13A
5
GND
GND5
5
T9
PB13B
5
4-17
C
BDQS6
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6 Logic Signal Connections: 256 fpBGA (Cont.)
Ball Number
Ball Function
Bank
LVDS
Dual Function
P8
PB14A
5
T
BDQS14
N8
PB14B
5
C
R9
PB15A
5
T
R10
PB15B
5
C
P9
PB16A
5
T
N9
PB16B
5
C
VREF1_5
T10
PB17A
5
T
PCLKT5_0
GND
GND5
5
T11
PB17B
5
C
PCLKC5_0
T12
PB18A
4
T
WRITEN
T13
PB18B
4
C
CS1N
VREF2_5
P10
PB19A
4
T
VREF1_4
N10
PB19B
4
C
CSN
T14
PB20A
4
T
VREF2_4
T15
PB20B
4
C
D0/SPID7
M10
PB21A
4
T
D2/SPID5
GND
GND4
4
M11
PB21B
4
C
D1/SPID6
R11
PB22A
4
T
BDQS22
D3/SPID4
P11
PB22B
4
C
R13
PB23A
4
T
R14
PB23B
4
C
P12
PB24A
4
T
P13
PB24B
4
C
N11
PB25A
4
T
GND
GND4
4
N12
PB25B
4
D4/SPID3
D5/SPID2
C
D6/SPID1
R12
PB26A
4
GND
GND4
4
GND
GND4
4
GND
GND3
3
N13
PR27B
3
C
VREF2_3
N14
PR27A
3
T
VREF1_3
P14
PR26B
3
C
P15
PR26A
3
T
R15
PR25B
3
C
R16
PR25A
3
T
M13
PR24B
3
C
M14
PR24A
3
T
RDQS24
C
RLM0_PLLC_FB_A
P16
PR23B
3
GND
GND3
3
N16
PR23A
3
T
RLM0_PLLT_FB_A
N15
PR22B
3
C
RLM0_PLLC_IN_A
M15
PR22A
3
T
RLM0_PLLT_IN_A
4-18
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6 Logic Signal Connections: 256 fpBGA (Cont.)
Ball Number
Ball Function
Bank
LVDS
M16
PR21B
3
C
DI/CSSPIN
L16
PR21A
3
T
DOUT/CSON
K16
PR20B
3
C
BUSY/SISPI
T
D7/SPID0
J16
PR20A
3
L12
CFG2
3
L14
CFG1
3
L13
CFG0
3
K13
PROGRAMN
3
L15
CCLK
3
K15
INITN
3
K14
DONE
3
H16
PR18B
3
GND
GND3
3
H15
PR18A
3
T
G16
PR17B
3
C
Dual Function
C
G15
PR17A
3
T
K12
PR16B
3
C
J12
PR16A
3
T
J14
PR15B
3
C
J15
PR15A
3
T
F16
PR14B
3
C
GND
GND3
3
F15
PR14A
3
T
J13
PR13B
3
C
H13
PR13A
3
T
RDQS15
H14
PR12B
3
C
G14
PR12A
3
T
E16
PR11B
3
C
E15
PR11A
3
T
C
PCLKC2_0
PCLKT2_0
H12
PR9B
2
GND
GND2
2
G12
PR9A
2
T
G13
PR8B
2
C
F13
PR8A
2
T
F12
PR7B
2
C
E13
PR7A
2
T
D16
PR6B
2
C
D15
PR6A
2
T
F14
PR5B
2
C
E14
PR5A
2
T
C16
PR4B
2
C
B16
PR4A
2
T
C15
PR3B
2
C
C14
PR3A
2
T
4-19
RDQS6
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6 Logic Signal Connections: 256 fpBGA (Cont.)
Ball Number
Ball Function
Bank
LVDS
Dual Function
D14
PR2B
2
C
VREF1_2
D13
PR2A
2
T
VREF2_2
GND
GND2
2
GND
GND1
1
GND
GND1
1
B13
PT26B
1
C
C13
PT26A
1
T
GND
GND1
1
C12
PT25B
1
D12
PT25A
1
T
A15
PT24B
1
C
C
B14
PT24A
1
T
D11
PT23B
1
C
C11
PT23A
1
T
E10
PT22B
1
C
E11
PT22A
1
T
A14
PT21B
1
C
TDQS22
GND
GND1
1
A13
PT21A
1
T
D10
PT20B
1
C
C10
PT20A
1
T
A12
PT19B
1
C
VREF2_1
B12
PT19A
1
T
VREF1_1
A11
PT18B
1
C
B11
PT18A
1
T
C
PCLKC0_0
A10
PT17B
0
GND
GND0
0
B10
PT17A
0
T
PCLKT0_0
C9
PT16B
0
C
VREF1_0
B9
PT16A
0
T
VREF2_0
E9
PT15B
0
C
D9
PT15A
0
T
D8
PT14B
0
C
C8
PT14A
0
T
A9
PT13B
0
C
GND
GND0
0
A8
PT13A
0
T
B8
PT12B
0
C
B7
PT12A
0
T
D7
PT11B
0
C
C7
PT11A
0
T
A7
PT10B
0
C
A6
PT10A
0
T
E7
PT9B
0
C
4-20
TDQS14
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6 Logic Signal Connections: 256 fpBGA (Cont.)
Ball Number
Ball Function
Bank
GND
GND0
0
LVDS
E6
PT9A
0
T
D6
PT8B
0
C
C6
PT8A
0
T
B6
PT7B
0
C
B5
PT7A
0
T
A5
PT6B
0
C
A4
PT6A
0
T
A3
PT5B
0
C
A2
PT5A
0
T
B2
PT4B
0
C
B3
PT4A
0
T
D5
PT3B
0
C
C5
PT3A
0
T
C4
PT2B
0
C
T
B4
PT2A
0
GND
GND0
0
A1
GND
-
A16
GND
-
G10
GND
-
G7
GND
-
G8
GND
-
G9
GND
-
H10
GND
-
H7
GND
-
H8
GND
-
H9
GND
-
J10
GND
-
J7
GND
-
J8
GND
-
J9
GND
-
K10
GND
-
K7
GND
-
K8
GND
-
K9
GND
-
T1
GND
-
T16
GND
-
E12
VCC
-
E5
VCC
-
E8
VCC
-
M12
VCC
-
M5
VCC
-
M9
VCC
-
B15
VCCAUX
-
4-21
Dual Function
TDQS6
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6 Logic Signal Connections: 256 fpBGA (Cont.)
Ball Number
Ball Function
Bank
R2
VCCAUX
-
F7
VCCIO0
0
F8
VCCIO0
0
F10
VCCIO1
1
F9
VCCIO1
1
G11
VCCIO2
2
H11
VCCIO2
2
J11
VCCIO3
3
K11
VCCIO3
3
L10
VCCIO4
4
L9
VCCIO4
4
L7
VCCIO5
5
L8
VCCIO5
5
J6
VCCIO6
6
K6
VCCIO6
6
G6
VCCIO7
7
H6
VCCIO7
7
F6
VCC
-
F11
VCC
-
L11
VCC
-
L6
VCC
-
4-22
LVDS
Dual Function
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA
LFEC6/LFECP6
LFEC20/LFECP20
Ball
Number
Ball
Function
GND
GND7
7
D4
PL2A
7
T
VREF2_7
C
VREF1_7
Bank LVDS
Dual Function
Ball
Number
Ball
Function
GND
GND7
7
D4
PL2A
7
T
VREF2_7
VREF1_7
Bank LVDS
E4
PL2B
7
E4
PL2B
7
C
C3
NC
-
C3
PL3A
7
T
B2
NC
-
B2
PL3B
7
C
E5
NC
-
E5
PL4A
7
T
F5
NC
-
F5
PL4B
7
C
D3
NC
-
D3
PL5A
7
T
C2
NC
-
C2
PL5B
7
C
F4
NC
-
F4
PL6A
7
T
Dual Function
LDQS6
G4
NC
-
G4
PL6B
7
C
E3
NC
-
E3
PL7A
7
T
D2
NC
-
D2
PL7B
7
C
B1
NC
-
B1
PL8A
7
T
C1
NC
-
C1
PL8B
7
C
LUM0_PLLC_IN_A
F3
NC
-
F3
PL9A
7
T
LUM0_PLLT_FB_A
C
LUM0_PLLC_FB_A
-
-
-
GND
GND7
7
E2
NC
-
E2
PL9B
7
G5
NC
-
G5
PL11A
7
T
H6
NC
-
H6
PL11B
7
C
G3
NC
-
G3
PL12A
7
T
H4
NC
-
H4
PL12B
7
C
J5
NC
-
J5
PL13A
7
T
H5
NC
-
H5
PL13B
7
C
F2
NC
-
F2
PL14A
7
T
-
-
-
GND
GND7
7
F1
NC
-
F1
PL14B
7
C
E1
NC
-
E1
PL15A
7
T
D1
NC
-
D1
PL15B
7
C
H3
PL3A
7
T
H3
PL16A
7
T
G2
PL3B
7
C
G2
PL16B
7
C
H2
PL4A
7
T
H2
PL17A
7
T
G1
PL4B
7
C
G1
PL17B
7
C
J4
PL5A
7
T
J4
PL18A
7
T
-
-
-
J3
PL5B
7
C
LDQS6
GND
GND7
7
J3
PL18B
7
C
J2
PL6A
7
T
H1
PL6B
7
C
K4
PL7A
7
T
K4
PL20A
7
T
K5
PL7B
7
C
K5
PL20B
7
C
K3
PL8A
7
T
K3
PL21A
7
T
K2
PL8B
7
C
K2
PL21B
7
C
4-23
LUM0_PLLT_IN_A
J2
PL19A
7
T
H1
PL19B
7
C
LDQS19
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA
LFEC6/LFECP6
Ball
Number
Ball
Function
J1
PL9A
7
GND
GND7
7
K1
PL9B
7
LFEC20/LFECP20
Dual Function
Ball
Number
T
PCLKT7_0
J1
C
PCLKC7_0
Bank LVDS
Ball
Function
PL22A
Bank LVDS
7
GND
GND7
7
K1
PL22B
7
PCLKT7_0
C
PCLKC7_0
L3
XRES
6
L3
XRES
6
L4
PL11A
6
T
L4
PL24A
6
T
L5
PL11B
6
C
L5
PL24B
6
C
L2
PL12A
6
T
L2
PL25A
6
T
L1
PL12B
6
C
L1
PL25B
6
C
M4
PL13A
6
T
M4
PL26A
6
T
M5
PL13B
6
C
M5
PL26B
6
C
T
T
M1
PL14A
6
GND
GND6
6
M2
PL14B
6
C
M1
PL27A
6
GND
GND6
6
M2
PL27B
6
N3
PL28A
6
T
M3
PL28B
6
C
C
N3
PL15A
6
T
M3
PL15B
6
C
N5
PL16A
6
T
N5
PL29A
6
T
N4
PL16B
6
C
N4
PL29B
6
C
N1
PL17A
6
T
N1
PL30A
6
T
N2
PL17B
6
C
N2
PL30B
6
C
P1
PL18A
6
T
P1
PL31A
6
T
GND
GND6
6
P2
PL18B
6
R6
NC
P5
P3
LDQS15
GND
GND6
6
P2
PL31B
6
C
-
R6
PL32A
6
T
NC
-
P5
PL32B
6
C
NC
-
P3
PL33A
6
T
C
P4
NC
-
P4
PL33B
6
C
R1
NC
-
R1
PL34A
6
T
R2
NC
-
R2
PL34B
6
C
R5
NC
-
R5
PL35A
6
T
-
-
-
GND
GND6
6
R4
NC
-
R4
PL35B
6
T1
NC
-
T1
PL36A
6
T
T2
NC
-
T2
PL36B
6
C
R3
NC
-
R3
PL37A
6
T
T3
NC
-
T3
PL37B
6
C
PL38A
6
T
PL38B
6
C
PL39A
6
T
GND6
6
-
-
-
GND
PL39B
6
T5
TCK
6
T5
TCK
6
U5
TDI
6
U5
TDI
6
4-24
Dual Function
T
LDQS28
C
C
LDQS36
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA
LFEC6/LFECP6
Ball
Number
Ball
Function
T4
TMS
Bank LVDS
LFEC20/LFECP20
Dual Function
6
Ball
Number
Ball
Function
T4
TMS
Bank LVDS
Dual Function
6
U1
TDO
6
U1
TDO
6
U2
VCCJ
6
U2
VCCJ
6
V1
PL20A
6
T
LLM0_PLLT_IN_A
V1
PL41A
6
T
LLM0_PLLT_IN_A
V2
PL20B
6
C
LLM0_PLLC_IN_A
V2
PL41B
6
C
LLM0_PLLC_IN_A
U3
PL21A
6
T
LLM0_PLLT_FB_A
U3
PL42A
6
T
LLM0_PLLT_FB_A
V3
PL21B
6
C
LLM0_PLLC_FB_A
V3
PL42B
6
C
LLM0_PLLC_FB_A
U4
PL22A
6
T
U4
PL43A
6
T
V5
PL22B
6
C
V5
PL43B
6
C
W1
PL23A
6
T
W1
PL44A
6
T
GND
GND6
6
GND
GND6
6
W2
PL23B
6
C
Y1
PL24A
6
T
LDQS24
W2
PL44B
6
C
Y1
PL45A
6
T
Y2
PL24B
6
C
Y2
PL45B
6
C
AA1
PL25A
6
T
AA1
PL46A
6
T
AA2
PL25B
6
C
AA2
PL46B
6
C
W4
PL26A
6
T
W4
PL47A
6
T
V4
PL26B
6
C
W3
PL27A
6
T
VREF1_6
C
VREF2_6
V4
PL47B
6
C
W3
PL48A
6
T
VREF1_6
C
VREF2_6
Y3
PL27B
6
Y3
PL48B
6
GND
GND6
6
GND
GND6
6
GND
GND5
5
GND
GND5
5
PB2A
5
T
PB2B
5
C
PB3A
5
T
PB3B
5
C
PB4A
5
T
PB4B
5
C
PB5A
5
T
PB5B
5
C
PB6A
5
T
PB6B
5
C
PB7A
5
T
PB7B
5
C
PB8A
5
T
PB8B
5
C
PB9A
5
T
GND5
5
PB9B
5
-
-
-
GND
C
V7
NC
-
V7
PB10A
5
T
T6
NC
-
T6
PB10B
5
C
V8
NC
-
V8
PB11A
5
T
4-25
LDQS45
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA
LFEC6/LFECP6
Ball
Number
Ball
Function
U7
NC
LFEC20/LFECP20
Ball
Number
Ball
Function
-
U7
PB11B
Bank LVDS
Dual Function
Bank LVDS
5
W5
NC
-
W5
PB12A
5
T
U6
NC
-
U6
PB12B
5
C
AA3
NC
-
AA3
PB13A
5
T
-
-
-
GND
GND5
5
AB3
NC
-
AB3
PB13B
5
C
Y6
NC
-
Y6
PB14A
5
T
V6
NC
-
V6
PB14B
5
C
AA5
NC
-
AA5
PB15A
5
T
W6
NC
-
W6
PB15B
5
C
Y5
NC
-
Y5
PB16A
5
T
Y4
NC
-
Y4
PB16B
5
C
AA4
NC
-
AA4
PB17A
5
T
-
-
-
GND
GND5
5
AB4
NC
-
AB4
PB17B
5
Y7
PB2A
5
T
Y7
PB18A
5
T
W8
PB2B
5
C
W8
PB18B
5
C
PB3A
5
T
W7
PB19A
5
T
U8
PB3B
5
C
U8
PB19B
5
C
W9
PB4A
5
T
W9
PB20A
5
T
U9
PB4B
5
C
U9
PB20B
5
C
Y8
PB5A
5
T
T
-
-
-
Y9
PB5B
5
C
V9
PB6A
5
T
Y8
PB21A
5
GND
GND5
5
Y9
PB21B
5
C
V9
PB22A
5
T
T9
PB6B
5
C
T9
PB22B
5
C
W10
PB7A
5
T
W10
PB23A
5
T
U10
PB7B
5
C
U10
PB23B
5
C
V10
PB8A
5
T
V10
PB24A
5
T
T10
PB8B
5
C
T10
PB24B
5
C
AA6
PB9A
5
T
AA6
PB25A
5
T
GND
GND5
5
GND
GND5
5
AB5
PB9B
5
AB5
PB25B
5
AA8
PB10A
5
T
AA8
PB26A
5
T
AA7
PB10B
5
C
AA7
PB26B
5
C
AB6
PB11A
5
T
AB6
PB27A
5
T
AB7
PB11B
5
C
AB7
PB27B
5
C
C
C
Y10
PB12A
5
T
Y10
PB28A
5
T
W11
PB12B
5
C
W11
PB28B
5
C
T
T
AB8
PB13A
5
GND
GND5
5
AB9
PB13B
5
C
4-26
AB8
PB29A
5
GND
GND5
5
AB9
PB29B
5
BDQS14
C
W7
BDQS6
Dual Function
C
C
BDQS22
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA
LFEC6/LFECP6
Ball
Number
Ball
Function
AA10
PB14A
5
T
AA9
PB14B
5
Y11
PB15A
5
AA11
PB15B
5
C
V11
PB16A
5
T
LFEC20/LFECP20
Dual Function
Ball
Number
Ball
Function
BDQS14
AA10
PB30A
5
T
C
AA9
PB30B
5
C
T
Y11
PB31A
5
T
AA11
PB31B
5
C
V11
PB32A
5
T
Bank LVDS
VREF2_5
Bank LVDS
Dual Function
BDQS30
VREF2_5
V12
PB16B
5
C
VREF1_5
V12
PB32B
5
C
VREF1_5
AB10
PB17A
5
T
PCLKT5_0
AB10
PB33A
5
T
PCLKT5_0
GND
GND5
5
C
PCLKC5_0
AB11
PB33B
5
C
PCLKC5_0
GND
GND5
5
AB11
PB17B
5
Y12
PB18A
4
T
WRITEN
Y12
PB34A
4
T
WRITEN
U11
PB18B
4
C
CS1N
U11
PB34B
4
C
CS1N
W12
PB19A
4
T
VREF1_4
W12
PB35A
4
T
VREF1_4
U12
PB19B
4
C
CSN
U12
PB35B
4
C
CSN
W13
PB20A
4
T
VREF2_4
W13
PB36A
4
T
VREF2_4
U13
PB20B
4
C
D0/SPID7
U13
PB36B
4
C
D0/SPID7
AA12
PB21A
4
T
D2/SPID5
AA12
PB37A
4
T
D2/SPID5
GND
GND4
4
GND
GND4
4
AB12
PB21B
4
C
D1/SPID6
AB12
PB37B
4
C
D1/SPID6
T13
PB22A
4
T
BDQS22
T13
PB38A
4
T
BDQS38
D3/SPID4
D3/SPID4
V13
PB22B
4
C
W14
PB23A
4
T
U14
PB23B
4
C
Y13
PB24A
4
T
V14
PB24B
4
C
AA13
PB25A
4
T
D4/SPID3
D5/SPID2
V13
PB38B
4
C
W14
PB39A
4
T
U14
PB39B
4
C
Y13
PB40A
4
T
V14
PB40B
4
C
AA13
PB41A
4
T
GND
GND4
4
AB13
PB25B
4
AA14
PB26A
4
T
AA14
PB42A
4
T
Y14
PB26B
4
C
Y14
PB42B
4
C
C
D6/SPID1
GND
GND4
4
AB13
PB41B
4
C
Y15
PB27A
4
T
Y15
PB43A
4
T
W15
PB27B
4
C
W15
PB43B
4
C
V15
PB28A
4
T
V15
PB44A
4
T
T14
PB28B
4
C
T14
PB44B
4
C
AB14
PB29A
4
T
AB14
PB45A
4
T
GND
GND4
4
GND
GND4
4
AB15
PB29B
4
C
AB15
PB45B
4
C
AB16
PB30A
4
T
AB16
PB46A
4
T
AA15
PB30B
4
C
AA15
PB46B
4
C
AB17
PB31A
4
T
AB17
PB47A
4
T
AA16
PB31B
4
C
AA16
PB47B
4
C
AB18
PB32A
4
T
AB18
PB48A
4
T
AA17
PB32B
4
C
AA17
PB48B
4
C
BDQS30
4-27
D4/SPID3
D5/SPID2
D6/SPID1
BDQS46
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA
LFEC6/LFECP6
Ball
Number
Ball
Function
AB19
PB33A
Ball
Function
T
AB19
PB49A
GND
GND4
4
C
AA18
PB49B
4
Bank LVDS
4
-
-
-
AA18
PB33B
4
LFEC20/LFECP20
Ball
Number
Dual Function
Bank LVDS
4
C
W16
NC
-
W16
PB50A
4
T
U15
NC
-
U15
PB50B
4
C
V16
NC
-
V16
PB51A
4
T
U16
NC
-
U16
PB51B
4
C
Y17
NC
-
Y17
PB52A
4
T
V17
NC
-
V17
PB52B
4
C
AB20
NC
-
AB20
PB53A
4
T
-
-
-
GND
GND4
4
AA19
NC
-
AA19
PB53B
4
C
Y16
NC
-
Y16
PB54A
4
T
W17
NC
-
W17
PB54B
4
C
AA20
NC
-
AA20
PB55A
4
T
Y19
NC
-
Y19
PB55B
4
C
Y18
NC
-
Y18
PB56A
4
T
W18
NC
-
W18
PB56B
4
C
T17
NC
-
T17
PB57A
4
T
C
U17
NC
-
U17
PB57B
4
GND
GND4
4
GND
GND4
4
GND
GND3
3
W20
PR27B
3
C
VREF2_3
VREF1_3
GND
GND3
3
W20
PR48B
3
Dual Function
T
BDQS54
C
VREF2_3
VREF1_3
Y20
PR27A
3
T
Y20
PR48A
3
T
AA21
PR26B
3
C
AA21
PR47B
3
C
AB21
PR26A
3
T
AB21
PR47A
3
T
W19
PR25B
3
C
W19
PR46B
3
C
V19
PR25A
3
T
V19
PR46A
3
T
Y21
PR24B
3
C
Y21
PR45B
3
C
AA22
PR24A
3
T
RDQS24
AA22
PR45A
3
T
RDQS45
V20
PR23B
3
C
RLM0_PLLC_FB_A
V20
PR44B
3
C
RLM0_PLLC_IN_A
GND
GND3
3
GND
GND3
3
U20
PR23A
3
T
RLM0_PLLT_FB_A
U20
PR44A
3
T
RLM0_PLLT_IN_A
W21
PR22B
3
C
RLM0_PLLC_IN_A
W21
PR43B
3
C
RLM0_PLLC_FB_A
Y22
PR22A
3
T
RLM0_PLLT_IN_A
Y22
PR43A
3
T
RLM0_PLLT_FB_A
V21
PR21B
3
C
DI/CSSPIN
V21
PR42B
3
C
DI/CSSPIN
W22
PR21A
3
T
DOUT/CSON
W22
PR42A
3
T
DOUT/CSON
U21
PR20B
3
C
BUSY/SISPI
U21
PR41B
3
C
BUSY/SISPI
V22
PR20A
3
T
D7/SPID0
V22
PR41A
3
T
D7/SPID0
T19
CFG2
3
T19
CFG2
3
U19
CFG1
3
U19
CFG1
3
U18
CFG0
3
U18
CFG0
3
4-28
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA
LFEC6/LFECP6
Ball
Number
Ball
Function
V18
PROGRAMN
T20
CCLK
LFEC20/LFECP20
Ball
Number
Ball
Function
3
V18
PROGRAMN
3
3
T20
CCLK
3
Bank LVDS
Dual Function
Bank LVDS
T21
INITN
3
T21
INITN
3
R20
DONE
3
R20
DONE
3
-
-
-
GND
PR39B
3
GND3
3
PR39A
3
T
PR38B
3
C
C
PR38A
3
T
T18
NC
-
T18
PR37B
3
C
R17
NC
-
R17
PR37A
3
T
R19
NC
-
R19
PR36B
3
C
R18
NC
-
R18
PR36A
3
T
U22
NC
-
U22
PR35B
3
C
-
-
-
GND
GND3
3
T22
NC
-
T22
PR35A
3
T
R21
NC
-
R21
PR34B
3
C
R22
NC
-
R22
PR34A
3
T
P20
NC
-
P20
PR33B
3
C
N20
NC
-
N20
PR33A
3
T
P19
NC
-
P19
PR32B
3
C
P18
NC
-
P18
PR32A
3
T
P21
PR18B
3
P21
PR31B
3
C
GND
GND3
3
GND
GND3
3
C
P22
PR18A
3
T
P22
PR31A
3
T
N21
PR17B
3
C
N21
PR30B
3
C
N22
PR17A
3
T
N22
PR30A
3
T
N19
PR16B
3
C
N19
PR29B
3
C
N18
PR16A
3
T
N18
PR29A
3
T
M21
PR15B
3
C
M21
PR28B
3
C
L20
PR15A
3
T
L20
PR28A
3
T
L21
PR14B
3
C
L21
PR27B
3
C
RDQS15
GND
GND3
3
GND
GND3
3
M20
PR14A
3
T
M20
PR27A
3
T
M18
PR13B
3
C
M18
PR26B
3
C
M19
PR13A
3
T
M19
PR26A
3
T
M22
PR12B
3
C
M22
PR25B
3
C
L22
PR12A
3
T
L22
PR25A
3
T
K22
PR11B
3
C
K22
PR24B
3
C
K21
PR11A
3
T
K21
PR24A
3
T
J22
PR9B
2
C
J22
PR22B
2
C
PCLKC2_0
4-29
Dual Function
RDQS36
RDQS28
PCLKC2_0
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA
LFEC6/LFECP6
Ball
Number
Ball
Function
GND
GND2
Bank LVDS
LFEC20/LFECP20
Dual Function
2
PCLKT2_0
Ball
Number
Ball
Function
GND
GND2
Bank LVDS
J21
PR9A
2
T
J21
PR22A
2
T
H22
PR8B
2
C
H22
PR21B
2
C
H21
PR8A
2
T
H21
PR21A
2
T
L19
PR7B
2
C
L19
PR20B
2
C
L18
PR7A
2
T
L18
PR20A
2
T
K20
PR6B
2
C
K20
PR19B
2
C
J20
PR6A
2
T
K19
PR5B
2
C
RDQS6
Dual Function
2
J20
PR19A
2
T
K19
PR18B
2
C
-
-
-
GND
GND2
2
K18
PR5A
2
T
K18
PR18A
2
T
G22
PR4B
2
C
G22
PR17B
2
C
F22
PR4A
2
T
F22
PR17A
2
T
F21
PR3B
2
C
F21
PR16B
2
C
E22
PR3A
2
T
E22
PR16A
2
T
E21
NC
-
E21
PR15B
2
C
D22
NC
-
D22
PR15A
2
T
G21
NC
-
G21
PR14B
2
C
G20
NC
-
G20
PR14A
2
T
PCLKT2_0
RDQS19
-
-
-
GND
GND2
2
J18
NC
-
J18
PR13B
2
H19
NC
-
H19
PR13A
2
T
J19
NC
-
J19
PR12B
2
C
H20
NC
-
H20
PR12A
2
T
H17
NC
-
H17
PR11B
2
C
H18
NC
-
H18
PR11A
2
T
D21
NC
-
D21
PR9B
2
C
RUM0_PLLC_FB_A
C
-
-
-
GND
GND2
2
C22
NC
-
C22
PR9A
2
T
RUM0_PLLT_FB_A
G19
NC
-
G19
PR8B
2
C
RUM0_PLLC_IN_A
G18
NC
-
G18
PR8A
2
T
RUM0_PLLT_IN_A
F20
NC
-
F20
PR7B
2
C
F19
NC
-
F19
PR7A
2
T
E20
NC
-
E20
PR6B
2
C
D20
NC
-
D20
PR6A
2
T
C21
NC
-
C21
PR5B
2
C
C20
NC
-
C20
PR5A
2
T
F18
NC
-
F18
PR4B
2
C
E18
NC
-
E18
PR4A
2
T
B22
NC
-
B22
PR3B
2
C
B21
NC
-
B21
PR3A
2
T
E19
PR2B
2
E19
PR2B
2
C
C
VREF1_2
4-30
RDQS6
VREF1_2
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA
LFEC6/LFECP6
Ball
Number
Ball
Function
D19
PR2A
2
GND
GND2
GND
GND1
G17
F17
LFEC20/LFECP20
Dual Function
Ball
Number
Ball
Function
VREF2_2
D19
PR2A
2
2
GND
GND2
2
1
GND
GND1
1
NC
-
G17
PT57B
1
C
NC
-
F17
PT57A
1
T
D18
NC
-
D18
PT56B
1
C
C18
NC
-
C18
PT56A
1
T
C19
NC
-
C19
PT55B
1
C
B20
NC
-
B20
PT55A
1
T
D17
NC
-
D17
PT54B
1
C
C16
NC
-
C16
PT54A
1
T
B19
NC
-
B19
PT53B
1
C
-
-
-
GND
GND1
1
A20
NC
-
A20
PT53A
1
T
E17
NC
-
E17
PT52B
1
C
C17
NC
-
C17
PT52A
1
T
F16
NC
-
F16
PT51B
1
C
E16
NC
-
E16
PT51A
1
T
F15
NC
-
F15
PT50B
1
C
D16
PT50A
1
T
B18
PT49B
1
C
Bank LVDS
D16
NC
-
B18
PT33B
1
T
C
Bank LVDS
T
-
-
-
GND
GND1
1
A19
PT33A
1
T
A19
PT49A
1
T
B17
PT32B
1
C
B17
PT48B
1
C
A18
PT32A
1
T
A18
PT48A
1
T
B16
PT31B
1
C
B16
PT47B
1
C
A17
PT31A
1
T
A17
PT47A
1
T
B15
PT30B
1
C
B15
PT46B
1
C
A16
PT30A
1
T
A16
PT46A
1
T
C
A15
PT45B
1
C
GND
GND1
1
TDQS30
A15
PT29B
1
GND
GND1
1
A14
PT29A
1
T
A14
PT45A
1
T
G14
PT28B
1
C
G14
PT44B
1
C
E15
PT28A
1
T
E15
PT44A
1
T
D15
PT27B
1
C
D15
PT43B
1
C
C15
PT27A
1
T
C15
PT43A
1
T
C14
PT26B
1
C
C14
PT42B
1
C
B14
PT26A
1
T
B14
PT42A
1
T
A13
PT25B
1
C
A13
PT41B
1
C
GND
GND1
1
GND
GND1
1
B13
PT25A
1
T
B13
PT41A
1
T
E14
PT24B
1
C
E14
PT40B
1
C
4-31
Dual Function
VREF2_2
TDQS54
TDQS46
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA
LFEC6/LFECP6
Ball
Number
Ball
Function
C13
PT24A
Bank LVDS
1
T
LFEC20/LFECP20
Dual Function
Ball
Number
Ball
Function
C13
PT40A
Bank LVDS
1
T
F14
PT23B
1
C
F14
PT39B
1
C
D14
PT23A
1
T
D14
PT39A
1
T
E13
PT22B
1
C
G13
PT22A
1
T
C
TDQS22
E13
PT38B
1
C
G13
PT38A
1
T
C
A12
PT37B
1
GND
GND1
1
T
B12
PT37A
1
T
C
F13
PT36B
1
C
Dual Function
TDQS38
A12
PT21B
1
GND
GND1
1
B12
PT21A
1
F13
PT20B
1
D13
PT20A
1
T
D13
PT36A
1
T
F12
PT19B
1
C
VREF2_1
F12
PT35B
1
C
VREF2_1
D12
PT19A
1
T
VREF1_1
D12
PT35A
1
T
VREF1_1
F11
PT18B
1
C
F11
PT34B
1
C
C12
PT18A
1
T
A11
PT17B
0
C
PCLKC0_0
C12
PT34A
1
T
A11
PT33B
0
C
PCLKC0_0
GND
GND0
0
GND
GND0
0
A10
PT17A
0
T
PCLKT0_0
A10
PT33A
0
T
PCLKT0_0
E12
PT16B
0
C
VREF1_0
E12
PT32B
0
C
VREF1_0
E11
PT16A
0
T
VREF2_0
E11
PT32A
0
T
VREF2_0
B11
PT15B
0
C
B11
PT31B
0
C
C11
PT15A
0
T
C11
PT31A
0
T
B9
PT14B
0
C
B10
PT14A
0
T
A9
PT13B
0
C
GND
GND0
0
TDQS14
B9
PT30B
0
C
B10
PT30A
0
T
A9
PT29B
0
C
GND
GND0
0
A8
PT13A
0
T
A8
PT29A
0
T
D11
PT12B
0
C
D11
PT28B
0
C
C10
PT12A
0
T
C10
PT28A
0
T
A7
PT11B
0
C
A7
PT27B
0
C
A6
PT11A
0
T
A6
PT27A
0
T
B7
PT10B
0
C
B7
PT26B
0
C
B8
PT10A
0
T
B8
PT26A
0
T
A5
PT9B
0
C
A5
PT25B
0
C
GND
GND0
0
GND
GND0
0
B6
PT9A
0
T
B6
PT25A
0
T
G10
PT8B
0
C
G10
PT24B
0
C
E10
PT8A
0
T
E10
PT24A
0
T
F10
PT7B
0
C
F10
PT23B
0
C
D10
PT7A
0
T
D10
PT23A
0
T
G9
PT22B
0
C
E9
PT22A
0
T
C9
PT21B
0
C
G9
PT6B
0
C
E9
PT6A
0
T
C9
PT5B
0
C
TDQS6
4-32
TDQS30
TDQS22
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA
LFEC6/LFECP6
LFEC20/LFECP20
Ball
Number
Ball
Function
Ball
Number
Ball
Function
-
-
-
GND
GND0
0
C8
PT5A
0
F9
PT4B
0
T
C8
PT21A
0
T
C
F9
PT20B
0
C
D9
PT4A
0
F8
PT3B
0
T
D9
PT20A
0
T
C
F8
PT19B
0
C
D7
PT3A
0
T
D7
PT19A
0
T
D8
PT2B
0
C
D8
PT18B
0
C
T
T
Bank LVDS
Dual Function
Bank LVDS
C7
PT2A
0
C7
PT18A
0
GND
GND0
0
GND
GND0
0
A4
NC
-
A4
PT17B
0
C
B4
NC
-
B4
PT17A
0
T
C4
NC
-
C4
PT16B
0
C
C5
NC
-
C5
PT16A
0
T
D6
NC
-
D6
PT15B
0
C
B5
NC
-
B5
PT15A
0
T
E6
NC
-
E6
PT14B
0
C
C6
NC
-
C6
PT14A
0
T
A3
NC
-
A3
PT13B
0
C
-
-
-
GND
GND0
0
B3
NC
-
B3
PT13A
0
T
F6
NC
-
F6
PT12B
0
C
D5
NC
-
D5
PT12A
0
T
F7
NC
-
F7
PT11B
0
C
E8
NC
-
E8
PT11A
0
T
G6
NC
-
G6
PT10B
0
C
E7
NC
-
E7
PT10A
0
T
PR9B
C
GND0
0
PT9A
0
T
PR8B
0
C
PT8A
0
T
PT7B
0
C
PT7A
0
T
PT6A
0
C
PT6A
0
T
PT5B
0
C
PT5A
0
T
PT4B
0
C
PT4A
0
T
PT3B
0
C
PT3A
0
T
PT2B
0
C
-
-
-
GND
4-33
Dual Function
TDQS14
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA
LFEC6/LFECP6
Ball
Number
Ball
Function
Bank LVDS
LFEC20/LFECP20
Ball
Number
Dual Function
Ball
Function
PT2A
Bank LVDS
0
-
-
-
GND
GND0
A1
GND
-
A1
GND
-
A22
GND
-
A22
GND
-
AB1
GND
-
AB1
GND
-
AB22
GND
-
AB22
GND
-
H15
GND
-
H15
GND
-
H8
GND
-
H8
GND
-
J10
GND
-
J10
GND
-
J11
GND
-
J11
GND
-
J12
GND
-
J12
GND
-
J13
GND
-
J13
GND
-
J14
GND
-
J14
GND
-
J9
GND
-
J9
GND
-
K10
GND
-
K10
GND
-
K11
GND
-
K11
GND
-
K12
GND
-
K12
GND
-
K13
GND
-
K13
GND
-
K14
GND
-
K14
GND
-
K9
GND
-
K9
GND
-
L10
GND
-
L10
GND
-
L11
GND
-
L11
GND
-
L12
GND
-
L12
GND
-
L13
GND
-
L13
GND
-
L14
GND
-
L14
GND
-
L9
GND
-
L9
GND
-
M10
GND
-
M10
GND
-
M11
GND
-
M11
GND
-
M12
GND
-
M12
GND
-
M13
GND
-
M13
GND
-
M14
GND
-
M14
GND
-
M9
GND
-
M9
GND
-
N10
GND
-
N10
GND
-
N11
GND
-
N11
GND
-
N12
GND
-
N12
GND
-
N13
GND
-
N13
GND
-
N14
GND
-
N14
GND
-
N9
GND
-
N9
GND
-
P10
GND
-
P10
GND
-
P11
GND
-
P11
GND
-
P12
GND
-
P12
GND
-
P13
GND
-
P13
GND
-
4-34
T
Dual Function
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA
LFEC6/LFECP6
Ball
Number
Ball
Function
P14
GND
Bank LVDS
LFEC20/LFECP20
Dual Function
-
Ball
Number
Ball
Function
P14
GND
Bank LVDS
-
P9
GND
-
P9
GND
-
R15
GND
-
R15
GND
-
R8
GND
-
R8
GND
-
J16
VCC
-
J16
VCC
-
J7
VCC
-
J7
VCC
-
K16
VCC
-
K16
VCC
-
K17
VCC
-
K17
VCC
-
K6
VCC
-
K6
VCC
-
K7
VCC
-
K7
VCC
-
L17
VCC
-
L17
VCC
-
L6
VCC
-
L6
VCC
-
M17
VCC
-
M17
VCC
-
M6
VCC
-
M6
VCC
-
N16
VCC
-
N16
VCC
-
N17
VCC
-
N17
VCC
-
N6
VCC
-
N6
VCC
-
N7
VCC
-
N7
VCC
-
P16
VCC
-
P16
VCC
-
P7
VCC
-
P7
VCC
-
G11
VCCIO0
0
G11
VCCIO0
0
H10
VCCIO0
0
H10
VCCIO0
0
H11
VCCIO0
0
H11
VCCIO0
0
H9
VCCIO0
0
H9
VCCIO0
0
G12
VCCIO1
1
G12
VCCIO1
1
H12
VCCIO1
1
H12
VCCIO1
1
H13
VCCIO1
1
H13
VCCIO1
1
H14
VCCIO1
1
H14
VCCIO1
1
J15
VCCIO2
2
J15
VCCIO2
2
K15
VCCIO2
2
K15
VCCIO2
2
L15
VCCIO2
2
L15
VCCIO2
2
L16
VCCIO2
2
L16
VCCIO2
2
M15
VCCIO3
3
M15
VCCIO3
3
M16
VCCIO3
3
M16
VCCIO3
3
N15
VCCIO3
3
N15
VCCIO3
3
P15
VCCIO3
3
P15
VCCIO3
3
R12
VCCIO4
4
R12
VCCIO4
4
R13
VCCIO4
4
R13
VCCIO4
4
R14
VCCIO4
4
R14
VCCIO4
4
T12
VCCIO4
4
T12
VCCIO4
4
R10
VCCIO5
5
R10
VCCIO5
5
R11
VCCIO5
5
R11
VCCIO5
5
4-35
Dual Function
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA
LFEC6/LFECP6
Ball
Number
Ball
Function
R9
VCCIO5
T11
M7
LFEC20/LFECP20
Ball
Number
Ball
Function
5
R9
VCCIO5
5
VCCIO5
5
T11
VCCIO5
5
VCCIO6
6
M7
VCCIO6
6
Bank LVDS
Dual Function
Bank LVDS
M8
VCCIO6
6
M8
VCCIO6
6
N8
VCCIO6
6
N8
VCCIO6
6
P8
VCCIO6
6
P8
VCCIO6
6
J8
VCCIO7
7
J8
VCCIO7
7
K8
VCCIO7
7
K8
VCCIO7
7
L7
VCCIO7
7
L7
VCCIO7
7
L8
VCCIO7
7
L8
VCCIO7
7
G15
VCCAUX
-
G15
VCCAUX
-
G16
VCCAUX
-
G16
VCCAUX
-
G7
VCCAUX
-
G7
VCCAUX
-
G8
VCCAUX
-
G8
VCCAUX
-
H16
VCCAUX
-
H16
VCCAUX
-
H7
VCCAUX
-
H7
VCCAUX
-
R16
VCCAUX
-
R16
VCCAUX
-
R7
VCCAUX
-
R7
VCCAUX
-
T15
VCCAUX
-
T15
VCCAUX
-
T16
VCCAUX
-
T16
VCCAUX
-
T7
VCCAUX
-
T7
VCCAUX
-
T8
VCCAUX
-
T8
VCCAUX
-
J6
VCC
-
J6
VCC
-
J17
VCC
-
J17
VCC
-
P6
VCC
-
P6
VCC
-
P17
VCC
-
P17
VCC
-
A2
NC
-
A2
NC
-
AB2
NC
-
AB2
NC
-
A21
NC
-
A21
NC
-
4-36
Dual Function
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA
Ball Number
Ball Function
Bank
LVDS
E3
PL2A
7
T
VREF2_7
E4
PL2B
7
C
VREF1_7
B1
PL3A
7
T
C1
PL3B
7
C
F3
PL4A
7
T
G3
PL4B
7
C
D2
PL5A
7
T
E2
PL5B
7
C
D1
PL6A
7
T
E1
PL6B
7
C
Dual Function
LDQS6
F2
PL7A
7
T
G2
PL7B
7
C
F6
PL8A
7
T
LUM0_PLLT_IN_A
G6
PL8B
7
C
LUM0_PLLC_IN_A
H4
PL9A
7
T
LUM0_PLLT_FB_A
GND
GND07
LUM0_PLLC_FB_A
G4
PL9B
7
C
J4
PL11A
7
T
J5
PL11B
7
C
K4
PL12A
7
T
K5
PL12B
7
C
J6
PL13A
7
T
K6
PL13B
7
C
F1
PL14A
7
T
GND
GND07
G1
PL14B
7
C
H1
PL15A
7
T
J1
PL15B
7
C
K2
PL16A
7
T
K1
PL16B
7
C
K3
PL17A
7
T
L3
PL17B
7
C
7
T
L2
PL18A
GND
GND07
L1
PL18B
7
C
M3
PL19A
7
T
M4
PL19B
7
C
M1
PL20A
7
T
M2
PL20B
7
C
L4
PL21A
7
T
L5
PL21B
7
C
N2
PL22A
7
T
GND
GND07
4-37
LDQS19
PCLKT7_0
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.)
Ball Number
Ball Function
Bank
LVDS
Dual Function
N1
PL22B
7
C
PCLKC7_0
N3
XRES
6
P1
PL24A
6
T
P2
PL24B
6
C
L7
PL25A
6
T
L6
PL25B
6
C
N4
PL26A
6
T
N5
PL26B
6
C
R1
PL27A
6
T
GND
GND06
R2
PL27B
6
C
P4
PL28A
6
T
P3
PL28B
6
C
M5
PL29A
6
T
M6
PL29B
6
C
T1
PL30A
6
T
T2
PL30B
6
C
6
T
R4
PL31A
GND
GND06
R3
PL31B
6
C
N6
PL32A
6
T
P5
PL32B
6
C
P6
PL33A
6
T
R5
PL33B
6
C
U1
PL34A
6
T
U2
PL34B
6
C
T3
PL35A
6
T
GND
GND06
T4
PL35B
6
C
R6
PL36A
6
T
T5
PL36B
6
C
T6
PL37A
6
T
U5
PL37B
6
C
U3
PL38A
6
T
U4
PL38B
6
C
6
T
C
V1
PL39A
GND
GND06
V2
PL39B
6
U7
TCK
6
V4
TDI
6
V5
TMS
6
V3
TDO
6
U6
VCCJ
6
W1
PL41A
6
4-38
T
LDQS28
LDQS36
LLM0_PLLT_IN_A
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.)
Ball Number
Ball Function
Bank
LVDS
Dual Function
W2
PL41B
6
C
LLM0_PLLC_IN_A
V6
PL42A
6
T
LLM0_PLLT_FB_A
W6
PL42B
6
C
LLM0_PLLC_FB_A
Y1
PL43A
6
T
Y2
PL43B
6
C
W3
PL44A
6
T
GND
GND06
W4
PL44B
6
C
AA1
PL45A
6
T
AB1
PL45B
6
C
Y4
PL46A
6
T
LDQS45
Y3
PL46B
6
C
AC1
PL47A
6
T
AB2
PL47B
6
C
AB4
PL48A
6
T
VREF1_6
6
C
VREF2_6
AC4
PL48B
GND
GND06
GND
GND05
AB6
PB2A
5
T
AA6
PB2B
5
C
AC7
PB3A
5
T
Y8
PB3B
5
C
AB7
PB4A
5
T
AA7
PB4B
5
C
AC6
PB5A
5
T
AC5
PB5B
5
C
AB8
PB6A
5
T
AC8
PB6B
5
C
AE2
PB7A
5
T
AA8
PB7B
5
C
AF2
PB8A
5
T
Y9
PB8B
5
C
AD5
PB9A
5
T
GND
GND05
AD4
PB9B
5
C
AD8
PB10A
5
T
AC9
PB10B
5
C
AE3
PB11A
5
T
AB9
PB11B
5
C
AF3
PB12A
5
T
AD9
PB12B
5
C
5
T
5
C
AE4
PB13A
GND
GND05
AF4
PB13B
4-39
BDQS6
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.)
Ball Number
Ball Function
Bank
LVDS
Dual Function
AE5
PB14A
5
T
BDQS14
AA9
PB14B
5
C
AF5
PB15A
5
T
Y10
PB15B
5
C
AD6
PB16A
5
T
AC10
PB16B
5
C
AF6
PB17A
5
T
GND
GND05
AE6
PB17B
5
C
AF7
PB18A
5
T
AB10
PB18B
5
C
AE7
PB19A
5
T
AD10
PB19B
5
C
AD7
PB20A
5
T
AA10
PB20B
5
C
AF8
PB21A
5
T
GND
GND05
AF9
PB21B
5
C
AD11
PB22A
5
T
Y11
PB22B
5
C
AE8
PB23A
5
T
AC11
PB23B
5
C
AF10
PB24A
5
T
AB11
PB24B
5
C
AE10
PB25A
5
T
GND
GND05
AE9
PB25B
5
C
AA11
PB26A
5
T
Y12
PB26B
5
C
AE11
PB27A
5
T
AF11
PB27B
5
C
AF12
PB28A
5
T
AE12
PB28B
5
C
AD12
PB29A
5
T
GND
GND05
AC12
PB29B
5
C
AA12
PB30A
5
T
AB12
PB30B
5
C
AE13
PB31A
5
T
BDQS22
BDQS30
AF13
PB31B
5
C
AD13
PB32A
5
T
AC13
PB32B
5
C
VREF1_5
AF14
PB33A
5
T
PCLKT5_0
GND
GND05
4-40
VREF2_5
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.)
Ball Number
Ball Function
Bank
LVDS
Dual Function
AE14
PB33B
5
C
PCLKC5_0
AA13
PB34A
4
T
WRITEN
AB13
PB34B
4
C
CS1N
AD14
PB35A
4
T
VREF1_4
AA14
PB35B
4
C
CSN
AC14
PB36A
4
T
VREF2_4
AB14
PB36B
4
C
D0/SPID7
AF15
PB37A
4
T
D2/SPID5
GND
GND04
AE15
PB37B
4
C
D1/SPID6
AD15
PB38A
4
T
BDQS38
AC15
PB38B
4
C
D3/SPID4
AF16
PB39A
4
T
Y14
PB39B
4
C
AE16
PB40A
4
T
AB15
PB40B
4
C
AF17
PB41A
4
T
C
GND
GND04
AE17
PB41B
4
Y15
PB42A
4
T
AA15
PB42B
4
C
AD17
PB43A
4
T
Y16
PB43B
4
C
AD18
PB44A
4
T
AC16
PB44B
4
C
AE18
PB45A
4
T
GND
GND04
AF18
PB45B
4
C
AD16
PB46A
4
T
AB16
PB46B
4
C
AF19
PB47A
4
T
AA16
PB47B
4
C
AA17
PB48A
4
T
Y17
PB48B
4
C
AF21
PB49A
4
T
GND
GND04
AF20
PB49B
4
C
AE21
PB50A
4
T
AC17
PB50B
4
C
AF22
PB51A
4
T
AB17
PB51B
4
C
AE22
PB52A
4
T
AA18
PB52B
4
C
AE19
PB53A
4
T
4-41
D4/SPID3
D5/SPID2
D6/SPID1
BDQS46
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.)
Ball Number
Ball Function
GND
GND04
AE20
PB53B
Bank
LVDS
4
C
AA19
PB54A
4
T
Y18
PB54B
4
C
AF23
PB55A
4
T
Dual Function
BDQS54
AA20
PB55B
4
C
AC18
PB56A
4
T
AB18
PB56B
4
C
AF24
PB57A
4
T
AE23
PB57B
4
C
GND
GND04
C
VREF2_3
VREF1_3
GND
GND03
AC23
PR48B
3
AC24
PR48A
3
T
AC25
PR47B
3
C
AC26
PR47A
3
T
AB25
PR46B
3
C
AA25
PR46A
3
T
AB26
PR45B
3
C
AA26
PR45A
3
T
RDQS45
W23
PR44B
3
C
RLM0_PLLC_IN_A
GND
GND03
W24
PR44A
3
T
RLM0_PLLT_IN_A
W22
PR43B
3
C
RLM0_PLLC_FB_A
W21
PR43A
3
T
RLM0_PLLT_FB_A
Y25
PR42B
3
C
DI/CSSPIN
Y26
PR42A
3
T
DOUT/CSON
W25
PR41B
3
C
BUSY/SISPI
W26
PR41A
3
T
D7/SPID0
V24
CFG2
3
V21
CFG1
3
V23
CFG0
3
V22
PROGRAMN
3
V20
CCLK
3
V25
INITN
3
U20
DONE
3
V26
PR39B
3
C
GND
GND03
U26
PR39A
3
T
U24
PR38B
3
C
U25
PR38A
3
T
U23
PR37B
3
C
U22
PR37A
3
T
U21
PR36B
3
C
4-42
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.)
Ball Number
Ball Function
Bank
LVDS
Dual Function
T21
PR36A
3
T
RDQS36
T25
PR35B
3
C
GND
GND03
T26
PR35A
3
T
T22
PR34B
3
C
T23
PR34A
3
T
T24
PR33B
3
C
R23
PR33A
3
T
R25
PR32B
3
C
R24
PR32A
3
T
R26
PR31B
3
C
GND
GND03
P26
PR31A
3
T
R21
PR30B
3
C
R22
PR30A
3
T
P25
PR29B
3
C
P24
PR29A
3
T
P23
PR28B
3
C
P22
PR28A
3
T
N26
PR27B
3
C
GND
GND03
M26
PR27A
3
T
N21
PR26B
3
C
RDQS28
P21
PR26A
3
T
N23
PR25B
3
C
N22
PR25A
3
T
N25
PR24B
3
C
N24
PR24A
3
T
L26
PR22B
2
C
PCLKC2_0
GND
GND02
K26
PR22A
2
T
PCLKT2_0
M22
PR21B
2
C
M23
PR21A
2
T
M25
PR20B
2
C
M24
PR20A
2
T
M21
PR19B
2
C
L21
PR19A
2
T
2
C
L22
PR18B
GND
GND02
L23
PR18A
2
T
L25
PR17B
2
C
L24
PR17A
2
T
K25
PR16B
2
C
J25
PR16A
2
T
4-43
RDQS19
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.)
Ball Number
Ball Function
Bank
LVDS
J26
PR15B
2
C
Dual Function
H26
PR15A
2
T
H25
PR14B
2
C
J24
PR14A
2
T
GND
GND02
K21
PR13B
2
C
K22
PR13A
2
T
K20
PR12B
2
C
J20
PR12A
2
T
K23
PR11B
2
C
K24
PR11A
2
T
F25
PR9B
2
C
RUM0_PLLC_FB_A
GND
GND02
G25
PR9A
2
T
RUM0_PLLT_FB_A
H23
PR8B
2
C
RUM0_PLLC_IN_A
H24
PR8A
2
T
RUM0_PLLT_IN_A
H21
PR7B
2
C
G21
PR7A
2
T
D26
PR6B
2
C
D25
PR6A
2
T
F21
PR5B
2
C
G22
PR5A
2
T
G24
PR4B
2
C
RDQS6
G23
PR4A
2
T
C26
PR3B
2
C
C25
PR3A
2
T
E23
PR2B
2
C
VREF1_2
2
T
VREF2_2
C
D23
PR2A
GND
GND02
GND
GND01
A24
PT57B
1
A23
PT57A
1
T
E18
PT56B
1
C
D19
PT56A
1
T
F19
PT55B
1
C
B22
PT55A
1
T
G19
PT54B
1
C
B21
PT54A
1
T
D18
PT53B
1
C
GND
GND01
C18
PT53A
1
T
F18
PT52B
1
C
A22
PT52A
1
T
G18
PT51B
1
C
4-44
TDQS54
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.)
Ball Number
Ball Function
Bank
LVDS
A21
PT51A
1
T
E17
PT50B
1
C
B17
PT50A
1
T
C17
PT49B
1
C
GND
GND01
D17
PT49A
1
T
F17
PT48B
1
C
E20
PT48A
1
T
G17
PT47B
1
C
B20
PT47A
1
T
E16
PT46B
1
C
A20
PT46A
1
T
A19
PT45B
1
C
GND
GND01
B19
PT45A
1
T
D16
PT44B
1
C
C16
PT44A
1
T
F16
PT43B
1
C
A18
PT43A
1
T
G16
PT42B
1
C
B18
PT42A
1
T
A17
PT41B
1
C
GND
GND01
A16
PT41A
1
T
D15
PT40B
1
C
B16
PT40A
1
T
E15
PT39B
1
C
C15
PT39A
1
T
F15
PT38B
1
C
G15
PT38A
1
T
B15
PT37B
1
C
GND
GND01
A15
PT37A
1
T
Dual Function
TDQS46
TDQS38
E14
PT36B
1
C
G14
PT36A
1
T
D14
PT35B
1
C
VREF2_1
E13
PT35A
1
T
VREF1_1
F14
PT34B
1
C
C14
PT34A
1
T
B14
PT33B
0
C
PCLKC0_0
GND
GND01
A14
PT33A
0
T
PCLKT0_0
D13
PT32B
0
C
VREF1_0
C13
PT32A
0
T
VREF2_0
4-45
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.)
Ball Number
Ball Function
Bank
LVDS
A13
PT31B
0
C
B13
PT31A
0
T
F13
PT30B
0
C
F12
PT30A
0
T
A12
PT29B
0
C
GND
GND00
B12
PT29A
0
T
A11
PT28B
0
C
B11
PT28A
0
T
D12
PT27B
0
C
C12
PT27A
0
T
B10
PT26B
0
C
A10
PT26A
0
T
G12
PT25B
0
C
GND
GND00
A9
PT25A
0
T
E12
PT24B
0
C
B9
PT24A
0
T
F11
PT23B
0
C
A8
PT23A
0
T
D11
PT22B
0
C
C11
PT22A
0
T
B8
PT21B
0
C
GND
GND00
B7
PT21A
0
T
E11
PT20B
0
C
A7
PT20A
0
T
G11
PT19B
0
C
C7
PT19A
0
T
G10
PT18B
0
C
C6
PT18A
0
T
0
C
C10
PT17B
GND
GND00
D10
PT17A
0
T
F10
PT16B
0
C
A6
PT16A
0
T
E10
PT15B
0
C
C9
PT15A
0
T
G9
PT14B
0
C
D9
PT14A
0
T
A5
PT13B
0
C
GND
GND00
A4
PT13A
0
T
F9
PT12B
0
C
4-46
Dual Function
TDQS30
TDQS22
TDQS14
Pinout Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.)
Ball Number
Ball Function
Bank
LVDS
B6
PT12A
0
T
E9
PT11B
0
C
C8
PT11A
0
T
G8
PT10B
0
C
B5
PT10A
0
T
0
C
A3
PT9B
GND
GND00
A2
PT9A
0
T
F8
PT8B
0
C
B4
PT8A
0
T
E8
PT7B
0
C
B3
PT7A
0
T
D8
PT6B
0
C
G7
PT6A
0
T
C4
PT5B
0
C
C5
PT5A
0
T
E7
PT4B
0
C
D4
PT4A
0
T
F7
PT3B
0
C
D6
PT3A
0
T
D7
PT2B
0
C
E6
PT2A
0
T
GND
GND00
4-47
Dual Function
TDQS6
LatticeECP/EC Family Data Sheet
Ordering Information
October 2004
Preliminary Data Sheet
Part Number Description
LFXXX XX X – X XXXX X
Device Family
Lattice EC (FPGA)
Lattice ECP (EC FPGA + DSP Blocks)
Grade
C = Commercial
I = Industrial
Logic Capacity
1* = 1.5K LUTs
3* = 3K LUTs
6 = 6K LUTs
10 = 10K LUTs
15 = 15K LUTs
20 = 20K LUTs
33 = 33K LUTs
40 = 40K LUTs
Package
T100 = 100-pin TQFP*
T144 = 144-pin TQFP
Q208 = 208-pin PQFP
F256 = 256-ball fpBGA
F484 = 484-ball fpBGA
F672 = 672-ball fpBGA
F900 = 900-ball fpBGA
Speed
3 = Slowest
4
5 = Fastest
Supply Voltage
E = 1.2V
*Not available in the LatticeECP Family.
Ordering Information
Note: LatticeECP/EC devices are dual marked. For example, the commercial speed grade LFEC20E-4F484C is
also marked with industrial grade -3I (LFEC20E-3F484I). The commercial grade is one speed grade faster than the
associated dual mark industrial grade. The slowest commercial speed grade does not have industrial markings.
The markings appear as follows:
EC
LFEC20C4F484C-3I
Datecode
LatticeEC Commercial
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC1E-3Q208C
112
-3
PQFP
208
COM
1.5K
LFEC1E-4Q208C
112
-4
PQFP
208
COM
1.5K
LFEC1E-5Q208C
112
-5
PQFP
208
COM
1.5K
LFEC1E-3T144C
97
-3
TQFP
144
COM
1.5K
LFEC1E-4T144C
97
-4
TQFP
144
COM
1.5K
LFEC1E-5T144C
97
-5
TQFP
144
COM
1.5K
LFEC1E-3T100C
67
-3
TQFP
100
COM
1.5K
© 2004 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
5-1
Order Info_01.1
Ordering Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LatticeEC Commercial (Continued)
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC1E-4T100C
Part Number
67
-4
TQFP
100
COM
1.5K
LFEC1E-5T100C
67
-5
TQFP
100
COM
1.5K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC3E-3F256C
Part Number
160
-3
fpBGA
256
COM
3.1K
LFEC3E-4F256C
160
-4
fpBGA
256
COM
3.1K
LFEC3E-5F256C
160
-5
fpBGA
256
COM
3.1K
LFEC3E-3Q208C
145
-3
PQFP
208
COM
3.1K
LFEC3E-4Q208C
145
-4
PQFP
208
COM
3.1K
LFEC3E-5Q208C
145
-5
PQFP
208
COM
3.1K
LFEC3E-3T144C
97
-3
TQFP
144
COM
3.1K
LFEC3E-4T144C
97
-4
TQFP
144
COM
3.1K
LFEC3E-5T144C
97
-5
TQFP
144
COM
3.1K
LFEC3E-3T100C
67
-3
TQFP
100
COM
3.1K
LFEC3E-4T100C
67
-4
TQFP
100
COM
3.1K
LFEC3E-5T100C
67
-5
TQFP
100
COM
3.1K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC6E-3F484C
Part Number
224
-3
fpBGA
484
COM
6.1K
LFEC6E-4F484C
224
-4
fpBGA
484
COM
6.1K
LFEC6E-5F484C
224
-5
fpBGA
484
COM
6.1K
LFEC6E-3F256C
195
-3
fpBGA
256
COM
6.1K
LFEC6E-4F256C
195
-4
fpBGA
256
COM
6.1K
LFEC6E-5F256C
195
-5
fpBGA
256
COM
6.1K
LFEC6E-3Q208C
147
-3
PQFP
208
COM
6.1K
LFEC6E-4Q208C
147
-4
PQFP
208
COM
6.1K
LFEC6E-5Q208C
147
-5
PQFP
208
COM
6.1K
LFEC6E-3T144C
97
-3
TQFP
144
COM
6.1K
LFEC6E-4T144C
97
-4
TQFP
144
COM
6.1K
LFEC6E-5T144C
97
-5
TQFP
144
COM
6.1K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC10E-3F484C
Part Number
288
-3
fpBGA
484
COM
10.2K
LFEC10E-4F484C
288
-4
fpBGA
484
COM
10.2K
LFEC10E-5F484C
288
-5
fpBGA
484
COM
10.2K
LFEC10E-3F256C
195
-3
fpBGA
256
COM
10.2K
LFEC10E-4F256C
195
-4
fpBGA
256
COM
10.2K
LFEC10E-5F256C
195
-5
fpBGA
256
COM
10.2K
LFEC10E-3Q208C
147
-3
PQFP
208
COM
10.2K
LFEC10E-4Q208C
147
-4
PQFP
208
COM
10.2K
LFEC10E-5Q208C
147
-5
PQFP
208
COM
10.2K
5-2
Ordering Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LatticeEC Commercial (Continued)
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC15E-3F484C
Part Number
352
-3
fpBGA
484
COM
15.3K
LFEC15E-4F484C
352
-4
fpBGA
484
COM
15.3K
LFEC15E-5F484C
352
-5
fpBGA
484
COM
15.3K
LFEC15E-3F256C
195
-3
fpBGA
256
COM
15.3K
LFEC15E-4F256C
195
-4
fpBGA
256
COM
15.3K
LFEC15E-5F256C
195
-5
fpBGA
256
COM
15.3K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC20E-3F672C
Part Number
400
-3
fpBGA
672
COM
19.7K
LFEC20E-4F672C
400
-4
fpBGA
672
COM
19.7K
LFEC20E-5F672C
400
-5
fpBGA
672
COM
19.7K
LFEC20E-3F484C
360
-3
fpBGA
484
COM
19.7K
LFEC20E-4F484C
360
-4
fpBGA
484
COM
19.7K
LFEC20E-5F484C
360
-5
fpBGA
484
COM
19.7K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC33E-3F672C
Part Number
496
-3
fpBGA
672
COM
32.8K
LFEC33E-4F672C
496
-4
fpBGA
672
COM
32.8K
LFEC33E-4F672C
496
-5
fpBGA
672
COM
32.8K
LFEC33E-3F484C
360
-3
fpBGA
484
COM
32.8K
LFEC33E-4F484C
360
-4
fpBGA
484
COM
32.8K
LFEC33E-4F484C
360
-5
fpBGA
484
COM
32.8K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC40E-3F900C
Part Number
576
-3
fpBGA
900
COM
40.9K
LFEC40E-4F900C
576
-4
fpBGA
900
COM
40.9K
LFEC40E-5F900C
576
-5
fpBGA
900
COM
40.9K
LFEC40E-3F672C
496
-3
fpBGA
672
COM
40.9K
LFEC40E-4F672C
496
-4
fpBGA
672
COM
40.9K
LFEC40E-5F672C
496
-5
fpBGA
672
COM
40.9K
LatticeECP Commercial
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP6E-3F484C
224
-3
fpBGA
484
COM
6.1K
LFECP6E-4F484C
224
-4
fpBGA
484
COM
6.1K
LFECP6E-5F484C
224
-5
fpBGA
484
COM
6.1K
LFECP6E-3F256C
195
-3
fpBGA
256
COM
6.1K
LFECP6E-4F256C
195
-4
fpBGA
256
COM
6.1K
LFECP6E-5F256C
195
-5
fpBGA
256
COM
6.1K
LFECP6E-3Q208C
147
-3
PQFP
208
COM
6.1K
LFECP6E-4Q208C
147
-4
PQFP
208
COM
6.1K
LFECP6E-5Q208C
147
-5
PQFP
208
COM
6.1K
LFECP6E-3T144C
97
-3
TQFP
144
COM
6.1K
5-3
Ordering Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LatticeECP Commercial (Continued)
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP6E-4T144C
Part Number
97
-4
TQFP
144
COM
6.1K
LFECP6E-5T144C
97
-5
TQFP
144
COM
6.1K
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP10E-3F484C
288
-3
fpBGA
484
COM
10.2K
LFECP10E-4F484C
288
-4
fpBGA
484
COM
10.2K
LFECP10E-5F484C
288
-5
fpBGA
484
COM
10.2K
LFECP10E-3F256C
195
-3
fpBGA
256
COM
10.2K
LFECP10E-4F256C
195
-4
fpBGA
256
COM
10.2K
LFECP10E-5F256C
195
-5
fpBGA
256
COM
10.2K
LFECP10E-3Q208C
147
-3
PQFP
208
COM
10.2K
LFECP10E-4Q208C
147
-4
PQFP
208
COM
10.2K
LFECP10E-5Q208C
147
-5
PQFP
208
COM
10.2K
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP15E-3F484C
352
-3
fpBGA
484
COM
15.3K
LFECP15E-4F484C
352
-4
fpBGA
484
COM
15.3K
LFECP15E-5F484C
352
-5
fpBGA
484
COM
15.3K
LFECP15E-3F256C
195
-3
fpBGA
256
COM
15.3K
LFECP15E-4F256C
195
-4
fpBGA
256
COM
15.3K
LFECP15E-5F256C
195
-5
fpBGA
256
COM
15.3K
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP20E-3F672C
400
-3
fpBGA
672
COM
19.7K
LFECP20E-4F672C
400
-4
fpBGA
672
COM
19.7K
LFECP20E-5F672C
400
-5
fpBGA
672
COM
19.7K
LFECP20E-3F484C
360
-3
fpBGA
484
COM
19.7K
LFECP20E-4F484C
360
-4
fpBGA
484
COM
19.7K
LFECP20E-5F484C
360
-5
fpBGA
484
COM
19.7K
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP33E-3F672C
496
-3
fpBGA
672
COM
32.8K
LFECP33E-4F672C
496
-4
fpBGA
672
COM
32.8K
LFECP33E-4F672C
496
-5
fpBGA
672
COM
32.8K
LFECP33E-3F484C
360
-3
fpBGA
484
COM
32.8K
LFECP33E-4F484C
360
-4
fpBGA
484
COM
32.8K
LFECP33E-4F484C
360
-5
fpBGA
484
COM
32.8K
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP40E-3F900C
576
-3
fpBGA
900
COM
40.9K
LFECP40E-4F900C
576
-4
fpBGA
900
COM
40.9K
LFECP40E-5F900C
576
-5
fpBGA
900
COM
40.9K
LFECP40E-3F672C
496
-3
fpBGA
672
COM
40.9K
5-4
Ordering Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LatticeECP Commercial (Continued)
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP40E-4F672C
496
-4
fpBGA
672
COM
40.9K
LFECP40E-5F672C
496
-5
fpBGA
672
COM
40.9K
LatticeEC Industrial
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC1E-3Q208I
112
-3
PQFP
208
IND
1.5K
LFEC1E-4Q208I
112
-4
PQFP
208
IND
1.5K
LFEC1E-3T144I
97
-3
TQFP
144
IND
1.5K
LFEC1E-4T144I
97
-4
TQFP
144
IND
1.5K
LFEC1E-3T100I
67
-3
TQFP
100
IND
1.5K
LFEC1E-4T100I
67
-4
TQFP
100
IND
1.5K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC3E-3F256I
160
-3
fpBGA
256
IND
3.1K
LFEC3E-4F256I
160
-4
fpBGA
256
IND
3.1K
LFEC3E-3Q208I
145
-3
PQFP
208
IND
3.1K
LFEC3E-4Q208I
145
-4
PQFP
208
IND
3.1K
LFEC3E-3T144I
97
-3
TQFP
144
IND
3.1K
LFEC3E-4T144I
97
-4
TQFP
144
IND
3.1K
LFEC3E-3T100I
67
-3
TQFP
100
IND
3.1K
LFEC3E-4T100I
67
-4
TQFP
100
IND
3.1K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC6E-3F484I
224
-3
fpBGA
484
IND
6.1K
LFEC6E-4F484I
224
-4
fpBGA
484
IND
6.1K
LFEC6E-3F256I
195
-3
fpBGA
256
IND
6.1K
LFEC6E-4F256I
195
-4
fpBGA
256
IND
6.1K
LFEC6E-3Q208I
147
-3
PQFP
208
IND
6.1K
LFEC6E-4Q208I
147
-4
PQFP
208
IND
6.1K
LFEC6E-3T144I
97
-3
TQFP
144
IND
6.1K
LFEC6E-4T144I
97
-4
TQFP
144
IND
6.1K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC10E-3F484I
288
-3
fpBGA
484
IND
10.2K
LFEC10E-4F484I
288
-4
fpBGA
484
IND
10.2K
LFEC10E-3F256I
195
-3
fpBGA
256
IND
10.2K
LFEC10E-4F256I
195
-4
fpBGA
256
IND
10.2K
LFEC10E-3 P208I
147
-3
PQFP
208
IND
10.2K
LFEC10E-4 P208I
147
-4
PQFP
208
IND
10.2K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC15E-3F484I
352
-3
fpBGA
484
IND
15.3K
LFEC15E-4F484I
352
-4
fpBGA
484
IND
15.3K
Part Number
Part Number
Part Number
Part Number
5-5
Ordering Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LatticeEC Industrial (Continued)
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC15E-3F256I
Part Number
195
-3
fpBGA
256
IND
15.3K
LFEC15E-4F256I
195
-4
fpBGA
256
IND
15.3K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC20E-3F672I
Part Number
400
-3
fpBGA
672
IND
19.7K
LFEC20E-4F672I
400
-4
fpBGA
672
IND
19.7K
LFEC20E-3F484I
360
-3
fpBGA
484
IND
19.7K
LFEC20E-4F484I
360
-4
fpBGA
484
IND
19.7K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC33-3F672I
Part Number
496
-3
fpBGA
672
IND
32.8
LFEC33-4F672I
496
-4
fpBGA
672
IND
32.8
LFEC33-3F484I
360
-3
fpBGA
484
IND
32.8
LFEC33-4F484I
360
-4
fpBGA
484
IND
32.8
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC40E-3F900I
Part Number
576
-3
fpBGA
900
IND
40.9K
LFEC40E-4F900I
576
-4
fpBGA
900
IND
40.9K
LFEC40E-3F672I
496
-3
fpBGA
672
IND
40.9K
LFEC40E-4F672I
496
-4
fpBGA
672
IND
40.9K
LatticeECP Industrial
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP6E-3F484I
224
-3
fpBGA
484
IND
6.1K
LFECP6E-4F484I
224
-4
fpBGA
484
IND
6.1K
LFECP6E-3F256I
195
-3
fpBGA
256
IND
6.1K
LFECP6E-4F256I
195
-4
fpBGA
256
IND
6.1K
LFECP6E-3Q208I
147
-3
PQFP
208
IND
6.1K
LFECP6E-4Q208I
147
-4
PQFP
208
IND
6.1K
LFECP6E-3T144I
97
-3
TQFP
144
IND
6.1K
LFECP6E-4T144I
97
-4
TQFP
144
IND
6.1K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP10E-3F484I
288
-3
fpBGA
484
IND
10.2K
LFECP10E-4F484I
288
-4
fpBGA
484
IND
10.2K
LFECP10E-3F256I
195
-3
fpBGA
256
IND
10.2K
LFECP10E-4F256I
195
-4
fpBGA
256
IND
10.2K
LFECP10E-3Q208I
147
-3
PQFP
208
IND
10.2K
LFECP10E-4Q208I
147
-4
PQFP
208
IND
10.2K
Part Number
5-6
Ordering Information
LatticeECP/EC Family Data Sheet
Lattice Semiconductor
LatticeECP Industrial (Continued)
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP15E-3F484I
Part Number
352
-3
fpBGA
484
IND
15.3K
LFECP15E-4F484I
352
-4
fpBGA
484
IND
15.3K
LFECP15E-3F256I
195
-3
fpBGA
256
IND
15.3K
LFECP15E-4F256I
195
-4
fpBGA
256
IND
15.3K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP20E-3F672I
400
-3
fpBGA
672
IND
19.7K
LFECP20E-4F672I
400
-4
fpBGA
672
IND
19.7K
LFECP20E-3F484I
360
-3
fpBGA
484
IND
19.7K
LFECP20E-4F484I
360
-4
fpBGA
484
IND
19.7K
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP33-3F672I
496
-3
fpBGA
672
IND
32.8K
LFECP33-4F672I
496
-4
fpBGA
672
IND
32.8K
LFECP33-3F484I
360
-3
fpBGA
484
IND
32.8K
LFECP33-4F484I
360
-4
fpBGA
484
IND
32.8K
Part Number
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP40E-3F900I
576
-3
fpBGA
900
IND
40.9K
LFECP40E-4F900I
576
-4
fpBGA
900
IND
40.9K
LFECP40E-3F672I
496
-3
fpBGA
672
IND
40.9K
LFECP40E-4F672I
496
-4
fpBGA
672
IND
40.9K
5-7
LatticeECP/EC Family Data Sheet
Supplemental Information
October 2004
Preliminary Data Sheet
For Further Information
A variety of technical notes for the LatticeECP/EC family are available on the Lattice web site at www.latticesemi.com.
•
•
•
•
•
•
•
•
•
LatticeECP/EC sysIO Usage Guide (TN1056)
ispTRACY Internal Logic Analyzer Guide (TN1054)
LatticeECP/EC sysCLOCK PLL Design and Usage Guide (TN1049)
Memory Usage Guide for LatticeECP/EC Devices (TN1051)
LatticeECP/EC DDR Usage Guide (TN1050)
Estimating Power Using Power Calculator for LatticeECP/EC Devices (TN1052)
sysDSP/MAC Usage Guide (TN1057)
LatticeECP/EC sysCONFIG Usage Guide (TN1053)
IEEE 1149.1 Boundary Scan Testability in Lattice Devices
For further information on interface standards refer to the following web sites:
• JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
• PCI: ww.pcisig.com
© 2004 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
6-1
Further Info_01.1
Similar pages