Fairchild FDW2601NZ NL Dual n-channel 2.5v specified powertrench mosfet Datasheet

FDW2601NZ
Dual N-Channel 2.5V Specified PowerTrench®
MOSFET
Features
! 8.2A, 30V
General Description
rDS(ON) = 0.015Ω, VGS = 4.5V
This N-Channel MOSFET is produced using Fairchild
Semiconductor’s advanced PowerTrench process that has
been especially tailored to minimize the on-state resistance
and yet maintain low gate charge for superior switching
performance. These devices are well suited for portable
electronics applications.
rDS(ON) = 0.020Ω, VGS = 2.5V
! Extended VGS range (±12 V) for battery applications
! HBM ESD Protection Level of 3.5kV Typical (note 3)
! High performance trench technology for extremely low
rDS(ON)
! Low profile TSSOP-8 package
Applications
! Load switch
! Battery charge
! Battery disconnect circuits
D1
G2
S2
S2
D2
G1
S1
S1
D1
D2
G1
G2
S1
Pin 1
S2
TSSOP-8
©2004 Fairchild Semiconductor Corporation
FDW2601NZ Rev. A
1
www.fairchildsemi.com
FDW2601NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
December 2004
Symbol
VDSS
Drain to Source Voltage
Ratings
30
Units
V
VGS
Gate to Source Voltage
±12
V
Drain Current
Continuous (TC = 25oC, VGS = 4.5V, RθJA = 77oC/W)
Continuous (TC = 100oC, VGS = 2.5V, RθJA = 77oC/W)
8.2
A
4.5
A
ID
Parameter
Figure 4
A
PD
Power dissipation
Pulsed
1.6
W
Derate above 25°C
13
mW/oC
TJ, TSTG
Operating and Storage Temperature
o
-55 to 150
C
Thermal Characteristics
RθJA
Thermal Resistance Junction to Ambient (Note 1)
77
RθJA
Thermal Resistance Junction to Ambient (Note 2)
114
o
C/W
oC/W
Package Marking and Ordering Information
Device Marking
2601NZ
Device
FDW2601NZ
Package
TSSOP-8
Reel Size
13”
Tape Width
12 mm
Quantity
2500 units
2601NZ
FDW2601NZ_NL (Note 4)
TSSOP-8
13”
12 mm
2500 units
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol
Parameter
Test Conditions
Min
Typ
Max
Units
30
-
-
-
V
-
1
-
-
5
µA
-
-
Off Characteristics
BVDSS
Drain to Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate to Source Leakage Current
ID = 250µA, VGS = 0V
VDS = 24V
TA=100oC
VGS = 0V
VGS = ±12V
VGS = ±4.5V
±10
µA
±250
nA
On Characteristics
VGS(TH)
rDS(ON)
Gate to Source Threshold Voltage
Drain to Source On Resistance
VGS = VDS, ID = 250µA
0.6
0.8
1.5
V
ID = 8.2A, VGS = 4.5V
-
0.011
0.015
Ω
ID = 7.9A, VGS = 4.0V
-
0.011
0.016
ID = 7.3A, VGS = 3.1V
-
0.012
0.019
ID = 7.1A, VGS = 2.5V
-
0.012
0.020
-
1840
-
-
250
-
pF
-
160
-
pF
Dynamic Characteristics
CISS
Input Capacitance
COSS
Output Capacitance
CRSS
Reverse Transfer Capacitance
RG
Gate Resistance
VGS = 0.5V, f = 1MHz
-
2.6
-
Ω
Qg(TOT)
Total Gate Charge at 4.5V
VGS = 0V to 4.5V
-
20
30
nC
Qg(2.5)
Total Gate Charge at 2.5V
VGS = 0V to 2.5V
-
12
18
nC
Qgs
Gate to Source Gate Charge
-
2.7
-
nC
Qgd
Gate to Drain “Miller” Charge
-
5.1
-
nC
FDW2601NZ Rev. A
VDS = 15V, VGS = 0V,
f = 1MHz
2
VDD = 15V
ID = 8.2A
Ig = 1.0mA
pF
www.fairchildsemi.com
FDW2601NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
Absolute Maximum Ratings TA=25°C unless otherwise noted
(VGS = 4.5V)
tON
Turn-On Time
-
-
113
ns
td(ON)
Turn-On Delay Time
-
18
-
ns
tr
Rise Time
-
57
-
ns
td(OFF)
Turn-Off Delay Time
-
69
-
ns
tf
Fall Time
-
71
-
ns
tOFF
Turn-Off Time
-
-
210
ns
VDD = 15V, ID = 8.2A
VGS = 4.5V, RGS = 6.8Ω
Drain-Source Diode Characteristics
VSD
Source to Drain Diode Voltage
ISD = 1.3A
-
0.7
1.2
V
trr
Reverse Recovery Time
ISD = 8.2A, dISD/dt = 100A/µs
-
-
28
ns
QRR
Reverse Recovered Charge
ISD = 8.2A, dISD/dt = 100A/µs
-
-
17
nC
Notes:
1. RθJA is 77 oC/W (steady state) when mounted on a 1 inch2 copper pad on FR-4.
2. RθJA is 114 oC/W (steady state) when mounted on a mininum copper pad on FR-4.
3. The diode connected to the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.
4. FDW2601NZ_NL is lead free product. FDW2601NZ_NZ marking will appear on the reel label.
FDW2601NZ Rev. A
3
www.fairchildsemi.com
FDW2601NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
Switching Characteristics
TA = 25°C unless otherwise noted
10
1.2
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.0
0.8
0.6
0.4
8
VGS = 4.5V
6
4
VGS = 2.5V
2
0.2
0
0
0
25
50
75
100
125
150
25
50
TA , AMBIENT TEMPERATURE (oC)
75
100
125
150
TA, AMBIENT TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
Figure 2. Maximum Continuous Drain Current vs
Ambient Temperature
2
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
ZθJA, NORMALIZED
THERMAL IMPEDANCE
1
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJA x RθJA + TA
0.01
10-5
10-4
10-3
10-2
10-1
100
101
102
103
t, RECTANGULAR PULSE DURATION (s)
Figure 3. Normalized Maximum Transient Thermal Impedance
500
TA = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
IDM, PEAK CURRENT (A)
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
100
I = I25
150 - TA
125
VGS = 2.5V
10
5
10-5
10-4
10-3
10-2
10-1
100
101
102
103
t, PULSE WIDTH (s)
Figure 4. Peak Current Capability
FDW2601NZ Rev. A
4
www.fairchildsemi.com
FDW2601NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
Typical Characteristic
60
300
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 10V
ID , DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
100
100µs
1ms
10
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10ms
40
TJ = 150oC
20
TJ = 25oC
TJ = -55oC
SINGLE PULSE
TJ = MAX RATED
TA = 25oC
1
0.5
0
0.1
1
10
40
1.0
VDS, DRAIN TO SOURCE VOLTAGE (V)
Figure 5. Forward Bias Safe Operating Area
2.5
45
VGS = 10V
VGS = 2.5V
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (mΩ)
ID, DRAIN CURRENT (A)
2.0
Figure 6. Transfer Characteristics
60
VGS = 4.5V
40
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TA = 25oC
20
VGS = 1.8V
0
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
ID = 8.2A
30
ID = 1A
15
0
0
0.5
1.0
1.5
1
VDS , DRAIN TO SOURCE VOLTAGE (V)
2
3
4
5
VGS, GATE TO SOURCE VOLTAGE (V)
Figure 7. Saturation Characteristics
Figure 8. Drain to Source On Resistance vs Gate
Voltage and Drain Current
2.0
1.25
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = VDS, ID = 250µA
NORMALIZED GATE
THRESHOLD VOLTAGE
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
1.5
VGS , GATE TO SOURCE VOLTAGE (V)
1.5
1.0
1.00
0.75
VGS = 4.5V, ID = 8.2A
0.50
0.5
-80
-40
0
40
80
120
-80
160
TJ, JUNCTION TEMPERATURE (oC)
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
Figure 9. Normalized Drain to Source On
Resistance vs Junction Temperature
FDW2601NZ Rev. A
-40
Figure 10. Normalized Gate Threshold Voltage vs
Junction Temperature
5
www.fairchildsemi.com
FDW2601NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
Typical Characteristic (Continued) TA = 25°C unless otherwise noted
4000
CISS = CGS + CGD
ID = 250µA
1.05
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.10
1.00
0.95
1000
COSS ≅ CDS + CGD
CRSS = CGD
VGS = 0V, f = 1MHz
0.90
100
-80
-40
0
40
80
120
0.1
160
1
TJ , JUNCTION TEMPERATURE (oC)
10
30
VDS , DRAIN TO SOURCE VOLTAGE (V)
Figure 11. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
Figure 12. Capacitance vs Drain to Source
Voltage
VGS , GATE TO SOURCE VOLTAGE (V)
4.5
VDD = 15V
3.0
1.5
WAVEFORMS IN
DESCENDING ORDER:
ID = 1A
ID = 8.2A
0
0
5
10
15
20
25
Qg, GATE CHARGE (nC)
Figure 13. Gate Charge Waveforms for Constant Gate Currents
FDW2601NZ Rev. A
6
www.fairchildsemi.com
FDW2601NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
Typical Characteristic (Continued) TA = 25°C unless otherwise noted
VDS
BVDSS
tP
L
VDS
VARY tP TO OBTAIN
IAS
+
RG
REQUIRED PEAK IAS
VDD
VDD
-
VGS
DUT
tP
IAS
0V
0
0.01Ω
tAV
Figure 14. Unclamped Energy Test Circuit
Figure 15. Unclamped Energy Waveforms
VDS
RL
VDD
Qg(TOT)
VDS
VGS
VGS
VGS = 4.5V
+
Qgs2
VDD
DUT
VGS = 1V
Ig(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
Figure 16. Gate Charge Test Circuit
Figure 17. Gate Charge Waveforms
tON
RL
td(OFF)
VDS
VGS
tOFF
td(ON)
tr
VDS
+
VGS
tf
90%
90%
0V
RGS
90%
VGS
0
Figure 18. Switching Time Test Circuit
FDW2601NZ Rev. A
10%
10%
0
DUT
50%
10%
50%
PULSE WIDTH
Figure 19. Switching Time Waveforms
7
www.fairchildsemi.com
FDW2601NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
Test Circuits and Waveforms
.SUBCKT FDW2601NZ 2 1 3 ;
CA 12 8 19.3e-10
CB 15 14 19.3e-10
CIN 6 8 1.7e-9
rev June 2004
LDRAIN
DPLCAP
5
DRAIN
2
10
LDRAIN 2 5 1e-9
LGATE 1 9 0.96e-9
LSOURCE 3 7 0.19e-9
5
51
ESLC
11
-
IT 8 17 1
GATE
1
RLDRAIN
DBREAK
RSLC1
51
RSLC2
+
DBODY 5 7 DBODYMOD
DBREAK 7 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
DESD1 91 9 DESD1MOD
DESD2 91 7 DESD2MOD
EBREAK 5 11 17 18 33.3
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 8 6 1
EVTHRES 6 21 19 8 1
EVTEMP 6 20 18 22 1
LGATE
-
RDRAIN
16
6
8
ESG
+
50
EVTHRES
+ 19 8
+
EVTEMP
9 RGATE + 18 22
20
MWEAK
MMED
MSTRO
RLGATE
DESD1
91
DESD2
LSOURCE
CIN
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 8.8e-3
CA
RGATE 9 20 2.75
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 3e-4
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
SOURCE
3
7
8
RSOURCE
RLDRAIN 2 5 10
RLGATE 1 9 9.6
RLSOURCE 3 7 1.9
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
DBODY
-
21
6
17
18
EBREAK
RLSOURCE
S1A
12
S2A
S1B
RBREAK
15
14
13
13
8
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
VBAT
5
8
EDS
-
-
-
IT
14
+
+
+
8
22
RVTHRES
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*120),2.5))}
.MODEL DBODYMOD D (IS = 18.6e-12 N=0.93 RS = 6.6e-3 IKF=0.2 TRS1 = 1.7e-3 TRS2 = 2e-6 XTI=0.1 TIKF=0.001
CJO =5.2e-10 TT=8.7e-9 M = 0.58)
.MODEL DBREAKMOD D (RS = 1e-1 TRS1 = 9e-3 TRS2 = -2e-5)
.MODEL DPLCAPMOD D (CJO = 0.76e-9 IS = 1e-30 N = 10 M = 0.58)
.MODEL DESD1MOD D (BV=10.5 TBV1=-0.0018 N=9.4 RS=5)
.MODEL DESD2MOD D (BV=10.5 TBV1=-0.0018 N=9.4 RS=5)
.MODEL MMEDMOD NMOS (VTO = 1.0 KP = 1.7 IS=1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.75)
.MODEL MSTROMOD NMOS (VTO = 1.27 KP = 147 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 0.83 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 27.5 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 8.8e-4 TC2 = -13e-7)
.MODEL RDRAINMOD RES (TC1 = 1e-9 TC2 = 1e-5)
.MODEL RSLCMOD RES (TC1 = 2e-9 TC2 = 5e-8)
.MODEL RSOURCEMOD RES (TC1 = 8.2e-2 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -13e-4 TC2 = -2.8e-6)
.MODEL RVTEMPMOD RES (TC1 = -1.3e-3 TC2 = 1e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6 VOFF= -1.5)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.5 VOFF= -6)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.5 VOFF= 0.3)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.3 VOFF= -0.5)
ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank
Wheatley.
FDW2601NZ Rev. A
8
www.fairchildsemi.com
FDW2601NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
PSPICE Electrical Model
REV June 2004
template fdw2601nz n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (isl = 18.6e-12, nl=0.93, rs = 6.6e-3, trs1 = 1.7e-3, trs2 = 2e-6, xti=0.1, cjo = 5.2e-10, ikf=0.2, tt = 8.7e-9,
m = 0.58, tikf=0.001)
dp..model dbreakmod = (rs = 1e-1, trs1 = 9e-3, trs2 = -2.0e-5)
dp..model dplcapmod = (cjo = 0.76e-9, isl=10e-30, nl=10, m=0.58)
dp..model desd1mod = (bv=10.5, tbv1=-0.0018, nl=9.4, rs=5)
dp..model desd2mod = (bv=10.5, tbv1=-0.0018, nl=9.4, rs=5)
m..model mmedmod = (type=_n, vto = 1.0, kp=1.7, is=1e-30, tox=1)
m..model mstrongmod = (type=_n, vto = 1.27, kp = 147, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 0.83, kp = 0.05, is = 1e-30, tox = 1, rs=0.1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6, voff = -1.5)
LDRAIN
DPLCAP 5
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -1.5, voff = -6 )
DRAIN
2
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0.3) 10
RLDRAIN
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.3, voff = -0.5)
RSLC1
51
c.ca n12 n8 = 19.3e-10
c.cb n15 n14 = 19.3e-10
c.cin n6 n8 = 1.7e-9
RSLC2
ISCL
-
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
dp.desd1 n91 n9 = model=desd1mod
dp.desd2 n91 n7 = model=desd2mod
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
spe.ebreak n11 n7 n17 n18 = 33.3
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
DBREAK
50
EVTEMP
RGATE + 18 22
9
20
RLGATE
DESD1
91
DESD2
21
11
DBODY
16
MWEAK
6
EBREAK
+
17
18
MMED
MSTRO
CIN
-
8
LSOURCE
7
SOURCE
3
RSOURCE
RLSOURCE
S1A
12
S2A
13
8
i.it n8 n17 = 1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 0.96e-9
l.lsource n3 n7 = 0.19e-9
17
18
RVTEMP
S2B
13
CA
15
14
13
S1B
RBREAK
CB
6
8
EGS
-
19
-
IT
14
+
+
VBAT
5
8
EDS
-
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 9.6
res.rlsource n3 n7 = 1.9
+
8
22
RVTHRES
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1 = 8.8e-4, tc2 = -13e-7
res.rdrain n50 n16 = 8.8e-3, tc1 = 1e-9, tc2 = 1e-5
res.rgate n9 n20 = 2.75
res.rslc1 n5 n51= 1e-6, tc1 = 2e-9, tc2 =5e-8
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 3e-4, tc1 = 8.2e-2, tc2 =1e-6
res.rvtemp n18 n19 = 1, tc1 = -1.3e-3, tc2 = 1e-6
res.rvthres n22 n8 = 1, tc1 = -13e-4, tc2 = -2.8e-6
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/120))** 2.5))
}
}
FDW2601NZ Rev. A
9
www.fairchildsemi.com
FDW2601NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
SABER Electrical Model
th
REV June 2004
FDW2601NZ_JA Junction Ambient
Minimum copper pad area
CTHERM1 Junction c2 5.7e-4
CTHERM2 c2 c3 5.72e-4
CTHERM3 c3 c4 5.8e-4
CTHERM4 c4 c5 4.7e-3
CTHERM5 c5 c6 5.1e-3
CTHERM6 c6 c7 0.02
CTHERM7 c7 c8 0.2
CTHERM8 c8 Ambient 6
RTHERM1
CTHERM1
2
RTHERM2
RTHERM1 Junction c2 0.003
RTHERM2 c2 c3 0.25
RTHERM3 c3 c4 1.0
RTHERM4 c4 c5 1.1
RTHERM5 c5 c6 7.5
RTHERM6 c6 c7 33.6
RTHERM7 c7 c8 33.7
RTHERM8 c8 Ambient 33.8
CTHERM2
3
RTHERM3
CTHERM3
4
CTHERM4
RTHERM4
5
SABER Thermal Model
SABER thermal model FDW2601NZ
Minimum copper pad area
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th c2 = 5.7e-4
ctherm.ctherm2 c2 c3 = 5.72e-4
ctherm.ctherm3 c3 c4 = 5.8e-4
ctherm.ctherm4 c4 c5 = 4.7e-3
ctherm.ctherm5 c5 c6 = 5.1e-3
ctherm.ctherm6 c6 c7 = 0.02
ctherm.ctherm7 c7 c8 = 0.2
ctherm.ctherm8 c8 tl = 6
RTHERM5
CTHERM5
6
RTHERM6
CTHERM6
7
CTHERM7
RTHERM7
rtherm.rtherm1 th c2 = 0.003
rtherm.rtherm2 c2 c3 = 0.25
rtherm.rtherm3 c3 c4 = 1.0
rtherm.rtherm4 c4 c5 = 1.1
rtherm.rtherm5 c5 c6 = 7.5
rtherm.rtherm6 c6 c7 = 33.6
rtherm.rtherm7 c7 c8 = 33.7
rtherm.rtherm8 c8 tl = 33.8
}
8
CTHERM8
RTHERM8
tl
FDW2601NZ Rev. A
JUNCTION
10
AMBIENT
www.fairchildsemi.com
FDW2601NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
SPICE Thermal Model
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not
intended to be an exhaustive list of all such trademarks.
ACEx™
ActiveArray™
Bottomless™
CoolFET™
CROSSVOLT™
DOME™
EcoSPARK™
E2CMOS™
EnSigna™
FACT™
FACT Quiet Series™
FAST®
FASTr™
FPS™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
I2C™
i-Lo™
Across the board. Around the world.™
The Power Franchise®
Programmable Active Droop™
ImpliedDisconnect™
IntelliMAX™
ISOPLANAR™
LittleFET™
MICROCOUPLER™
MicroFET™
MicroPak™
MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC®
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerEdge™
PowerSaver™
PowerTrench®
QFET®
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
RapidConnect™
µSerDes™
SILENT SWITCHER®
SMART START™
SPM™
Stealth™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic®
TINYOPTO™
TruTranslation™
UHC™
UltraFET®
UniFET™
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR
CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, or (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result in significant injury to the user.
2. A critical component is any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or In
Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
www.fairchildsemi.com
FDW2601NZ Rev. A
11
FDW2601NZ Dual N-Channel 2.5V Specified PowerTrench® MOSFET
TRADEMARKS
Similar pages