IRF IRF6621PbF Directfet power mosfet Datasheet

PD - 97093
IRF6621PbF
IRF6621TRPbF
DirectFET™ Power MOSFET ‚
Typical values (unless otherwise specified)
RoHS Compliant 
l Lead-Free (Qualified up to 260°C Reflow)
l Application Specific MOSFETs
l Ideal for CPU Core DC-DC Converters
l Low Conduction Losses and Switching Losses
l Low Profile (<0.7mm)
l Dual Sided Cooling Compatible 
l Compatible with existing Surface Mount Techniques 
VDSS
l
VGS
RDS(on)
RDS(on)
30V max ±20V max 7.0mΩ@ 10V 9.3mΩ@ 4.5V
Qg
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
4.2nC
1.0nC
10nC
6.9nC
1.8V
tot
11.7nC
DirectFET™ ISOMETRIC
SQ
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SX
SQ
ST
MQ
MX
MT
MP
Description
The IRF6621PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve
the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is
compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection
soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6621PbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of
processors operating at higher frequencies. The IRF6621PbF has been optimized for parameters that are critical in synchronous buck
operating from 12 volt bus converters including Rds(on) and gate charge to minimize losses in the control FET socket.
Absolute Maximum Ratings
Parameter
Max.
Units
V
VDS
Drain-to-Source Voltage
30
VGS
Gate-to-Source Voltage
±20
e
e
@ 10V f
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
12
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
9.6
ID @ TC = 25°C
Continuous Drain Current, VGS
55
IDM
Pulsed Drain Current
EAS
Single Pulse Avalanche Energy
IAR
Avalanche Current
g
g
VGS, Gate-to-Source Voltage (V)
Typical R DS (on) (mΩ)
ID = 12A
20
15
TJ = 125°C
10
TJ = 25°C
5
2.0
4.0
6.0
8.0
VGS, Gate-to-Source Voltage (V)
Fig 1. Typical On-Resistance Vs. Gate Voltage
10.0
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
96
h
25
A
13
mJ
9.6
A
12
ID= 9.6A
10
VDS = 24V
VDS= 15V
8
6
4
2
0
0
4
8
12
16
20
24
28
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.29mH, RG = 25Ω, IAS = 9.6A.
1
5/24/06
IRF6621PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Conditions
Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
30
–––
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
24
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
7.0
9.1
–––
9.3
12.1
V
VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA
mΩ
VGS = 10V, ID = 12A i
VGS = 4.5V, ID = 9.6A i
VGS(th)
Gate Threshold Voltage
1.35
1.8
2.25
V
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-5.1
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
µA
VDS = VGS, ID = 250µA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
–––
–––
150
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
31
–––
–––
Qg
Total Gate Charge
–––
11.7
17.5
Qgs1
Pre-Vth Gate-to-Source Charge
–––
3.3
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
1.0
–––
Qgd
Gate-to-Drain Charge
–––
4.2
–––
ID = 9.6A
Qgodr
Gate Charge Overdrive
–––
3.2
–––
See Fig. 15
Qsw
Switch Charge (Qgs2 + Qgd)
–––
5.2
–––
IGSS
nA
VGS = 20V
VGS = -20V
S
VDS = 15V, ID = 9.6A
VDS = 15V
nC
VGS = 4.5V
VDS = 15V, VGS = 0V
Qoss
Output Charge
–––
6.9
–––
nC
RG
Gate Resistance
–––
2.0
–––
Ω
td(on)
Turn-On Delay Time
–––
12
–––
VDD = 15V, VGS = 4.5Vi
tr
Rise Time
–––
14
–––
ID = 9.6A
td(off)
Turn-Off Delay Time
–––
16
–––
tf
Fall Time
–––
4.1
–––
Ciss
Input Capacitance
–––
1460
–––
Coss
Output Capacitance
–––
310
–––
Crss
Reverse Transfer Capacitance
–––
170
–––
Min.
Typ. Max. Units
–––
–––
ns
Clamped Inductive Load
VGS = 0V
pF
VDS = 15V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
A
–––
–––
Conditions
MOSFET symbol
53
showing the
integral reverse
96
p-n junction diode.
(Body Diode)g
VSD
Diode Forward Voltage
–––
0.8
1.0
V
TJ = 25°C, IS = 9.6A, VGS = 0V i
trr
Reverse Recovery Time
–––
9.8
15
ns
TJ = 25°C, IF = 9.6A
Qrr
Reverse Recovery Charge
–––
10
15
nC
di/dt = 420A/µs i
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6621PbF
Absolute Maximum Ratings
Parameter
PD @TC = 25°C
e
Power Dissipation e
Power Dissipation f
TP
Peak Soldering Temperature
TJ
Operating Junction and
TSTG
Storage Temperature Range
Max.
Units
2.2
W
Power Dissipation
PD @TA = 25°C
PD @TA = 70°C
1.4
42
270
°C
-40 to + 150
Thermal Resistance
Parameter
el
Junction-to-Ambient jl
Junction-to-Ambient kl
Junction-to-Case fl
RθJA
Typ.
Max.
–––
58
12.5
–––
20
–––
–––
3.0
Junction-to-Ambient
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-PCB Mounted
Linear Derating Factor
1.0
e
Units
°C/W
–––
0.017
W/°C
100
Thermal Response ( Z thJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
τJ
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
R4
R4
Ri (°C/W)
R5
R5
τA
C
τ
τ2
τ3
τ3
τ4
τ4
τ5
τ5
Ci= τi/Ri
Ci= τi/Ri
0.1
1.6195
τi (sec)
0.000126
2.1406
0.001354
22.2887
0.375850
20.0457
7.410000
11.9144
99
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 
Notes:
‰ Mounted on minimum footprint full size board with metalized
ƒ Surface mounted on 1 in. square Cu board, steady state.
„ TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink.
Š Rθ is measured at TJ of approximately 90°C.
ˆ Used double sided cooling, mounting pad with large heatsink.
ƒ Surface mounted on 1 in. square Cu
board (still air).
www.irf.com
‰ Mounted to a PCB with
small clip heatsink (still air)
‰ Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6621PbF
1000
100
BOTTOM
1000
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
10
1
100
10
2.5V
≤60µs PULSE WIDTH
2.5V
Tj = 150°C
1
10
1
100
0.1
VDS , Drain-to-Source Voltage (V)
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Fig 5. Typical Output Characteristics
1000
1.5
Typical RDS(on) (Normalized)
ID = 12A
ID, Drain-to-Source Current (A)
≤60µs PULSE WIDTH
Tj = 25°C
0.1
0.1
BOTTOM
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
100
TJ = 150°C
TJ = 25°C
TJ = -40°C
10
1
VGS = 4.5V
VGS = 10V
1.0
VDS = 15V
≤60µs PULSE WIDTH
0.1
0.5
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
20
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
TJ = 25°C
Typical RDS (on) (mΩ)
Coss = Cds + Cgd
C, Capacitance(pF)
20 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
10000
-60 -40 -20 0
Ciss
1000
Coss
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
16
12
8
Crss
4
100
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs. Drain-to-Source Voltage
4
0
20
40
60
80
100
ID, Drain Current (A)
Fig 9. Typical On-Resistance Vs.
Drain Current and Gate Voltage
www.irf.com
IRF6621PbF
1000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000
TJ = 150°C
TJ = 25°C
100
TJ = -40°C
10
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
10
100µsec
10msec
1msec
1
0.1
TA = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.01
1
0.4
0.6
0.8
1.0
1.2
0.1
1.4
1.0
VSD , Source-to-Drain Voltage (V)
Fig 10. Typical Source-Drain Diode Forward Voltage
100.0
Fig11. Maximum Safe Operating Area
2.5
Typical VGS(th) Gate threshold Voltage (V)
60
50
ID, Drain Current (A)
10.0
VDS , Drain-to-Source Voltage (V)
40
30
20
10
2.0
ID = 250µA
1.5
1.0
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
TJ, Junction Temperature ( °C )
TC, Case Temperature (°C)
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
EAS, Single Pulse Avalanche Energy (mJ)
60
ID
3.0A
4.3A
BOTTOM 9.6A
TOP
50
40
30
20
10
0
25
50
75
100
125
150
Starting TJ, Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy Vs. Drain Current
www.irf.com
5
IRF6621PbF
Id
Vds
Vgs
L
VCC
DUT
0
Vgs(th)
1K
Qgs1 Qgs2
Fig 15a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
LD
VDS
VDS
90%
+
VDD D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 17a. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6621PbF
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, SQ Outline
(Small Size Can, Q-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
G
D
www.irf.com
S
D
7
IRF6621PbF
DirectFET™ Outline Dimension, SQ Outline
(Small Size Can, Q-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
MAX
CODE MIN
4.85
A
4.75
3.95
B
3.70
2.85
C
2.75
0.45
D
0.35
0.52
E
0.48
0.82
F
0.78
0.92
G
0.88
0.82
H
0.78
0.97
K
0.93
2.10
L
2.00
M
0.616 0.676
R
0.020 0.080
0.17
P
0.08
IMPERIAL
MIN
MAX
0.187
0.191
0.146
0.156
0.108
0.112
0.014
0.018
0.019
0.020
0.031
0.032
0.035
0.036
0.031
0.032
0.037
0.038
0.079
0.083
0.0235 0.0274
0.0008 0.0031
0.003
0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6621PbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6621TRPBF). For 1000 parts on 7"
reel, order IRF6621TR1PBF
STANDARD OPTION
METRIC
CODE
MIN
MAX
A
330.0
N.C
B
20.2
N.C
C
12.8
13.2
D
1.5
N.C
E
100.0
N.C
F
N.C
18.4
G
12.4
14.4
H
11.9
15.4
REEL DIMENSIONS
(QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
MIN
MAX
MIN
MIN
MAX
MAX
6.9
N.C
12.992
177.77 N.C
N.C
0.75
0.795
N.C
19.06
N.C
N.C
0.53
0.504
0.50
13.5
0.520
12.8
0.059
0.059
N.C
1.5
N.C
N.C
2.31
3.937
N.C
58.72
N.C
N.C
N.C
N.C
0.53
N.C
0.724
13.50
0.47
0.488
N.C
11.9
0.567
12.01
0.47
0.469
N.C
11.9
0.606
12.01
Loaded Tape Feed Direction
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MIN
MAX
MAX
0.311
0.319
8.10
7.90
0.154
3.90
0.161
4.10
0.469
11.90
0.484
12.30
0.215
0.219
5.55
5.45
0.158
4.00
0.165
4.20
0.197
0.205
5.20
5.00
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/06
www.irf.com
9
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
Similar pages