PD - 97093 IRF6621PbF IRF6621TRPbF DirectFET Power MOSFET Typical values (unless otherwise specified) RoHS Compliant l Lead-Free (Qualified up to 260°C Reflow) l Application Specific MOSFETs l Ideal for CPU Core DC-DC Converters l Low Conduction Losses and Switching Losses l Low Profile (<0.7mm) l Dual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques VDSS l VGS RDS(on) RDS(on) 30V max ±20V max 7.0mΩ@ 10V 9.3mΩ@ 4.5V Qg Qgd Qgs2 Qrr Qoss Vgs(th) 4.2nC 1.0nC 10nC 6.9nC 1.8V tot 11.7nC DirectFET ISOMETRIC SQ Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SX SQ ST MQ MX MT MP Description The IRF6621PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6621PbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6621PbF has been optimized for parameters that are critical in synchronous buck operating from 12 volt bus converters including Rds(on) and gate charge to minimize losses in the control FET socket. Absolute Maximum Ratings Parameter Max. Units V VDS Drain-to-Source Voltage 30 VGS Gate-to-Source Voltage ±20 e e @ 10V f ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 12 ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 9.6 ID @ TC = 25°C Continuous Drain Current, VGS 55 IDM Pulsed Drain Current EAS Single Pulse Avalanche Energy IAR Avalanche Current g g VGS, Gate-to-Source Voltage (V) Typical R DS (on) (mΩ) ID = 12A 20 15 TJ = 125°C 10 TJ = 25°C 5 2.0 4.0 6.0 8.0 VGS, Gate-to-Source Voltage (V) Fig 1. Typical On-Resistance Vs. Gate Voltage 10.0 Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com 96 h 25 A 13 mJ 9.6 A 12 ID= 9.6A 10 VDS = 24V VDS= 15V 8 6 4 2 0 0 4 8 12 16 20 24 28 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.29mH, RG = 25Ω, IAS = 9.6A. 1 5/24/06 IRF6621PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 30 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 24 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 7.0 9.1 ––– 9.3 12.1 V VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 12A i VGS = 4.5V, ID = 9.6A i VGS(th) Gate Threshold Voltage 1.35 1.8 2.25 V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -5.1 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA VDS = VGS, ID = 250µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C ––– ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 gfs Forward Transconductance 31 ––– ––– Qg Total Gate Charge ––– 11.7 17.5 Qgs1 Pre-Vth Gate-to-Source Charge ––– 3.3 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.0 ––– Qgd Gate-to-Drain Charge ––– 4.2 ––– ID = 9.6A Qgodr Gate Charge Overdrive ––– 3.2 ––– See Fig. 15 Qsw Switch Charge (Qgs2 + Qgd) ––– 5.2 ––– IGSS nA VGS = 20V VGS = -20V S VDS = 15V, ID = 9.6A VDS = 15V nC VGS = 4.5V VDS = 15V, VGS = 0V Qoss Output Charge ––– 6.9 ––– nC RG Gate Resistance ––– 2.0 ––– Ω td(on) Turn-On Delay Time ––– 12 ––– VDD = 15V, VGS = 4.5Vi tr Rise Time ––– 14 ––– ID = 9.6A td(off) Turn-Off Delay Time ––– 16 ––– tf Fall Time ––– 4.1 ––– Ciss Input Capacitance ––– 1460 ––– Coss Output Capacitance ––– 310 ––– Crss Reverse Transfer Capacitance ––– 170 ––– Min. Typ. Max. Units ––– ––– ns Clamped Inductive Load VGS = 0V pF VDS = 15V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current A ––– ––– Conditions MOSFET symbol 53 showing the integral reverse 96 p-n junction diode. (Body Diode)g VSD Diode Forward Voltage ––– 0.8 1.0 V TJ = 25°C, IS = 9.6A, VGS = 0V i trr Reverse Recovery Time ––– 9.8 15 ns TJ = 25°C, IF = 9.6A Qrr Reverse Recovery Charge ––– 10 15 nC di/dt = 420A/µs i Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6621PbF Absolute Maximum Ratings Parameter PD @TC = 25°C e Power Dissipation e Power Dissipation f TP Peak Soldering Temperature TJ Operating Junction and TSTG Storage Temperature Range Max. Units 2.2 W Power Dissipation PD @TA = 25°C PD @TA = 70°C 1.4 42 270 °C -40 to + 150 Thermal Resistance Parameter el Junction-to-Ambient jl Junction-to-Ambient kl Junction-to-Case fl RθJA Typ. Max. ––– 58 12.5 ––– 20 ––– ––– 3.0 Junction-to-Ambient RθJA RθJA RθJC RθJ-PCB Junction-to-PCB Mounted Linear Derating Factor 1.0 e Units °C/W ––– 0.017 W/°C 100 Thermal Response ( Z thJA ) D = 0.50 10 0.20 0.10 0.05 1 0.02 τJ 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 R4 R4 Ri (°C/W) R5 R5 τA C τ τ2 τ3 τ3 τ4 τ4 τ5 τ5 Ci= τi/Ri Ci= τi/Ri 0.1 1.6195 τi (sec) 0.000126 2.1406 0.001354 22.2887 0.375850 20.0457 7.410000 11.9144 99 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Mounted on minimum footprint full size board with metalized Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink. Rθ is measured at TJ of approximately 90°C. Used double sided cooling, mounting pad with large heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6621PbF 1000 100 BOTTOM 1000 VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 1 100 10 2.5V ≤60µs PULSE WIDTH 2.5V Tj = 150°C 1 10 1 100 0.1 VDS , Drain-to-Source Voltage (V) 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 5. Typical Output Characteristics 1000 1.5 Typical RDS(on) (Normalized) ID = 12A ID, Drain-to-Source Current (A) ≤60µs PULSE WIDTH Tj = 25°C 0.1 0.1 BOTTOM VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 TJ = 150°C TJ = 25°C TJ = -40°C 10 1 VGS = 4.5V VGS = 10V 1.0 VDS = 15V ≤60µs PULSE WIDTH 0.1 0.5 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd TJ = 25°C Typical RDS (on) (mΩ) Coss = Cds + Cgd C, Capacitance(pF) 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) 10000 -60 -40 -20 0 Ciss 1000 Coss Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 16 12 8 Crss 4 100 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs. Drain-to-Source Voltage 4 0 20 40 60 80 100 ID, Drain Current (A) Fig 9. Typical On-Resistance Vs. Drain Current and Gate Voltage www.irf.com IRF6621PbF 1000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000 TJ = 150°C TJ = 25°C 100 TJ = -40°C 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10 100µsec 10msec 1msec 1 0.1 TA = 25°C Tj = 150°C Single Pulse VGS = 0V 0.01 1 0.4 0.6 0.8 1.0 1.2 0.1 1.4 1.0 VSD , Source-to-Drain Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage 100.0 Fig11. Maximum Safe Operating Area 2.5 Typical VGS(th) Gate threshold Voltage (V) 60 50 ID, Drain Current (A) 10.0 VDS , Drain-to-Source Voltage (V) 40 30 20 10 2.0 ID = 250µA 1.5 1.0 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 TJ, Junction Temperature ( °C ) TC, Case Temperature (°C) Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Case Temperature EAS, Single Pulse Avalanche Energy (mJ) 60 ID 3.0A 4.3A BOTTOM 9.6A TOP 50 40 30 20 10 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 14. Maximum Avalanche Energy Vs. Drain Current www.irf.com 5 IRF6621PbF Id Vds Vgs L VCC DUT 0 Vgs(th) 1K Qgs1 Qgs2 Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6621PbF D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, SQ Outline (Small Size Can, Q-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D G D www.irf.com S D 7 IRF6621PbF DirectFET Outline Dimension, SQ Outline (Small Size Can, Q-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC MAX CODE MIN 4.85 A 4.75 3.95 B 3.70 2.85 C 2.75 0.45 D 0.35 0.52 E 0.48 0.82 F 0.78 0.92 G 0.88 0.82 H 0.78 0.97 K 0.93 2.10 L 2.00 M 0.616 0.676 R 0.020 0.080 0.17 P 0.08 IMPERIAL MIN MAX 0.187 0.191 0.146 0.156 0.108 0.112 0.014 0.018 0.019 0.020 0.031 0.032 0.035 0.036 0.031 0.032 0.037 0.038 0.079 0.083 0.0235 0.0274 0.0008 0.0031 0.003 0.007 DirectFET Part Marking 8 www.irf.com IRF6621PbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6621TRPBF). For 1000 parts on 7" reel, order IRF6621TR1PBF STANDARD OPTION METRIC CODE MIN MAX A 330.0 N.C B 20.2 N.C C 12.8 13.2 D 1.5 N.C E 100.0 N.C F N.C 18.4 G 12.4 14.4 H 11.9 15.4 REEL DIMENSIONS (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC MIN MAX MIN MIN MAX MAX 6.9 N.C 12.992 177.77 N.C N.C 0.75 0.795 N.C 19.06 N.C N.C 0.53 0.504 0.50 13.5 0.520 12.8 0.059 0.059 N.C 1.5 N.C N.C 2.31 3.937 N.C 58.72 N.C N.C N.C N.C 0.53 N.C 0.724 13.50 0.47 0.488 N.C 11.9 0.567 12.01 0.47 0.469 N.C 11.9 0.606 12.01 Loaded Tape Feed Direction CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MIN MAX MAX 0.311 0.319 8.10 7.90 0.154 3.90 0.161 4.10 0.469 11.90 0.484 12.30 0.215 0.219 5.55 5.45 0.158 4.00 0.165 4.20 0.197 0.205 5.20 5.00 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/06 www.irf.com 9 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/