STMicroelectronics M48Z12-150PC1 5v, 16 kbit (2kb x 8) zeropower sram Datasheet

M48Z02
M48Z12
5V, 16 Kbit (2Kb x 8) ZEROPOWER® SRAM
FEATURES SUMMARY
■ INTEGRATED, ULTRA LOW POWER SRAM
and POWER-FAIL CONTROL CIRCUIT
■
UNLIMITED WRITE CYCLES
■
READ CYCLE TIME EQUALS WRITE CYCLE
TIME
■
AUTOMATIC POWER-FAIL CHIP DESELECT
and WRITE PROTECTION
■
WRITE PROTECT VOLTAGES
(VPFD = Power-fail Deselect Voltage):
– M48Z02: VCC = 4.75 to 5.5V;
4.5V ≤ VPFD ≤ 4.75V
– M48Z12: VCC = 4.5 to 5.5V;
4.2V ≤ VPFD ≤ 4.5V
SELF-CONTAINED BATTERY IN THE
CAPHAT™ DIP PACKAGE
■
■
Figure 1. 24-pin CAPHAT, DIP Package
24
1
PCDIP24 (PC)
Battery/Crystal
CAPHAT
PIN and FUNCTION COMPATIBLE WITH
JEDEC STANDARD 2K x 8 SRAMs
April 2003
Rev. 3.1
1/16
M48Z02, M48Z12
TABLE OF CONTENTS
SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 3. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.....3
.....3
.....3
.....4
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 2. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 3. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 5. AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 4. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 5. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 6. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 6. READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 7. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 7. WRITE Enable Controlled, WRITE AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 8. Chip Enable Controlled, WRITE AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 8. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Data Retention Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 9. Checking the BOK Flag Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 10. Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 9. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 10. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 11. Crystal Accuracy Across Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
VCC Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 12. Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2/16
M48Z02, M48Z12
SUMMARY DESCRIPTION
The M48Z02/12 ZEROPOWER® RAM is a 2K x 8
non-volatile static RAM which is pin and functional
compatible with the DS1220.
A special 24-pin, 600mil DIP CAPHAT™ package
houses the M48Z02/12 silicon with a long life lithium button cell to form a highly integrated battery
backed-up memory solution.
The M48Z02/12 button cell has sufficient capacity
and storage life to maintain data functionality for
an accumulated time period of at least 10 years in
the absence of power over commercial operating
temperature range.
The M48Z02/12 is a non-volatile pin and function
equivalent to any JEDEC standard 2K x 8 SRAM.
It also easily fits into many ROM, EPROM, and
EEPROM sockets, providing the non-volatility of
PROMs without any requirement for special
WRITE timing or limitations on the number of
WRITEs that can be performed.
Figure 2. Logic Diagram
Table 1. Signal Names
VCC
11
8
A0-A10
W
DQ0-DQ7
M48Z02
M48Z12
E
G
A0-A10
Address Inputs
DQ0-DQ7
Data Inputs / Outputs
E
Chip Enable
G
Output Enable
W
WRITE Enable
VCC
Supply Voltage
VSS
Ground
VSS
AI01186
Figure 3. DIP Connections
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
DQ1
DQ2
VSS
24
1
23
2
22
3
21
4
20
5
6
M48Z02 19
M48Z12 18
7
17
8
16
9
15
10
11
14
12
13
VCC
A8
A9
W
G
A10
E
DQ7
DQ6
DQ5
DQ4
DQ3
AI01187
3/16
M48Z02, M48Z12
Figure 4. Block Diagram
A0-A10
LITHIUM
CELL
POWER
VOLTAGE SENSE
AND
SWITCHING
CIRCUITRY
DQ0-DQ7
2K x 8
SRAM ARRAY
E
VPFD
W
G
VCC
VSS
MAXIMUM RATING
Stressing the device above the rating listed in the
“Absolute Maximum Ratings” table may cause
permanent damage to the device. These are
stress ratings only and operation of the device at
these or any other conditions above those indicated in the Operating sections of this specification is
AI01255
not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device
reliability.
Refer
also
to
the
STMicroelectronics SURE Program and other relevant quality documents.
Table 2. Absolute Maximum Ratings
Symbol
TA
TSTG
TSLD(1)
Parameter
Value
Unit
Grade 1
0 to 70
°C
Grade 6
–40 to 85
Ambient Operating Temperature
Storage Temperature (VCC Off, Oscillator Off)
Lead Solder Temperature for 10 seconds
–40 to 85
°C
260
°C
VIO
Input or Output Voltages
–0.3 to 7
V
VCC
Supply Voltage
–0.3 to 7
V
IO
Output Current
20
mA
PD
Power Dissipation
1
W
Note: 1. Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds).
CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.
4/16
M48Z02, M48Z12
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, as well as the DC and AC
characteristics of the device. The parameters in
the following DC and AC Characteristic tables are
derived from tests performed under the Measure-
ment Conditions listed in the relevant tables. Designers should check that the operating conditions
in their projects match the measurement conditions when using the quoted parameters.
Table 3. Operating and AC Measurement Conditions
Parameter
M48Z02
M48Z12
Unit
4.75 to 5.5
4.5 to 5.5
V
Grade 1
0 to 70
0 to 70
°C
Grade 6
–
–40 to 85
°C
Load Capacitance (CL)
100
100
pF
Input Rise and Fall Times
≤5
≤5
ns
0 to 3
0 to 3
V
1.5
1.5
V
Max
Unit
Input Capacitance
10
pF
Input / Output Capacitance
10
pF
Supply Voltage (VCC)
Ambient Operating Temperature (TA)
Input Pulse Voltages
Input and Output Timing Ref. Voltages
Note: Output Hi-Z is defined as the point where data is no longer driven.
Figure 5. AC Testing Load Circuit
5V
1.8kΩ
DEVICE
UNDER
TEST
OUT
1kΩ
CL = 100pF
CL includes JIG capacitance
AI01019
Table 4. Capacitance
Parameter(1,2)
Symbol
CIN
CIO(3)
Min
Note: 1. Effective capacitance measured with power supply at 5V. Sampled only, not 100% tested.
2. At 25°C, f = 1MHz.
3. Outputs deselected.
5/16
M48Z02, M48Z12
Table 5. DC Characteristics
Symbol
ILI
ILO(2)
Test Condition(1)
Parameter
Input Leakage Current
Output Leakage Current
Min
Max
Unit
0V ≤ VIN ≤ VCC
±1
µA
0V ≤ VOUT ≤ VCC
±1
µA
Outputs open
80
mA
E = VIH
3
mA
E = VCC – 0.2V
3
mA
ICC
Supply Current
ICC1
Supply Current (Standby) TTL
ICC2
Supply Current (Standby) CMOS
VIL(3)
Input Low Voltage
–0.3
0.8
V
VIH
Input High Voltage
2.2
VCC + 0.3
V
VOL
Output Low Voltage
IOL = 2.1mA
0.4
V
VOH
Output High Voltage
IOH = –1mA
2.4
V
Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C or –40 to 85°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).
2. Outputs deselected.
3. Negative spikes of –1V allowed for up to 10ns once per Cycle.
OPERATION MODES
The M48Z02/12 also has its own Power-fail Detect
circuit. The control circuitry constantly monitors
the single 5V supply for an out of tolerance condition. When VCC is out of tolerance, the circuit write
protects the SRAM, providing a high degree of
data security in the midst of unpredictable system
operation brought on by low VCC. As VCC falls below approximately 3V, the control circuitry connects the battery which maintains data operation
until valid power returns.
Table 6. Operating Modes
Mode
VCC
Deselect
WRITE
READ
4.75 to 5.5V
or
4.5 to 5.5V
READ
E
G
W
DQ0-DQ7
Power
VIH
X
X
High Z
Standby
VIL
X
VIL
DIN
Active
VIL
VIL
VIH
DOUT
Active
VIL
VIH
VIH
High Z
Active
Deselect
VSO to VPFD(min)(1)
X
X
X
High Z
CMOS Standby
Deselect
≤ VSO(1)
X
X
X
High Z
Battery Back-up Mode
Note: X = VIH or VIL; VSO = Battery Back-up Switchover Voltage.
1. See Table 10, page 11 for details.
6/16
M48Z02, M48Z12
READ Mode
The M48Z02/12 is in the READ Mode whenever W
(WRITE Enable) is high and E (Chip Enable) is
low. The device architecture allows ripple-through
access of data from eight of 16,384 locations in the
static storage array. Thus, the unique address
specified by the 11 Address Inputs defines which
one of the 2,048 bytes of data is to be accessed.
Valid data will be available at the Data I/O pins
within Address Access time (tAVQV) after the last
address input signal is stable, providing that the E
and G access times are also satisfied. If the E and
G access times are not met, valid data will be
available after the latter of the Chip Enable Access
time (tELQV) or Output Enable Access time
(tGLQV).
The state of the eight three-state Data I/O signals
is controlled by E and G. If the outputs are activated before tAVQV, the data lines will be driven to an
indeterminate state until tAVQV. If the Address Inputs are changed while E and G remain active,
output data will remain valid for Output Data Hold
time (tAXQX) but will go indeterminate until the next
Address Access.
Figure 6. READ Mode AC Waveforms
tAVAV
VALID
A0-A10
tAVQV
tAXQX
tELQV
tEHQZ
E
tELQX
tGLQV
tGHQZ
G
tGLQX
DQ0-DQ7
VALID
AI01330
Note: WRITE Enable (W) = High.
Table 7. READ Mode AC Characteristics
M48Z02/M48Z12
Symbol
(1)
–70
Parameter
Min
–150
Max
Min
–200
Max
Min
Unit
Max
tAVAV
READ Cycle Time
tAVQV
Address Valid to Output Valid
70
150
200
ns
tELQV
Chip Enable Low to Output Valid
70
150
200
ns
tGLQV
Output Enable Low to Output Valid
35
75
80
ns
tELQX
Chip Enable Low to Output Transition
5
10
10
ns
tGLQX
Output Enable Low to Output Transition
5
5
5
ns
tEHQZ
Chip Enable High to Output Hi-Z
25
35
40
ns
tGHQZ
Output Enable High to Output Hi-Z
25
35
40
ns
tAXQX
Address Transition to Output Transition
70
10
150
5
200
5
ns
ns
Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C or –40 to 85°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).
7/16
M48Z02, M48Z12
WRITE Mode
The M48Z02/12 is in the WRITE Mode whenever
W and E are active. The start of a WRITE is referenced from the latter occurring falling edge of W or
E. A WRITE is terminated by the earlier rising
edge of W or E. The addresses must be held valid
throughout the cycle. E or W must return high for
a minimum of tEHAX from Chip Enable or tWHAX
from WRITE Enable prior to the initiation of anoth-
er READ or WRITE cycle. Data-in must be valid tDVWH prior to the end of WRITE and remain valid for
tWHDX afterward. G should be kept high during
WRITE cycles to avoid bus contention; although, if
the output bus has been activated by a low on E
and G, a low on W will disable the outputs tWLQZ
after W falls.
Figure 7. WRITE Enable Controlled, WRITE AC Waveform
tAVAV
VALID
A0-A10
tAVWH
tWHAX
tAVEL
E
tWLWH
tAVWL
W
tWHQX
tWLQZ
tWHDX
DQ0-DQ7
DATA INPUT
tDVWH
AI01331
Figure 8. Chip Enable Controlled, WRITE AC Waveforms
tAVAV
A0-A10
VALID
tAVEH
tAVEL
tELEH
tEHAX
E
tAVWL
W
tEHDX
DQ0-DQ7
DATA INPUT
tDVEH
AI01332B
8/16
M48Z02, M48Z12
Table 8. WRITE Mode AC Characteristics
M48Z02/M48Z12
Symbol
(1)
–70
Parameter
Min
–150
Max
Min
Max
–200
Min
Unit
Max
tAVAV
WRITE Cycle Time
70
150
200
ns
tAVWL
Address Valid to WRITE Enable Low
0
0
0
ns
tAVEL
Address Valid to Chip Enable 1 Low
0
0
0
ns
tWLWH
WRITE Enable Pulse Width
50
90
120
ns
tELEH
Chip Enable Low to Chip Enable 1 High
55
90
120
ns
tWHAX
WRITE Enable High to Address Transition
0
10
10
ns
tEHAX
Chip Enable High to Address Transition
0
10
10
ns
tDVWH
Input Valid to WRITE Enable High
30
40
60
ns
tDVEH
Input Valid to Chip Enable High
30
40
60
ns
tWHDX
WRITE Enable High to Input Transition
5
5
5
ns
tEHDX
Chip Enable High to Input Transition
5
5
5
ns
tWLQZ
WRITE Enable Low to Output Hi-Z
tAVWH
Address Valid to WRITE Enable High
60
120
140
ns
tAVEH
Address Valid to Chip Enable High
60
120
140
ns
tWHQX
WRITE Enable High to Output Transition
5
10
10
ns
25
50
60
ns
Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C or –40 to 85°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).
9/16
M48Z02, M48Z12
Data Retention Mode
With valid VCC applied, the M48Z02/12 operates
as a conventional BYTEWIDE™ static RAM.
Should the supply voltage decay, the RAM will automatically power-fail deselect, write protecting itself when VCC falls within the VPFD (max), VPFD
(min) window. All outputs become high impedance, and all inputs are treated as “don't care.”
Note: A power failure during a WRITE cycle may
corrupt data at the currently addressed location,
but does not jeopardize the rest of the RAM's content. At voltages below VPFD (min), the user can be
assured the memory will be in a write protected
state, provided the VCC fall time is not less than tF.
The M48Z02/12 may respond to transient noise
spikes on VCC that reach into the deselect window
during the time the device is sampling VCC. Therefore, decoupling of the power supply lines is recommended.
The power switching circuit connects external VCC
to the RAM and disconnects the battery when VCC
rises above VSO. As VCC rises, the battery voltage
is checked. If the voltage is too low, an internal
Battery Not OK (BOK) flag will be set. The BOK
flag can be checked after power up. If the BOK flag
is set, the first WRITE attempted will be blocked.
The flag is automatically cleared after the first
WRITE, and normal RAM operation resumes. Figure 9 illustrates how a BOK check routine could be
structured.
For more information on a Battery Storage Life refer to the Application Note AN1012.
Figure 9. Checking the BOK Flag Status
POWER-UP
READ DATA
AT ANY ADDRESS
WRITE DATA
COMPLEMENT BACK
TO SAME ADDRESS
READ DATA
AT SAME
ADDRESS AGAIN
IS DATA
COMPLEMENT
OF FIRST
READ?
(BATTERY OK)
NO (BATTERY LOW)
NOTIFY SYSTEM
OF LOW BATTERY
(DATA MAY BE
CORRUPTED)
YES
WRITE ORIGINAL
DATA BACK TO
SAME ADDRESS
CONTINUE
AI00607
Figure 10. Power Down/Up Mode AC Waveforms
VCC
VPFD (max)
VPFD (min)
VSO
tF
tPD
INPUTS
tDR
tR
tFB
RECOGNIZED
tRB
DON'T CARE
tREC
NOTE
RECOGNIZED
HIGH-Z
OUTPUTS
VALID
(PER CONTROL INPUT)
VALID
(PER CONTROL INPUT)
AI00606
Note: Inputs may or may not be recognized at this time. Caution should be taken to keep E high as VCC rises past VPFD (min). Some systems
may perform inadvertent WRITE cycles after VCC rises above VPFD (min) but before normal system operations begin. Even though a
power on reset is being applied to the processor, a reset condition may not occur until after the system is running.
10/16
M48Z02, M48Z12
Table 9. Power Down/Up AC Characteristics
Parameter(1)
Symbol
tPD
E or W at VIH before Power Down
tF(2)
tFB(3)
Min
Max
Unit
0
µs
VPFD (max) to VPFD (min) VCC Fall Time
300
µs
VPFD (min) to VSS VCC Fall Time
10
µs
tR
VPFD (min) to VPFD (max) VCC Rise Time
0
µs
tRB
VSS to VPFD (min) VCC Rise Time
1
µs
E or W at VIH after Power Up
2
ms
tREC
Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C or –40 to 85°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).
2. VPFD (max) to VPFD (min) fall time of less than tF may result in deselection/write protection not occurring until 200µs after VCC passes VPFD (min).
3. VPFD (min) to VSS fall time of less than tFB may cause corruption of RAM data.
Table 10. Power Down/Up Trip Points DC Characteristics
Parameter(1,2)
Symbol
VPFD
Min
Typ
Max
Unit
M48Z02
4.5
4.6
4.75
V
M48Z12
4.2
4.3
4.5
V
Power-fail Deselect Voltage
VSO
Battery Back-up Switchover Voltage
tDR(3)
Expected Data Retention Time
3.0
V
10
YEARS
Note: 1. All voltages referenced to VSS.
2. Valid for Ambient Operating Temperature: TA = 0 to 70°C or –40 to 85°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).
3. At 25°C, VCC = 0V.
Figure 11. Crystal Accuracy Across Temperature
ppm
20
0
-20
-40
∆F = -0.038 ppm (T - T )2 ± 10%
0
F
C2
-60
T0 = 25 °C
-80
-100
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
°C
AI02124
11/16
M48Z02, M48Z12
VCC Noise And Negative Going Transients
ICC transients, including those produced by output
switching, can produce voltage fluctuations, resulting in spikes on the VCC bus. These transients
can be reduced if capacitors are used to store energy which stabilizes the VCC bus. The energy
stored in the bypass capacitors will be released as
low going spikes are generated or energy will be
absorbed when overshoots occur. A ceramic bypass capacitor value of 0.1µF (as shown in Figure
12) is recommended in order to provide the needed filtering.
In addition to transients that are caused by normal
SRAM operation, power cycling can generate negative voltage spikes on VCC that drive it to values
below VSS by as much as one volt. These negative
spikes can cause data corruption in the SRAM
while in battery backup mode. To protect from
these voltage spikes, STMicroelectronics recommends connecting a schottky diode from VCC to
VSS (cathode connected to VCC, anode to VSS).
Schottky diode 1N5817 is recommended for
through hole and MBRS120T3 is recommended
for surface mount.
12/16
Figure 12. Supply Voltage Protection
VCC
VCC
0.1µF
DEVICE
VSS
AI02169
M48Z02, M48Z12
PACKAGE MECHANICAL INFORMATION
Figure 13. PCDIP24 – 24-pin Plastic DIP, Battery CAPHAT™, Package Outline
A2
A1
B1
B
A
L
C
e1
eA
e3
D
N
E
1
PCDIP
Note: Drawing is not to scale.
Table 11. PCDIP24 – 24-pin Plastic DIP, Battery CAPHAT™, Package Mechanical Data
mm
inches
Symb
Typ
Min
Max
A
8.89
A1
Typ
Min
Max
9.65
0.350
0.380
0.38
0.76
0.015
0.030
A2
8.38
8.89
0.330
0.350
B
0.38
0.53
0.015
0.021
B1
1.14
1.78
0.045
0.070
C
0.20
0.31
0.008
0.012
D
34.29
34.80
1.350
1.370
E
17.83
18.34
0.702
0.722
e1
2.29
2.79
0.090
0.110
e3
25.15
30.73
0.990
1.210
eA
15.24
16.00
0.600
0.630
L
3.05
3.81
0.120
0.150
N
24
24
13/16
M48Z02, M48Z12
PART NUMBERING
Table 12. Ordering Information Scheme
Example:
M48Z
02
–70
PC
1
TR
Device Type
M48Z
Supply Voltage and Write Protect Voltage
02 = VCC = 4.75 to 5.5V; VPFD = 4.5 to 4.75V
12 = VCC = 4.5 to 5.5V; VPFD = 4.2 to 4.5V
Speed
–70 = 70ns (M48Z02/12)
–150 = 150ns (M48Z02/12)
–200 = 200ns (M48Z02/12)
Package
PC = PCDIP24
Temperature Range
1 = 0 to 70°C
6 = –40 to 85°C
Shipping Method
blank = Tubes
TR = Tape & Reel
For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device,
please contact the ST Sales Office nearest you.
14/16
M48Z02, M48Z12
REVISION HISTORY
Table 13. Document Revision History
Date
Rev. #
Revision Details
May 1999
1.0
First issue
09-Jul-01
2.0
Reformatted; Temperature information added to tables (Table 2, 3, 4, 5, 7, 8, 9, 10); Figure
updated (Figure 10)
17-Dec-01
2.1
Remove references to “clock” in document
20-May-02
2.2
Updated VCC Noise and Negative Going Transients text
01-Apr-03
3.0
v2.2 template applied; test condition updated (Table 10)
22-Apr-03
3.1
Fix error in Ordering Information (Table 12)
15/16
M48Z02, M48Z12
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners.
© 2003 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
www.st.com
16/16
Similar pages