Infineon D1NK60 12w 5v smps evaluation board with ice3ar4780vjz Datasheet

AN - EVAL - 3AR4780VJZ
1 2W 5V SMPS e va luati on board wi th
IC E3AR4780VJZ
Application Note
About this document
Scope and purpose
This document is a 12W 5.0V, universal input off-line flyback converter evaluation board using Infineon
CoolSET™ F3R80 family, ICE3AR4780VJZ.
Intended audience
This document is intended for users of the ICE3AR4780VJZ who wish to design low cost and high reliable
system of off-line SMPS for enclosed adapter or open frame auxiliary power supply of white goods, PC,
server, DVD, TV, Set-top box, etc.
Table of Contents
About this document ................................................................................................................... 1
Table of Contents ........................................................................................................................ 1
1
Abstract ..................................................................................................................... 3
2
Evaluation board ........................................................................................................ 3
3
Evaluation board specifications .................................................................................... 4
4
List of features (ICE3AR4780VJZ) .................................................................................. 4
5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
Circuit description....................................................................................................... 5
Introduction ............................................................................................................................................... 5
Line input ................................................................................................................................................... 5
Line input over voltage protection .......................................................................................................... 5
Start up ....................................................................................................................................................... 5
Operation mode ........................................................................................................................................ 5
Soft start ..................................................................................................................................................... 5
RCD clamper circuit................................................................................................................................... 5
Peak current control of primary current................................................................................................. 6
Output stage .............................................................................................................................................. 6
1
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Abstract
6
Circuit diagram ........................................................................................................... 7
7
7.1
7.2
PCB layout ................................................................................................................. 8
Top side ...................................................................................................................................................... 8
Bottom side................................................................................................................................................ 8
8
Component list ........................................................................................................... 9
9
Transformer construction .......................................................................................... 10
10
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
Test results .............................................................................................................. 11
Efficiency ..................................................................................................................................................11
Standby power ........................................................................................................................................12
Line regulation.........................................................................................................................................13
Load regulation .......................................................................................................................................13
Maximum power......................................................................................................................................14
ESD immunity (EN61000-4-2) .................................................................................................................14
Surge immunity (EN61000-4-5)..............................................................................................................14
Conducted emissions (EN55022 class B) ..............................................................................................15
Thermal measurement ...........................................................................................................................17
11
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
Waveforms and scope plots ........................................................................................ 18
Start up at low/high AC line input voltage with maximum load ........................................................18
Soft start ...................................................................................................................................................18
Frequency jittering ..................................................................................................................................19
Drain voltage and current at maximum load .......................................................................................19
Load transient response (Dynamic load from 10% to 100%) .............................................................20
Output ripple voltage at maximum load ..............................................................................................20
Output ripple voltage during burst mode at 1 W load ........................................................................21
Active Burst mode operation .................................................................................................................21
Vcc over voltage protection (Odd skip auto restart mode) ................................................................22
Over load protection (Auto restart mode) ............................................................................................22
VCC under voltage/Short optocoupler protection (Normal auto restart mode) ................................23
AC Line input OVP mode .........................................................................................................................23
12
References ............................................................................................................... 24
Revision History........................................................................................................................ 24
Application Note
2
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Abstract
1
Abstract
This document is an engineering report of a universal input 12W 5V off-line flyback converter power supply
utilizing F3R80 CoolSET™ ICE3AR4780VJZ. The application evaluation board is operated in Discontinuous
Conduction Mode (DCM) and is running at 100 kHz switching frequency. It has a single output voltage with
secondary side control regulation. It is especially suitable for small power supply such as DVD player, set-top
box, game console, charger and auxiliary power of white goods, server, PC and high power system, etc. The
ICE3AR4780VJZ is the latest version of the CoolSET™. Besides having the basic features of the F3R CoolSET™
such as Active Burst Mode, propagation delay compensation, soft gate drive, auto restart protection for
major fault (Vcc over voltage, Vcc under voltage, adjustable input OVP, over temperature, over-load, open
loop and short opto-coupler), it also has the BiCMOS technology design, selectable entry and exit burst
mode level, adjustable AC line input over voltage protection feature, built-in soft start time, built-in and
extendable blanking time and frequency jitter feature, etc. The particular features are the best-in-class low
standby power and the good EMI performance.
2
Evaluation board
This document contains the list of features, the power supply specification, schematic, bill of material and
the transformer construction documentation. Typical operating characteristics such as performance curve
and scope waveforms are showed at the rear of the report.
Figure 1
EVAL-3AR4780VJZ [Dimensions L x W x H: 95mm x 41mm x 24mm (3.74" x 1.61" x 0.94")]
Application Note
3
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Evaluation board specifications
3
Evaluation board specifications
Input voltage
85VAC~265VAC
Input frequency
50~60Hz
Output voltage
5V
Output current
2.4A
Output power
12W
Steady state output ripple voltage
Vripple_P_P< 50mV
(±1% of norminal output voltage)
Dynamic load response undershoot & overshoot
Vripple_P_P< 250mV
(±3% of norminal output voltage)
Active mode four point average efficiency
(25%,50%,75% & 100%load) (EU CoC Version 5, Tier 1)
>80% at 115Vac and >79% at 230Vac
Active mode at 10% load efficiency (EU CoC Version 5,
Tier 1)
>73%
No-load power consumption
< 75mW
(EU CoC Version 5, Tier 2)
Maximum input power(Peak Power) for universal input
range (<±5% of average maximum input power)
<±3% of average maximum input power
Form factor case size (L x W x H)
95mm x 41mm x 24mm (3.74" x 1.61" x 0.94")
4
List of features (ICE3AR4780VJZ)
800V avalanche rugged CoolSET™ with Startup Cell
Active Burst Mode for lowest Standby Power
Selectable entry and exit burst mode level
100kHz internally fixed switching frequency with jittering feature
Auto Restart Protection for Over load, Open Loop, VCC Under voltage & Over voltage and Over
temperature
Over temperature protection with 50°C hysteresis
Built-in 10ms Soft Start
Built-in 20ms and extendable blanking time for short duration peak power
Propagation delay compensation for both maximum load and burst mode
Adjustable input OVP
Overall tolerance of Current Limiting < ±5%
BiCMOS technology for low power consumption and wide VCC voltage range
Soft gate drive with 50Ω turn on resistor
Application Note
4
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Circuit description
5
Circuit description
5.1
Introduction
The EVAL-3AR4780VJZ evaluation board is a low cost off-line flyback switch mode power supply (SMPS)
using the ICE3AR4780VJZ integrated power IC from the CoolSET™-F3R80 family. The circuit shown in Figure
3, details a 5V, 12W power supply that operates from an AC line input voltage range of 85Vac to 265Vac and
line input OVP detect/reset voltage is 300/282Vac, suitable for applications in enclosed adapter or open
frame auxiliary power supply for different system such as white goods, PC, server, DVD, LED TV, Set-top box,
etc.
5.2
Line input
The AC line input side comprises the input fuse F1 as over-current protection. The choke L11, X-capacitors
C11, C14 and Y-capacitor C12 act as EMI suppressors. Optional spark gap device SG1, SG2 and varistor VAR
can absorb high voltage stress during lightning surge test. After the bridge rectifier BR1 and the input bulk
capacitor C13, a voltage of 90 to 424 VDC is present which depends on input line voltage.
5.3
Line input over voltage protection
The AC line input OVP mode is detected by sensing the voltage level at BV pin through the resistors divider
from the bulk capacitor. Once the voltage level at BV pin hits above 1.98V, the controller stops switching and
enters into input OVP mode. When the BV voltage drops to 1.91V and the Vcc hits 17V, the input OVP mode is
released.
5.4
Start up
Since there is a built-in startup cell in the ICE3AR4780VJZ, no external start up resistor is required. The
startup cell is connecting the drain pin of the IC. Once the voltage is built up at the Drain pin of the
ICE3AR4780VJZ, the startup cell will charge up the Vcc capacitor C16 and C17. When the Vcc voltage exceeds
the UVLO at 17V, the IC starts up. Then the Vcc voltage is bootstrapped by the auxiliary winding to sustain
the operation.
5.5
Operation mode
During operation, the Vcc pin is supplied via a separate transformer winding with associated rectification
D12 and buffering C16, C17. In order not to exceed the maximum voltage at Vcc pin due to poor coupling of
transformer winding, an external zener diode ZD11 and resistor R13 can be added.
5.6
Soft start
The Soft-Start is a built-in function and is set at 10ms.
5.7
RCD clamper circuit
While turns off the CoolMOS™, the clamper circuit R11, C15 and D11 absorbs the current caused by
transformer leakage inductance once the voltage exceeds clamp capacitor voltage. Finally drain to source
voltage of CoolMOS™ is lower than maximum break down voltage (V(BR)DSS = 800V) of CoolMOS™.
Application Note
5
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Circuit description
5.8
Peak current control of primary current
The CoolMOS™ drain source current is sensed via external shunt resistors R14 and R14A which determine the
tolerance of the current limit control. Since ICE3AR4780VJZ is a current mode controller, it would have a
cycle-by-cycle primary current and feedback voltage control which can make sure the maximum power of
the converter is controlled in every switching cycle. Besides, the patented propagation delay compensation
is implemented to ensure the maximum input power can be controlled in an even tighter manner. The
evaluation board shows approximately ±2.2% of average maximum input power (refer to Figure 11).
5.9
Output stage
On the secondary side the power is coupled out by a schottky diode D21. The capacitor C22 & C23 provides
energy buffering following with the LC filter L21 and C24 to reduce the output voltage ripple considerably.
Storage capacitors C22 & C23 are selected to have a very small internal resistance (ESR) to minimize the
output voltage ripple.
Application Note
6
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Circuit diagram
6
Circuit diagram
Figure 2
Schematic of EVAL-3AR4780VJZ
Application Note
7
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
PCB layout
N.B. : In order to get the optimized performance of the CoolSET™, the grounding of the PCB layout must be
connected very carefully. From the circuit diagram above, it indicates that the grounding for the CoolSET™
can be split into several groups; signal ground, Vcc ground, Current sense resistor ground and EMI return
ground. All the split grounds should be connected to the bulk capacitor ground separately.
Signal ground includes all small signal grounds connecting to the CoolSET™ GND pin such as filter capacitor
ground, C17, C18, C19 and opto-coupler ground.
Vcc ground includes the Vcc capacitor ground, C16 and the auxiliary winding ground, pin 2 of the power
transformer.
Current Sense resistor ground includes current sense resistor R14 and R14A.
EMI return ground includes Y capacitor, C12.
7
PCB layout
7.1
Top side
Figure 3
Top side component legend
7.2
Bottom side
Figure 4
Bottom side copper and component legend
Application Note
8
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Component list
8
Component list
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Designator
+5V Com, L N
BR1
C11
C12
C13
C15
C16
C17,C19
C18
C22
C24
C25
C26
D11
D12
D21
F1
HS1
IC11
IC12
IC21
J1,J2,J3,J4,R15C
L11
L21
R11
R12
R14,R14A
R15
R15A,R15B
R16
R22
R23
R24
R25
R26
Component Description
Footprint
Part Number
Manufacturer
Quantity
12V Test Point
600V/1A
100nF/305V
2.2nF/250V
33uF/450V
1nF/630V
22uF/50V
100nF/50V
330pF/50V
1000uF/10V
680uF/10V
220nF/50V
2.7nF/50V
600V/0.8A
200V/0.5A
45V/30A
300V/1.6A
TO220 heat sink
ICE3AR4780VJZ
SFH617 A3
TL431
Jumper
39mH/0.6A
2.2µH/4.3A
150k/2W
18R
2R7/0.33W/1%
3M/1%
3M/1%
43.2k/1%
130R
1.2k
150k
20k
20k
Connector
1V
MKT5/18/15
MKT2/13/10
RB16X25
1206
RB5.5
0603
0603
RB10
RB8
0603
0603
DIODE0.4
1206D
TO-220FPAB
MKT4.3/8.4/5
HS TO220
DIP7
DIP4
TO92-TL431Axial 0.4
EMI_C_U21
CH6 2.5
AXIAL0.4_V 4mm
0603
1206
AXIAL0.4_15
1206
0603
0603
0603
0603
AXIAL0.3
0603
691102710002
S1VBA60
B329221C3104K
DE1E3KX222MA4BN01F
450BXC33MEFC16X25
GRM31A7U2J102JW31D
50PX22MEFC5X11
GRM188R71H104KA93D
GRM1885C1H331GA01D
10ZLH1000MEFC10X12.5
10ZLH680MEFC8X11.5
GRM188R71H224KAC4D
GRM188R71H272KA01D
D1NK60
GL34D
STPS30L45CFP
36911600000
577202B00000G
ICE3AR4780VJZ
Wurth Electronics
SHINDENGEN
EPCOS
MURATA
RUBYCON
MURATA
RUBYCON
MURATA
MURATA
RUBYCON
RUBYCON
MURATA
MURATA
SHINDENGEN
B82731M2601A030
7447462022
EPCOS
Wurth Electronics
36 TR1
571µH(54:4:13)
TR_EF20_H
750342411
Wurth Electronics Midcom
1
37 VAR
275V/0.25W
MKT3.5/7.5/5
B72207S2271K101
EPCOS
1
Application Note
INFINEON
ERJ8BQF2R7V
9
2
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
5
1
1
1
1
2
1
2
1
1
1
1
1
1
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Transformer construction
9
Transformer construction
Core and material: EE20/10/6(EF20), TP4A (TDG)
Bobbin: 070-4989(10-Pins, TH-H, Horizontal version)
Primary Inductance, Lp=571μH (±10%), measured between pin 4 and pin 5
Manufacturer and part number: Wurth Electronics Midcom (750342411)
Figure 5
Transformer structure
Application Note
10
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Test results
10
Test results
Vin(Vac)
85
115
230
265
Pin(W)
Vo(Vdc)
Io(A)
VOut_ripple_pk_pk
(mV)
0.0288
1.6200
3.8500
7.6200
11.5600
15.6200
0.0306
1.6300
3.8300
7.5700
11.3700
15.2500
0.0425
1.6800
4.0000
7.6800
11.3700
15.0700
0.0494
1.7100
4.1000
7.7500
11.4300
15.1000
5.23
5.21
5.19
5.15
5.11
5.06
5.23
5.21
5.19
5.15
5.11
5.06
5.23
5.21
5.19
5.15
5.11
5.06
5.23
5.21
5.19
5.15
5.11
5.06
0.00
0.24
0.600
1.200
1.800
2.400
0.00
0.24
0.600
1.200
1.800
2.400
0.00
0.24
0.600
1.200
1.800
2.400
0.00
0.24
0.600
1.200
1.800
2.400
14.10
25.70
10.70
13.80
15.50
18.40
14.40
26.50
10.70
13.40
15.60
17.10
15.40
24.40
10.60
13.70
16.10
17.20
15.10
24.90
10.00
13.20
16.00
17.30
10.1
Efficiency
Figure 6
Efficiency vs AC line input voltage
Application Note
11
Po(W)
η
(%)
1.25
3.11
6.18
9.20
12.14
77.19
80.88
81.10
79.57
77.75
1.25
3.11
6.18
9.20
12.14
76.71
81.31
81.64
80.90
79.63
1.25
3.11
6.18
9.20
12.14
74.43
77.85
80.47
80.90
80.58
1.25
3.11
6.18
9.20
12.14
73.12
75.95
79.74
80.47
80.42
Average η
(%)
OLP Pin
(W)
OLP Iout
(A)
17.85
2.72
17.54
2.75
17.92
2.85
18.33
2.89
79.82
80.87
79.95
79.15
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Test results
Figure 7
Efficiency vs output power @ 115Vac and 230V line
10.2
Standby power
Figure 8
Standby power @ no load vs AC line input voltage (measured by Yokogawa WT210 power
meter - integration mode)
Application Note
12
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Test results
10.3
Line regulation
Figure 9
Line regulation Vo @ full load vs AC line input voltage
10.4
Load regulation
Figure 10
Load regulation Vo vs output power
Application Note
13
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Test results
10.5
Maximum power
Figure 11
Maximum input power (before over-load protection) vs AC line input voltage
10.6
ESD immunity (EN61000-4-2)
Pass [special level (±18kV) for contact discharge].
10.7
Surge immunity (EN61000-4-5)
Pass [Installation class 3, 2kV (line to earth) and 1kV (line to line)].
Application Note
14
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Test results
10.8
Conducted emissions (EN55022 class B)
The conducted EMI was measured by Schaffner (SMR25503) and followed the test standard of EN55022
(CISPR 22) class B. The evaluation board was set up at maximum load (12W) with input voltage of 115Vac
and 230Vac.
Figure 12
Conducted emissions(Line) at 115Vac and maximum Load
Figure 13
Conducted emissions(Neutral) at 115Vac and maximum Load
Application Note
15
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Test results
Figure 14
Conducted emissions(line) at 230Vac and maximum Load
Figure 15
Conducted emissions(Neutral) at 230Vac and maximum Load
Pass conducted EMI EN55022 (CISPR 22) class B with > 7dB margin for QP.
Application Note
16
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Test results
10.9
Thermal measurement
The thermal test of open frame evaluation board was done using an infrared thermography camera (TVS500EX) at ambient temperature 25⁰C. The measurements were taken after two hours running at full load
(12W).
No. Major component
85Vac (°C)
115Vac (°C) 230Vac (°C) 265Vac (°C)
1
IC11 (ICE3AR4780VJZ)
57.5
50.7
49.9
50.7
2
BR1
46.9
40.2
33.6
33.1
3
L11
44.0
39.1
32.3
31.6
4
TR1
51.5
51.4
53.3
53.9
5
D21
54.2
54
54.5
54.9
85Vac, 12W load, 25⁰C ambient
115Vac, 12W load, 25⁰C ambient
230Vac, 12W load, 25⁰C ambient
265Vac, 12W load, 25⁰C ambient
Figure 16
Infrared thermal image of EVAL-ICE3AR4780VJZ
Application Note
17
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Waveforms and scope plots
11
Waveforms and scope plots
All waveforms and scope plots were recorded with a LeCroy 6050 oscilloscope
11.1
Start up at low/high AC line input voltage with maximum load
377ms
377ms
Entry/exit
burst
selection
Entry/exit
burst
selection
Channel 1; C1 : Drain voltage (VDrain)
Channel 1; C1 : Drain voltage (VDrain)
Channel 2; C2 : Supply voltage (VCC)
Channel 2; C2 : Supply voltage (VCC)
Channel 3; C3 : Feedback voltage (VFBB)
Channel 3; C3 : Feedback voltage (VFBB)
Channel 4; C4 : BV voltage (VBV)
Channel 4; C4 : BV voltage (VBV)
Startup time = 377ms
Startup time = 377ms
Figure 17
Figure 18
11.2
Startup @ 85Vac & max. load
Startup @ 265Vac & max. load
Soft start
9.8ms
Channel 1; C1 : Current sense voltage (VCS)
Channel 2; C2 : Supply voltage (VCC)
Channel 3; C3 : Feedback voltage (VFBB)
Channel 4; C4 : BV voltage (VBV)
Soft Star time = 9.8ms
Figure 19
Soft start @ 85Vac & max. load
Application Note
18
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Waveforms and scope plots
11.3
Frequency jittering
Channel 2; C2 : Drain voltage (VDrain)
Channel F2 : Frequency track of C2
Frequency jittering from 92 kHz ~ 100 kHz, Jitter
period is set at 4ms internally
Figure 20
11.4
Frequency jittering@ 85Vac and
max. load
Drain voltage and current at maximum load
Channel 1; C1 : Drain voltage (VDrain)
Channel 2; C2 : Current sense voltage (VCS)
VDrain_peak = 284V
Channel 1; C1 : Drain voltage (VDrain)
Channel 2; C2 : Current sense voltage (VCS)
VDrain_peak = 573V
Figure 21
Figure 22
Operation @ 85Vac and max. load
Application Note
19
Operation @ 265Vac and max. load
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Waveforms and scope plots
11.5
Load transient response (Dynamic load from 10% to 100%)
Channel 1; C1 : Output ripple voltage (Vo)
Channel 1; C1 : Output ripple voltage (Vo)
Channel 2; C2 : Output current (Io)
Channel 2; C2 : Output current (Io)
Vripple_pk_pk=220mV (Load change from10% to
100%,100Hz,0.4A/μS slew rate)
Vripple_pk_pk=220mV (Load change from10% to
100%,100Hz,0.4A/μS slew rate)
Probe terminal end with decoupling capacitor of
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter
Probe terminal end with decoupling capacitor of
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter
Figure 23
Figure 24
11.6
– Load transient response @ 85Vac
Load transient response @ 265Vac
Output ripple voltage at maximum load
Channel 1; C1 : Output ripple voltage (Vo)
Channel 1; C1 : Output ripple voltage (Vo)
Channel 2; C2 : Output current (Io)
Channel 2; C2 : Output current (Io)
Vripple_pk_pk=16mV
Vripple_pk_pk = 16mV
Probe terminal end with decoupling capacitor of
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter
Probe terminal end with decoupling capacitor of
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter
Figure 25
Figure 26
AC output ripple @ 85Vac and max.
load
Application Note
20
AC output ripple @ 265Vac and
max. load
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Waveforms and scope plots
11.7
Output ripple voltage during burst mode at 1 W load
Channel 1; C1 : Output ripple voltage (Vo)
Channel 1; C1 : Output ripple voltage (Vo)
Channel 2; C2 : Output current (Io)
Channel 2; C2 : Output current (Io)
Vripple_pk_pk=25mV
Vripple_pk_pk = 18mV
Probe terminal end with decoupling capacitor of
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter
Probe terminal end with decoupling capacitor of
0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter
Figure 27
Figure 28
11.8
AC output ripple @ 85Vac and 1W
load
AC output ripple @ 265Vac and 1W
load
Active Burst mode operation
Channel 1; C1 : Current sense voltage (VCS)
Channel 1; C1 : Current sense voltage (VCS)
Channel 2; C2 : Supply voltage (VCC)
Channel 2; C2 : Supply voltage (VCC)
Channel 3; C3 : Feedback voltage (VFBB)
Channel 3; C3 : Feedback voltage (VFBB)
Channel 4; C4 : BV voltage (VBV)
Channel 4; C4 : BV voltage (VBV)
Condition: VFB<1.27V & last for 20ms
Condition: VFB>4.5V
(load change form full load to 0.5W load)
(load change form 0.5W load to full load)
Figure 29
Figure 30
Entering active burst mode @
85Vac
Application Note
21
Leaving active burst mode @ 85Vac
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Waveforms and scope plots
11.9
Vcc over voltage protection (Odd skip auto restart mode)
VCC OVP2
VCC OVP1
Channel 1; C1 : Current sense voltage (VCS)
Channel 2; C2 : Supply voltage (VCC)
Channel 3; C3 : Feedback voltage (VFBB)
Channel 4; C4 : BV voltage (VBV)
Condition: VCC>20.5 & last for 150µs
VCC>20.5 & VFB>4.5V & during soft start
& last for 30µs
(J4 disconnected during system operating at no load)
Figure 31 Vcc overvoltage protection @ 85Vac
11.10
Over load protection (Auto restart mode)
built-in 20ms blanking
extended blanking
Channel 1; C1 : Current sense voltage (VCS)
Channel 2; C2 : Supply voltage (VCC)
Channel 3; C3 : Feedback voltage (VFBB)
Channel 4; C4 : BV voltage (VBV)
Condition: VFB>4.5V & last for 20ms & VBV>4.5V &
last for 30µs
(output load change from 2.4 to 3A)
Figure 32
Over load protection with builtin+extended blanking time
@85Vac
Application Note
22
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
Waveforms and scope plots
11.11
VCC under voltage/Short optocoupler protection (Normal auto restart
mode)
Exit autorestart
Enter autorestart
Channel 1; C1 : Current sense voltage (VCS)
Channel 2; C2 : Supply voltage (VCC)
Channel 3; C3 : Feedback voltage (VFBB)
Channel 4; C4 : BV voltage (VBV)
Condition: VCC<10.5V
(short the transistor of optocoupler during system
operating @ full load and release)
Figure 33
11.12
Vcc under voltage/short
optocoupler protection @ 85Vac
AC Line input OVP mode
421Vdc(298Vac)
Enter input OVP
403Vdc(285Vac)
Exit input OVP
401Vdc(283Vac)
Exit input OVP
421Vdc(298Vac)
Enter input OVP
Channel 1; C1 : Bulk voltage(Vbulk)
Channel 1; C1 : Bulk voltage(Vbulk)
Channel 2; C2 : Supply voltage (VCC)
Channel 2; C2 : Supply voltage (VCC)
Channel 3; C3 : Current sense voltage (VCS)
Channel 3; C3 : Current sense voltage (VCS)
Channel 4; C4 : BV voltage (VBV)
Channel 4; C4 : BV voltage (VBV)
Condition: VBV>1.98V & last for 400µs (OVP detect)
VBV<1.91V & last for 5µs (OVP reset)
(gradually increase AC line voltage until OVP detect
and decrease AC line until OVP reset)
Condition: VBV>1.98V & last for 400µs (OVP detect)
VBV<1.91V & last for 5µs (OVP reset)
(gradually increase AC line voltage until OVP detect
and decrease AC line until OVP reset)
Figure 34
Figure 35
Input OVP mode at max. load
condition
Application Note
23
Input OVP mode at no load
condition
Revision 1.2, 2015-05-12
12W 5V SMPS evaluation board with ICE3AR4780VJZ
References
12
References
[1]
Infineon Technologies, Datasheet “CoolSET™-F3R80 ICE3AR4780VJZ Off-Line SMPS Current Mode
Controller with integrated 800V CoolMOS™and Startup cell( input OVP & Frequency Jitter) in DIP-7”
[2]
Infineon Technologies, AN-PS0044-CoolSET F3R80 DIP-7 brownout/input OVP & frequency jitter version
design guide-V1.5
Revision History
Major changes since the last revision
Page or Reference
5
Application Note
Description of change
Add section 5.3 under circuit description
24
Revision 1.2, 2015-05-12
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™,
EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™,
my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™,
SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM
Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FL EXGO™ of Microsoft Corporation. FlexRay™ is
licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared
Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim
Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Tech nologies, Inc., USA.
muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc.
Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun
Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc.
TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cade nce Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex L imited.
Last Trademarks Update 2011-11-11
www.infineon.com
Edition 2015-05-12
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2015 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: [email protected]
Document reference
AN_201406_PL21_004
Legal Disclaimer
THE INFORMATION GIVEN IN THIS APPLICATION
NOTE (INCLUDING BUT NOT LIMITED TO
CONTENTS OF REFERENCED WEBSITES) IS GIVEN
AS A HINT FOR THE IMPLEMENTATION OF THE
INFINEON TECHNOLOGIES COMPONENT ONLY
AND SHALL NOT BE REGARDED AS ANY
DESCRIPTION OR WARRANTY OF A CERTAIN
FUNCTIONALITY, CONDITION OR QUALITY OF THE
INFINEON TECHNOLOGIES COMPONENT. THE
RECIPIENT OF THIS APPLICATION NOTE MUST
VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE
REAL APPLICATION. INFINEON TECHNOLOGIES
HEREBY DISCLAIMS ANY AND ALL WARRANTIES
AND LIABILITIES OF ANY KIND (INCLUDING
WITHOUT LIMITATION WARRANTIES OF NONINFRINGEMENT OF INTELLECTUAL PROPERTY
RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO
ANY AND ALL INFORMATION GIVEN IN THIS
APPLICATION NOTE.
Information
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may
contain dangerous substances. For information on
the types in question, please contact the nearest
Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or
systems only with the express written approval of
Infineon Technologies, if a failure of such components
can reasonably be expected to cause the failure of
that life-support device or system or to affect the
safety or effectiveness of that device or system. Life
support devices or systems are intended to be
implanted in the human body or to support and/or
maintain and sustain and/or protect human life. If
they fail, it is reasonable to assume that the health of
the user or other persons may be endangered.
Similar pages