HMC578 v00.0506 FREQUENCY MULTIPLIERS - CHIP 2 GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 24 - 33 GHz OUTPUT Typical Applications Features The HMC578 is suitable for: High Output Power: +17 dBm • Clock Generation Applications: SONET OC-192 & SDH STM-64 Low Input Power Drive: 0 to +6 dBm • Point-to-Point & VSAT Radios Fo Isolation: >25 dBc @ Fout= 28 GHz 100 KHz SSB Phase Noise: -132 dBc/Hz • Test Instrumentation Single Supply: +5V@ 81 mA • Military EW / Radar Die Size: 1.18 mm x 1.23 mm x 0.1 mm • Space Functional Diagram General Description The HMC578 die is a x2 active broadband frequency multiplier utilizing GaAs PHEMT technology. When driven by a +3 dBm signal, the multiplier provides +17 dBm typical output power from 24 to 33 GHz. The Fo and 3Fo isolations are >25 dBc and >36 dBc respectively at 28 GHz. The HMC578 is ideal for use in LO multiplier chains for Pt to Pt & VSAT Radios yielding reduced parts count vs. traditional approaches. The low additive SSB Phase Noise of -132 dBc/Hz at 100 kHz offset helps maintain good system noise performance. Electrical Specifications, TA = +25° C, Vdd1, Vdd2 = 5.0V, 3 dBm Drive Level Parameter Min. Frequency Range, Input Frequency Range, Output Output Power 12 Max. Units GHz 24 - 33 GHz 17 dBm Fo Isolation (with respect to output level) 22 dBc 3Fo Isolation (with respect to output level) 30 dBc Input Return Loss 10 dB Output Return Loss SSB Phase Noise (100 kHz Offset) Supply Current (Idd1 & Idd2) 2 - 44 Typ. 12 - 16.5 15 dB -132 dBc/Hz 81 mA For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com HMC578 v00.0506 GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 24 - 33 GHz OUTPUT Output Power vs. Temperature @ 3 dBm Drive Level Output Power vs. Drive Level 2 25 OUTPUT POWER (dBm) OUTPUT POWER (dBm) 20 20 15 10 +25C +85C -55C 5 15 10 5 0 -5 -10 -6dBm -4dBm -2dBm 0dBm -15 -20 0 2dBm 4dBm 6dBm -25 22 23 24 25 26 27 28 29 30 31 32 33 34 35 22 23 24 25 OUTPUT FREQUENCY (GHz) 26 27 28 29 30 31 32 33 34 35 33 34 35 OUTPUT FREQUENCY (GHz) Output Power vs. Supply Voltage @ 3 dBm Drive Level Isolation @ 3 dBm Drive Level 25 OUTPUT POWER (dBm) 20 15 Vdd=4.5V Vdd=5.0V Vdd=5.5V 10 10 Fo 2Fo 3Fo 0 -10 5 -20 0 22 23 24 25 26 27 28 29 30 31 32 33 34 22 35 23 24 25 26 27 28 29 30 31 32 OUTPUT FREQUENCY (GHz) OUTPUT FREQUENCY (GHz) Output Power vs. Input Power 25 20 OUTPUT POWER (dBm) OUTPUT POWER (dBm) 20 FREQUENCY MULTIPLIERS - CHIP 25 15 10 5 0 24GHz 28GHz 33GHz -5 -10 -15 -20 -10 -8 -6 -4 -2 0 2 4 6 8 10 INPUT POWER (dBm) For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com 2 - 45 HMC578 v00.0506 Input Return Loss vs. Temperature 2 - 46 Output Return Loss vs. Temperature 0 -5 0 +25C +85C -55C -10 -15 -20 OUTPUT RETURN LOSS (dB) INPUT RETURN LOSS (dB) FREQUENCY MULTIPLIERS - CHIP 2 GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 24 - 33 GHz OUTPUT +25C +85C -55C -5 -10 -15 -20 -25 -30 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 FREQUENCY (GHz) 22 23 24 25 26 27 28 29 30 31 32 FREQUENCY (GHz) For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com 33 34 35 HMC578 v00.0506 GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 24 - 33 GHz OUTPUT Typical Supply Current vs. Vdd RF Input (Vdd = +5V) +13 dBm Vdd (Vdc) Idd (mA) Supply Voltage (Vdd1, Vdd2) +6.0 Vdc 4.5 81 Channel Temperature 175 °C Continuous Pdiss (T= 85 °C) (derate 7.8 mW/°C above 85 °C) 703 mW Thermal Resistance (channel to die bottom) 128 °C/W Storage Temperature -65 to +150 °C Operating Temperature -55 to +85 °C 5.0 81 5.5 81 Note: Multiplier will operate over full voltage range shown above. ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS Outline Drawing Die Packaging Information [1] Standard Alternate [2] GP-2 — [1] Refer to the “Packaging Information” section for die packaging dimensions. [2] Reference this suffix only when ordering alternate die packaging. 2 FREQUENCY MULTIPLIERS - CHIP Absolute Maximum Ratings NOTES: 1. ALL DIMENSIONS ARE IN INCHES [MILLIMETERS]. 2. DIE THICKNESS IS .004” 3. TYPICAL BOND PAD IS .004” SQUARE. 4. TYPICAL BOND SPACING IS .006” CENTER TO CENTER. 5. BOND PAD METALIZATION: GOLD 6. BACKSIDE METALIZATION: GOLD 7. BACKSIDE METAL IS GROUND. 8. NO CONNECTION REQUIRED FOR UNLABELED BOND PADS. For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com 2 - 47 HMC578 v00.0506 GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 24 - 33 GHz OUTPUT Pad Description FREQUENCY MULTIPLIERS - CHIP 2 2 - 48 Pad Number Function Description 1, 2 Vdd1, Vdd2 Supply voltage 5V ± 0.5V. 3 RFOUT Pin is AC coupled and matched to 50 Ohms from 24 - 33 GHz. 4, 5 GND Die bottom must be connected to RF ground. 6 RFIN Pin is AC coupled and matched to 50 Ohms from 12 - 16.5 GHz. Interface Schematic Assembly Diagram For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com HMC578 v00.0506 GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 24 - 33 GHz OUTPUT Mounting & Bonding Techniques for Millimeterwave GaAs MMICs 50 Ohm Microstrip transmission lines on 0.127mm (5 mil) thick alumina thin film substrates are recommended for bringing RF to and from the chip (Figure 1). If 0.254mm (10 mil) thick alumina thin film substrates must be used, the die should be raised 0.150mm (6 mils) so that the surface of the die is coplanar with the surface of the substrate. One way to accomplish this is to attach the 0.102mm (4 mil) thick die to a 0.150mm (6 mil) thick molybdenum heat spreader (moly-tab) which is then attached to the ground plane (Figure 2). 0.102mm (0.004”) Thick GaAs MMIC Wire 3 mil Ribbon Bond 0.076mm (0.003”) RF Ground Plane Microstrip substrates should be brought as close to the die as possible in order to minimize ribbon bond length. Typical die-to-substrate spacing is 0.076mm (3 mils). Gold ribbon of 0.075 mm (3 mil) width and minimal length <0.31 mm (<12 mils) is recommended to minimize inductance on RF, LO & IF ports. 0.127mm (0.005”) Thick Alumina Thin Film Substrate An RF bypass capacitor should be used on the Vdd input. A 100 pF single layer capacitor (mounted eutectically or by conductive epoxy) placed no further than 0.762mm (30 Mils) from the chip is recommended. Handling Precautions Figure 1. 0.102mm (0.004”) Thick GaAs MMIC Follow these precautions to avoid permanent damage. Storage: All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment. Cleanliness: Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems. Storage: All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment. Static Sensitivity: Follow ESD precautions to protect against > ± 250V ESD strikes. 2 Ribbon Bond 0.076mm (0.003”) RF Ground Plane 0.150mm (0.005”) Thick Moly Tab 0.254mm (0.010”) Thick Alumina Thin Film Substrate Figure 2. FREQUENCY MULTIPLIERS - CHIP The die should be attached directly to the ground plane eutectically or with conductive epoxy (see HMC general Handling, Mounting, Bonding Note). Transients: Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pick-up. General Handling: Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip has fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers. Mounting The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat. Eutectic Die Attach: A 80/20 gold tin preform is recommended with a work surface temperature of 255 deg. C and a tool temperature of 265 deg. C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 deg. C. DO NOT expose the chip to a temperature greater than 320 deg. C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment. Epoxy Die Attach: Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer’s schedule. Wire Bonding Ball or wedge bond with 0.025mm (1 mil) diameter pure gold wire. Thermosonic wirebonding with a nominal stage temperature of 150 deg. C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the package or substrate. All bonds should be as short as possible <0.31mm (12 mils). For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com 2 - 49