PD - 94382D IRGB10B60KD IRGS10B60KD IRGSL10B60KD INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features • Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. VCES = 600V IC = 12A, TC=100°C G tsc > 10µs, TJ=150°C E n-channel Benefits VCE(on) typ. = 1.8V • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. TO-220AB IRGB10B60KD D2Pak IRGS10B60KD TO-262 IRGSL10B60KD Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Max. Units 600 22 12 44 44 22 10 44 ± 20 156 62 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RθJC RθJC RθCS RθJA RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Junction-to-Ambient (PCB Mount, steady state) Weight Min. Typ. Max. ––– ––– ––– ––– ––– ––– ––– ––– 0.50 ––– ––– 1.44 0.8 3.4 ––– 62 40 ––– Units °C/W g 1 8/18/04 IRG/B/S/SL10B60KD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 ––– Temperature Coeff. of Breakdown Voltage ––– 0.3 Collector-to-Emitter Saturation Voltage 1.5 1.80 ––– 2.20 Gate Threshold Voltage 3.5 4.5 Temperature Coeff. of Threshold Voltage ––– -10 Forward Transconductance ––– 7.0 Zero Gate Voltage Collector Current ––– 3.0 ––– 300 Diode Forward Voltage Drop ––– 1.30 ––– 1.30 Gate-to-Emitter Leakage Current ––– ––– Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C) 2.20 IC = 10A, VGE = 15V 2.50 V IC = 10A, VGE = 15V TJ = 150°C 5.5 V VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C) ––– S VCE = 50V, IC = 10A, PW=80µs 150 µA VGE = 0V, VCE = 600V 700 VGE = 0V, VCE = 600V, TJ = 150°C 1.45 IC = 10A 1.45 V IC = 10A TJ = 150°C ±100 nA VGE = ±20V Ref.Fig. 5, 6,7 9,10,11 9,10,11 12 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance RBSOA Reverse Bias Safe Operting Area SCSOA Short Circuit Safe Operting Area Erec trr Irr Reverse Recovery energy of the diode Diode Reverse Recovery time Diode Peak Reverse Recovery Current Ref.Fig. Max. Units Conditions ––– IC = 10A ––– nC VCC = 400V CT1 ––– VGE = 15V CT4 247 µJ IC = 10A, VCC = 400V 360 VGE = 15V,RG = 47Ω, L = 200µH 607 Ls = 150nH TJ = 25°C 39 IC = 10A, VCC = 400V 29 VGE = 15V, RG = 47Ω, L = 200µH CT4 262 ns Ls = 150nH, TJ = 25°C 32 CT4 340 IC = 10A, VCC = 400V 13,15 464 µJ VGE = 15V,RG = 47Ω, L = 200µH WF1WF2 804 Ls = 150nH TJ = 150°C 14, 16 39 IC = 10A, VCC = 400V CT4 28 VGE = 15V, RG = 47Ω, L = 200µH 274 ns Ls = 150nH, TJ = 150°C WF1 34 WF2 ––– VGE = 0V ––– pF VCC = 30V ––– f = 1.0MHz 4 TJ = 150°C, IC = 44A, Vp =600V FULL SQUARE VCC = 500V, VGE = +15V to 0V,RG = 47Ω CT2 CT3 µs TJ = 150°C, Vp =600V,RG = 47Ω 10 ––– ––– WF4 VCC = 360V, VGE = +15V to 0V 17,18,19 ––– 245 330 µJ TJ = 150°C 20, 21 ––– 90 105 ns VCC = 400V, IF = 10A, L = 200µH CT4,WF3 ––– 19 22 A VGE = 15V,RG = 47Ω, Ls = 150nH Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 38 4.3 16.3 140 250 390 30 20 230 23 230 350 580 30 20 250 26 620 62 22 Note to are on page 15 2 www.irf.com IRG/B/S/SL10B60KD 25 180 160 20 140 120 IC (A) Ptot (W) 15 10 100 80 60 40 5 20 0 0 0 20 40 60 80 100 120 140 160 0 T C (°C) 20 40 60 80 100 120 140 160 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 IC (A) 10 µs 10 1 DC IC A) 20 µs 100 µs 1 1ms 0.1 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C www.irf.com 10000 0 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRG/B/S/SL10B60KD 40 40 VGE VGE VGE VGE VGE 35 30 VGE VGE VGE VGE VGE 35 30 25 ICE (A) ICE (A) 25 = 18V = 15V = 12V = 10V = 8.0V 20 20 15 15 10 10 5 5 0 = 18V = 15V = 12V = 10V = 8.0V 0 0 1 2 3 4 5 6 0 1 2 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs 5 6 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 35 30 -40°C 25°C 150°C 35 30 25 IF (A) 25 ICE (A) 4 Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 40 20 20 15 15 10 10 5 5 0 0 0 1 2 3 4 5 6 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs 4 3 VCE (V) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 VF (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs www.irf.com 20 20 18 18 16 16 14 14 12 ICE = 5.0A 10 ICE = 10A 8 ICE = 15A VCE (V) VCE (V) IRG/B/S/SL10B60KD 12 ICE = 5.0A 10 ICE = 10A 8 ICE = 15A 6 6 4 4 2 2 0 0 5 10 15 20 5 10 VGE (V) 15 20 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 20 80 18 T J = 25°C 70 T J = 150°C 16 60 12 10 ICE = 5.0A ICE = 10A 8 ICE = 15A 50 ICE (A) VCE (V) 14 40 30 6 20 T J = 150°C 4 10 2 0 T J = 25°C 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C www.irf.com 20 0 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 5 IRG/B/S/SL10B60KD 1000 800 700 tdOFF 500 Swiching Time (ns) Energy (µJ) 600 EOFF 400 300 EON 200 100 tdON tF 100 0 0 5 10 15 20 tR 10 25 0 5 10 IC (A) 15 Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=200µH; VCE= 400V RG= 47Ω; VGE= 15V 500 1000 EOFF 450 tdOFF 400 300 Swiching Time (ns) 350 EON 250 200 150 100 tdON tR 100 tF 50 0 10 0 50 100 R G (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=200µH; VCE= 400V ICE= 10A; VGE= 15V 6 25 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=200µH; VCE= 400V RG= 47Ω; VGE= 15V Energy (µJ) 20 150 0 50 100 150 RG (Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=200µH; VCE= 400V ICE= 10A; VGE= 15V www.irf.com IRG/B/S/SL10B60KD 25 RG = 22 Ω 15 RG = 47 Ω 10 RG = 100 Ω 20 IRR (A) 20 IRR (A) 25 RG = 10 Ω 15 10 5 5 0 0 0 5 10 15 20 0 25 50 100 150 RG (Ω) IF (A) Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 10A Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C 1200 25 10Ω 1100 1000 Q RR (µC) IRR (A) 20 22Ω 15 10 47Ω 900 100 Ω 800 20A 700 10A 600 5 5.0A 500 400 0 0 500 1000 diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 10A; TJ = 150°C www.irf.com 1500 0 500 1000 1500 diF /dt (A/µs) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C 7 IRG/B/S/SL10B60KD 450 400 10Ω 350 22 Ω Energy (µJ) 300 250 47 Ω 200 100 Ω 150 100 50 0 0 5 10 15 20 25 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 16 1000 Cies 14 300V 400V 10 VGE (V) Capacitance (pF) 12 Coes 100 8 6 4 Cres 2 0 10 0 1 10 VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 8 10 20 30 40 100 Q G , Total Gate Charge (nC) Fig. 23 - Typical Gate Charge vs. VGE ICE = 10A; L = 600µH www.irf.com IRG/B/S/SL10B60KD 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 τJ 0.05 0.01 0.02 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 τ3 τ2 τC τ Ri (°C/W) 0.285 τi (sec) 0.000134 0.241 0.288 0.000565 0.0083 τ3 Ci= τi/Ri Ci= i/Ri 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.01 0.02 0.1 τJ R1 R1 τJ τ1 τ1 R2 R2 τ2 τ3 τ2 Ci= τi/Ri Ci= i/Ri 0.01 R3 R3 SINGLE PULSE ( THERMAL RESPONSE ) τC τ τ3 Ri (°C/W) τi (sec) 0.846 0.000149 1.830 1.143 0.001575 0.027005 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRG/B/S/SL10B60KD L L VCC DUT 80 V + - 0 DUT 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver L - 5V 360V DC DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRG/B/S/SL10B60KD 600 12 600 30 500 10 500 25 8 400 20 6 300 400 90% ICE 4 15 90% test current 200 10% test current 5% V CE 100 10 I CE (A) 200 VCE (V) tf ICE (A) V CE (V) TEST CURRENT 300 5% ICE 0 2 100 0 0 tr 5% V CE 5 0 Eon Loss Eoff Loss 0.00 0.20 0.40 0.60 -2 0.80 16.00 time(µs) time (µs) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 100 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 15 400 100 V CE QR R 0 350 10 tR R -100 300 5 ICE 0 -400 10% Peak IRR Peak IRR -500 -600 -0.15 -5 0.05 0.15 -10 -20 0.25 time (µS) Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 www.irf.com 200 50 150 -15 -0.05 V CE (V) -200 IF (A) VF (V) 250 -300 16.10 -5 16.20 ICE (A) -100 -0.20 -100 15.90 100 50 0 -5.00 0.00 5.00 10.00 0 15.00 time (µS) Fig. WF4- Typ. S.C Waveform @ TJ = 150°C using Fig. CT.3 11 IRG/B/S/SL10B60KD TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1.15 (.045) MIN 1 2 LEAD ASSIGNMENTS HEXFET 1 - GATE 3 1234- 14.09 (.555) 13.47 (.530) IGBTs, CoPACK 1234- GATE COLLECTOR EMITTER COLLECTOR 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) 2 - DRAIN GATE 3 - SOURCE DRAIN SOURCE 4 - DRAIN DRAIN 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 0.55 (.022) 0.46 (.018) 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMPL E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" Note: "P" in assembly line position indicates "Lead-Free" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE 12 PAR T NU MB E R DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C www.irf.com IRG/B/S/SL10B60KD D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information T HIS IS AN IRF 530S WITH L OT CODE 8024 AS S E MBLE D ON WW 02, 2000 IN THE AS S E MB LY L INE "L " INTE RNAT IONAL RE CT IFIE R LOGO Note: "P" in as s embly line pos ition indicates "Lead-F ree" PAR T NU MBER F 530S AS S E MBL Y L OT CODE DAT E CODE YEAR 0 = 2000 WE EK 02 L INE L OR INT ERNAT IONAL RECT IF IER L OGO AS S EMB LY LOT CODE www.irf.com PART NUMB ER F 530S DAT E CODE P = DES IGNAT ES LEAD-F REE PRODUCT (OPT IONAL) YEAR 0 = 2000 WEEK 02 A = AS S EMB LY S IT E CODE 13 IRG/B/S/SL10B60KD TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information E XAMPLE : T HIS IS AN IRL3103L LOT CODE 1789 AS S E MB LE D ON WW 19, 1997 IN T HE AS S E MB LY LINE "C" Note: "P" in as sembly line pos ition indicates "Lead-F ree" INT E RNAT IONAL RECT IFIER LOGO AS S E MB LY LOT CODE PART NUMBER DATE CODE YE AR 7 = 1997 WEE K 19 LINE C OR INT E RNAT IONAL RECT IFIER LOGO AS S E MB LY LOT CODE 14 PART NUMBER DATE CODE P = DE S IGNAT ES LEAD-F REE PRODUCT (OPTIONAL) YE AR 7 = 1997 WEE K 19 A = AS S E MB LY S IT E CODE www.irf.com IRG/B/S/SL10B60KD D2Pak Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 11.60 (.457) 11.40 (.449) 1.65 (.065) 0.368 (.0145) 0.342 (.0135) 24.30 (.957) 23.90 (.941) 15.42 (.609) 15.22 (.601) TRL 1.75 (.069) 1.25 (.049) 10.90 (.429) 10.70 (.421) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes: This is only applied to TO-220AB package This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. Energy losses include "tail" and diode reverse recovery. VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 47Ω. TO-220 package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/04 www.irf.com 15