IRF IRGB10B60KD Insulated gate bipolar transistor with ultrafast soft recovery diode Datasheet

PD - 94382D
IRGB10B60KD
IRGS10B60KD
IRGSL10B60KD
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
• Low VCE (on) Non Punch Through IGBT Technology.
• Low Diode VF.
• 10µs Short Circuit Capability.
• Square RBSOA.
• Ultrasoft Diode Reverse Recovery Characteristics.
• Positive VCE (on) Temperature Coefficient.
VCES = 600V
IC = 12A, TC=100°C
G
tsc > 10µs, TJ=150°C
E
n-channel
Benefits
VCE(on) typ. = 1.8V
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
TO-220AB
IRGB10B60KD
D2Pak
IRGS10B60KD
TO-262
IRGSL10B60KD
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 25°C
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current „
Diode Continuous Forward Current
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Max.
Units
600
22
12
44
44
22
10
44
± 20
156
62
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Junction-to-Ambient (PCB Mount, steady state)‚
Weight
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
–––
0.50
–––
–––
1.44
0.8
3.4
–––
62
40
–––
Units
°C/W
g
1
8/18/04
IRG/B/S/SL10B60KD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage 600 –––
Temperature Coeff. of Breakdown Voltage ––– 0.3
Collector-to-Emitter Saturation Voltage
1.5 1.80
––– 2.20
Gate Threshold Voltage
3.5 4.5
Temperature Coeff. of Threshold Voltage ––– -10
Forward Transconductance
––– 7.0
Zero Gate Voltage Collector Current
––– 3.0
––– 300
Diode Forward Voltage Drop
––– 1.30
––– 1.30
Gate-to-Emitter Leakage Current
––– –––
Max. Units
Conditions
–––
V
VGE = 0V, IC = 500µA
––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C)
2.20
IC = 10A, VGE = 15V
2.50
V
IC = 10A, VGE = 15V
TJ = 150°C
5.5
V
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C)
–––
S
VCE = 50V, IC = 10A, PW=80µs
150
µA
VGE = 0V, VCE = 600V
700
VGE = 0V, VCE = 600V, TJ = 150°C
1.45
IC = 10A
1.45
V
IC = 10A
TJ = 150°C
±100 nA
VGE = ±20V
Ref.Fig.
5, 6,7
9,10,11
9,10,11
12
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
RBSOA
Reverse Bias Safe Operting Area
SCSOA
Short Circuit Safe Operting Area
Erec
trr
Irr
Reverse Recovery energy of the diode
Diode Reverse Recovery time
Diode Peak Reverse Recovery Current
Ref.Fig.
Max. Units
Conditions
–––
IC = 10A
–––
nC
VCC = 400V
CT1
–––
VGE = 15V
CT4
247
µJ
IC = 10A, VCC = 400V
360
VGE = 15V,RG = 47Ω, L = 200µH
607
Ls = 150nH
TJ = 25°C ƒ
39
IC = 10A, VCC = 400V
29
VGE = 15V, RG = 47Ω, L = 200µH
CT4
262
ns
Ls = 150nH, TJ = 25°C
32
CT4
340
IC = 10A, VCC = 400V
13,15
464
µJ
VGE = 15V,RG = 47Ω, L = 200µH
WF1WF2
804
Ls = 150nH
TJ = 150°C ƒ
14, 16
39
IC = 10A, VCC = 400V
CT4
28
VGE = 15V, RG = 47Ω, L = 200µH
274
ns
Ls = 150nH, TJ = 150°C
WF1
34
WF2
–––
VGE = 0V
–––
pF
VCC = 30V
–––
f = 1.0MHz
4
TJ = 150°C, IC = 44A, Vp =600V
FULL SQUARE
VCC = 500V, VGE = +15V to 0V,RG = 47Ω CT2
CT3
µs
TJ = 150°C, Vp =600V,RG = 47Ω
10 ––– –––
WF4
VCC = 360V, VGE = +15V to 0V
17,18,19
––– 245 330
µJ
TJ = 150°C
20, 21
––– 90 105
ns
VCC = 400V, IF = 10A, L = 200µH
CT4,WF3
––– 19
22
A
VGE = 15V,RG = 47Ω, Ls = 150nH
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
38
4.3
16.3
140
250
390
30
20
230
23
230
350
580
30
20
250
26
620
62
22
Note  to „ are on page 15
2
www.irf.com
IRG/B/S/SL10B60KD
25
180
160
20
140
120
IC (A)
Ptot (W)
15
10
100
80
60
40
5
20
0
0
0
20
40
60
80
100 120 140 160
0
T C (°C)
20
40
60
80
100 120 140 160
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10
IC (A)
10 µs
10
1
DC
IC A)
20 µs
100 µs
1
1ms
0.1
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
www.irf.com
10000
0
10
100
1000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRG/B/S/SL10B60KD
40
40
VGE
VGE
VGE
VGE
VGE
35
30
VGE
VGE
VGE
VGE
VGE
35
30
25
ICE (A)
ICE (A)
25
= 18V
= 15V
= 12V
= 10V
= 8.0V
20
20
15
15
10
10
5
5
0
= 18V
= 15V
= 12V
= 10V
= 8.0V
0
0
1
2
3
4
5
6
0
1
2
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
5
6
40
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
35
30
-40°C
25°C
150°C
35
30
25
IF (A)
25
ICE (A)
4
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
40
20
20
15
15
10
10
5
5
0
0
0
1
2
3
4
5
6
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
4
3
VCE (V)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
VF (V)
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
www.irf.com
20
20
18
18
16
16
14
14
12
ICE = 5.0A
10
ICE = 10A
8
ICE = 15A
VCE (V)
VCE (V)
IRG/B/S/SL10B60KD
12
ICE = 5.0A
10
ICE = 10A
8
ICE = 15A
6
6
4
4
2
2
0
0
5
10
15
20
5
10
VGE (V)
15
20
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
20
80
18
T J = 25°C
70
T J = 150°C
16
60
12
10
ICE = 5.0A
ICE = 10A
8
ICE = 15A
50
ICE (A)
VCE (V)
14
40
30
6
20
T J = 150°C
4
10
2
0
T J = 25°C
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
www.irf.com
20
0
5
10
15
20
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
5
IRG/B/S/SL10B60KD
1000
800
700
tdOFF
500
Swiching Time (ns)
Energy (µJ)
600
EOFF
400
300
EON
200
100
tdON
tF
100
0
0
5
10
15
20
tR
10
25
0
5
10
IC (A)
15
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L=200µH; VCE= 400V
RG= 47Ω; VGE= 15V
500
1000
EOFF
450
tdOFF
400
300
Swiching Time (ns)
350
EON
250
200
150
100
tdON
tR
100
tF
50
0
10
0
50
100
R G (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L=200µH; VCE= 400V
ICE= 10A; VGE= 15V
6
25
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L=200µH; VCE= 400V
RG= 47Ω; VGE= 15V
Energy (µJ)
20
150
0
50
100
150
RG (Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L=200µH; VCE= 400V
ICE= 10A; VGE= 15V
www.irf.com
IRG/B/S/SL10B60KD
25
RG = 22 Ω
15
RG = 47 Ω
10
RG = 100 Ω
20
IRR (A)
20
IRR (A)
25
RG = 10 Ω
15
10
5
5
0
0
0
5
10
15
20
0
25
50
100
150
RG (Ω)
IF (A)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 150°C; IF = 10A
Fig. 17 - Typical Diode IRR vs. IF
TJ = 150°C
1200
25
10Ω
1100
1000
Q RR (µC)
IRR (A)
20
22Ω
15
10
47Ω
900
100 Ω
800
20A
700
10A
600
5
5.0A
500
400
0
0
500
1000
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
ICE= 10A; TJ = 150°C
www.irf.com
1500
0
500
1000
1500
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V;TJ = 150°C
7
IRG/B/S/SL10B60KD
450
400
10Ω
350
22 Ω
Energy (µJ)
300
250
47 Ω
200
100 Ω
150
100
50
0
0
5
10
15
20
25
IF (A)
Fig. 21 - Typical Diode ERR vs. IF
TJ = 150°C
16
1000
Cies
14
300V
400V
10
VGE (V)
Capacitance (pF)
12
Coes
100
8
6
4
Cres
2
0
10
0
1
10
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
8
10
20
30
40
100
Q G , Total Gate Charge (nC)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 10A; L = 600µH
www.irf.com
IRG/B/S/SL10B60KD
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
τJ
0.05
0.01
0.02
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τ3
τ2
τC
τ
Ri (°C/W)
0.285
τi (sec)
0.000134
0.241
0.288
0.000565
0.0083
τ3
Ci= τi/Ri
Ci= i/Ri
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
1E+0
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.01
0.02
0.1
τJ
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ3
τ2
Ci= τi/Ri
Ci= i/Ri
0.01
R3
R3
SINGLE PULSE
( THERMAL RESPONSE )
τC
τ
τ3
Ri (°C/W) τi (sec)
0.846
0.000149
1.830
1.143
0.001575
0.027005
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
1E+0
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRG/B/S/SL10B60KD
L
L
VCC
DUT
80 V
+
-
0
DUT
480V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
L
- 5V
360V
DC
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRG/B/S/SL10B60KD
600
12
600
30
500
10
500
25
8
400
20
6
300
400
90% ICE
4
15
90% test current
200
10% test current
5% V CE
100
10
I CE (A)
200
VCE (V)
tf
ICE (A)
V CE (V)
TEST CURRENT
300
5% ICE
0
2
100
0
0
tr
5% V CE
5
0
Eon Loss
Eoff Loss
0.00
0.20
0.40
0.60
-2
0.80
16.00
time(µs)
time (µs)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
100
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
15
400
100
V CE
QR R
0
350
10
tR R
-100
300
5
ICE
0
-400
10%
Peak
IRR
Peak
IRR
-500
-600
-0.15
-5
0.05
0.15
-10
-20
0.25
time (µS)
Fig. WF3- Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
www.irf.com
200
50
150
-15
-0.05
V CE (V)
-200
IF (A)
VF (V)
250
-300
16.10
-5
16.20
ICE (A)
-100
-0.20
-100
15.90
100
50
0
-5.00
0.00
5.00
10.00
0
15.00
time (µS)
Fig. WF4- Typ. S.C Waveform
@ TJ = 150°C using Fig. CT.3
11
IRG/B/S/SL10B60KD
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
LEAD ASSIGNMENTS
1.15 (.045)
MIN
1
2
LEAD ASSIGNMENTS
HEXFET
1 - GATE
3
1234-
14.09 (.555)
13.47 (.530)
IGBTs, CoPACK
1234-
GATE
COLLECTOR
EMITTER
COLLECTOR
4.06 (.160)
3.55 (.140)
3X
1.40 (.055)
3X
1.15 (.045)
2 - DRAIN
GATE
3 - SOURCE
DRAIN
SOURCE
4 - DRAIN
DRAIN
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
0.55 (.022)
0.46 (.018)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMPL E : T HIS IS AN IR F 1010
L OT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T H E AS S E MB L Y L INE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INT E R NAT IONAL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
12
PAR T NU MB E R
DAT E CODE
YE AR 7 = 1997
WE E K 19
L INE C
www.irf.com
IRG/B/S/SL10B60KD
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
T HIS IS AN IRF 530S WITH
L OT CODE 8024
AS S E MBLE D ON WW 02, 2000
IN THE AS S E MB LY L INE "L "
INTE RNAT IONAL
RE CT IFIE R
LOGO
Note: "P" in as s embly line
pos ition indicates "Lead-F ree"
PAR T NU MBER
F 530S
AS S E MBL Y
L OT CODE
DAT E CODE
YEAR 0 = 2000
WE EK 02
L INE L
OR
INT ERNAT IONAL
RECT IF IER
L OGO
AS S EMB LY
LOT CODE
www.irf.com
PART NUMB ER
F 530S
DAT E CODE
P = DES IGNAT ES LEAD-F REE
PRODUCT (OPT IONAL)
YEAR 0 = 2000
WEEK 02
A = AS S EMB LY S IT E CODE
13
IRG/B/S/SL10B60KD
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
E XAMPLE : T HIS IS AN IRL3103L
LOT CODE 1789
AS S E MB LE D ON WW 19, 1997
IN T HE AS S E MB LY LINE "C"
Note: "P" in as sembly line
pos ition indicates "Lead-F ree"
INT E RNAT IONAL
RECT IFIER
LOGO
AS S E MB LY
LOT CODE
PART NUMBER
DATE CODE
YE AR 7 = 1997
WEE K 19
LINE C
OR
INT E RNAT IONAL
RECT IFIER
LOGO
AS S E MB LY
LOT CODE
14
PART NUMBER
DATE CODE
P = DE S IGNAT ES LEAD-F REE
PRODUCT (OPTIONAL)
YE AR 7 = 1997
WEE K 19
A = AS S E MB LY S IT E CODE
www.irf.com
IRG/B/S/SL10B60KD
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
11.60 (.457)
11.40 (.449)
1.65 (.065)
0.368 (.0145)
0.342 (.0135)
24.30 (.957)
23.90 (.941)
15.42 (.609)
15.22 (.601)
TRL
1.75 (.069)
1.25 (.049)
10.90 (.429)
10.70 (.421)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Notes:
 This is only applied to TO-220AB package
‚ This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
ƒ Energy losses include "tail" and diode reverse recovery.
„ VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 47Ω.
TO-220 package is not recommended for Surface Mount Application
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 08/04
www.irf.com
15
Similar pages