Maxim MAX9052AESA Micropower, single-supply, sot23 comparator precision reference ic Datasheet

19-1569; Rev 1; 1/00
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
Features
The MAX9040–MAX9043 and MAX9050–MAX9053 feature combinations of low-power comparators and a precision voltage reference. Their operating voltage range
makes them ideal for both +3V and +5V systems. The
MAX9040/MAX9041/MAX9050/MAX9051 have a single
comparator and reference consuming only 40µA of
supply current. The MAX9042/MAX9043/MAX9052/
MAX9053 have dual comparators and a reference,
while consuming only 55µA of supply current. Low-voltage operation and low supply current make these
devices ideal for battery-operated systems.
♦ Comparator + Precision Reference in SOT23
The comparators feature Rail-to-Rail® inputs and outputs, with a common-mode input voltage range that
extends 250mV beyond the supply rails. Input bias current is typically 1.0pA, and input offset voltage is typically 0.5mV. Internal hysteresis ensures clean output
switching, even with slow-moving input signals. The
output stage features a unique design that limits supply
current surges while switching, virtually eliminating supply glitches typical of many other comparators. This
design also minimizes overall power consumption
under dynamic conditions. The comparator outputs
have rail-to-rail push-pull output stages that sink and
source up to 8mA. The propagation delay is 400ns,
even with the low operating supply current.
♦ Internal ±3mV Hysteresis
The reference output voltage is set to 2.048V in the
MAX9040–MAX9043 and to 2.500V in the MAX9050–
MAX9053. These devices are offered in two grades: an
A grade with 0.4% initial accuracy and 6ppm/°C
tempco, and a B grade with 1% initial accuracy and
100ppm/°C tempco. The voltage reference features a
proprietary curvature-correction circuit and lasertrimmed thin-film resistors. The series-mode references
can sink or source up to 500µA of load current.
Applications
♦ +2.5V to +5.5V Single-Supply Operation
(MAX9040–MAX9043)
♦ Low Supply Current (MAX9042/43/52/53)
55µA Quiescent
65µA with 100kHz Switching
♦ 400ns Propagation Delay
♦ Rail-to-Rail Inputs
♦ Rail-to-Rail Output Stage Sinks and Sources 8mA
♦ Voltage Reference Offers
±0.4% max Initial Accuracy (MAX90_ _A)
6ppm/°C typ Temperature Coefficient
Stable for 0 to 4.7nF Capacitive Loads
Ordering Information
TEMP. RANGE
PINPACKAGE
TOP
MARK
MAX9040AEUK-T -40°C to +85°C
5 SOT23-5
ADNV
MAX9040BEUK-T -40°C to +85°C
5 SOT23-5
ADNX
MAX9041AEUT-T* -40°C to +85°C
6 SOT23-6
AAHF
MAX9041BEUT-T* -40°C to +85°C
6 SOT23-6
AAHH
MAX9041AESA*
-40°C to +85°C
8 SO
—
MAX9041BESA*
MAX9042AEUA
MAX9042BEUA
MAX9042AESA
MAX9042BESA
MAX9043AEUB
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
8 SO
8 µMAX
8 µMAX
8 SO
8 SO
10 µMAX
10 µMAX
—
—
—
—
—
—
—
PART
MAX9043BEUB
Ordering Information continued at end of data sheet.
*Future product—contact factory for availability.
Pin Configurations
Precision Battery Management
Window Comparators
IR Receivers
Level Translators
Digital Line Receivers
TOP VIEW
OUT 1
VEE 2
5
VCC
4
REF
MAX9040
MAX9050
Typical Operating Circuit appears at end of data sheet.
Functional Diagrams appear at end of data sheet.
IN+ 3
Selector Guide appears at end of data sheet.
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
SOT23-5
Pin Configurations continued at end of data sheet.
________________________________________________________________ Maxim Integrated Products
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.
For small orders, phone 1-800-835-8769.
MAX9040–MAX9043/MAX9050–MAX9053
General Description
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to VEE) ....................................-0.3V to +6V
All Other Pins ...................................(VEE - 0.3V) to (VCC + 0.3V)
Output Short-Circuit Duration
(OUT_, REF) .............Indefinite Short Circuit to Either Supply
Continuous Power Dissipation (TA = +70°C)
5-Pin SOT23 (derate 7.10mW/°C above +70°C)........571mW
6-Pin SOT23 (derate 8.70mW/°C above +70°C)........696mW
8-Pin µMAX (derate 4.1mW/°C above +70°C) ...........330mW
10-Pin µMAX (derate 5.6mW/°C above +70°C) .........444mW
8-Pin SO (derate 5.88mW/°C above +70°C)..............471mW
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS—A Grade (0.4% initial accuracy)
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
(Note 1)
PARAMETER
SYMBOL
Supply Voltage Range (Note 2)
VCC
Supply Current
ICC
CONDITIONS
MIN
TYP
MAX
MAX9040–MAX9043
2.5
5.5
MAX9050–MAX9053
2.7
5.5
MAX9040/MAX9041/
MAX9050/MAX9051
VCC = 2.7V
40
55
VCC = 5.0V
45
60
MAX9042/MAX9043/
MAX9052/MAX9053
VCC = 2.7V
55
80
VCC = 5.0V
60
85
Over entire commonmode range
TA = +25°C
±0.5
±5.0
UNITS
V
µA
COMPARATORS
Input Offset Voltage (Note 3)
Input Hysteresis
Input Bias Current
(Notes 4, 5, 6)
Input Offset Current (Note 4)
VOS
IB
IOS
CMVR
Common-Mode Rejection Ratio
(Note 4)
CMRR
Input Capacitance (Note 4)
PSRR
±3.0
Specified common-mode range
Specified common-mode range
TA = +25°C
ISC
Output Voltage Low
VOL
Output Voltage High
VOH
±10.0
±0.5
VEE - 0.25
VEE
Specified common-mode range
52
80
MAX9040–MAX9043, 2.5V ≤ VCC ≤ 5.5V
55
80
MAX9050–MAX9053, 2.7V ≤ VCC ≤ 5.5V
55
VCC
V
dB
dB
80
2.5
VOUT = VEE or VCC
nA
pA
VCC + 0.25
TA = -40°C to +85°C
mV
mV
±0.001
CIN
Output Short-Circuit Current
2
±7.0
VHYST
Common-Mode Voltage Range
(Notes 4, 7)
Power-Supply Rejection Ratio
TA = -40°C to +85°C
VCC = 5V
95
VCC = 2.7V
35
pF
mA
VCC = 5V, ISINK = 8mA
0.2
0.55
VCC = 2.7V, ISINK = 3.5mA
0.15
0.4
VCC = 5V, ISOURCE = 8mA
4.45
4.85
VCC = 2.7V, ISOURCE = 3.5mA
2.3
2.55
_______________________________________________________________________________________
V
V
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
(Note 1)
PARAMETER
Output Rise/Fall Times
Output Propagation Delay
(Note 8)
Power-Up Time
SYMBOL
tR/tF
tPD+/tPDtPU
CONDITIONS
MIN
TYP
CL = 15pF
40
CL = 50pF
50
CL = 200pF
80
CL = 15pF,
VCC = 2.7V
50mV overdrive
450
100mV overdrive
400
Time to VOUT valid logic state
MAX
UNITS
ns
ns
20
µs
VOLTAGE REFERENCE
Output Voltage
VREF
TA = +25°C
MAX9040–MAX9043
2.040
2.048
2.056
MAX9050–MAX9053
2.490
2.500
2.510
6
30
Output Voltage Temperature
Coefficient (Note 9)
TCVREF
Line Regulation
∆VREF/
∆VCC
2.5V ≤ VCC ≤ 5.5V, MAX9040–MAX9043
+50
+200
2.7V ≤ VCC ≤ 5.5V, MAX9050–MAX9053
+50
+200
Load Regulation
∆VREF/
∆IREF
Sourcing: 0 ≤ IREF ≤ 500µA
2
4
Sinking: -500µA ≤ IREF ≤ 0
3.5
6
Output Short-Circuit Current
ISC
Thermal Hysteresis (Note 10)
THYST
Long-Term Stability
Noise Voltage
EOUT
∆VREF/
∆VCC
Ripple Rejection
Turn-On Settling Time
tR(VREF)
VREF = VEE or VCC
V
ppm/°C
µV/V
µV/µA
4
mA
130
ppm
1000h at TA = +25°C
50
ppm
f = 0.1Hz to 10Hz
40
µVp-p
f = 10Hz to 10kHz
105
µVRMS
VCC = 5V ±100mV, f = 120Hz
84
dB
To VREF = 1% of final value
200
µs
Capacitive Load Stability Range
CL(VREF)
(Note 6)
0
4.7
nF
ELECTRICAL CHARACTERISTICS—B Grade (1% initial accuracy)
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
(Note 1)
PARAMETER
SYMBOL
Supply Voltage Range (Note 2)
VCC
Supply Current
ICC
CONDITIONS
MIN
TYP
MAX
MAX9040–MAX9043
2.5
5.5
MAX9050–MAX9053
2.7
5.5
MAX9040/MAX9041/
MAX9050/MAX9051
VCC = 2.7V
40
VCC = 5.0V
45
MAX9042/MAX9043/
MAX9052/MAX9053
VCC = 2.7V
55
VCC = 5.0V
60
100
UNITS
V
µA
130
_______________________________________________________________________________________
3
MAX9040–MAX9043/MAX9050–MAX9053
ELECTRICAL CHARACTERISTICS—A Grade (0.4% initial accuracy) (continued)
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
ELECTRICAL CHARACTERISTICS—B Grade (1% initial accuracy) (continued)
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
(Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
±1
±9.0
mV
COMPARATOR
Input Offset Voltage (Note 3)
Input Hysteresis
Input Bias Current
(Notes 4, 5, 6)
Input Offset Current (Note 4)
VOS
Specified common-mode range
±0.001
IOS
Specified common-mode range
±0.5
CMVR
Common-Mode Rejection Ratio
(Note 4)
CMRR
Power-Supply Rejection Ratio
PSRR
Input Capacitance (Note 4)
CIN
Output Short-Circuit Current
ISC
Output Voltage Low
VOL
Output Voltage High
VOH
Output Propagation Delay
(Note 8)
Power-Up Time
±3.0
IB
Common-Mode Voltage Range
(Notes 4, 7)
Output Rise/Fall Times
Over entire common-mode range
VHYST
tR/tF
tPD+/tPDtPU
VEE
mV
±25.0
pA
VCC
Specified common-mode range
52
80
MAX9040–MAX9043, 2.5V ≤ VCC ≤ 5.5V
55
80
MAX9050–MAX9053, 2.7V ≤ VCC ≤ 5.5V
55
80
VCC = 5V
95
VCC = 2.7V
35
VCC = 5V, ISINK = 8mA
0.2
VCC = 2.7V, ISINK = 3.5mA
0.15
VCC = 5V, ISOURCE = 8mA
4.45
dB
mA
0.55
4.85
CL = 15pF
40
CL = 50pF
50
CL = 200pF
80
CL = 15pF,
VCC = 2.7V
pF
V
V
2.55
VCC = 2.7V, ISOURCE = 3.5mA
V
dB
2.5
VOUT = VEE or VCC
nA
ns
50mV overdrive
450
100mV overdrive
400
ns
ns
µs
20
µs
Time to VOUT valid logic state
VOLTAGE REFERENCE
Output Voltage
VREF
Output Voltage Temperature
Coefficient (Note 9)
TCVREF
Line Regulation
∆VREF/
∆VCC
Load Regulation
∆VREF/
∆lREF
Output Short-Circuit Current
ISC
Thermal Hysteresis (Note 10)
THYST
Long-Term Stability
4
MAX9040–MAX9043
2.028
2.048
2.068
MAX9050–MAX9053
2.475
2.500
2.525
20
100
MAX9040–MAX9043
+50
+200
MAX9050–MAX9053
+50
+200
Sourcing: 0 ≤ IREF ≤ 500µA
2
4
Sinking: -500µA ≤ IREF ≤ 0
3.5
6
TA = +25°C
2.5V ≤ VCC ≤ 5.5V
VREF = VEE or VCC
1000h at TA = +25°C
V
ppm/°C
µV/V
µV/mA
4
mA
130
ppm
100
ppm
_______________________________________________________________________________________
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
(Note 1)
PARAMETER
SYMBOL
Noise Voltage
EOUT
CONDITIONS
MIN
TYP
MAX
UNITS
f = 0.1Hz to 10Hz
40
µVp-p
f = 10Hz to 10kHz
105
µVRMS
Ripple Rejection
∆VREF/
∆VCC
VCC = 5V ±100mV, f = 120Hz
84
dB
Turn-On Settling Time
tR(VREF)
To VREF = 1% of final value
200
µs
Capacitive Load Stability Range
(Note 6)
CL(VREF)
0
4.7
nF
Note 1: All devices are 100% production tested at TA = +25°C. Limits over the extended temperature range are guaranteed by
design, not production tested.
Note 2: Supply voltage range guaranteed by PSRR test on comparator and line regulation of REF.
Note 3: VOS is defined as the center of the input-referred hysteresis band.
Note 4: For the comparators with the inverting input (IN-) uncommitted.
Note 5: Input bias current is the average of the inverting and noninverting input bias currents.
Note 6: Not production tested. Guaranteed by design.
Note 7: Guaranteed by CMRR test.
Note 8: VOVERDRIVE is beyond the offset and hysteresis determined trip point.
Note 9: Temperature coefficient is measured by the box method; i.e., the maximum ∆VREF is divided by the maximum ∆T.
Note 10: Thermal hysteresis is defined as the change in VREF at +25°C before and after cycling the device from TMIN to TMAX.
Typical Operating Characteristics
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = +25°C, unless otherwise noted.)
VCC = +2.7V
40
30
20
VIN+ > VIN-
VCC = +5.0V
50
VCC = +2.7V
40
30
20
200
MAX9040-3/50-3 toc02A
SUPPLY CURRENT (µA)
50
60
MAX9040/MAX9041/MAX9050/MAX9051
SUPPLY CURRENT vs. SWITCHING FREQUENCY
SUPPLY CURRENT (µA)
VCC = +5.0V
MAX9040-3/50-3 toc01
VIN+ > VIN-
MAX9042/MAX9043/MAX9052/MAX9053
SUPPLY CURRENT vs. TEMPERATURE
SUPPLY CURRENT (µA)
60
MAX9040-3/50-3 toc01A
MAX9040/MAX9041/MAX9050/MAX9051
SUPPLY CURRENT vs. TEMPERATURE
150
100
VCC = +5.0V
50
10
10
0
VCC = +2.7V
0
-40
-20
0
20
40
TEMPERATURE (°C)
60
80
0
-40
-20
0
20
40
TEMPERATURE (°C)
60
80
0.01
0.1
1
10
100
1000
SWITCHING FREQUENCY (kHz)
_______________________________________________________________________________________
5
MAX9040–MAX9043/MAX9050–MAX9053
ELECTRICAL CHARACTERISTICS—B Grade (1% initial accuracy) (continued)
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = +25°C, unless otherwise noted.)
OUTPUT LOW VOLTAGE
vs. OUTPUT SINK CURRENT
1000
VCC = +2.7V
VOL (mV)
150
100
VCC = +5.0V
10
100
VCC = +5.0V
50
1
VCC = +2.7V
VIN+ > VIN1000
0.1
0
0.1
1
10
100
VCC = +5.0V
10
1
0.1
1
10
0.01
0.1
1
10
SWITCHING FREQUENCY (kHz)
OUTPUT SINK CURRENT (mA)
OUTPUT SOURCE CURRENT (mA)
OUTPUT SHORT-CIRCUIT CURRENT
vs. TEMPERATURE
OUTPUT SHORT-CIRCUIT CURRENT
vs. TEMPERATURE
PROPAGATION DELAY
vs. CAPACITIVE LOAD (VCC = 2.7V)
80
60
VCC = +2.7V
20
0
VCC = +5.0V
VOD = 50mV
550
60
40
0
20
40
60
80
450
tPD+ TO VOUT = 10%
OF FINAL VALUE
20
400
-20
0
20
40
60
tPD+ TO VOUT = 50%
OF FINAL VALUE
CAPACITIVE LOAD (pF)
tPD+ TO VOUT = 10%
OF FINAL VALUE
400
650
MAX9040-3/50-3 toc08
VOD = 50mV
500
450
0 100 200 300 400 500 600 700 800 900 1000
PROPAGATION DELAY
vs. TEMPERATURE
tPD- TO VOUT = 50%
OF FINAL VALUE
tPD- TO VOUT = 10%
OF FINAL VALUE
VOD = 50mV
600
500
tPD- TO VOUT = 50%
OF FINAL VALUE
400
350
300
300
CAPACITIVE LOAD (pF)
tPD+ TO VOUT = 10%
OF FINAL VALUE
450
350
0 100 200 300 400 500 600 700 800 900 1000
tPD+ TO VOUT = 50%
OF FINAL VALUE
550
tPD (ns)
tPD (ns)
550
80
TEMPERATURE (°C)
PROPAGATION DELAY
vs. CAPACITIVE LOAD (VCC = 5V)
600
tPD- TO VOUT = 10%
OF FINAL VALUE
350
-40
TEMPERATURE (°C)
650
tPD- TO VOUT = 50%
OF FINAL VALUE
500
VCC = +2.7V
0
-20
tPD+ TO VOUT = 50%
OF FINAL VALUE
MAX9040-3/50-3 toc09
40
80
600
MAX9040-3/50-3 toc07
VCC = +5.0V
VIN- > VIN+
OUT SHORTED TO VCC
tPD (ns)
100
100
MAX9040-3/50-3 toc06
VIN+ > VINOUT SHORTED TO VEE
OUTPUT SOURCE CURRENT (mA)
120
-40
VCC = +2.7V
100
0.1
0.01
1000
MAX9040-3/50-3 toc05
0.01
6
10,000
MAX9040-3/50-3 toc04
VIN+ < VIN-
OUTPUT HIGH VOLTAGE (VCC - VOH) (mV)
200
SUPPLY CURRENT (µA)
10,000
MAX9040-3/50-3 toc02
250
OUTPUT HIGH VOLTAGE
vs. OUTPUT SOURCE CURRENT
MAX9040-3/50-3 toc03
MAX9042/MAX9043/MAX9052/MAX9053
SUPPLY CURRENT vs. SWITCHING FREQUENCY
OUTPUT SINK CURRENT (mA)
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
tPD- TO VOUT = 10%
OF FINAL VALUE
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
_______________________________________________________________________________________
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
PROPAGATION DELAY
vs. INPUT OVERDRIVE
A
MAX9040-3/50-3 toc12
700
PROPAGATION DELAY (tPD-)
MAX9040-3/50-3 toc11
800
A
600
tPD+, VCC = 5.0V
500
tPD+, VCC = 2.7V
400
tPD-, VCC = 5.0V
300
B
tPD-, VCC = 2.7V
B
200
100ns/div
20 40 60 80 100 120 140 160 180 200
A = IN+, 50mV/div
B = OUT, 2V/div
SWITCHING CURRENT (OUT FALLING EDGE)
POWER-UP DELAY (OUT)
MAX9040-3/50-3 toc14
MAX9040-3/50-3 toc13
SWITCHING CURRENT (OUT RISING EDGE)
A
100ns/div
A = IN+, 50mV/div
B = OUT, 2V/div
INPUT OVERDRIVE (mV)
A
MAX9040-3/50-3 toc15
0
A
B
B
B
C
C
100ns/div
REFERENCE OUTPUT VOLTAGE
TEMPERATURE DRIFT
IB+
0.002
MAX9040-3/50-3 toc17
VIN- = +2.0V
IB0.001
1.00
OUTPUT VOLTAGE CHANGE (mV)
C
0.003
INPUT BIAS CURRENT (nA)
B
A = VCC, 2V/div
B = OUT, 1V/div
INPUT BIAS CURRENT
vs. INPUT VOLTAGE
POWER-UP DELAY (REF)
A
5µs/div
A = IN+, 100mV/div
B = OUT, 5V/div
C = ICC, 1mA/div
0.75
MAX9040-3/50-3 toc18
100ns/div
A = IN+, 100mV/div
B = OUT, 5V/div
C = ICC, 1mA/div
MAX9040-3/50-3 toc16
tPD (ns)
PROPAGATION DELAY (tPD+)
MAX9040-3/50-3 toc10
900
THREE TYPICAL PARTS
NORMALIZED TO +25°C
0.50
0.25
0
-0.25
-0.50
-0.75
-1.00
0
100µs/div
A = VCC, 2V/div
B = REF, 1V/div
C = REF, 50mV/div, 2.048V OFFSET
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
VIN+ (V)
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
_______________________________________________________________________________________
7
MAX9040–MAX9043/MAX9050–MAX9053
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = +25°C, unless otherwise noted.)
LOAD REGULATION
LINE REGULATION
50
REFERENCE OUTPUT VOLTAGE CHANGE (µV)
100
0
TA = +25°C
-50
TA = -40°C
-100
TA = +85°C
-150
2000
MAX9040-3/50-3 toc20
150
MAX9040-3/50-3 toc19
REFERENCE OUTPUT VOLTAGE CHANGE (µV)
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
TA = +85°C
1500
TA = +25°C
1000
500
TA = -40°C
0
-500
-1000
-200
-1500
2.5
3.0
3.5
4.0
4.5
5.0
5.5
-500
INPUT VOLTAGE (V)
-300
-100
100
300
500
LOAD CURRENT (µA)
Pin Description
PIN
MAX9040
MAX9050
8
MAX9041
MAX9051
MAX9042
MAX9052
MAX9043
MAX9053
NAME
FUNCTION
SOT23-5
SOT23-6
SO
SO/µMAX
µMAX
1
1
6
—
—
OUT
Comparator Output
2
2
4
4
5
VEE
Negative Supply Voltage
3
3
3
—
—
IN+
Comparator Noninverting Input
4
5
1
2
2
REF
Reference Voltage Output
5
6
7
8
10
VCC
Positive Supply Voltage
—
4
2
—
—
IN-
Comparator Inverting Input
—
—
5, 8
—
9
N.C.
—
—
—
1
1
OUTA
Comparator A Output
—
—
—
3
4
INA+
Comparator A Noninverting Input
—
—
—
5
6
INB+
Comparator B Noninverting Input
—
—
—
6
7
INB-
Comparator B Inverting Input
—
—
—
7
8
OUTB
—
—
—
—
3
INA-
No Connection. Not internally connected.
Comparator B Output
Comparator A Inverting Input
_______________________________________________________________________________________
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
The MAX9040–MAX9043 and MAX9050–MAX9053 feature single/dual, low-power, low-voltage comparators
and a precision voltage reference. They operate from a
single +2.5V to +5.5V (MAX904_) or +2.7V to +5.5V
(MAX905_) supply. The single comparators with reference (MAX9040/MAX9041/MAX9050/MAX9051) consume only 40µA of supply current, while the dual
comparators with reference (MAX9042/MAX9043/
MAX9052/MAX9053) consume only 55µA of supply current. Their common-mode input range extends 0.25V
beyond each rail. Internal hysteresis ensures clean output switching, even with slow-moving input signals.
The output stage employs a unique design that minimizes supply current surges while switching, virtually
eliminating the supply glitches typical of many other
comparators. Large internal output drivers allow rail-torail output swing that can sink and source up to 8mA of
current.
The precision reference uses a proprietary curvaturecorrection circuit and laser-trimmed thin-film resistors,
resulting in a temperature coefficient of less than
30ppm/°C over the extended temperature range and
initial accuracy of 0.4% (A grade). The reference output
voltage is set to 2.048V in the MAX9040–MAX9043 and
to 2.500V in the MAX9050–MAX9053.
Comparator Input Stage Circuitry
The devices’ input common-mode range extends from
(VEE - 0.25V) to (VCC + 0.25V). These comparators may
operate at any differential input voltage within these limits. Input bias current is typically 1.0pA if the input volt-
R1
R2
VREF
Comparator Output Stage Circuitry
The comparators in these devices contain a unique
output stage capable of rail-to-rail operation with loads
up to 8mA. Many comparators consume orders-of-magnitude more current during switching than during
steady-state operation. However, with this family of comparators, the supply current change during an output
transition is extremely small. The Typical Operating
Characteristics graph Supply Current vs. Switching
Frequency shows the minimal supply current increase
as the output switching frequency approaches 1MHz.
This characteristic reduces the need for power-supply
filter capacitors to reduce glitches created by comparator switching currents. Another advantage realized in
high-speed, battery-powered applications is a substantial increase in battery life.
Applications Information
Additional Hysteresis
These comparators have ±3mV internal hysteresis.
Additional hysteresis can be generated with two resistors using positive feedback (Figure 1). Use the following procedure to calculate resistor values:
1) Calculate the trip points of the comparator using
these formulas:
(
VCC
and
VCC
IN+
IN-
MAX9040–9043
MAX9050–9053
VEE
)

 V
CC − VREF R2

VTH = VREF + 


R1 + R2


OUT
VIN
age is between the supply rails. Comparator inputs are
protected from overvoltage by internal body diodes
connected to the supply rails. As the input voltage
exceeds the supply rails, these body diodes become
forward biased and begin to conduct. Consequently,
bias currents increase exponentially as the input voltage exceeds the supply rails.

R2 
VTL = VREF 1 −

 R1 + R2 
VTH is the threshold voltage at which the comparator
switches its output from high to low as V IN rises
above the trip point. VTL is the threshold voltage at
which the comparator switches its output from low to
high as VIN drops below the trip point.
2) The hysteresis band will be:



 R1 + R2 
VHYS = VTH - VTL = VCC 
Figure 1. Additional Hysteresis
R2
_______________________________________________________________________________________
9
MAX9040–MAX9043/MAX9050–MAX9053
Detailed Description
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
Board Layout and Bypassing
VCC
VCC
IN+
VIN
OUT
10k
Reference Output/Load Capacitance
IN-
0.1µF
Power-supply bypass capacitors are not typically needed, but would be called for in cases where supply
impedance is high, supply leads are long, or excessive
noise is expected on the supply lines. Use 100nF
bypass capacitors under these conditions. Minimize
signal trace lengths to reduce stray capacitance.
VEE
MAX9040–9043
MAX9050–9053
Figure 2. Time Averaging of the Input Signal for Data Recovery
The MAX904_/MAX905_ do not require an output
capacitor on REF for frequency stability. They are stable for capacitive loads up to 4.7nF. However, in applications where the load or the supply can experience
step changes, an output capacitor will reduce the
amount of overshoot (or undershoot) and assist the circuit’s transient response. When an application is not
subject to transient conditions, the REF capacitor can
be omitted.
3) In this example, let VCC = +5V and VREF = +2.5V.
 R2 
VTH = 2.5 + 2.5 

 R1 + R2 
and

R2 
VTL = 2.5 1 −

R1 + R2 

4) Select R2. In this example, we will choose 1kΩ.
5) Select VHYS. In this example, we will choose 50mV.
6) Solve for R1.
 R2 
VHYS = VCC 

 R1 + R2 
 1000 
0.050 = 5 

 R1 +1000 
Biasing for Data Recovery
Digital data is often embedded into a bandwidth- and
amplitude-limited analog path. Recovering the data can
be difficult. Figure 2 compares the input signal to a
time-averaged version of itself. This self- biases the
threshold to the average input voltage for optimal noise
margin.
Even severe phase distortion is eliminated from the digital output signal. Be sure to choose R1 and C1 so that
fCAR >>
1
2πR1C1
where fCAR is the fundamental carrier frequency of the
digital data stream.
Chip Information
MAX9040/41/50/51 TRANSISTOR COUNT: 204
MAX9042/43/52/53 TRANSISTOR COUNT: 280
where R1 ≈ 100kΩ, VTH = 2.525V, and VTL = 2.475V.
10
______________________________________________________________________________________
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
PART
COMPARATORS
PER PACKAGE
VREF
(V)
MAX9040
1
2.048
REF
MAX9041
1
2.048
Uncommitted
MAX9050
1
2.500
REF
MAX9051
1
2.500
Uncommitted
MAX9042
2
2.048
REF/Uncommitted
MAX9043
2
2.048
Uncommitted/Uncommitted
MAX9052
2
2.500
REF/Uncommitted
MAX9053
2
2.500
Uncommitted/Uncommitted
IN- CONNECTIONS
Pin Configurations (continued)
TOP VIEW
OUT 1
VEE 2
MAX9041
MAX9051
IN+ 3
6
VCC
5
REF
REF 1
IN- 2
IN+
4
IN-
3
MAX9041
MAX9051
VEE 4
8
N.C.
OUTA 1
7
VCC
REF 2
6
OUT
5
N.C.
3
VEE 4
TEMP. RANGE
PINPACKAGE
TOP
MARK
MAX9050AEUK-T -40°C to +85°C
5 SOT23-5
ADNW
MAX9050BEUK-T -40°C to +85°C
5 SOT23-5
ADNY
MAX9051AEUT-T* -40°C to +85°C
6 SOT23-6
AAHG
MAX9051BEUT-T* -40°C to +85°C
6 SOT23-6
AAHI
MAX9051AESA*
-40°C to +85°C
8 SO
—
MAX9051BESA*
MAX9052AEUA
MAX9052BEUA
MAX9052AESA
MAX9052BESA
MAX9053AEUB
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
8 SO
8 µMAX
8 µMAX
8 SO
8 SO
10 µMAX
10 µMAX
—
—
—
—
—
—
—
MAX9053BEUB
7
OUTB
6
INB-
5
INB+
10
VCC
9
N.C.
8
OUTB
REF
2
INA-
3
INA+
4
7
INB-
VEE
5
6
INB+
MAX9043
MAX9053
µMAX
Ordering Information (continued)
PART
VCC
µMAX/SO
SO
SOT23-6
INA+
MAX9042
MAX9052
OUTA 1
8
Typical Operating Circuit
VCC
VIN
VCC
0.1µF
IN+
OUT
IN-
MAX9041/9043
MAX9051/9053
REF
2.048V/2.500V
VEE
*Future product—contact factory for availability.
______________________________________________________________________________________
11
MAX9040–MAX9043/MAX9050–MAX9053
Selector Guide
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
Functional Diagrams
OUTA
MAX9042
MAX9052
VEE
OUT
REF
VCC
REF
VCC
OUTB
INB-
INA+
REF
IN+
REF
MAX9040
MAX9050
VEE
OUT
REF
VEE
INB+
OUTA
MAX9043
MAX9053
REF
VCC
OUTB
REF
INA-
VCC
INB-
INA+
REF
IN+
IN-
VEE
INB+
MAX9041
MAX9051
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2000 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.
Similar pages