PD - 96966A IRFP4242PbF PDP MOSFET Features l Advanced process technology l Key parameters optimized for PDP Sustain & Energy Recovery applications l Low EPULSE rating to reduce the power dissipation in Sustain & ER applications l Low QG for fast response l High repetitive peak current capability for reliable operation l Short fall & rise times for fast switching l175°C operating junction temperature for improved ruggedness l Repetitive avalanche capability for robustness and reliability Key Parameters VDS min 300 V VDS (Avalanche) typ. 360 RDS(ON) typ. @ 10V 49 V m: IRP max @ TC= 100°C 93 A TJ max 175 °C D D G G S D S TO-247AC G D S G a te D ra in S o u rc e Description This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for PDP driving applications. Absolute Maximum Ratings Max. Units Gate-to-Source Voltage ±30 V A Parameter VGS ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 46 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 33 IDM Pulsed Drain Current 190 IRP @ TC = 100°C Repetitive Peak Current PD @TC = 25°C Power Dissipation 430 PD @TC = 100°C Power Dissipation 210 Linear Derating Factor 2.9 W/°C TJ Operating Junction and -40 to + 175 °C TSTG Storage Temperature Range c g 93 Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw x 300 W x 10lb in (1.1N m) N Thermal Resistance Parameter RθJC Notes through www.irf.com Junction-to-Case f Typ. Max. Units ––– 0.35 °C/W are on page 8 1 7/25/05 IRFP4242PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Conditions Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 300 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 220 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 49 59 mΩ VGS = 10V, ID = 33A e VGS(th) Gate Threshold Voltage 3.0 ––– 5.0 V VDS = VGS, ID = 250µA ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -15 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 5.0 µA V mV/°C Reference to 25°C, ID = 1mA ––– ––– 150 ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 gfs Forward Transconductance 78 ––– ––– S Qg Total Gate Charge ––– 165 247 nC Qgd Gate-to-Drain Charge ––– 61 ––– tst Shoot Through Blocking Time 100 ––– ––– EPULSE Energy per Pulse ––– 1960 ––– ––– 3740 ––– VDS = 240V, VGS = 0V VDS = 240V, VGS = 0V, TJ = 125°C Gate-to-Source Forward Leakage IGSS VGS = 0V, ID = 250µA nA VGS = 20V VGS = -20V ns VDS = 25V, ID = 33A VDD = 150V, ID = 33A, VGS = 10Ve VDD = 240V, VGS = 15V, RG= 5.1Ω L = 220nH, C= 0.4µF, VGS = 15V µJ VDS = 240V, RG= 4.7Ω, TJ = 25°C L = 220nH, C= 0.4µF, VGS = 15V VDS = 240V, RG= 4.7Ω, TJ = 100°C VGS = 0V Ciss Input Capacitance ––– 7370 ––– Coss Output Capacitance ––– 520 ––– Crss Reverse Transfer Capacitance ––– 220 ––– ƒ = 1.0MHz, pF VDS = 25V See Fig.9 Coss eff. Effective Output Capacitance ––– 320 ––– VGS = 0V, VDS = 0V to 240V LD Internal Drain Inductance ––– 5.0 ––– Between lead, nH LS Internal Source Inductance ––– 13 ––– D 6mm (0.25in.) G from package S and center of die contact Avalanche Characteristics Typ. Max. Units EAS Single Pulse Avalanche Energyd ––– 700 mJ EAR Repetitive Avalanche Energy c ––– 43 mJ VDS(Avalanche) Repetitive Avalanche Voltagec 360 ––– V IAS Avalanche Currentd ––– 33 A Parameter Diode Characteristics Parameter IS @ TC = 25°C Continuous Source Current Min. Typ. Max. Units ––– ––– (Body Diode) ISM Pulsed Source Current A ––– ––– Conditions MOSFET symbol 46 showing the integral reverse 190 p-n junction diode. (Body Diode)c VSD Diode Forward Voltage ––– ––– 1.0 V TJ = 25°C, IS = 33A, VGS = 0V e trr Reverse Recovery Time ––– 300 450 ns TJ = 25°C, IF = 33A, VDD = 50V Qrr Reverse Recovery Charge ––– 2330 3500 nC di/dt = 100A/µs e 2 www.irf.com IRFP4242PbF 1000 1000 BOTTOM TOP 100 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 7.0V 10 BOTTOM 100 7.0V 10 ≤ 60µs PULSE WIDTH Tj = 175°C ≤ 60µs PULSE WIDTH Tj = 25°C 1 1 0.1 1 10 0.1 100 1 Fig 1. Typical Output Characteristics 100 Fig 2. Typical Output Characteristics 3.5 RDS(on) , Drain-to-Source On Resistance 1000.0 100.0 TJ = 175°C TJ = 25°C 10.0 VDS = 30V ≤ 60µs PULSE WIDTH 1.0 4.0 5.0 6.0 7.0 ID = 33A 3.0 VGS = 10V 2.5 (Normalized) ID, Drain-to-Source Current(Α) 10 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 2.0 1.5 1.0 0.5 8.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 4000 4000 3000 Energy per pulse (µJ) L = 220nH C = 0.4µF 100°C 25°C 3500 Energy per pulse (µJ) VGS 15V 10V 8.0V 7.0V 2500 2000 1500 L = 220nH C = Variable 100°C 25°C 3000 2000 1000 1000 500 0 180 200 220 240 VDS, Drain-to -Source Voltage (V) Fig 5. Typical EPULSE vs. Drain-to-Source Voltage www.irf.com 170 180 190 200 210 220 230 240 250 ID, Peak Drain Current (A) Fig 6. Typical EPULSE vs. Drain Current 3 IRFP4242PbF 5000 1000.0 Energy per pulse (µJ) 4000 ISD , Reverse Drain Current (A) L = 220nH C= 0.4µF C= 0.3µF C= 0.2µF 3000 2000 1000 100.0 TJ = 175°C 10.0 1.0 TJ = 25°C VGS = 0V 0 25 50 75 100 125 0.1 150 0.2 Temperature (°C) 20 VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) Coss = Cds + Cgd 8000 Ciss 6000 4000 2000 Crss 1 1.2 ID= 33A VDS = 240V 16 VDS= 150V VDS= 60V 12 8 4 0 10 100 0 1000 40 80 120 160 200 240 280 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) Fig 9. Typical Capacitance vs.Drain-to-Source Voltage Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage 48 1000 ID, Drain-to-Source Current (A) 42 36 ID , Drain Current (A) 1.0 Coss 0 30 24 18 12 OPERATION IN THIS AREA LIMITED BY R DS (on) 100 1µsec 10 100µsec 0 10µsec 1 Tc = 25°C Tj = 175°C Single Pulse 6 0.1 25 50 75 100 125 150 175 TC , CaseTemperature (°C) Fig 11. Maximum Drain Current vs. Case Temperature 4 0.8 Fig 8. Typical Source-Drain Diode Forward Voltage VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 10000 0.6 VSD, Source-to-Drain Voltage (V) Fig 7. Typical EPULSE vs.Temperature 12000 0.4 1 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 12. Maximum Safe Operating Area www.irf.com 3000 600 EAS, Single Pulse Avalanche Energy (mJ) RDS (on), Drain-to -Source On Resistance (mΩ) IRFP4242PbF ID = 33A 500 400 300 200 TJ = 125°C 100 TJ = 25°C ID 4.9A 6.3A BOTTOM 33A TOP 2500 2000 1500 1000 500 0 0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 25 VGS, Gate-to-Source Voltage (V) 100 125 150 175 Fig 14. Maximum Avalanche Energy Vs. Temperature 5.0 140 4.5 120 Repetitive Peak Current (A) VGS(th) Gate threshold Voltage (V) 75 Starting TJ, Junction Temperature (°C) Fig 13. On-Resistance Vs. Gate Voltage 4.0 50 ID = 250µA 3.5 3.0 2.5 ton= 1µs Duty cycle = 0.25 Half Sine Wave Square Pulse 100 80 60 40 20 2.0 0 1.5 -75 -50 -25 0 25 50 75 25 100 125 150 175 50 75 100 125 150 175 Case Temperature (°C) TJ , Temperature ( °C ) Fig 16. Typical Repetitive peak Current vs. Case temperature Fig 15. Threshold Voltage vs. Temperature Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 R1 R1 0.05 0.01 τJ 0.02 0.01 τJ τ1 R2 R2 τ2 τ1 τC τ τ2 Ri (°C/W) τi (sec) 0.1315 0.000555 0.2186 0.023373 Ci= τi/Ri Ci i/Ri 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFP4242PbF D.U.T Driver Gate Drive - - - D.U.T. ISD Waveform Reverse Recovery Current RG P.W. Period * + di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + • • • • Period P.W. + VDD + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V tp A 0.01Ω I AS Fig 19a. Unclamped Inductive Test Circuit Fig 19b. Unclamped Inductive Waveforms Id Vds Vgs L DUT 0 VCC Vgs(th) 1K Qgs1 Qgs2 Fig 20a. Gate Charge Test Circuit 6 Qgd Qgodr Fig 20b. Gate Charge Waveform www.irf.com IRFP4242PbF Fig 21a. tst and EPULSE Test Circuit Fig 21b. tst Test Waveforms Fig 21c. EPULSE Test Waveforms www.irf.com 7 IRFP4242PbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2000 IN THE AS SEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INT ERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE PART NUMBER IRFPE30 56 035H 57 DATE CODE YEAR 0 = 2000 WEEK 35 LINE H TO-247AC package is not recommended for Surface Mount Application. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 1.28mH, RG = 25Ω, IAS = 33A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C. Half sine wave with duty cycle = 0.25, ton=1µsec. Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/05 8 www.irf.com