MC68HC08BD24 Data Sheet M68HC08 Microcontrollers Rev. 1.1 MC68HC08BD24/D July 14, 2005 freescale.com Technical Data — MC68HC08BD24 List of Sections Section 1. General Description . . . . . . . . . . . . . . . . . . . . 21 Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Section 3. Random-Access Memory (RAM) . . . . . . . . . . 49 Section 4. Read-Only Memory (ROM) . . . . . . . . . . . . . . . 51 Section 5. Configuration Register (CONFIG) . . . . . . . . . 53 Section 6. Central Processor Unit (CPU) . . . . . . . . . . . . 57 Section 7. System Integration Module (SIM) . . . . . . . . . 77 Section 8. Oscillator (OSC) . . . . . . . . . . . . . . . . . . . . . . 101 Section 9. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . . 105 Section 10. Timer Interface Module (TIM) . . . . . . . . . . . 115 Section 11. Pulse Width Modulator (PWM) . . . . . . . . . . 137 Section 12. Analog-to-Digital Converter (ADC) . . . . . . 143 Section 13. DDC12AB Interface . . . . . . . . . . . . . . . . . . . 153 Section 14. Sync Processor . . . . . . . . . . . . . . . . . . . . . . 169 Section 15. Input/Output (I/O) Ports . . . . . . . . . . . . . . . 189 Section 16. External Interrupt (IRQ) . . . . . . . . . . . . . . . 211 Section 17. Computer Operating Properly (COP) . . . . 217 Section 18. Break Module (BRK) . . . . . . . . . . . . . . . . . . 223 Section 19. Electrical Specifications. . . . . . . . . . . . . . . 231 Section 20. Mechanical Specifications . . . . . . . . . . . . . 239 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 3 Technical Data 4 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Table of Contents Section 1. General Description 1.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Section 2. Memory Map 2.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 31 2.4 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Section 3. Random-Access Memory (RAM) 3.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Section 4. Read-Only Memory (ROM) MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 4.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Technical Data 5 Section 5. Configuration Register (CONFIG) 5.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3 Configuration Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.4 Configuration Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Section 6. Central Processor Unit (CPU) 6.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 6.7 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.8 Instruction Set Summary 6.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Section 7. System Integration Module (SIM) 7.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 81 7.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.3.2 Clock Start-Up from POR . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Technical Data 6 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 7.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 81 7.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 82 7.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 83 7.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 7.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . . 85 7.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 7.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . 86 7.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . 87 7.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . . 87 7.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 7.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.6.2 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.6.2.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . 93 7.6.2.2 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . 93 7.6.3 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.6.4 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.6.5 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . 94 7.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 7.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 7.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.8.1 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . 98 7.8.2 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . 99 7.8.3 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . 100 Section 8. Oscillator (OSC) MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 8.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.3 Oscillator External Connections . . . . . . . . . . . . . . . . . . . . . . .102 Technical Data 7 8.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.4.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . 103 8.4.2 Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . 103 8.4.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 103 8.4.4 External Clock Source (OSCXCLK) . . . . . . . . . . . . . . . . . . 103 8.4.5 Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 8.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 8.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 8.6 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 104 Section 9. Monitor ROM (MON) 9.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 9.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 9.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 9.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 9.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 9.4.3 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 9.4.4 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 9.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 9.4.6 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 Section 10. Timer Interface Module (TIM) 10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 10.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 10.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Technical Data 8 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 10.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 120 10.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .121 10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 121 10.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 122 10.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 123 10.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 10.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 10.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 126 10.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 10.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 10.10.1 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . 127 10.10.2 TIM Counter Registers (TCNTH:TCNTL) . . . . . . . . . . . . . . 129 10.10.3 TIM Counter Modulo Registers (TMODH:TMODL) . . . . . . 130 10.10.4 TIM Channel Status and Control Registers (TSC0:TSC1) . 131 10.10.5 TIM Channel Registers (TCH0H/L:TCH1H/L) . . . . . . . . . . 135 Section 11. Pulse Width Modulator (PWM) 11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 11.4 PWM Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 11.4.1 PWM Data Registers 0 to 15 (0PWM–15PWM). . . . . . . . . 140 11.4.2 PWM Control Registers 1 and 2 (PWMCR1:PWMCR2) . . 141 Section 12. Analog-to-Digital Converter (ADC) 12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 12.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 9 12.4.2 12.4.3 12.4.4 12.4.5 12.5 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 12.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 12.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 12.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 12.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 12.7.1 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . . 148 12.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 12.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .148 12.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 12.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . 151 Section 13. DDC12AB Interface 13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 13.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 13.5 DDC Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 13.6 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 13.6.1 DDC Address Register (DADR) . . . . . . . . . . . . . . . . . . . . . 156 13.6.2 DDC2 Address Register (D2ADR) . . . . . . . . . . . . . . . . . . . 157 13.6.3 DDC Control Register (DCR) . . . . . . . . . . . . . . . . . . . . . . . 158 13.6.4 DDC Master Control Register (DMCR) . . . . . . . . . . . . . . . 159 13.6.5 DDC Status Register (DSR) . . . . . . . . . . . . . . . . . . . . . . . . 162 13.6.6 DDC Data Transmit Register (DDTR) . . . . . . . . . . . . . . . . 164 13.6.7 DDC Data Receive Register (DDRR) . . . . . . . . . . . . . . . . . 165 13.7 Technical Data 10 Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 166 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Section 14. Sync Processor 14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 14.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 14.5 Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 14.5.1 Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 14.5.1.1 Hsync Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . 174 14.5.1.2 Vsync Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . 174 14.5.1.3 Composite Sync Polarity Detection . . . . . . . . . . . . . . . . 174 14.5.2 Sync Signal Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 14.5.3 Polarity Controlled HSYNCO and VSYNCO Outputs. . . . . 175 14.5.4 Clamp Pulse Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 14.5.5 Low Vertical Frequency Detect . . . . . . . . . . . . . . . . . . . . . 177 14.6 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 14.6.1 Sync Processor Control & Status Register (SPCSR). . . . . 177 14.6.2 Sync Processor Input/Output Control Register (SPIOCR) . 179 14.6.3 Vertical Frequency Registers (VFRs). . . . . . . . . . . . . . . . . 181 14.6.4 Hsync Frequency Registers (HFRs). . . . . . . . . . . . . . . . . . 183 14.6.5 Sync Processor Control Register 1 (SPCR1). . . . . . . . . . . 185 14.6.6 H&V Sync Output Control Register (HVOCR) . . . . . . . . . . 186 14.7 System Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 Section 15. Input/Output (I/O) Ports 15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 15.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 15.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 15.3.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . . 194 15.3.3 Port A Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 15.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 15.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 11 15.4.2 15.4.3 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . 197 Port B Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 15.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 15.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 15.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . . 200 15.5.3 Port C Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 15.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 15.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 15.6.2 Data Direction Register D. . . . . . . . . . . . . . . . . . . . . . . . . . 203 15.6.3 Port D Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 15.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 15.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 15.7.2 Data Direction Register E. . . . . . . . . . . . . . . . . . . . . . . . . . 207 15.7.3 Port E Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Section 16. External Interrupt (IRQ) 16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212 16.5 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 16.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 215 16.7 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 215 Section 17. Computer Operating Properly (COP) 17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 17.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 17.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 17.4.1 OSCXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 17.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Technical Data 12 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 17.4.3 17.4.4 17.4.5 17.4.6 17.4.7 17.4.8 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 220 17.5 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 17.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221 17.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221 17.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 17.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222 17.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222 17.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 222 Section 18. Break Module (BRK) 18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224 18.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 226 18.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .226 18.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 226 18.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 226 18.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 18.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226 18.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 18.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 18.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . 227 18.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 228 18.6.3 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 228 18.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 230 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 13 Section 19. Electrical Specifications 19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 19.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 232 19.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 233 19.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 19.6 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 234 19.7 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 19.8 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 19.9 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 19.10 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 237 19.11 Sync Processor Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 19.12 DDC12AB Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238 19.12.1 DDC12AB Interface Input Signal Timing . . . . . . . . . . . . . . 238 19.12.2 DDC12AB Interface Output Signal Timing . . . . . . . . . . . . . 238 Section 20. Mechanical Specifications Technical Data 14 20.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239 20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 20.3 44-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . . 240 20.4 42-Pin Shrink Dual in-Line Package (SDIP) . . . . . . . . . . . . . . 241 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 List of Figures Figure MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Title Page 1-1 1-2 1-3 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 44-Pin QFP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . 25 42-Pin SDIP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . 26 2-1 2-2 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . .35 5-1 5-2 Configuration Register 0 (CONFIG0) . . . . . . . . . . . . . . . . . . . . 54 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . . 55 6-1 6-2 6-3 6-4 6-5 6-6 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . . 62 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10 7-11 7-12 7-13 SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 OSC Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Interrupt Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . . 90 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . . 93 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . . 93 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Technical Data 15 Figure Title Page 7-14 7-15 7-16 7-17 7-18 7-19 7-20 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . . 96 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . . 96 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Stop Mode Recovery from Interrupt or Break . . . . . . . . . . . . . . 97 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . . 98 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . . 99 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 100 8-1 Oscillator External Connections . . . . . . . . . . . . . . . . . . . . . . .102 9-1 9-2 9-3 9-4 9-5 Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Sample Monitor Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 122 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . 127 TIM Counter Registers (TCNTH:TCNTL) . . . . . . . . . . . . . . . . 130 TIM Counter Modulo Registers (TMODH:TMODL). . . . . . . . . 131 TIM Channel Status and Control Registers (TSC0:TSC1) . . . 132 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 TIM Channel Registers (TCH0H/L:TCH1H/L). . . . . . . . . . . . . 136 11-1 PWM Data Registers 0 to 15 (0PWM–15PWM) . . . . . . . . . . . 140 11-2 PWM Control Register 1 and 2 (PWMCR1:PWMCR2). . . . . . 141 11-3 8-Bit PWM Output Waveforms . . . . . . . . . . . . . . . . . . . . . . . . 142 12-1 12-2 12-3 12-4 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 ADC Status and Control Register (ADSCR) . . . . . . . . . . . . . . 148 ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 ADC Input Clock Register (ADICLK) . . . . . . . . . . . . . . . . . . . 151 13-1 DDC Address Register (DADR) . . . . . . . . . . . . . . . . . . . . . . .156 13-2 DDC2 Address Register (D2ADR) . . . . . . . . . . . . . . . . . . . . . 157 Technical Data 16 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Figure MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Title Page 13-3 13-4 13-5 13-6 13-7 13-8 DDC Control Register (DCR) . . . . . . . . . . . . . . . . . . . . . . . . . 158 DDC Master Control Register (DMCR). . . . . . . . . . . . . . . . . . 159 DDC Status Register (DSR) . . . . . . . . . . . . . . . . . . . . . . . . . . 162 DDC Data Transmit Register (DDTR). . . . . . . . . . . . . . . . . . . 164 DDC Data Receive Register (DDRR) . . . . . . . . . . . . . . . . . . . 165 Data Transfer Sequences for Master/Slave Transmit/Receive Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 14-1 14-2 14-3 14-4 14-5 14-6 14-7 14-8 14-9 14-10 Sync Processor Block Diagram . . . . . . . . . . . . . . . . . . . . . . .173 Clamp Pulse Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Sync Processor Control & Status Register (SPCSR) . . . . . . . 177 Sync Processor Input/Output Control Register (SPIOCR) . . . 179 Vertical Frequency High Register . . . . . . . . . . . . . . . . . . . . . . 181 Vertical Frequency Low Register . . . . . . . . . . . . . . . . . . . . . . 181 Hsync Frequency High Register . . . . . . . . . . . . . . . . . . . . . . . 183 Hsync Frequency Low Register . . . . . . . . . . . . . . . . . . . . . . .183 Sync Processor Control Register 1 (SPCR1) . . . . . . . . . . . . . 185 H&V Sync Output Control Register (HVOCR) . . . . . . . . . . . . 186 15-1 15-2 15-3 15-4 15-5 15-6 15-7 15-8 15-9 15-10 15-11 15-12 15-13 15-14 15-15 15-16 15-17 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 194 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 PWM Control Register 1 (PWMCR1) . . . . . . . . . . . . . . . . . . . 195 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 197 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 PWM Control Register 1 (PWMCR1) . . . . . . . . . . . . . . . . . . . 198 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Data Direction Register C (DDRC) . . . . . . . . . . . . . . . . . . . . . 200 Port C I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . . 203 Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Port D Configuration Register (PDCR) . . . . . . . . . . . . . . . . . . 205 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . . . 207 Technical Data 17 Figure Title Page 15-18 Port E I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 15-19 Configuration Register 0 (CONFIG0) . . . . . . . . . . . . . . . . . . . 209 16-1 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 213 16-2 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 216 17-1 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 17-2 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . 220 17-3 COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . . 221 18-1 18-2 18-3 18-4 18-5 18-6 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 225 Break Status and Control Register (BRKSCR). . . . . . . . . . . . 227 Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . . 228 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . . 228 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 229 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 230 19-1 ADC Input Voltage vs. Step Readings . . . . . . . . . . . . . . . . . . 237 20-1 44-Pin QFP (Case 824E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 20-2 42-Pin SDIP (Case 858) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 Technical Data 18 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 List of Tables Table Title Page 1-1 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 2-1 Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 6-1 6-2 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7-1 7-2 7-3 7-4 7-5 SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . .80 Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 SIM Registers Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Mode Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 111 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 112 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 112 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 113 READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . . 113 RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . . 114 Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . 114 10-1 10-2 10-3 10-4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 TIM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .118 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . . 134 11-1 PWM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 138 11-2 PWM Channels and Port I/O pins. . . . . . . . . . . . . . . . . . . . . . 141 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 19 Table Title Page 12-1 ADC Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 12-2 MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 12-3 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 13-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 13-2 DDC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 155 13-3 Baud Rate Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 14-1 14-2 14-3 14-4 14-5 14-6 14-7 14-8 14-9 14-10 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Sync Processor I/O Register Summary . . . . . . . . . . . . . . . . . 172 Sync Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Sync Output Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 ATPOL, VINVO, and HINVO setting. . . . . . . . . . . . . . . . . . . .179 Sample Vertical Frame Frequencies . . . . . . . . . . . . . . . . . . . 182 Clamp Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 HSYNC Polarity Detection Pulse Width . . . . . . . . . . . . . . . . . 185 ATPOL, VINVO, and HINVO setting. . . . . . . . . . . . . . . . . . . .186 Free-Running HSYNC and VSYNC Options . . . . . . . . . . . . . 187 15-1 15-2 15-3 15-4 15-5 15-6 15-7 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .190 Port Control Register Bits Summary. . . . . . . . . . . . . . . . . . . .192 Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Port E Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 16-1 IRQ I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .213 18-1 Break Module I/O Register Summary . . . . . . . . . . . . . . . . . . . 225 Technical Data 20 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 1. General Description 1.1 Contents 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 1.2 Introduction The MC68HC08BD24 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08 Family is based on the customer-specified integrated circuit (CSIC) design strategy. All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types. With special modules such as the sync processor, analog-to-digital converter, pulse modulator module, and DDC12AB interface, the MC68HC08BD24 is designed specifically for use in digital monitor systems. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 21 1.3 Features Features of the MC68HC08BD24 MCU include the following: • High-performance M68HC08 architecture • Fully upward-compatible object code with M6805, M146805, and M68HC05 families • Low-power design; fully static with stop and wait modes • 5V operating voltage • 6MHz internal bus frequency, with 24MHz external crystal • 24,576 + 512 bytes of on-chip read-only memory (ROM) • 512 bytes of on-chip random access memory (RAM) • Sync signal processor with the following features: – Horizontal and vertical frequency counters – Low vertical frequency indicator (40.7Hz) – Polarity controlled Hsync and Vsync outputs from separate sync or composite sync inputs – Internal generated free-running Hsync and Vsync pulses – CLAMP pulse output to the external pre-amp chip • 6-channel, 8-bit analog-to-digital converter (ADC) • 16-channel, 8-bit pulse width modulator (PWM) • DDC12AB1 module with the following: – DDC1 hardware – Multi-master IIC2 hardware for DDC2AB; with dual address • 16-bit, 2-channel timer interface module (TIM) with selectable input capture, output compare, and PWM capability on one channel 1. DDC is a VESA bus standard. 2. IIC is a proprietary Philips interface bus. Technical Data 22 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor • 32 general purpose input/output (I/O) pins, including: – 32 shared-function I/O pins – 4 open-drain I/O pins • System protection features: – Optional computer operating properly (COP) reset – Illegal opcode detection with reset – Illegal address detection with reset • ROM security1 • Master reset pin with internal pull-up and power-on reset • IRQ with programmable pull-up and schmitt-trigger input • 42-pin SDIP and 44-pin QFP packages Features of the CPU08 include the following: • Enhanced HC05 Programming Model • Extensive Loop Control Functions • 16 Addressing Modes (Eight More Than the HC05) • 16-Bit Index Register and Stack Pointer • Memory-to-Memory Data Transfers • Fast 8 × 8 Multiply Instruction • Fast 16/8 Divide Instruction • Binary-Coded Decimal (BCD) Instructions • Optimization for Controller Applications • Third Party C Language Support 1.4 MCU Block Diagram Figure 1-1 shows the structure of the MC68HC08BD24. 1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the ROM difficult for unauthorized users. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 23 PORTA PORTB USER ROM — 24,576 + 512 BYTES PTA7/PWM15–PTA0/PWM8 PTB7/PWM7–PTB0/PWM0 PORTC CONTROL AND STATUS REGISTERS — 80 BYTES PULSE WIDTH MODULATOR MODULE DDRA ARITHMETIC/LOGIC UNIT (ALU) DDRB CPU REGISTERS DDRC Technical Data 24 INTERNAL BUS M68HC08 CPU PTC5/ADC5–PTC0/ADC0 8-BIT ANALOG-TO-DIGITAL CONVERTER MODULE USER RAM — 512 BYTES MONITOR ROM — 470 BYTES DDC12AB INTERFACE MODULE USER ROM VECTORS — 26 BYTES OSC1‡ OSCILLATOR OSC2‡ ÷2 HSYNC VSYNC IRQ EXTERNAL IRQ MODULE 2-CHANNEL TIMER INTERFACE MODULE PORTD SYSTEM INTEGRATION MODULE PTD6† PTD5† PTD4/CLAMP PTD3/DDCSCL† PTD2/DDCSDA† PTD1‡ PTD0‡ PORTE RST DDRD SYNC PROCESSOR MODULE PTE2/VSYNCO PTE1/HSYNCO PTE0/SOG/TCH0 MONITOR MODULE MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor POWER-ON RESET MODULE VDD VSS VDD3 VSS1 POWER SECURITY MODULE MONITOR MODE ENTRY MODULE VOLTAGE REGULATOR Figure 1-1. MCU Block Diagram DDRE COMPUTER OPERATING PROPERLY MODULE † Pin is +5V open-drain ‡ Pin is +3.3V PD0 PD1 VDD3 VSYNC HSYNC PTC0/ADC0 PTC1/ADC1 PTC2/ADC2 42 41 40 39 38 37 36 35 34 PTC3/ADC3 NC OSC2 1 43 44 VDD 1.5 Pin Assignments 33 PTE2/VSYNCO 28 PTB3/PWM3 PTB5/PWM5 7 27 PTB4/PWM4 PTC5/ADC5 8 26 VSS1 PTC4/ADC4 9 25 NC 10 24 PTD2/DDCSDA PTA7/PWM15 12 PTE0/SOG/TCH0 11 23 PTD3/DDCSCL PTD4/CLAMP 22 IRQ 21 6 PTD5 PTB6/PWM6 20 PTB2/PWM2 PTD6 29 19 5 PTA0/PWM8 PTB7/PWM7 18 PTB1/PWM1 PTA1/PWM9 30 17 4 PTA2/PWM10 RST 16 PTB0/PWM0 PTA3/PWM11 31 15 3 PTA4/PWM12 VSS 14 PTE1/HSYNCO PTA5/PWM13 32 13 2 PTA6/PWM14 OSC1 NOTE: 1. NC = No Connection 2. PTD0, PTD1, OSC1, OSC2 are 3.3V pins Figure 1-2. 44-Pin QFP Pin Assignments MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 25 VSYNC 1 42 HSYNC VDD3 2 41 PTC0/ADC0 PD1 3 40 PTC1/ADC1 PD0 4 39 PTC2/ADC2 VDD 5 38 PTC3/ADC3 OSC2 6 37 PTE2/VSYNCO OSC1 7 36 PTE1/HSYNCO VSS 8 35 PTB0/PWM0 RST 9 34 PTB1/PWM1 PTB7/PWM7 10 33 PTB2/PWM2 PTB6/PWM6 11 32 PTB3/PWM3 PTB5/PWM5 12 31 PTB4/PWM4 PTC5/ADC5 13 30 VSS1 PTC4/ADC4 14 29 PTD2/DDCSDA IRQ 15 28 PTD3/DDCSCL PTE0/SOG/TCH0 16 27 PTD4/CLAMP PTA7/PWM15 17 26 PTD5 PTA6/PWM14 18 25 PTD6 PTA5/PWM13 19 24 PTA0/PWM8 PTA4/PWM12 20 23 PTA1/PWM9 PTA3/PWM11 21 22 PTA2/PWM10 NOTE: PTD0, PTD1, OSC1, OSC2 are 3.3V pins Figure 1-3. 42-Pin SDIP Pin Assignments Technical Data 26 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 1.6 Pin Functions Description of the pin functions are provided in Table 1-1. Table 1-1. Pin Functions PIN NAME MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor PIN DESCRIPTION VDD Power supply input to the MCU. VSS Power supply ground. VDD3 3.3V regulated output from the MCU. VSS1 Power supply ground. OSC1 OSC2 Connections to the on-chip oscillator. An external clock can be connected directly to OSC1; with OSC2 floating. These are 3.3V pins. See Section 8. Oscillator (OSC). RST A logic 0 on the RST pin forces the MCU to a known startup state. RST is bidirectional, allowing a reset of the entire system. It is driven low when any internal reset source is asserted. This pin contains an internal pullup resistor. See Section 7. System Integration Module (SIM). IRQ External IRQ pin; with software programmable internal pull-up and schmitt trigger input. This pin is also used for mode entry selection. See Section 7. System Integration Module (SIM). VSYNC Vsync input to the sync processor. See Section 14. Sync Processor. HSYNC Hsync input to the sync processor. See Section 14. Sync Processor. PTA7/PWM15–PTA0/PWM8 These are shared-function pins. Each pin can be configured as a standard I/O pin or a PWM output channel. See Section 15. Input/Output (I/O) Ports and Section 11. Pulse Width Modulator (PWM). PTB7/PWM7–PTB0/PWM0 These are shared-function pins. Each pin can be configured as a standard I/O pin or a PWM output channel. See Section 15. Input/Output (I/O) Ports and Section 11. Pulse Width Modulator (PWM). Technical Data 27 Table 1-1. Pin Functions PIN NAME PIN DESCRIPTION PTC5/ADC5–PTC0/ADC0 These are shared-function pins. Each pin can be configured as a standard I/O pin or an ADC input channel. See Section 15. Input/Output (I/O) Ports and Section 12. Analog-to-Digital Converter (ADC). PTD6, PTD5 These two are standard I/O pins. These pins are open-drain when configured as outputs. See Section 15. Input/Output (I/O) Ports. PTD4/CLAMP This is a shared function pin. It can be configured as a standard I/O pin or the clamp output from the sync processor. See Section 15. Input/Output (I/O) Ports and Section 14. Sync Processor. PTD3/DDCSCL This is a shared function pin. It can be configured as a standard I/O pin or as the clock line of the DDC12AB module. This pin is open-drain when configured as output. See Section 15. Input/Output (I/O) Ports and Section 13. DDC12AB Interface. PTD2/DDCSDA This is a shared function pin. It can be configured as a standard I/O pin or the data line of the DDC12AB module. This pin is open-drain when configured as output. See Section 15. Input/Output (I/O) Ports and Section 13. DDC12AB Interface. PTD1, PTD0 Technical Data 28 These are 3.3V, standard I/O pins. See Section 15. Input/Output (I/O) Ports. PTE2/VSYNCO This is a shared function pin. It can be configured as a standard I/O pin or the Hsync output from the sync processor. See Section 15. Input/Output (I/O) Ports and Section 14. Sync Processor. PTE1/HSYNCO This is a shared function pin. It can be configured as a standard I/O pin or the Vsync output from the sync processor. See Section 15. Input/Output (I/O) Ports and Section 14. Sync Processor. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Table 1-1. Pin Functions NOTE: MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor PIN NAME PIN DESCRIPTION PTE0/SOG/TCH0 This is a shared function pin. It can be configured as a standard I/O pin, the SOG input to the sync processor, or the timer channel 0 I/O pin. See Section 15. Input/Output (I/O) Ports, Section 14. Sync Processor, and Section 10. Timer Interface Module (TIM). Any unused inputs and I/O ports should be tied to an appropriate logic level (either VDD or VSS; VDD3 or VSS for 3.3V pins). Although the I/O ports of the MC68HC08BD24 do not require termination, termination is recommended to reduce the possibility of static damage. Technical Data 29 Technical Data 30 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 2. Memory Map 2.1 Contents 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 31 2.4 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2 Introduction The CPU08 can address 64 Kbytes of memory space. The memory map, shown in Figure 2-1, includes: • 24,576 + 512 bytes of read-only memory (ROM) • 512 bytes of random-access memory (RAM) • 26 bytes of user-defined vectors • 470 bytes of monitor ROM 2.3 Unimplemented Memory Locations Accessing an unimplemented location can cause an illegal address reset if illegal address resets are enabled. In the memory map (Figure 2-1) and in register figures in this document, unimplemented locations are shaded. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 31 2.4 Reserved Memory Locations Accessing a reserved location can have unpredictable effects on MCU operation. In the Figure 2-1 and in register figures in this document, reserved locations are marked with the word Reserved or with the letter R. 2.5 Input/Output (I/O) Section Most of the control, status, and data registers are in the zero page area of $0000–$005F. Additional I/O registers have these addresses: • $FE00; SIM Break Status Register, SBSR • $FE01; SIM Reset Status Register, SRSR • $FE02; reserved • $FE03; SIM Break Flag Control Register, SBFCR • $FE04; Interrupt Status Register 1, INT1 • $FE05; Interrupt Status Register 2, INT2 • $FE06; reserved • $FE07; reserved • $FE08; reserved • $FE09; reserved • $FE0A; reserved • $FE0B; reserved • $FE0C; Break Address Register High, BRKH • $FE0D; Break Address Register Low, BRKL • $FE0E; Break Status and Control Register, BRKSCR Data registers are shown in Figure 2-2. Table 2-1 is a list of vector locations. Technical Data 32 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor $0000 I/O Registers 96 Bytes ↓ $005F $0060 Unimplemented 32 Bytes ↓ $007F $0080 RAM 512 Bytes ↓ $027F $0280 Unimplemented 39,296 Bytes ↓ $9BFF $9C00 User ROM 24,576 Bytes ↓ $FBFF $FC00 User ROM 512 Bytes ↓ $FDFF $FE00 SIM Break Status Register (SBSR) $FE01 SIM Reset Status Register (SRSR) $FE02 Reserved $FE03 SIM Break Flag Control Register (SBFCR) $FE04 Interrupt Status Register 1 (INT1) $FE05 Interrupt Status Register 2 (INT2) $FE06 Reserved $FE07 Reserved $FE08 Reserved $FE09 Reserved $FE0A Reserved Figure 2-1. Memory Map MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 33 $FE0B Reserved $FE0C Break Address Register High (BRKH) $FE0D Break Address Register Low (BRKL) $FE0E Break Status and Control Register (BRKSCR) $FE0F Reserved $FE10 ↓ Monitor ROM 470 Bytes $FFE5 $FFE6 ↓ User ROM Vectors 26 Bytes $FFFF Figure 2-1. Memory Map (Continued) Technical Data 34 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Addr. Register Name $0000 Read: Port A Data Register Write: (PTA) Reset: $0001 $0002 $0003 Read: Port B Data Register Write: (PTB) Reset: Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 PTB2 PTB1 PTB0 PTC2 PTC1 PTC0 PTD2 PTD1 PTD0 Unaffected by reset PTB7 PTB6 PTB5 PTB4 PTB3 Unaffected by reset Read: Port C Data Register Write: (PTC) Reset: 0 Read: Port D Data Register Write: (PTD) Reset: 0 0 PTC5 PTC4 PTC3 Unaffected by reset PTD6 PTD5 PTD4 PTD3 Unaffected by reset Read: DDRA7 Data Direction Register A $0004 Write: (DDRA) Reset: 0 Read: DDRB7 Data Direction Register B $0005 Write: (DDRB) Reset: 0 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 Read: Data Direction Register C $0006 Write: (DDRC) Reset: 0 0 0 0 0 0 0 0 0 0 Read: Data Direction Register D $0007 Write: (DDRD) Reset: 0 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 0 0 Read: Port E Data Register Write: (PTE) Reset: 0 0 0 0 0 PTE2 PTE1 PTE0 Read: Data Direction Register E $0009 Write: (DDRE) Reset: 0 0 0 0 0 DDRE2 DDRE1 DDRE0 0 0 0 0 0 0 0 0 $0008 Unaffected by reset = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 12) MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 35 Addr. 6 5 TOIE TSTOP 0 0 1 0 0 0 0 Read: TIM Counter Register High Write: (TCNTH) Reset: Bit15 Bit14 0 Read: TIM Counter Register Low $000D Write: (TCNTL) Reset: $000A Register Name Bit 7 Read: TIM Status and Control Register Write: (TSC) Reset: 2 1 Bit 0 PS2 PS1 PS0 0 0 0 0 0 0 0 0 0 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 0 0 0 0 0 0 0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0 0 0 0 0 0 0 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 1 1 1 1 1 1 1 1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit2 Bit1 Bit0 TOF 0 4 3 0 0 TRST Read: Unimplemented Write: $000B Reset: $000C $000E $000F Read: TIM Counter Modulo Register High Write: (TMODH) Reset: Read: TIM Counter Modulo Register Low Write: (TMODL) Reset: Read: TIM Channel 0 Status and $0010 Control Register Write: (TSC0) Reset: $0011 $0012 Read: TIM Channel 0 Register High Write: (TCH0H) Reset: Read: TIM Channel 0 Register Low Write: (TCH0L) Reset: Read: TIM Channel 1 Status and $0013 Control Register Write: (TSC1) Reset: CH0F 0 Indeterminate after reset Bit7 Bit6 Bit5 Bit4 Bit3 Indeterminate after reset CH1F 0 0 CH1IE 0 0 0 = Unimplemented MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 12) Technical Data 36 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Addr. $0014 $0015 $0016 $0017 $0018 $0019 $001A $001B $001C $001D Register Name Read: TIM Channel 1 Register High Write: (TCH1H) Reset: Read: TIM Channel 1 Register Low Write: (TCH1L) Reset: Read: DDC Master Control Write: Register (DMCR) Reset: Read: DDC Address Register Write: (DADR) Reset: Read: DDC Control Register Write: (DCR) Reset: Read: DDC Status Register Write: (DSR) Reset: Read: DDC Data Transmit Register Write: (DDTR) Reset: DDC Read: Data Receive Register Write: (DDRR) Reset: Read: DDC2 Address Register Write: (D2ADR) Reset: Bit 7 6 5 4 3 2 1 Bit 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit2 Bit1 Bit0 Indeterminate after reset Bit7 Bit6 Bit5 Bit4 Bit3 Indeterminate after reset ALIF NAKIF BB MAST MRW BR2 BR1 BR0 0 0 0 0 0 0 0 0 DAD7 DAD6 DAD5 DAD4 DAD3 DAD2 DAD1 EXTAD 1 0 1 0 0 0 0 0 DEN DIEN 0 0 TXAK SCLIEN DDC1EN 0 0 0 0 0 0 0 0 RXIF TXIF MATCH SRW RXAK SCLIF TXBE RXBF 0 0 0 0 0 0 1 0 1 0 DTD7 DTD6 DTD5 DTD4 DTD3 DTD2 DTD1 DTD0 1 1 1 1 1 1 1 1 DRD7 DRD6 DRD5 DRD4 DRD3 DRD2 DRD1 DRD0 0 0 0 0 0 0 0 0 D2AD7 D2AD6 D2AD5 D2AD4 D2AD3 D2AD2 D2AD1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Read: HSYNCOE VSYNCOE Configuration Register 0 Write: (CONFIG0) Reset: 0 0 0 0 SOGE 0 = Unimplemented R 0 = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 12) MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 37 Addr. $001E $001F Register Name Read: IRQ Status and Control Write: Register (INTSCR) Reset: Read: Configuration Register 1 Write: (CONFIG1)† Reset: Bit 7 6 5 4 3 2 0 0 0 0 IRQF 0 ACK 0 0 0 0 0 0 0 0 0 0 0 0PWM3 1 Bit 0 IMASK MODE 0 0 0 0 SSREC COPRS STOP COPD 0 0 0 0 0 0PWM2 0PWM1 0PWM0 0BRM2 0BRM1 0BRM0 0 0 0 0 0 0 0 1PWM3 1PWM2 1PWM1 1PWM0 1BRM2 1BRM1 1BRM0 0 0 0 0 0 0 0 2PWM3 2PWM2 2PWM1 2PWM0 2BRM2 2BRM1 2BRM0 0 0 0 0 0 0 0 3PWM3 3PWM2 3PWM1 3PWM0 3BRM2 3BRM1 3BRM0 0 0 0 0 0 0 0 4PWM3 4PWM2 4PWM1 4PWM0 4BRM2 4BRM1 4BRM0 0 0 0 0 0 0 0 5PWM3 5PWM2 5PWM1 5PWM0 5BRM2 5BRM1 5BRM0 0 0 0 0 0 0 0 6PWM3 6PWM2 6PWM1 6PWM0 6BRM2 6BRM1 6BRM0 0 0 0 0 0 0 0 7PWM3 7PWM2 7PWM1 7PWM0 7BRM2 7BRM1 7BRM0 0 0 0 0 0 0 0 † One-time writable register after each reset. $0020 $0021 $0022 $0023 $0024 $0025 $0026 $0027 Read: 0PWM4 PWM0 Data Register Write: (0PWM) Reset: 0 Read: 1PWM4 PWM1 Data Register Write: (1PWM) Reset: 0 Read: 2PWM4 PWM2 Data Register Write: (2PWM) Reset: 0 Read: 3PWM4 PWM3 Data Register Write: (3PWM) Reset: 0 Read: 4PWM4 PWM4 Data Register Write: (4PWM) Reset: 0 Read: 5PWM4 PWM5 Data Register Write: (5PWM) Reset: 0 Read: 6PWM4 PWM6 Data Register Write: (6PWM) Reset: 0 Read: 7PWM4 PWM7 Data Register Write: (7PWM) Reset: 0 = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 12) Technical Data 38 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Addr. $0028 Register Name Bit 7 5 4 3 2 1 Bit 0 PWM6E PWM5E PWM4E PWM3E PWM2E PWM1E PWM0E 0 0 0 0 0 0 0 R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R Read: PWM7E PWM Control Register 1 Write: (PWMCR1) Reset: 0 Read: $0029 6 Reserved Write: Reset: Read: $002A Reserved Write: Reset: Read: $002B Reserved Write: Reset: Read: $002C Reserved Write: Reset: Read: $002D Reserved Write: Reset: Read: $002E Reserved Write: Reset: Read: $002F Reserved Write: Reset: Read: $0030 Reserved Write: Reset: Read: $0031 Reserved Write: Reset: = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 12) MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 39 Addr. Register Name Read: $0032 Reserved Write: Bit 7 6 5 4 3 2 1 Bit 0 R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R Reset: Read: $0033 Reserved Write: Reset: Read: $0034 Reserved Write: Reset: Read: $0035 Reserved Write: Reset: Read: $0036 Reserved Write: Reset: Read: $0037 Reserved Write: Reset: Read: $0038 Reserved Write: Reset: Read: $0039 Reserved Write: Reset: Read: $003A Reserved Write: Reset: Read: $003B Reserved Write: Reset: = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 12) Technical Data 40 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R VSIE VEDGE COMP VINVO HINVO VPOL HPOL 0 0 0 0 0 0 0 0 Read: Vertical Frequency High Register Write: (VFHR) Reset: VOF 0 0 VF12 VF11 VF10 VF9 VF8 CPW1 CPW0 0 0 0 0 0 0 0 0 Read: Vertical Frequency Low Register Write: (VFLR) Reset: VF7 VF6 VF5 VF4 VF3 VF2 VF1 VF0 0 0 0 0 0 0 0 0 Read: Hsync Frequency High Register Write: (HFHR) Reset: HFH7 HFH6 HFH5 HFH4 HFH3 HFH2 HFH1 HFH0 0 0 0 0 0 0 0 0 0 0 HFL4 HFL3 HFL2 HFL1 HFL0 0 0 0 0 0 0 0 COINV R BPOR SOUT 0 0 0 0 Read: $003C Reserved Write: Reset: Read: $003D Reserved Write: Reset: Read: $003E Reserved Write: Reset: Read: $003F Reserved Write: Reset: $0040 $0041 $0042 $0043 $0044 $0045 Read: Sync Processor Control and Status Register Write: (SPCSR) Reset: Read: HOVER Hsync Frequency Low Register Write: (HFLR) Reset: 0 Read: VSYNCS HSYNCS Sync Processor I/O Control Register Write: (SPIOCR) Reset: 0 0 VSIF 0 = Unimplemented SOGSEL CLAMPOE 0 R 0 = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 12) MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 41 Addr. $0046 Register Name Bit 7 Read: Sync Processor Control Register 1 Write: (SPCR1) Reset: Read: H&V Sync Output Control $0047 Register Write: (HVOCR) Reset: 5 4 3 2 1 Bit 0 HPS1 HPS0 R R ATPOL FSHF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R R R R R R R R R R LVSIE 0 R 6 LVSIF 0 HVOCR2 HVOCR1 HVOCR0 0 0 0 0 0 0 0 0 R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R Read: Unimplemented Write: $0048 Reset: $0049 Read: Port D Configuration Write: Register (PDCR) Reset: Read: $004A Reserved Write: CLAMPE DDCSCLE DDCDATE Reset: Read: $004B Reserved Write: Reset: Read: $004C Reserved Write: Reset: Read: $004D Reserved Write: Reset: Read: $004E Reserved Write: Reset: Read: $004F Reserved Write: Reset: = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 12) Technical Data 42 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 8PWM3 8PWM2 8PWM1 8PWM0 8BRM2 8BRM1 8BRM0 0 0 0 0 0 0 0 9PWM3 9PWM2 9PWM1 9PWM0 9BRM2 9BRM1 9BRM0 0 0 0 0 0 0 0 10BRM2 10BRM1 10BRM0 0 0 0 11BRM2 11BRM1 11BRM0 0 0 0 12BRM2 12BRM1 12BRM0 0 0 0 13BRM2 13BRM1 13BRM0 0 0 0 14BRM2 14BRM1 14BRM0 0 0 0 15BRM2 15BRM1 15BRM0 0 0 0 PWM9E PWM8E 0 0 Read: $0050 Unimplemented Write: Reset: $0051 $0052 $0053 $0054 $0055 $0056 $0057 $0058 $0059 Read: 8PWM4 PWM8 Data Register Write: (8PWM) Reset: 0 Read: 9PWM4 PWM9 Data Register Write: (9PWM) Reset: 0 Read: 10PWM4 10PWM3 10PWM2 10PWM1 10PWM0 PWM10 Data Register Write: (10PWM) Reset: 0 0 0 0 0 Read: 11PWM4 11PWM3 11PWM2 11PWM1 11PWM0 PWM11 Data Register Write: (11PWM) Reset: 0 0 0 0 0 Read: 12PWM4 12PWM3 12PWM2 12PWM1 12PWM0 PWM12 Data Register Write: (12PWM) Reset: 0 0 0 0 0 Read: 13PWM4 13PWM3 13PWM2 13PWM1 13PWM0 PWM13 Data Register Write: (13PWM) Reset: 0 0 0 0 0 Read: 14PWM4 PWM14 Data Register Write: (14PWM) Reset: 0 PWM3 0 14PWM2 14PWM1 14PWM0 0 0 0 Read: 15PWM4 15PWM3 15PWM2 15PWM1 15PWM0 PWM15 Data Register Write: (15PWM) Reset: 0 0 0 0 0 Read: PWM15E PWM14E PWM13E PWM12E PWM11E PWM10E PWM Control Register 2 Write: (PWMCR2) Reset: 0 0 0 0 0 0 = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 9 of 12) MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 43 Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 0 0 0 1 1 1 1 1 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 Read: Unimplemented Write: $005A Reset: Read: Unimplemented Write: $005B Reset: Read: Unimplemented Write: $005C Reset: $005D $005E Read: ADC Status and Control Write: Register (ADSCR) Reset: Read: ADC Data Register Write: (ADR) Reset: Read: ADC Input Clock Register $005F Write: (ADICLK) Reset: Read: SIM Break Status Register $FE00 Write: (SBSR) Reset: COCO Unaffected after Reset 0 0 0 0 0 0 0 0 0 0 0 R R R R R 0 0 0 0 0 0 0 0 POR PIN COP ILOP ILAD 0 0 0 1 0 0 0 0 0 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 ADIV2 ADIV1 ADIV0 0 0 R SBSW Note R Note: Writing a logic 0 clears SBSW. Read: SIM Reset Status Register $FE01 Write: (SRSR) POR: Read: $FE02 Reserved Write: Reset: = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 10 of 12) Technical Data 44 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Addr. $FE03 Register Name Read: SIM Break Flag Control Write: Register (SBFCR) Reset: Bit 7 6 5 4 3 2 1 Bit 0 BCFE R R R R R R R 0 Read: Interrupt Status Register 1 $FE04 Write: (INT1) Reset: IF6 IF5 IF4 IF3 IF2 IF1 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 2 $FE05 Write: (INT2) Reset: 0 0 0 0 IF10 IF9 IF8 IF7 R R R R R R R R 0 0 0 0 0 0 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 0 0 0 0 0 0 0 0 Read: $FE06 Reserved Write: Reset: Read: $FE07 Reserved Write: Reset: Read: $FE08 Reserved Write: Reset: Read: $FE09 Reserved Write: Reset: Read: $FE0A Reserved Write: Reset: Read: $FE0B Reserved Write: Reset: $FE0C Read: Break Address High Write: Register (BRKH) Reset: = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 11 of 12) MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 45 Addr. $FE0D Register Name Read: Break Address low Write: Register (BRKL) Reset: Read: Break Status and Control Write: $FE0E Register (BRKSCR) Reset: $FFFF Read: COP Control Register Write: (COPCTL) Reset: Bit 7 6 5 4 3 2 1 Bit 0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0 0 0 0 0 0 0 0 BRKE BRKA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Low byte of reset vector Writing clears COP counter (any value) Unaffected by reset = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 12 of 12) Technical Data 46 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor . Table 2-1. Vector Addresses Vector Priority Lowest Vector — IF10 IF9 IF8 IF7 IF6 IF5 IF4 IF3 IF2 IF1 — Highest MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor — Address Vector $FFE6 Reserved $FFE7 Reserved $FFE8 ADC Interrupt Vector (High) $FFE9 ADC Interrupt Vector (Low) $FFEA Reserved $FFEB Reserved $FFEC Sync Processor Vector (High) $FFED Sync Processor Vector (Low) $FFEE TIM Overflow Vector (High) $FFEF TIM Overflow Vector (Low) $FFF0 TIM Channel 1 Vector (High) $FFF1 TIM Channel 1 Vector (Low) $FFF2 TIM Channel 0 Vector (High) $FFF3 TIM Channel 0 Vector (Low) $FFF4 Reserved $FFF5 Reserved $FFF6 DDC12AB Vector (High) $FFF7 DDC12AB Vector (Low) $FFF8 Reserved $FFF9 Reserved $FFFA IRQ Vector (High) $FFFB IRQ Vector (Low) $FFFC SWI Vector (High) $FFFD SWI Vector (Low) $FFFE Reset Vector (High) $FFFF Reset Vector (Low) Technical Data 47 Technical Data 48 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 3. Random-Access Memory (RAM) 3.1 Contents 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 3.2 Introduction This section describes the 512 bytes of RAM (random-access memory). 3.3 Functional Description Addresses $0080 through $027F are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space. NOTE: For correct operation, the stack pointer must point only to RAM locations. Within page zero are 128 bytes of RAM. Because the location of the stack RAM is programmable, all page zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved from its reset location at $00FF out of page zero, direct addressing mode instructions can efficiently access all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global variables. Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers. NOTE: MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor For M6805 compatibility, the H register is not stacked. Technical Data 49 During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls. NOTE: Technical Data 50 Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 4. Read-Only Memory (ROM) 4.1 Contents 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 4.2 Introduction This section describes the 25,088 bytes of ROM (read-only memory). 4.3 Functional Description These addresses are user ROM locations: $9C00 – $FBFF (24,576 bytes) $FC00 – $FDFF (512 bytes) $FFE6 – $FFFF (These locations are reserved for user-defined interrupt and reset vectors.) NOTE: A security feature prevents viewing of the ROM contents.1 1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the ROM contents difficult for unauthorized users. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 51 Technical Data 52 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 5. Configuration Register (CONFIG) 5.1 Contents 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3 Configuration Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.4 Configuration Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Introduction This section describes the configuration registers, CONFIG0 and CONFIG1. The configuration registers enable or disable these options: MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor • Sync processor HSYNCO output pin • Sync processor VSYNCO output pin • Sync processor SOG input pin • Stop mode recovery time (32 OSCXCLK cycles or 4096 OSCXCLK cycles) • COP timeout period (218 – 24 or 213 – 24 OSCXCLK cycles) • STOP instruction • Computer operating properly module (COP) Technical Data 53 5.3 Configuration Register 0 The CONFIG0 register is used to select the I/O pins for sync processor output functions. Address: $001D Bit 7 Read: Write: Reset: 6 HSYNCOE VSYNCOE 0 0 5 SOGE 0 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 = Unimplemented Figure 5-1. Configuration Register 0 (CONFIG0) HSYNCOE — VSYNCO Enable This bit is set to configure the PTE1/HSYNCO pin for HSYNCO output function. Reset clears this bit. 1 = PTE1/HSYNCO pin configured as HSYNCO pin 0 = PTE1/HSYNCO pin configured as standard I/O pin VSYNCOE — VSYNCO Enable This bit is set to configure the PTE2/VSYNCO pin for VSYNCO output function. Reset clears this bit. 1 = PTE2/VSYNCO pin configured as VSYNCO pin 0 = PTE2/VSYNCO pin configured as standard I/O pin SOGE — SOG Enable This bit is set to configure the PTE0/SOG/TCH0 pin for SOG output function. Reset clears this bit. 1 = PTE0/SOG/TCH0 pin configured as SOG pin 0 = PTE0/SOG/TCH0 pin configured as standard I/O or TCH0 pin. TCH0 function is configured by ELS0B and ELS0A bits in TSC0 (bits 3 and 2 in $0010). (See 10.10.4 TIM Channel Status and Control Registers (TSC0:TSC1).) Technical Data 54 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 5.4 Configuration Register 1 The CONFIG1 register is used in the initialization of various MCU options. It can only be written once after each reset. All of the CONFIG1 register bits are cleared during reset. Since the various options affect the operation of the MCU, it is recommended that the CONFIG1 register be written immediately after reset. Address: Read: $001F Bit 7 6 5 4 0 0 0 0 0 0 0 0 Write: Reset: 3 2 1 Bit 0 SSREC COPRS STOP COPD 0 0 0 0 Register is write-once after reset. = Unimplemented Figure 5-2. Configuration Register 1 (CONFIG1) SSREC — Short Stop Recovery Bit SSREC enables the CPU to exit stop mode with a delay of 32 OSCXCLK cycles instead of a 4096-OSCXCLK cycle delay. 1 = Stop mode recovery after 32 OSCXCLK cycles 0 = Stop mode recovery after 4096 OSCXCLK cycles NOTE: Exiting stop mode by pulling reset will result in the long stop recovery. If using an external crystal oscillator, do not set the SSREC bit. COPRS — COP Rate Select Bit COPRS selects the COP timeout period. Reset clears COPRS. (See Section 17. Computer Operating Properly (COP).) 1 = COP timeout period = 213 – 24 CGMXCLK cycles 0 = COP timeout period = 218 – 24 CGMXCLK cycles STOP — STOP Instruction Enable Bit STOP enables the STOP instruction. 1 = STOP instruction enabled 0 = STOP instruction treated as illegal opcode MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 55 COPD — COP Disable Bit COPD disables the COP module. (See Section 17. Computer Operating Properly (COP).) 1 = COP module disabled 0 = COP module enabled Technical Data 56 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 6. Central Processor Unit (CPU) 6.1 Contents 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 6.7 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.8 Instruction Set Summary 6.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2 Introduction The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The CPU08 Reference Manual (Freescale document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 57 6.3 Features • Object code fully upward-compatible with M68HC05 Family • 16-bit stack pointer with stack manipulation instructions • 16-bit index register with x-register manipulation instructions • 6-MHz CPU internal bus frequency • 64-Kbyte program/data memory space • 16 addressing modes • Memory-to-memory data moves without using accumulator • Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions • Enhanced binary-coded decimal (BCD) data handling • Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes • Low-power stop and wait modes 6.4 CPU Registers Figure 6-1 shows the five CPU registers. CPU registers are not part of the memory map. Technical Data 58 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 7 0 ACCUMULATOR (A) 15 0 H X INDEX REGISTER (H:X) 0 15 STACK POINTER (SP) 0 15 PROGRAM COUNTER (PC) 7 0 V 1 1 H I N Z C CONDITION CODE REGISTER (CCR) CARRY/BORROW FLAG ZERO FLAG NEGATIVE FLAG INTERRUPT MASK HALF-CARRY FLAG TWO’S COMPLEMENT OVERFLOW FLAG Figure 6-1. CPU Registers 6.4.1 Accumulator The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations. Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Unaffected by reset Figure 6-2. Accumulator (A) MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 59 6.4.2 Index Register The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register. In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand. The index register can serve also as a temporary data storage location. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 X X X X X X X X Read: Write: Reset: X = Indeterminate Figure 6-3. Index Register (H:X) 6.4.3 Stack Pointer The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand. Technical Data 60 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 6-4. Stack Pointer (SP) NOTE: The location of the stack is arbitrary and may be relocated anywhere in RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct address (page 0) space. For correct operation, the stack pointer must point only to RAM locations. 6.4.4 Program Counter The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched. Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Loaded with Vector from $FFFE and $FFFF Figure 6-5. Program Counter (PC) 6.4.5 Condition Code Register The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 61 5 are set permanently to logic 1. The following paragraphs describe the functions of the condition code register. Read: Write: Reset: Bit 7 6 5 4 3 2 1 Bit 0 V 1 1 H I N Z C X 1 1 X 1 X X X X = Indeterminate Figure 6-6. Condition Code Register (CCR) V — Overflow Flag The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. 1 = Overflow 0 = No overflow H — Half-Carry Flag The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or addwith-carry (ADC) operation. The half-carry flag is required for binarycoded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor. 1 = Carry between bits 3 and 4 0 = No carry between bits 3 and 4 Technical Data 62 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor I — Interrupt Mask When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched. 1 = Interrupts disabled 0 = Interrupts enabled NOTE: To maintain M6805 Family compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions. After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI). N — Negative flag The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. 1 = Negative result 0 = Non-negative result Z — Zero flag The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of $00. 1 = Zero result 0 = Non-zero result MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 63 C — Carry/Borrow Flag The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag. 1 = Carry out of bit 7 0 = No carry out of bit 7 6.5 Arithmetic/Logic Unit (ALU) The ALU performs the arithmetic and logic operations defined by the instruction set. Refer to the CPU08 Reference Manual (Freescale document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU. 6.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low power-consumption standby modes. 6.6.1 Wait Mode The WAIT instruction: Technical Data 64 • Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 6.6.2 Stop Mode The STOP instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay. 6.7 CPU During Break Interrupts If a break module is present on the MCU, the CPU starts a break interrupt by: • Loading the instruction register with the SWI instruction • Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted. 6.8 Instruction Set Summary 6.9 Opcode Map See Table 6-2. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 65 V H I N Z C ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP A ← (A) + (M) + (C) Add with Carry ↕ ↕ IMM DIR EXT IX2 – ↕ ↕ ↕ IX1 IX SP1 SP2 A9 B9 C9 D9 E9 F9 9EE9 9ED9 ii dd hh ll ee ff ff IMM DIR EXT IX2 – ↕ ↕ ↕ IX1 IX SP1 SP2 AB BB CB DB EB FB 9EEB 9EDB ii dd hh ll ee ff ff ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP Add without Carry AIS #opr Add Immediate Value (Signed) to SP SP ← (SP) + (16 « M) – – – – – – IMM AIX #opr Add Immediate Value (Signed) to H:X H:X ← (H:X) + (16 « M) – – – – – – IMM AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP Arithmetic Shift Left (Same as LSL) Arithmetic Shift Right BCC rel Branch if Carry Bit Clear Technical Data 66 C C PC ← (PC) + 2 + rel ? (C) = 0 Mn ← 0 ff ee ff 2 3 4 4 3 2 4 5 A7 ii 2 AF ii 2 2 3 4 4 3 2 4 5 A4 B4 C4 D4 E4 F4 9EE4 9ED4 ii dd hh ll ee ff ff DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 38 48 58 68 78 9E68 dd DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 37 47 57 67 77 9E67 dd ff 4 1 1 4 3 5 – – – – – – REL 24 rr 3 DIR (b0) DIR (b1) DIR (b2) DIR (b3) – – – – – – DIR (b4) DIR (b5) DIR (b6) DIR (b7) 11 13 15 17 19 1B 1D 1F dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 ↕ b0 b0 2 3 4 4 3 2 4 5 IMM DIR EXT IX2 – IX1 IX SP1 SP2 0 – – ↕ ↕ 0 b7 b7 Clear Bit n in M ↕ ↕ A ← (A) & (M) Logical AND ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP BCLR n, opr A ← (A) + (M) ff ee ff Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary ↕ ff ee ff ff ff ff 4 1 1 4 3 5 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Effect on CCR V H I N Z C Cycles Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) BCS rel Branch if Carry Bit Set (Same as BLO) PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 BEQ rel Branch if Equal PC ← (PC) + 2 + rel ? (Z) = 1 – – – – – – REL 27 rr 3 BGE opr Branch if Greater Than or Equal To (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) = 0 – – – – – – REL 90 rr 3 BGT opr Branch if Greater Than (Signed Operands) PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = – – – – – – REL 0 92 rr 3 BHCC rel Branch if Half Carry Bit Clear PC ← (PC) + 2 + rel ? (H) = 0 – – – – – – REL 28 rr 3 BHCS rel Branch if Half Carry Bit Set PC ← (PC) + 2 + rel ? (H) = 1 – – – – – – REL 29 rr BHI rel Branch if Higher PC ← (PC) + 2 + rel ? (C) | (Z) = 0 – – – – – – REL 22 rr 3 BHS rel Branch if Higher or Same (Same as BCC) PC ← (PC) + 2 + rel ? (C) = 0 – – – – – – REL 24 rr 3 BIH rel Branch if IRQ Pin High PC ← (PC) + 2 + rel ? IRQ = 1 – – – – – – REL 2F rr 3 BIL rel Branch if IRQ Pin Low PC ← (PC) + 2 + rel ? IRQ = 0 – – – – – – REL 2E rr 3 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 93 rr 3 BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP Bit Test BLE opr Branch if Less Than or Equal To (Signed Operands) BLO rel Branch if Lower (Same as BCS) BLS rel (A) & (M) 0 – – ↕ ↕ IMM DIR EXT IX2 – IX1 IX SP1 SP2 PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = – – – – – – REL 1 A5 B5 C5 D5 E5 F5 9EE5 9ED5 3 PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 Branch if Lower or Same PC ← (PC) + 2 + rel ? (C) | (Z) = 1 – – – – – – REL 23 rr 3 BLT opr Branch if Less Than (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) =1 – – – – – – REL 91 rr 3 BMC rel Branch if Interrupt Mask Clear PC ← (PC) + 2 + rel ? (I) = 0 – – – – – – REL 2C rr 3 BMI rel Branch if Minus PC ← (PC) + 2 + rel ? (N) = 1 – – – – – – REL 2B rr 3 BMS rel Branch if Interrupt Mask Set PC ← (PC) + 2 + rel ? (I) = 1 – – – – – – REL 2D rr 3 BNE rel Branch if Not Equal PC ← (PC) + 2 + rel ? (Z) = 0 – – – – – – REL 26 rr 3 BPL rel Branch if Plus PC ← (PC) + 2 + rel ? (N) = 0 – – – – – – REL 2A rr 3 BRA rel Branch Always PC ← (PC) + 2 + rel – – – – – – REL 20 rr 3 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 67 Table 6-1. Instruction Set Summary (Continued) DIR (b0) DIR (b1) DIR (b2) DIR (b3) – – – – – ↕ DIR (b4) DIR (b5) DIR (b6) DIR (b7) 01 03 05 07 09 0B 0D 0F dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 – – – – – – REL 21 rr 3 PC ← (PC) + 3 + rel ? (Mn) = 1 DIR (b0) DIR (b1) DIR (b2) DIR (b3) – – – – – ↕ DIR (b4) DIR (b5) DIR (b6) DIR (b7) 00 02 04 06 08 0A 0C 0E dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 Mn ← 1 DIR (b0) DIR (b1) DIR (b2) DIR (b3) – – – – – – DIR (b4) DIR (b5) DIR (b6) DIR (b7) 10 12 14 16 18 1A 1C 1E dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 – – – – – – REL AD rr 4 dd rr ii rr ii rr ff rr rr ff rr 5 4 4 5 4 6 Description V H I N Z C BRCLR n,opr,rel Branch if Bit n in M Clear BRN rel Branch Never BRSET n,opr,rel Branch if Bit n in M Set BSET n,opr BSR rel Set Bit n in M Branch to Subroutine CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel Compare and Branch if Equal CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel PC ← (PC) + 3 + rel ? (Mn) = 0 PC ← (PC) + 2 PC ← (PC) + 2; push (PCL) SP ← (SP) – 1; push (PCH) SP ← (SP) – 1 PC ← (PC) + rel DIR PC ← (PC) + 3 + rel ? (A) – (M) = $00 IMM PC ← (PC) + 3 + rel ? (A) – (M) = $00 IMM PC ← (PC) + 3 + rel ? (X) – (M) = $00 – – – – – – IX1+ PC ← (PC) + 3 + rel ? (A) – (M) = $00 IX+ PC ← (PC) + 2 + rel ? (A) – (M) = $00 SP1 PC ← (PC) + 4 + rel ? (A) – (M) = $00 31 41 51 61 71 9E61 Cycles Operand Effect on CCR Opcode Operation Address Mode Source Form CLC Clear Carry Bit C←0 – – – – – 0 INH 98 1 CLI Clear Interrupt Mask I←0 – – 0 – – – INH 9A 2 M ← $00 A ← $00 X ← $00 H ← $00 M ← $00 M ← $00 M ← $00 DIR INH INH 0 – – 0 1 – INH IX1 IX SP1 3F 4F 5F 8C 6F 7F 9E6F CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP Technical Data 68 Clear dd ff ff 3 1 1 1 3 2 4 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor V H I N Z C CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP Compare A with M COM opr COMA COMX COM opr,X COM ,X COM opr,SP Complement (One’s Complement) CPHX #opr CPHX opr Compare H:X with M CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP Compare X with M DAA Decimal Adjust A DBNZ opr,rel DBNZA rel Decrement and Branch if Not Zero DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP Decrement DIV Divide MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor (A) – (M) M ← (M) = $FF – (M) A ← (A) = $FF – (M) X ← (X) = $FF – (M) M ← (M) = $FF – (M) M ← (M) = $FF – (M) M ← (M) = $FF – (M) (H:X) – (M:M + 1) (X) – (M) (A)10 ↕ IMM DIR EXT IX2 – – ↕ ↕ ↕ IX1 IX SP1 SP2 A1 B1 C1 D1 E1 F1 9EE1 9ED1 ii dd hh ll ee ff ff DIR INH INH 1 IX1 IX SP1 33 43 53 63 73 9E63 dd 0 – – ↕ ↕ IMM DIR ↕ – – ↕ ↕ ↕ ↕ IMM DIR EXT IX2 – – ↕ ↕ ↕ IX1 IX SP1 SP2 U – – ↕ ↕ ↕ INH A ← (A) – 1 or M ← (M) – 1 or X ← (X) – 1 DIR PC ← (PC) + 3 + rel ? (result) ≠ 0 INH PC ← (PC) + 2 + rel ? (result) ≠ 0 – – – – – – INH PC ← (PC) + 2 + rel ? (result) ≠ 0 IX1 PC ← (PC) + 3 + rel ? (result) ≠ 0 IX PC ← (PC) + 2 + rel ? (result) ≠ 0 SP1 PC ← (PC) + 4 + rel ? (result) ≠ 0 M ← (M) – 1 A ← (A) – 1 X ← (X) – 1 M ← (M) – 1 M ← (M) – 1 M ← (M) – 1 A ← (H:A)/(X) H ← Remainder ↕ – – ↕ ↕ DIR INH INH – IX1 IX SP1 – – – – ↕ ↕ INH ff ee ff Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) 2 3 4 4 3 2 4 5 ff 4 1 1 4 3 5 65 75 ii ii+1 dd 3 4 A3 B3 C3 D3 E3 F3 9EE3 9ED3 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 ff ff ee ff 72 2 3B 4B 5B 6B 7B 9E6B dd rr rr rr ff rr rr ff rr 3A 4A 5A 6A 7A 9E6A dd 52 ff ff 5 3 3 5 4 6 4 1 1 4 3 5 7 Technical Data 69 V H I N Z C EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP INC opr INCA INCX INC opr,X INC ,X INC opr,SP JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X Load A from M LDHX #opr LDHX opr Load H:X from M LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP Technical Data 70 – – ↕ ↕ ii dd hh ll ee ff ff DIR INH INH – IX1 IX SP1 3C 4C 5C 6C 7C 9E6C dd ff ee ff ff ff 2 3 4 4 3 2 4 5 4 1 1 4 3 5 PC ← Jump Address BC CC DC EC FC dd hh ll ee ff ff 2 3 4 3 2 PC ← (PC) + n (n = 1, 2, or 3) Push (PCL); SP ← (SP) – 1 Push (PCH); SP ← (SP) – 1 PC ← Unconditional Address DIR EXT – – – – – – IX2 IX1 IX BD CD DD ED FD dd hh ll ee ff ff 4 5 6 5 4 A6 B6 C6 D6 E6 F6 9EE6 9ED6 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 ii jj dd 3 4 2 3 4 4 3 2 4 5 A ← (M) 0 – – ↕ ↕ H:X ← (M:M + 1) X ← (M) Load X from M Logical Shift Left (Same as ASL) ↕ A8 B8 C8 D8 E8 F8 9EE8 9ED8 DIR EXT – – – – – – IX2 IX1 IX Jump Jump to Subroutine 0 – – ↕ ↕ M ← (M) + 1 A ← (A) + 1 X ← (X) + 1 M ← (M) + 1 M ← (M) + 1 M ← (M) + 1 Increment LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP LDX #opr LDX opr LDX opr LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP A ← (A ⊕ M) Exclusive OR M with A IMM DIR EXT IX2 – IX1 IX SP1 SP2 Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) C 0 b7 b0 IMM DIR EXT IX2 – IX1 IX SP1 SP2 IMM DIR 45 55 0 – – ↕ ↕ – 0 – – ↕ ↕ IMM DIR EXT IX2 – IX1 IX SP1 SP2 AE BE CE DE EE FE 9EEE 9EDE ii dd hh ll ee ff ff DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 38 48 58 68 78 9E68 dd ↕ ff ee ff ff ff 4 1 1 4 3 5 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor V H I N Z C LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP Logical Shift Right 0 C b7 MOV opr,opr MOV opr,X+ MOV #opr,opr MOV X+,opr Move MUL Unsigned multiply ↕ b0 DIR INH INH – – 0 ↕ ↕ IX1 IX SP1 (M)Destination ← (M)Source 0 – – ↕ ↕ H:X ← (H:X) + 1 (IX+D, DIX+) X:A ← (X) × (A) DD DIX+ – IMD IX+D – 0 – – – 0 INH DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 34 44 54 64 74 9E64 4E 5E 6E 7E dd ff 4 1 1 4 3 5 dd dd dd ii dd dd 5 4 4 4 ff 42 30 40 50 60 70 9E60 Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) 5 dd 4 1 1 4 3 5 NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP Negate (Two’s Complement) NOP No Operation None – – – – – – INH 9D 1 NSA Nibble Swap A A ← (A[3:0]:A[7:4]) – – – – – – INH 62 3 M ← –(M) = $00 – (M) A ← –(A) = $00 – (A) X ← –(X) = $00 – (X) M ← –(M) = $00 – (M) M ← –(M) = $00 – (M) ↕ IMM DIR EXT IX2 – IX1 IX SP1 SP2 AA BA CA DA EA FA 9EEA 9EDA ff ff ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP Inclusive OR A and M PSHA Push A onto Stack Push (A); SP ← (SP) – 1 – – – – – – INH 87 2 PSHH Push H onto Stack Push (H); SP ← (SP) – 1 – – – – – – INH 8B 2 PSHX Push X onto Stack Push (X); SP ← (SP) – 1 – – – – – – INH 89 2 PULA Pull A from Stack SP ← (SP + 1); Pull (A) – – – – – – INH 86 2 PULH Pull H from Stack SP ← (SP + 1); Pull (H) – – – – – – INH 8A 2 PULX Pull X from Stack SP ← (SP + 1); Pull (X) – – – – – – INH 88 2 ROL opr ROLA ROLX ROL opr,X ROL ,X ROL opr,SP Rotate Left through Carry MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor A ← (A) | (M) 0 – – ↕ ↕ C ↕ b7 b0 DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 39 49 59 69 79 9E69 ff ee ff dd ff ff 4 1 1 4 3 5 Technical Data 71 V H I N Z C DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 36 46 56 66 76 9E66 dd Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) 4 1 1 4 3 5 ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP Rotate Right through Carry RSP Reset Stack Pointer SP ← $FF – – – – – – INH 9C 1 RTI Return from Interrupt SP ← (SP) + 1; Pull (CCR) SP ← (SP) + 1; Pull (A) SP ← (SP) + 1; Pull (X) SP ← (SP) + 1; Pull (PCH) SP ← (SP) + 1; Pull (PCL) ↕ ↕ ↕ ↕ ↕ ↕ INH 80 7 RTS Return from Subroutine SP ← SP + 1; Pull (PCH) SP ← SP + 1; Pull (PCL) – – – – – – INH 81 4 C b7 ↕ b0 IMM DIR EXT IX2 – – ↕ ↕ ↕ IX1 IX SP1 SP2 A2 B2 C2 D2 E2 F2 9EE2 9ED2 ff ff ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP Subtract with Carry SEC Set Carry Bit C←1 – – – – – 1 INH 99 1 SEI Set Interrupt Mask I←1 – – 1 – – – INH 9B 2 STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP Store A in M STHX opr Store H:X in M STOP Enable IRQ Pin; Stop Oscillator STX opr STX opr STX opr,X STX opr,X STX ,X STX opr,SP STX opr,SP Technical Data 72 Store X in M A ← (A) – (M) – (C) M ← (A) (M:M + 1) ← (H:X) I ← 0; Stop Oscillator M ← (X) ↕ DIR EXT IX2 – IX1 IX SP1 SP2 B7 C7 D7 E7 F7 9EE7 9ED7 – DIR 35 – – 0 – – – INH 8E 0 – – ↕ ↕ 0 – – ↕ ↕ 0 – – ↕ ↕ DIR EXT IX2 – IX1 IX SP1 SP2 BF CF DF EF FF 9EEF 9EDF ff ee ff ff ee ff 3 4 4 3 2 4 5 dd 4 dd hh ll ee ff ff 1 dd hh ll ee ff ff ff ee ff 3 4 4 3 2 4 5 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor V H I N Z C SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP Subtract A ← (A) – (M) ↕ IMM DIR EXT IX2 – – ↕ ↕ ↕ IX1 IX SP1 SP2 A0 B0 C0 D0 E0 F0 9EE0 9ED0 ii dd hh ll ee ff ff ff ee ff Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) 2 3 4 4 3 2 4 5 SWI Software Interrupt PC ← (PC) + 1; Push (PCL) SP ← (SP) – 1; Push (PCH) SP ← (SP) – 1; Push (X) SP ← (SP) – 1; Push (A) SP ← (SP) – 1; Push (CCR) SP ← (SP) – 1; I ← 1 PCH ← Interrupt Vector High Byte PCL ← Interrupt Vector Low Byte TAP Transfer A to CCR CCR ← (A) ↕ ↕ ↕ ↕ ↕ ↕ INH 84 2 TAX Transfer A to X X ← (A) – – – – – – INH 97 1 TPA Transfer CCR to A A ← (CCR) – – – – – – INH 85 1 TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP Test for Negative or Zero TSX Transfer SP to H:X TXA Transfer X to A TXS Transfer H:X to SP MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor (A) – $00 or (X) – $00 or (M) – $00 – – 1 – – – INH 83 9 0 – – ↕ ↕ DIR INH INH – IX1 IX SP1 3D 4D 5D 6D 7D 9E6D dd ff ff 3 1 1 3 2 4 H:X ← (SP) + 1 – – – – – – INH 95 2 A ← (X) – – – – – – INH 9F 1 (SP) ← (H:X) – 1 – – – – – – INH 94 2 Technical Data 73 V H I N Z C A C CCR dd dd rr DD DIR DIX+ ee ff EXT ff H H hh ll I ii IMD IMM INH IX IX+ IX+D IX1 IX1+ IX2 M N Accumulator Carry/borrow bit Condition code register Direct address of operand Direct address of operand and relative offset of branch instruction Direct to direct addressing mode Direct addressing mode Direct to indexed with post increment addressing mode High and low bytes of offset in indexed, 16-bit offset addressing Extended addressing mode Offset byte in indexed, 8-bit offset addressing Half-carry bit Index register high byte High and low bytes of operand address in extended addressing Interrupt mask Immediate operand byte Immediate source to direct destination addressing mode Immediate addressing mode Inherent addressing mode Indexed, no offset addressing mode Indexed, no offset, post increment addressing mode Indexed with post increment to direct addressing mode Indexed, 8-bit offset addressing mode Indexed, 8-bit offset, post increment addressing mode Indexed, 16-bit offset addressing mode Memory location Negative bit Technical Data 74 n opr PC PCH PCL REL rel rr SP1 SP2 SP U V X Z & | ⊕ () –( ) # « ← ? : ↕ — Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) Any bit Operand (one or two bytes) Program counter Program counter high byte Program counter low byte Relative addressing mode Relative program counter offset byte Relative program counter offset byte Stack pointer, 8-bit offset addressing mode Stack pointer 16-bit offset addressing mode Stack pointer Undefined Overflow bit Index register low byte Zero bit Logical AND Logical OR Logical EXCLUSIVE OR Contents of Negation (two’s complement) Immediate value Sign extend Loaded with If Concatenated with Set or cleared Not affected MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Table 6-2. Opcode Map Bit Manipulation DIR DIR MSB Branch REL DIR INH 3 4 0 1 2 5 BRSET0 3 DIR 5 BRCLR0 3 DIR 5 BRSET1 3 DIR 5 BRCLR1 3 DIR 5 BRSET2 3 DIR 5 BRCLR2 3 DIR 5 BRSET3 3 DIR 5 BRCLR3 3 DIR 5 BRSET4 3 DIR 5 BRCLR4 3 DIR 5 BRSET5 3 DIR 5 BRCLR5 3 DIR 5 BRSET6 3 DIR 5 BRCLR6 3 DIR 5 BRSET7 3 DIR 5 BRCLR7 3 DIR 4 BSET0 2 DIR 4 BCLR0 2 DIR 4 BSET1 2 DIR 4 BCLR1 2 DIR 4 BSET2 2 DIR 4 BCLR2 2 DIR 4 BSET3 2 DIR 4 BCLR3 2 DIR 4 BSET4 2 DIR 4 BCLR4 2 DIR 4 BSET5 2 DIR 4 BCLR5 2 DIR 4 BSET6 2 DIR 4 BCLR6 2 DIR 4 BSET7 2 DIR 4 BCLR7 2 DIR 3 BRA 2 REL 3 BRN 2 REL 3 BHI 2 REL 3 BLS 2 REL 3 BCC 2 REL 3 BCS 2 REL 3 BNE 2 REL 3 BEQ 2 REL 3 BHCC 2 REL 3 BHCS 2 REL 3 BPL 2 REL 3 BMI 2 REL 3 BMC 2 REL 3 BMS 2 REL 3 BIL 2 REL 3 BIH 2 REL Read-Modify-Write INH IX1 5 6 1 NEGX 1 INH 4 CBEQX 3 IMM 7 DIV 1 INH 1 COMX 1 INH 1 LSRX 1 INH 4 LDHX 2 DIR 1 RORX 1 INH 1 ASRX 1 INH 1 LSLX 1 INH 1 ROLX 1 INH 1 DECX 1 INH 3 DBNZX 2 INH 1 INCX 1 INH 1 TSTX 1 INH 4 MOV 2 DIX+ 1 CLRX 1 INH 4 NEG 2 IX1 5 CBEQ 3 IX1+ 3 NSA 1 INH 4 COM 2 IX1 4 LSR 2 IX1 3 CPHX 3 IMM 4 ROR 2 IX1 4 ASR 2 IX1 4 LSL 2 IX1 4 ROL 2 IX1 4 DEC 2 IX1 5 DBNZ 3 IX1 4 INC 2 IX1 3 TST 2 IX1 4 MOV 3 IMD 3 CLR 2 IX1 SP1 IX 9E6 7 Control INH INH 8 9 Register/Memory IX2 SP2 IMM DIR EXT A B C D 9ED 4 SUB 3 EXT 4 CMP 3 EXT 4 SBC 3 EXT 4 CPX 3 EXT 4 AND 3 EXT 4 BIT 3 EXT 4 LDA 3 EXT 4 STA 3 EXT 4 EOR 3 EXT 4 ADC 3 EXT 4 ORA 3 EXT 4 ADD 3 EXT 3 JMP 3 EXT 5 JSR 3 EXT 4 LDX 3 EXT 4 STX 3 EXT 4 SUB 3 IX2 4 CMP 3 IX2 4 SBC 3 IX2 4 CPX 3 IX2 4 AND 3 IX2 4 BIT 3 IX2 4 LDA 3 IX2 4 STA 3 IX2 4 EOR 3 IX2 4 ADC 3 IX2 4 ORA 3 IX2 4 ADD 3 IX2 4 JMP 3 IX2 6 JSR 3 IX2 4 LDX 3 IX2 4 STX 3 IX2 5 SUB 4 SP2 5 CMP 4 SP2 5 SBC 4 SP2 5 CPX 4 SP2 5 AND 4 SP2 5 BIT 4 SP2 5 LDA 4 SP2 5 STA 4 SP2 5 EOR 4 SP2 5 ADC 4 SP2 5 ORA 4 SP2 5 ADD 4 SP2 IX1 SP1 IX E 9EE F LSB 0 1 2 3 4 5 6 7 8 9 A B C D E F 4 1 NEG NEGA 2 DIR 1 INH 5 4 CBEQ CBEQA 3 DIR 3 IMM 5 MUL 1 INH 4 1 COM COMA 2 DIR 1 INH 4 1 LSR LSRA 2 DIR 1 INH 4 3 STHX LDHX 2 DIR 3 IMM 4 1 ROR RORA 2 DIR 1 INH 4 1 ASR ASRA 2 DIR 1 INH 4 1 LSL LSLA 2 DIR 1 INH 4 1 ROL ROLA 2 DIR 1 INH 4 1 DEC DECA 2 DIR 1 INH 5 3 DBNZ DBNZA 3 DIR 2 INH 4 1 INC INCA 2 DIR 1 INH 3 1 TST TSTA 2 DIR 1 INH 5 MOV 3 DD 3 1 CLR CLRA 2 DIR 1 INH Technical Data 75 INH Inherent REL Relative IMM Immediate IX Indexed, No Offset DIR Direct IX1 Indexed, 8-Bit Offset EXT Extended IX2 Indexed, 16-Bit Offset DD Direct-Direct IMD Immediate-Direct IX+D Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions 5 3 NEG NEG 3 SP1 1 IX 6 4 CBEQ CBEQ 4 SP1 2 IX+ 2 DAA 1 INH 5 3 COM COM 3 SP1 1 IX 5 3 LSR LSR 3 SP1 1 IX 4 CPHX 2 DIR 5 3 ROR ROR 3 SP1 1 IX 5 3 ASR ASR 3 SP1 1 IX 5 3 LSL LSL 3 SP1 1 IX 5 3 ROL ROL 3 SP1 1 IX 5 3 DEC DEC 3 SP1 1 IX 6 4 DBNZ DBNZ 4 SP1 2 IX 5 3 INC INC 3 SP1 1 IX 4 2 TST TST 3 SP1 1 IX 4 MOV 2 IX+D 4 2 CLR CLR 3 SP1 1 IX SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with Post Increment IX1+ Indexed, 1-Byte Offset with Post Increment 7 3 RTI BGE 1 INH 2 REL 4 3 RTS BLT 1 INH 2 REL 3 BGT 2 REL 9 3 SWI BLE 1 INH 2 REL 2 2 TAP TXS 1 INH 1 INH 1 2 TPA TSX 1 INH 1 INH 2 PULA 1 INH 2 1 PSHA TAX 1 INH 1 INH 2 1 PULX CLC 1 INH 1 INH 2 1 PSHX SEC 1 INH 1 INH 2 2 PULH CLI 1 INH 1 INH 2 2 PSHH SEI 1 INH 1 INH 1 1 CLRH RSP 1 INH 1 INH 1 NOP 1 INH 1 STOP * 1 INH 1 1 WAIT TXA 1 INH 1 INH 2 SUB 2 IMM 2 CMP 2 IMM 2 SBC 2 IMM 2 CPX 2 IMM 2 AND 2 IMM 2 BIT 2 IMM 2 LDA 2 IMM 2 AIS 2 IMM 2 EOR 2 IMM 2 ADC 2 IMM 2 ORA 2 IMM 2 ADD 2 IMM 3 SUB 2 DIR 3 CMP 2 DIR 3 SBC 2 DIR 3 CPX 2 DIR 3 AND 2 DIR 3 BIT 2 DIR 3 LDA 2 DIR 3 STA 2 DIR 3 EOR 2 DIR 3 ADC 2 DIR 3 ORA 2 DIR 3 ADD 2 DIR 2 JMP 2 DIR 4 4 BSR JSR 2 REL 2 DIR 2 3 LDX LDX 2 IMM 2 DIR 2 3 AIX STX 2 IMM 2 DIR MSB 0 3 SUB 2 IX1 3 CMP 2 IX1 3 SBC 2 IX1 3 CPX 2 IX1 3 AND 2 IX1 3 BIT 2 IX1 3 LDA 2 IX1 3 STA 2 IX1 3 EOR 2 IX1 3 ADC 2 IX1 3 ORA 2 IX1 3 ADD 2 IX1 3 JMP 2 IX1 5 JSR 2 IX1 5 3 LDX LDX 4 SP2 2 IX1 5 3 STX STX 4 SP2 2 IX1 4 SUB 3 SP1 4 CMP 3 SP1 4 SBC 3 SP1 4 CPX 3 SP1 4 AND 3 SP1 4 BIT 3 SP1 4 LDA 3 SP1 4 STA 3 SP1 4 EOR 3 SP1 4 ADC 3 SP1 4 ORA 3 SP1 4 ADD 3 SP1 2 SUB 1 IX 2 CMP 1 IX 2 SBC 1 IX 2 CPX 1 IX 2 AND 1 IX 2 BIT 1 IX 2 LDA 1 IX 2 STA 1 IX 2 EOR 1 IX 2 ADC 1 IX 2 ORA 1 IX 2 ADD 1 IX 2 JMP 1 IX 4 JSR 1 IX 4 2 LDX LDX 3 SP1 1 IX 4 2 STX STX 3 SP1 1 IX High Byte of Opcode in Hexadecimal LSB Low Byte of Opcode in Hexadecimal 0 5 Cycles BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode Technical Data 76 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 7. System Integration Module (SIM) 7.1 Contents 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 81 7.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.3.2 Clock Start-Up from POR . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 81 7.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 82 7.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 83 7.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 7.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . . 85 7.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 7.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . 86 7.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . 87 7.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . . 87 7.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 7.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.6.2 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.6.2.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . 93 7.6.2.2 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . 93 7.6.3 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.6.4 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.6.5 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . 94 7.7 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Technical Data 77 7.7.1 7.7.2 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 7.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.8.1 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . 98 7.8.2 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . 99 7.8.3 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . 100 7.2 Introduction This section describes the system integration module, which supports up to 16 external and/or internal interrupts. Together with the CPU, the SIM controls all MCU activities. A block diagram of the SIM is shown in Figure 7-1. Table 7-1 shows a summary of the SIM I/O registers. The SIM is a system state controller that coordinates CPU and exception timing. The SIM is responsible for: • Bus clock generation and control for CPU and peripherals: – Stop/wait/reset/break entry and recovery – Internal clock control • Master reset control, including power-on reset (POR) and COP timeout • Interrupt control: – Acknowledge timing – Arbitration control timing – Vector address generation Technical Data 78 • CPU enable/disable timing • Modular architecture expandable to 128 interrupt sources MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor MODULE STOP MODULE WAIT CPU STOP (FROM CPU) CPU WAIT (FROM CPU) STOP/WAIT CONTROL SIMOSCEN (TO OSCILLATOR) SIM COUNTER COP CLOCK OSCXCLK (FROM OSCILLATOR) OSCOUT (FROM OSCILLATOR) ÷2 CLOCK CONTROL RESET PIN LOGIC CLOCK GENERATORS INTERNAL CLOCKS LVI (FROM LVI MODULE) POR CONTROL MASTER RESET CONTROL RESET PIN CONTROL SIM RESET STATUS REGISTER ILLEGAL OPCODE (FROM CPU) ILLEGAL ADDRESS (FROM ADDRESS MAP DECODERS) COP (FROM COP MODULE) RESET INTERRUPT CONTROL AND PRIORITY DECODE INTERRUPT SOURCES CPU INTERFACE Figure 7-1. SIM Block Diagram MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 79 Table 7-1. SIM I/O Register Summary Addr. Register Name Bit 7 6 5 4 3 2 R R R R R R 0 0 0 0 0 0 0 0 POR PIN COP ILOP ILAD 0 0 0 1 0 0 0 0 0 0 0 BCFE R R R R R R R Read: SIM Break Status Register $FE00 Write: (SBSR) Reset: $FE01 $FE03 Read: SIM Reset Status Write: Register (SRSR) POR: Read: SIM Break Flag Control Write: Register (SBFCR) Reset: 1 SBSW Note Bit 0 R 0 Read: Interrupt Status Register 1 $FE04 Write: (INT1) Reset: IF6 IF5 IF4 IF3 IF2 IF1 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 2 $FE05 (INT2) Write: 0 0 0 0 IF10 IF9 IF8 IF7 R R R R R R R R Reset: 0 0 0 0 0 0 0 0 = Unimplemented Note: Writing a logic 0 clears SBSW. R = Reserved Table 7-2 shows the internal signal names used in this section. Table 7-2. Signal Name Conventions Signal Name OSCXCLK Buffered version of OSC1 from the oscillator OSCOUT The OSCXCLK frequency divided by two. This signal is again divided by two in the SIM to generate the internal bus clocks. (Bus clock = OSCXCLK divided by four) IAB Internal address bus IDB Internal data bus PORRST Technical Data 80 Description Signal from the power-on reset module to the SIM IRST Internal reset signal R/W Read/write signal MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 7.3 SIM Bus Clock Control and Generation The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, OSCOUT, as shown in Figure 7-2. From SIM OSCXCLK ÷2 OSCOUT SIM COUNTER BUS CLOCK GENERATORS ÷2 SIMOSCEN OSCILLATOR OSC1 SIM OSC2 Figure 7-2. OSC Clock Signals 7.3.1 Bus Timing In user mode, the internal bus frequency is the oscillator frequency (OSCXCLK) divided by four. 7.3.2 Clock Start-Up from POR When the power-on reset module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after the 4096 OSCXCLK cycle POR timeout has completed. The RST is driven low by the SIM during this entire period. The IBUS clocks start upon completion of the timeout. 7.3.3 Clocks in Stop Mode and Wait Mode Upon exit from stop mode (by an interrupt, break, or reset), the SIM allows OSCXCLK to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay timeout. This timeout is selectable as 4096 or 32 OSCXCLK cycles. (See 7.7.2 Stop Mode.) MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 81 In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. 7.4 Reset and System Initialization The MCU has the following reset sources: • Power-on reset module (POR) • External reset pin (RST) • Computer operating properly module (COP) • Illegal opcode • Illegal address All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states. An internal reset clears the SIM counter (see 7.5 SIM Counter), but an external reset does not. Each of the resets sets a corresponding bit in the SIM reset status register (SRSR) (see 7.8 SIM Registers). 7.4.1 External Pin Reset Pulling the asynchronous RST pin low halts all processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for a minimum of 67 OSCXCLK cycles, assuming that the POR was the source of the reset (see Table 7-3. PIN Bit Set Timing). Figure 7-3 shows the relative timing. Table 7-3. PIN Bit Set Timing Technical Data 82 Reset Type Number of Cycles Required to Set PIN POR 4163 (4096 + 64 + 3) All others 67 (64 + 3) MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor OSCOUT RST IAB VECT H VECT L PC Figure 7-3. External Reset Timing 7.4.2 Active Resets from Internal Sources SIM module in HC08 has the capability to drive the RST pin low when internal reset events occur. All internal reset sources actively pull the RST pin low for 32 OSCXCLK cycles to allow resetting of external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles (see Figure 74. Internal Reset Timing). An internal reset can be caused by an illegal address, illegal opcode, COP timeout, or POR (see Figure 7-5. Sources of Internal Reset). Note that for POR resets, the SIM cycles through 4096 OSCXCLK cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence from the falling edge of RST shown in Figure 7-4. IRST RST RST PULLED LOW BY MCU 32 CYCLES 32 CYCLES OSCXCLK IAB VECTOR HIGH Figure 7-4. Internal Reset Timing The COP reset is asynchronous to the bus clock. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 83 ILLEGAL ADDRESS RST ILLEGAL OPCODE RST COPRST INTERNAL RESET POR Figure 7-5. Sources of Internal Reset The active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the MCU. 7.4.2.1 Power-On Reset When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out 4096 OSCXCLK cycles. Sixty-four OSCXCLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. At power-on, the following events occur: Technical Data 84 • A POR pulse is generated. • The internal reset signal is asserted. • The SIM enables the oscillator to drive OSCXCLK. • Internal clocks to the CPU and modules are held inactive for 4096 OSCXCLK cycles to allow stabilization of the oscillator. • The RST pin is driven low during the oscillator stabilization time. • The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are cleared. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor OSC1 PORRST 4096 CYCLES 32 CYCLES 32 CYCLES OSCXCLK OSCOUT RST $FFFE IAB $FFFF Figure 7-6. POR Recovery 7.4.2.2 Computer Operating Properly (COP) Reset An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down the RST pin for all internal reset sources. To prevent a COP module timeout, write any value to location $FFFF. Writing to location $FFFF clears the COP counter and bits 12 through 5 of the SIM counter. The SIM counter output, which occurs at least every 212 – 24 OSCXCLK cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first timeout. The COP module is disabled if the RST pin or the IRQ is held at VTST while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the RST pin or the IRQ pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, VTST on the RST pin disables the COP module. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 85 7.4.2.3 Illegal Opcode Reset The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the SIM reset status register (SRSR) and causes a reset. If the stop enable bit, STOP, in the configure register 1 (CONFIG1) is logic zero, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal reset sources. 7.4.2.4 Illegal Address Reset An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources. 7.5 SIM Counter The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as a prescaler for the computer operating properly module (COP). The SIM counter overflow supplies the clock for the COP module. The SIM counter is 12 bits long and is clocked by the falling edge of OSCXCLK. 7.5.1 SIM Counter During Power-On Reset The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the oscillator to drive the bus clock state machine. Technical Data 86 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 7.5.2 SIM Counter During Stop Mode Recovery The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the configure register 1 (CONFIG1). If the SSREC bit is a logic one, then the stop recovery is reduced from the normal delay of 4096 OSCXCLK cycles down to 32 OSCXCLK cycles. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode. External crystal applications should use the full stop recovery time, that is, with SSREC cleared. 7.5.3 SIM Counter and Reset States External reset has no effect on the SIM counter (see 7.7.2 Stop Mode). The SIM counter is free-running after all reset states (see 7.4.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences). 7.6 Exception Control Normally, sequential program execution can be changed in three different ways: • Interrupts – Maskable hardware CPU interrupts – Non-maskable software interrupt instruction (SWI) MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor • Reset • Break interrupts Technical Data 87 7.6.1 Interrupts An interrupt temporarily changes the sequence of program execution to respond to a particular event. Figure 7-9 flow charts the handling of system interrupts. Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared). At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 7-7 shows interrupt entry timing. Figure 7-8 shows interrupt recovery timing. MODULE INTERRUPT I BIT IAB IDB DUMMY DUMMY SP SP – 1 SP – 2 PC – 1[7:0] PC – 1[15:8] SP – 3 X SP – 4 A VECT H CCR VECT L V DATA H START ADDR V DATA L OPCODE R/W Figure 7-7. Interrupt Entry MODULE INTERRUPT I BIT IAB IDB SP – 4 SP – 3 CCR SP – 2 A SP – 1 X SP PC PC – 1[7:0] PC – 1[15:8] PC + 1 OPCODE OPERAND R/W Figure 7-8. Interrupt Recovery Technical Data 88 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor FROM RESET BREAK INTERRUPT? I BIT SET? YES NO YES I BIT SET? NO IRQ INTERRUPT? YES NO DDC12AB INTERRUPT? YES NO STACK CPU REGISTERS. SET I BIT. LOAD PC WITH INTERRUPT VECTOR. (As many interrupts as exist on chip) FETCH NEXT INSTRUCTION. SWI INSTRUCTION? YES NO RTI INSTRUCTION? YES UNSTACK CPU REGISTERS. NO EXECUTE INSTRUCTION. Figure 7-9. Interrupt Processing MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 89 Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt may take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared). (See Figure 7-9. Interrupt Processing.) 7.6.1.1 Hardware Interrupts A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed. If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 7-10 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed. CLI LDA #$FF INT1 BACKGROUND ROUTINE PSHH INT1 INTERRUPT SERVICE ROUTINE PULH RTI INT2 PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI Figure 7-10. Interrupt Recognition Example Technical Data 90 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor The LDA opcode is pre-fetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI pre-fetch, this is a redundant operation. NOTE: To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine. 7.6.1.2 SWI Instruction The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register. NOTE: A software interrupt pushes PC onto the stack. A software interrupt does not push PC – 1, as a hardware interrupt does. 7.6.2 Interrupt Status Registers The flags in the interrupt status registers identify maskable interrupt sources. Table 7-4 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 91 Table 7-4. Interrupt Sources Flag Mask1 INT Register Flag Priority2 Vector Address Reset None None None 0 $FFFE–$FFFF SWI Instruction None None None 0 $FFFC–$FFFD IRQ pin IRQF IMASK IF1 1 $FFFA–$FFFB — — — 2 $FFF8–$FFF9 IF3 3 $FFF6–$FFF7 Source Reserved ALIF NAKIF DIEN DDC12AB RXIF TXIF SCLIF SCLIEN — — — 4 $FFF4–$FFF5 TIM channel 0 CH0F CH0IE IF5 5 $FFF2–$FFF3 TIM channel 1 CH1F CH1IE IF6 6 $FFF0–$FFF1 TOF TOIE IF7 7 $FFEE–$FFEF VSIF VSIE IF8 8 $FFEC–$FFED LVSIF LVSIE — — — 9 $FFEA–FFEB COCO AIEN IF10 10 $FFE8–$FFE9 — — — — $FFE6–$FFE7 Reserved TIM overflow Sync processor Reserved ADC conversion complete Reserved 1. The I bit in the condition code register is a global mask for all interrupts sources except the SWI instruction. 2. 0 = highest priority Technical Data 92 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 7.6.2.1 Interrupt Status Register 1 Address: $FE04 Bit 7 6 5 4 3 2 1 Bit 0 Read: IF6 IF5 IF4 IF3 IF2 IF1 0 0 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 7-11. Interrupt Status Register 1 (INT1) IF6–IF1 — Interrupt Flags 6–1 These flags indicate the presence of interrupt requests from the sources shown in Table 7-4. 1 = Interrupt request present 0 = No interrupt request present Bit 1and Bit 0 — Always read 0 7.6.2.2 Interrupt Status Register 2 Address: $FE05 Bit 7 6 5 4 3 2 1 Bit 0 Read: 0 0 0 0 IF10 IF9 IF8 IF7 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 7-12. Interrupt Status Register 2 (INT2) IF10–IF7 — Interrupt Flags 6–1 These flags indicate the presence of interrupt requests from the sources shown in Table 7-4. 1 = Interrupt request present 0 = No interrupt request present Bit 7 and Bit 4 — Always read 0 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 93 7.6.3 Reset All reset sources always have equal and highest priority and cannot be arbitrated. 7.6.4 Break Interrupts The break module can stop normal program flow at a softwareprogrammable break point by asserting its break interrupt output (see Section 18. Break Module (BRK)). The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how each module is affected by the break state. 7.6.5 Status Flag Protection in Break Mode The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the SIM break flag control register (SBFCR). Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information. Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a two-step clearing mechanism — for example, a read of one register followed by the read or write of another — are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal. Technical Data 94 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 7.7 Low-Power Modes Executing the WAIT or STOP instruction puts the MCU in a low-powerconsumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described below. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur. 7.7.1 Wait Mode In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 7-13 shows the timing for wait mode entry. A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. Wait mode can also be exited by a reset or break. A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM break status register (SBSR). If the COP disable bit, COPD, in configuration register 1 (CONFIG1) is logic zero, then the computer operating properly module (COP) is enabled and remains active in wait mode. IAB IDB WAIT ADDR WAIT ADDR + 1 PREVIOUS DATA NEXT OPCODE SAME SAME SAME SAME R/W NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction. Figure 7-13. Wait Mode Entry Timing Figure 7-14 and Figure 7-15 show the timing for WAIT recovery. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 95 IAB IDB $6E0B $A6 $A6 $6E0C $A6 $00FF $01 $0B $00FE $00FD $00FC $6E EXITSTOPWAIT NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt Figure 7-14. Wait Recovery from Interrupt or Break 32 Cycles $6E0B IAB IDB $A6 $A6 32 Cycles RST VCT H RST VCT L $A6 RST OSCXCLK Figure 7-15. Wait Recovery from Internal Reset 7.7.2 Stop Mode In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode. The SIM disables the oscillator signals (OSCOUT and OSCXCLK) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in configuration register 1 (CONFIG1). If SSREC is set, stop recovery is reduced from the normal delay of 4096 OSCXCLK cycles down to 32. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode. NOTE: Technical Data 96 External crystal applications should use the full stop recovery time by clearing the SSREC bit. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor A break interrupt during stop mode sets the SIM break stop/wait bit (SBSW) in the SIM break status register (SBSR). The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 7-16 shows stop mode entry timing. CPUSTOP IAB IDB STOP ADDR STOP ADDR + 1 PREVIOUS DATA SAME NEXT OPCODE SAME SAME SAME R/W NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction. Figure 7-16. Stop Mode Entry Timing STOP RECOVERY PERIOD OSCXCLK INT/BREAK IAB STOP +1 STOP + 2 STOP + 2 SP SP – 1 SP – 2 SP – 3 Figure 7-17. Stop Mode Recovery from Interrupt or Break MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 97 7.8 SIM Registers The SIM has three memory mapped registers. Table 7-5 shows the mapping of these registers. Table 7-5. SIM Registers Summary Address Register Access Mode $FE00 SBSR User $FE01 SRSR User $FE03 SBFCR User 7.8.1 SIM Break Status Register (SBSR) The SIM break status register contains a flag to indicate that a break caused an exit from stop or wait mode. Address: Read: Write: Reset: $FE00 Bit 7 6 5 4 3 2 R R R R R R 0 0 0 0 0 0 R = Reserved Note: Writing a logic 0 clears SBSW. 1 SBSW Note 0 Bit 0 R 0 Figure 7-18. SIM Break Status Register (SBSR) SBSW — SIM Break Stop/Wait Bit This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break interrupt. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt 0 = Stop mode or wait mode was not exited by break interrupt Technical Data 98 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor SBSW can be read within the break interrupt routine. The user can modify the return address on the stack by subtracting one from it. The following code is an example. ; This code works if the H register has been pushed onto the stack in the break ; service routine software. This code should be executed at the end of the break ; service routine software. HIBYTE EQU 5 LOBYTE EQU 6 ; If not SBSW, do RTI BRCLR SBSW,SBSR, RETURN ; See if wait mode or stop mode was exited by ; break. TST LOBYTE,SP ;If RETURNLO is not zero, BNE DOLO ;then just decrement low byte. DEC HIBYTE,SP ;Else deal with high byte, too. DOLO DEC LOBYTE,SP ;Point to WAIT/STOP opcode. RETURN PULH RTI ;Restore H register. 7.8.2 SIM Reset Status Register (SRSR) This register contains six flags that show the source of the last reset. Clear the SIM reset status register by reading it. A power-on reset sets the POR bit and clears all other bits in the register. Address: Read: $FE01 Bit 7 6 5 4 3 2 1 Bit 0 POR PIN COP ILOP ILAD 0 0 0 1 0 0 0 0 0 0 0 Write: POR: = Unimplemented Figure 7-19. SIM Reset Status Register (SRSR) POR — Power-On Reset Bit 1 = Last reset caused by POR circuit 0 = Read of SRSR MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 99 PIN — External Reset Bit 1 = Last reset caused by external reset pin (RST) 0 = POR or read of SRSR COP — Computer Operating Properly Reset Bit 1 = Last reset caused by COP counter 0 = POR or read of SRSR ILOP — Illegal Opcode Reset Bit 1 = Last reset caused by an illegal opcode 0 = POR or read of SRSR ILAD — Illegal Address Reset Bit (opcode fetches only) 1 = Last reset caused by an opcode fetch from an illegal address 0 = POR or read of SRSR 7.8.3 SIM Break Flag Control Register (SBFCR) The SIM break flag control register contains a bit that enables software to clear status bits while the MCU is in a break state. Address: Read: Write: Reset: $FE03 Bit 7 6 5 4 3 2 1 Bit 0 BCFE R R R R R R R 0 R = Reserved Figure 7-20. SIM Break Flag Control Register (SBFCR) BCFE — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break Technical Data 100 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 8. Oscillator (OSC) 8.1 Contents 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.3 Oscillator External Connections . . . . . . . . . . . . . . . . . . . . . . .102 8.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.4.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . 103 8.4.2 Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . 103 8.4.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 103 8.4.4 External Clock Source (OSCXCLK) . . . . . . . . . . . . . . . . . . 103 8.4.5 Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 8.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 8.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 8.6 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 104 8.2 Introduction The oscillator circuit is designed for use with crystals or ceramic resonators. The oscillator circuit generates the crystal clock signal, OSCXCLK, at the frequency of the crystal. This signal is divided by two before being passed on to the SIM for bus clock generation. Figure 8-1 shows the structure of the oscillator. The oscillator requires various external components. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 101 8.3 Oscillator External Connections In its typical configuration, the oscillator requires five external components. The crystal oscillator is normally connected in a Pierce oscillator configuration, as shown in Figure 8-1. This figure shows only the logical representation of the internal components and may not represent actual circuitry. The oscillator configuration uses five components: • Crystal, X1 • Fixed capacitor, C1 • Tuning capacitor, C2 (can also be a fixed capacitor) • Feedback resistor, RB • Series resistor, RS (optional) The series resistor (RS) is included in the diagram to follow strict Pierce oscillator guidelines and may not be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal manufacturer’s data for more information. From SIM To SIM OSCXCLK To SIM ÷2 OSCOUT SIMOSCEN MCU OSC1 OSC2 RB X1 C1 RS* C2 *RS can be zero (shorted) when used with higher-frequency crystals. Refer to manufacturer’s data. Figure 8-1. Oscillator External Connections Technical Data 102 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 8.4 I/O Signals The following paragraphs describe the oscillator I/O signals. 8.4.1 Crystal Amplifier Input Pin (OSC1) The OSC1 pin is an input to the crystal oscillator amplifier. An externally generated clock can also feed the OSC1 pin of the crystal oscillator circuit. Connect the external clock to the OSC1 pin and let the OSC2 pin float. The OSC1 pin is rated at 3.3V. 8.4.2 Crystal Amplifier Output Pin (OSC2) The OSC2 pin is the output of the crystal oscillator inverting amplifier. The OSC2 is rated at 3.3V. 8.4.3 Oscillator Enable Signal (SIMOSCEN) The SIMOSCEN signal comes from the SIM and enables the oscillator. 8.4.4 External Clock Source (OSCXCLK) OSCXCLK is the crystal oscillator output signal. It runs at the full speed of the crystal (fXCLK) and comes directly from the crystal oscillator circuit. Figure 8-1 shows only the logical relation of OSCXCLK to OSC1 and OSC2 and may not represent the actual circuitry. The duty cycle of OSCXCLK is unknown and may depend on the crystal and other external factors. Also, the frequency and amplitude of OSCXCLK can be unstable at start-up. 8.4.5 Oscillator Out (OSCOUT) The clock driven to the SIM is the crystal frequency divided by two. This signal is driven to the SIM for generation of the bus clocks used by the CPU and other modules on the MCU. OSCOUT will be divided again in the SIM and results in the internal bus frequency being one fourth of the OSCXCLK frequency. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 103 8.5 Low Power Modes The WAIT and STOP instructions put the MCU in low-powerconsumption standby modes. 8.5.1 Wait Mode The WAIT instruction has no effect on the oscillator logic. OSCXCLK continues to drive to the SIM module. 8.5.2 Stop Mode The STOP instruction disables the OSCXCLK output. 8.6 Oscillator During Break Mode The oscillator continues drive OSCXCLK when the chip enters the break state. Technical Data 104 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 9. Monitor ROM (MON) 9.1 Contents 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 9.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 9.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 9.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 9.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 9.4.3 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 9.4.4 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 9.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 9.4.6 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 9.2 Introduction This section describes the monitor ROM. The monitor ROM allows complete testing of the MCU through a single-wire interface with a host computer. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 105 9.3 Features Features of the monitor ROM include: • Normal user-mode pin functionality • One pin dedicated to serial communication between monitor ROM and host computer • Standard mark/space non-return-to-zero (NRZ) communication with host computer • 9600 Baud communication with host computer • Execution of code in RAM 9.4 Functional Description The monitor ROM receives and executes commands from a host computer. Figure 9-1 shows a sample circuit used to enter monitor mode and communicate with a host computer via a standard RS-232 interface. Simple monitor commands can access any memory address. In monitor mode, the MCU can execute host-computer code in RAM while all MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pull-up resistor. Technical Data 106 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor VDD 10 kΩ 68HC08 RST 0.1 µF VTST 10 Ω IRQ 1 10 µF 10 µF + + MC145407 20 + 3 18 4 17 2 19 10 µF OSC1 + 10 µF VDD X1 9.83 MHz 20 pF 10 MΩ OSC2 20 pF DB-25 2 5 16 3 6 15 VSS VSS1 VDD VDD 7 0.1 µF VDD 1 14 2 3 6 5 4 7 NOTES: MC74HC125 VDD 10 kΩ VDD VDD 10 kΩ 10 kΩ PTC0 PTC1 A Position A — Bus clock = OSCXCLK ÷ 4 Position B — Bus clock = OSCXCLK ÷ 2 (See NOTES) PTA0 PTC3 B Figure 9-1. Monitor Mode Circuit MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 107 9.4.1 Entering Monitor Mode Table 9-1 shows the pin conditions for entering monitor mode. NOTE: IRQ Pin PTC0 Pin PTC1 Pin PTA0 Pin PTC3 Pin Table 9-1. Mode Selection Mode VTST 1 0 1 1 Monitor OSCXCLK ---------------------------2 OSCXCLK ---------------------------4 VTST 1 0 1 0 Monitor OSCXCLK OSCXCLK ---------------------------2 OSCOUT Bus Frequency Holding the PTC3 pin low when entering monitor mode causes a bypass of a divide-by-two stage at the oscillator. The OSCOUT frequency is equal to the OSCXCLK frequency, and the OSC1 input directly generates internal bus clocks. In this case, the OSC1 signal must have a 50% duty cycle at maximum bus frequency. Enter monitor mode with the pin configuration shown above by pulling RST low and then high. The rising edge of RST latches monitor mode. Once monitor mode is latched, the values on the specified pins can change. Once out of reset, the MCU monitor mode firmware then sends a break signal (10 consecutive logic zeros) to the host computer, indicating that it is ready to receive a command. The break signal also provides a timing reference to allow the host to determine the necessary baud rate. Monitor mode uses different vectors for reset and SWI. The alternate vectors are in the $FE page instead of the $FF page and allow code execution from the internal monitor firmware instead of user code. When the host computer has completed downloading code into the MCU RAM, This code can be executed by driving PTA0 low while asserting RST low and then high. The internal monitor ROM firmware will interpret the low on PTA0 as an indication to jump to RAM, and execution control will then continue from RAM. Execution of an SWI from the downloaded code will return program control to the internal monitor ROM firmware. Technical Data 108 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Alternatively, the host can send a RUN command, which executes an RTI, and this can be used to send control to the address on the stack pointer. The COP module is disabled in monitor mode as long as VTST is applied to the IRQ or the RST pin. (See Section 7. System Integration Module (SIM) for more information on modes of operation.) Table 9-2 is a summary of the differences between user mode and monitor mode. Table 9-2. Mode Differences Functions COP Reset Vector High Reset Vector Low SWI Vector High SWI Vector Low User Enabled $FFFE $FFFF $FFFC $FFFD Monitor Disabled(1) $FEFE $FEFF $FEFC $FEFD Modes Notes: 1. If the high voltage (VTST) is removed from the IRQ pin, the SIM asserts its COP enable output. The COP is a mask option enabled or disabled by the COPD bit in the configuration register. 9.4.2 Data Format Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. (See Figure 9-2 and Figure 9-3.) START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 STOP BIT NEXT START BIT Figure 9-2. Monitor Data Format $A5 START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 BREAK START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 STOP BIT NEXT START BIT STOP BIT Figure 9-3. Sample Monitor Waveforms MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 109 The data transmit and receive rate can be anywhere from 4800 baud to 28.8 kbaud. Transmit and receive baud rates must be identical. 9.4.3 Echoing As shown in Figure 9-4, the monitor ROM immediately echoes each received byte back to the PTA0 pin for error checking. SENT TO MONITOR READ READ ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW ECHO DATA RESULT Figure 9-4. Read Transaction Any result of a command appears after the echo of the last byte of the command. 9.4.4 Break Signal A start bit followed by nine low bits is a break signal (see Figure 9-5). When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits before echoing the break signal. MISSING STOP BIT TWO-STOP-BIT DELAY BEFORE ZERO ECHO 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Figure 9-5. Break Transaction Technical Data 110 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 9.4.5 Commands The monitor ROM uses the following commands: • READ (read memory) • WRITE (write memory) • IREAD (indexed read) • IWRITE (indexed write) • READSP (read stack pointer) • RUN (run user program) Table 9-3. READ (Read Memory) Command Description Read byte from memory Operand Specifies 2-byte address in high byte:low byte order Data Returned Returns contents of specified address Opcode $4A Command Sequence SENT TO MONITOR READ ECHO MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor READ ADDRESS HIGH ADDRESS HIGH ADDRESS LOW ADDRESS LOW DATA RETURN Technical Data 111 Table 9-4. WRITE (Write Memory) Command Description Write byte to memory Operand Specifics 2-byte address in high byte:low byte order; low byte followed by data byte Data Returned None Opcode $49 Command Sequence SENT TO MONITOR WRITE WRITE ADDRESS HIGH ADDRESS HIGH ADDRESS LOW ADDRESS LOW DATA DATA ECHO Table 9-5. IREAD (Indexed Read) Command Description Read Next 2 Bytes in Memory from Last Address Accessed Operand Specifies 2-byte address in high byte:low byte order Data Returned Returns contents of next two addresses Opcode $1A Command Sequence SENT TO MONITOR IREAD ECHO Technical Data 112 IREAD DATA DATA RETURN MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Table 9-6. IWRITE (Indexed Write) Command Description Write to last address accessed + 1 Operand Specifies single data byte Data Returned None Opcode $19 Command Sequence SENT TO MONITOR IWRITE IWRITE DATA DATA ECHO A sequence of IREAD or IWRITE commands can sequentially access a block of memory over the full 64-kbyte memory map. Table 9-7. READSP (Read Stack Pointer) Command Description Reads stack pointer Operand None Data Returned Returns stack pointer in high byte:low byte order Opcode $0C Command Sequence SENT TO MONITOR READSP ECHO MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor READSP SP HIGH SP LOW RETURN Technical Data 113 Table 9-8. RUN (Run User Program) Command Description Executes RTI instruction Operand None Data Returned None Opcode $28 Command Sequence SENT TO MONITOR RUN RUN ECHO 9.4.6 Baud Rate The communication baud rate is controlled by crystal frequency and the state of the PTC3 pin upon entry into monitor mode. When PTC3 is high, the divide by ratio is 1024. If the PTC3 pin is at logic zero upon entry into monitor mode, the divide by ratio is 512. Table 9-9. Monitor Baud Rate Selection Technical Data 114 Crystal Frequency PTC3 Pin Baud Rate 19.66 MHz 0 19200 bps 9.83 MHz 0 9600 bps 9.83 MHz 1 4800 bps MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 10. Timer Interface Module (TIM) 10.1 Contents 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 10.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 10.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 10.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 120 10.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .121 10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 121 10.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 122 10.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 123 10.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 10.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 10.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 126 10.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 10.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 10.10.1 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . 127 10.10.2 TIM Counter Registers (TCNTH:TCNTL) . . . . . . . . . . . . . . 129 10.10.3 TIM Counter Modulo Registers (TMODH:TMODL) . . . . . . 130 10.10.4 TIM Channel Status and Control Registers (TSC0:TSC1) . 131 10.10.5 TIM Channel Registers (TCH0H/L:TCH1H/L) . . . . . . . . . . 135 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 115 10.2 Introduction This section describes the timer interface module (TIM2, Version B). The TIM is a two-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 10-1 is a block diagram of the TIM. 10.3 Features Features of the TIM include the following: • Two Input Capture/Output Compare Channels – Rising-Edge, Falling-Edge, or Any-Edge Input Capture Trigger – Set, Clear, or Toggle Output Compare Action NOTE: • Buffered and Unbuffered Pulse Width Modulation (PWM) Signal Generation • Programmable TIM Clock Input – Seven-Frequency Internal Bus Clock Prescaler Selection • Free-Running or Modulo Up-Count Operation • Toggle Any Channel Pin on Overflow • TIM Counter Stop and Reset Bits • Modular Architecture Expandable to Eight Channels TCH1 (timer channel 1) is not bonded to an external pin on this MCU. Therefore, any references to the timer TCH1 pin in the following text should be interpreted as not available — but the internal status and control registers are still available. 10.4 Pin Name Conventions The TIM share one I/O pin with one port E I/O pin. The full name of the TIM I/O pin is listed in Table 10-1. The generic pin name appear in the text that follows. Table 10-1. Pin Name Conventions Technical Data 116 TIM Generic Pin Names: TCH0 TCH1 Full TIM Pin Names: PTE0/SOG/TCH0 Not Available MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 10.5 Functional Description Figure 10-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence. The two TIM channels are programmable independently as input capture or output compare channels. PRESCALER SELECT INTERNAL BUS CLOCK PRESCALER TSTOP PS2 TRST PS1 16-BIT COUNTER PS0 TOF TOIE 16-BIT COMPARATOR INTERRUPT LOGIC TMODH:TMODL TOV0 CHANNEL 0 ELS0B ELS0A CH0MAX 16-BIT COMPARATOR TCH0H:TCH0L PORT LOGIC TCH0 CH0F 16-BIT LATCH MS0A CH0IE INTERRUPT LOGIC MS0B INTERNAL BUS TOV1 CHANNEL 1 ELS1B ELS1A CH1MAX 16-BIT COMPARATOR TCH1H:TCH1L PORT LOGIC TCH1 (Not available) CH1F 16-BIT LATCH MS1A CH1IE INTERRUPT LOGIC Figure 10-1. TIM Block Diagram MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 117 Table 10-2. TIM I/O Register Summary Addr. $000A $000C $000D Register Name TIM Status and Control Register (TSC) TIM Counter Register High (TCNTH) TIM Counter Register Low (TCNTL) Bit 7 $000E TIM Counter Modulo Register Low (TMODL) $000F $0010 TIM Channel 0 Status/Control Register (TSC0) TIM Channel 0 Register High (TCH0H) $0011 TIM Channel 0 Register Low (TCH0L) $0012 $0013 TIM Channel 1 Status/Control Register (TSC1) Technical Data 118 5 TOIE TSTOP 4 3 0 0 2 1 Bit 0 PS2 PS1 PS0 Read: TOF Write: 0 Reset: 0 0 1 0 0 0 0 0 Read: Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Reset: 0 0 0 0 0 0 0 0 Read: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0 0 0 0 0 0 0 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 1 1 1 1 1 1 1 1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Reset: 1 1 1 1 1 1 1 1 Read: CH0F Write: 0 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX Reset: 0 0 0 0 0 0 0 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit2 Bit1 Bit0 TRST Write: Write: Reset: TIM Counter Modulo Register High (TMODH) 6 Read: Write: Reset: Read: Write: Read: Write: Reset: Read: Write: Indeterminate after reset Bit7 Bit6 Bit5 Reset: Bit4 Bit3 Indeterminate after reset Read: CH1F Write: 0 Reset: 0 CH1IE 0 0 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor $0014 $0015 TIM Channel 1 Register High (TCH1H) TIM Channel 1 Register Low (TCH1L) Read: Write: Bit15 Bit14 Bit13 Reset: Read: Write: Bit12 Bit11 Bit10 Bit9 Bit8 Bit2 Bit1 Bit0 Indeterminate after reset Bit7 Bit6 Bit5 Reset: Bit4 Bit3 Indeterminate after reset = Unimplemented 10.5.1 TIM Counter Prescaler The TIM clock source can be one of the seven prescaler outputs. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register (TSC) select the TIM clock source. 10.5.2 Input Capture With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM CPU interrupt requests. 10.5.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 119 10.5.3.1 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in 10.5.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the output compare value on channel x: Technical Data 120 • When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. • When changing to a larger output compare value, enable channel x TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 10.5.3.2 Buffered Output Compare Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. NOTE: In buffered output compare operation, do not write new output compare values to the currently active channel registers. Writing to the active channel registers is the same as generating unbuffered output compares. 10.5.4 Pulse Width Modulation (PWM) By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal. As Figure 10-2 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear the channel pin on output compare if the state of the PWM pulse is logic one. Program the TIM to set the pin if the state of the PWM pulse is logic zero. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 121 OVERFLOW OVERFLOW OVERFLOW PERIOD PULSE WIDTH PTDx/TCHx OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE Figure 10-2. PWM Period and Pulse Width The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing $00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is 000 (see 10.10.1 TIM Status and Control Register (TSC)). The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50%. 10.5.4.1 Unbuffered PWM Signal Generation Any output compare channel can generate unbuffered PWM pulses as described in 10.5.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to Technical Data 122 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x: NOTE: • When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value. • When changing to a longer pulse width, enable channel x TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period. In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 10.5.4.2 Buffered PWM Signal Generation Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 123 (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. NOTE: In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. Writing to the active channel registers is the same as generating unbuffered PWM signals. 10.5.4.3 PWM Initialization To ensure correct operation when generating unbuffered or buffered PWM signals, use the following initialization procedure: 1. In the TIM status and control register (TSC): a. Stop the TIM counter by setting the TIM stop bit, TSTOP. b. Reset the TIM counter by setting the TIM reset bit, TRST. 2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM period. 3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width. 4. In TIM channel x status and control register (TSCx): a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB:MSxA. (See Table 10-4.) b. Write 1 to the toggle-on-overflow bit, TOVx. c. NOTE: Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must force the output to the complement of the pulse width level. (See Table 10-4.) In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP. Technical Data 124 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0 (TSCR0) controls and monitors the PWM signal from the linked channels. MS0B takes priority over MS0A. Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle output. Setting the channel x maximum duty cycle bit (CHxMAX) and clearing the TOVx bit generates a 100% duty cycle output. See 10.10.4 TIM Channel Status and Control Registers (TSC0:TSC1). 10.6 Interrupts The following TIM sources can generate interrupt requests: • TIM overflow flag (TOF) — The TOF bit is set when the TIM counter value rolls over to $0000 after matching the value in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control register. • TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE=1. CHxF and CHxIE are in the TIM channel x status and control register. 10.7 Wait Mode The WAIT instruction puts the MCU in low-power-consumption standby mode. The TIM remains active after the execution of a WAIT instruction. In wait mode the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 125 If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction. 10.8 TIM During Break Interrupts A break interrupt stops the TIM counter. The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. (See 18.6.4 SIM Break Flag Control Register.) To allow software to clear status bits during a break interrupt, write a logic one to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic zero to the BCFE bit. With BCFE at logic zero (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a two-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic zero. After the break, doing the second step clears the status bit. 10.9 I/O Signals Port E shares one of its pins with the TIM. The TIM channel I/O pin is PTE0/SOG/TCH0. TCH0 pin is programmable independently as an input capture pin or an output compare pin. It also can be configured as a buffered output compare or buffered PWM pin. Technical Data 126 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 10.10 I/O Registers The following I/O registers control and monitor operation of the TIM: • TIM status and control register (TSC) • TIM control registers (TCNTH:TCNTL) • TIM counter modulo registers (TMODH:TMODL) • TIM channel status and control registers (TSC0 and TSC1) • TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L) 10.10.1 TIM Status and Control Register (TSC) The TIM status and control register does the following: • Enables TIM overflow interrupts • Flags TIM overflows • Stops the TIM counter • Resets the TIM counter • Prescales the TIM counter clock Address: $000A Bit 7 Read: TOF Write: 0 Reset: 0 6 5 TOIE TSTOP 0 1 4 3 0 0 TRST 0 0 2 1 Bit 0 PS2 PS1 PS0 0 0 0 = Unimplemented Figure 10-3. TIM Status and Control Register (TSC) TOF — TIM Overflow Flag Bit This read/write flag is set when the TIM counter resets to $0000 after reaching the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a logic zero to TOF. If another TIM MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 127 overflow occurs before the clearing sequence is complete, then writing logic zero to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic one to TOF has no effect. 1 = TIM counter has reached modulo value 0 = TIM counter has not reached modulo value TOIE — TIM Overflow Interrupt Enable Bit This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit. 1 = TIM overflow interrupts enabled 0 = TIM overflow interrupts disabled TSTOP — TIM Stop Bit This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit. 1 = TIM counter stopped 0 = TIM counter active NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. TRST — TIM Reset Bit Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic zero. Reset clears the TRST bit. 1 = Prescaler and TIM counter cleared 0 = No effect NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of $0000. PS[2:0] — Prescaler Select Bits These read/write bits select either the TCLK pin or one of the seven prescaler outputs as the input to the TIM counter as Table 10-3 shows. Reset clears the PS[2:0] bits. Technical Data 128 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Table 10-3. Prescaler Selection PS2 PS1 PS0 TIM Clock Source 0 0 0 Internal Bus Clock ÷ 1 0 0 1 Internal Bus Clock ÷ 2 0 1 0 Internal Bus Clock ÷ 4 0 1 1 Internal Bus Clock ÷ 8 1 0 0 Internal Bus Clock ÷ 16 1 0 1 Internal Bus Clock ÷ 32 1 1 0 Internal Bus Clock ÷ 64 1 1 1 Not available 10.10.2 TIM Counter Registers (TCNTH:TCNTL) The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers. NOTE: MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value latched during the break. Technical Data 129 Address: Read: $000C TCNTH Bit 7 6 5 4 3 2 1 Bit 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 0 0 0 0 0 0 0 0 $000D TCNTL Bit 7 6 5 4 3 2 1 Bit 0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0 0 0 0 0 0 0 0 Write: Reset: Address: Read: Write: Reset: = Unimplemented Figure 10-4. TIM Counter Registers (TCNTH:TCNTL) 10.10.3 TIM Counter Modulo Registers (TMODH:TMODL) The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from $0000 at the next clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers. Technical Data 130 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Address: Read: Write: Reset: Address: Read: Write: Reset: $000E TMODH Bit 7 6 5 4 3 2 1 Bit 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 1 1 1 1 1 1 1 1 $000F TMODL Bit 7 6 5 4 3 2 1 Bit 0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 1 1 1 1 1 1 1 1 Figure 10-5. TIM Counter Modulo Registers (TMODH:TMODL) NOTE: Reset the TIM counter before writing to the TIM counter modulo registers. 10.10.4 TIM Channel Status and Control Registers (TSC0:TSC1) Each of the TIM channel status and control registers does the following: MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor • Flags input captures and output compares • Enables input capture and output compare interrupts • Selects input capture, output compare, or PWM operation • Selects high, low, or toggling output on output compare • Selects rising edge, falling edge, or any edge as the active input capture trigger • Selects output toggling on TIM overflow • Selects 100% PWM duty cycle • Selects buffered or unbuffered output compare/PWM operation Technical Data 131 Address: $0010 TSC0 Bit 7 6 5 4 3 2 1 Bit 0 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 5 4 3 2 1 Bit 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 Read: CH0F Write: 0 Reset: 0 0 $0013 TSC1 Bit 7 6 Address: Read: CH1F Write: 0 Reset: 0 CH1IE 0 0 0 = Unimplemented Figure 10-6. TIM Channel Status and Control Registers (TSC0:TSC1) CHxF — Channel x Flag Bit When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers. When TIM CPU interrupt requests are enabled (CHxIE=1), clear CHxF by reading the TIM channel x status and control register with CHxF set and then writing a logic zero to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic zero to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF. Reset clears the CHxF bit. Writing a logic one to CHxF has no effect. 1 = Input capture or output compare on channel x 0 = No input capture or output compare on channel x CHxIE — Channel x Interrupt Enable Bit This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE bit. 1 = Channel x CPU interrupt requests enabled 0 = Channel x CPU interrupt requests disabled Technical Data 132 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor MSxB — Mode Select Bit B This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM channel 0 status and control register. Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O. Reset clears the MSxB bit. 1 = Buffered output compare/PWM operation enabled 0 = Buffered output compare/PWM operation disabled MSxA — Mode Select Bit A When ELSxB:A ≠ 00, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 10-4. 1 = Unbuffered output compare/PWM operation 0 = Input capture operation When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin. (See Table 10-4.). Reset clears the MSxA bit. 1 = Initial output level low 0 = Initial output level high NOTE: Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC). ELSxB and ELSxA — Edge/Level Select Bits When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port , and pin TCHx is available as a general-purpose port I/O pin. Table 10-4 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 133 Table 10-4. Mode, Edge, and Level Selection MSxB MSxA ELSxB ELSxA X 0 0 0 Mode Output Preset NOTE: X 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 X 0 1 1 X 1 0 1 X 1 1 Configuration Pin under Port Control; Initial Output Level High Pin under Port Control; Initial Output Level Low Capture on Rising Edge Only Input Capture Capture on Falling Edge Only Capture on Rising or Falling Edge Output Compare or PWM Toggle Output on Compare Clear Output on Compare Set Output on Compare Toggle Output on Compare Buffered Output Clear Output on Compare Compare or Buffered Set Output on Compare PWM Before enabling a TIM channel register for input capture operation, make sure that the PTDx/TCHx pin is stable for at least two bus clocks. TOVx — Toggle-On-Overflow Bit When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit. 1 = Channel x pin toggles on TIM counter overflow. 0 = Channel x pin does not toggle on TIM counter overflow. NOTE: When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time. CHxMAX — Channel x Maximum Duty Cycle Bit When the TOVx bit is at logic zero, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 10-7 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared. Technical Data 134 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor OVERFLOW OVERFLOW OVERFLOW OVERFLOW OVERFLOW PERIOD PTDx/TCHx OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE CHxMAX Figure 10-7. CHxMAX Latency 10.10.5 TIM Channel Registers (TCH0H/L:TCH1H/L) These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown. In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read. In output compare mode (MSxB:MSxA ≠ 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 135 Address: Read: Write: $0011 TCH0H Bit 7 6 5 4 3 2 1 Bit 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Reset: Address: Read: Write: Indeterminate after reset $0012 TCH0L Bit 7 6 5 4 3 2 1 Bit 0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Reset: Address: Read: Write: Indeterminate after reset $0014 TCH1H Bit 7 6 5 4 3 2 1 Bit 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Reset: Address: Read: Write: Reset: Indeterminate after reset $0015 TCH1L Bit 7 6 5 4 3 2 1 Bit 0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Indeterminate after reset Figure 10-8. TIM Channel Registers (TCH0H/L:TCH1H/L) Technical Data 136 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 11. Pulse Width Modulator (PWM) 11.1 Contents 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 11.4 PWM Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 11.4.1 PWM Data Registers 0 to 15 (0PWM–15PWM). . . . . . . . . 140 11.4.2 PWM Control Registers 1 and 2 (PWMCR1:PWMCR2) . . 141 11.2 Introduction Sixteen 8-bit PWM channels are available on the MC68HC08BD24. Channels 0 to 7 are shared with port-B I/O pins under the control of the PWM control register 1. Channels 8 to 15 are shared with port-A I/O pins under the control of the PWM control register 2. 11.3 Functional Description Each 8-bit PWM channel is composed of an 8-bit register which contains a 5-bit PWM in MSB portion and a 3-bit binary rate multiplier (BRM) in LSB portion. There are 16 PWM data registers as shown in Table 11-1. The value programmed in the 5-bit PWM portion will determine the pulse length of the output. The clock to the 5-bit PWM portion is the system clock, the repetition rate of the output is hence 187.5KHz at 6MHz clock. The 3-bit BRM will generate a number of narrow pulses which are equally distributed among an 8-PWM-cycle frame. The number of pulses generated is equal to the number programmed in the 3-bit BRM portion. Examples of the waveforms are shown in Figure 11-3. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 137 Combining the 5-bit PWM together with the 3-bit BRM, the average duty cycle at the output will be (M+N/8)/32, where M is the content of the 5-bit PWM portion, and N is the content of the 3-bit BRM portion. Using this mechanism, a true 8-bit resolution PWM type DAC with reasonably high repetition rate can be obtained. The value of each PWM Data Register is continuously compared with the content of an internal counter to determine the state of each PWM channel output pin. Double buffering is not used in this PWM design. Table 11-1. PWM I/O Register Summary Addr. Register Name $0020 PWM0 Data Register (0PWM) Read: $0021 PWM1 Data Register (1PWM) Read: $0022 PWM2 Data Register (2PWM) Read: $0023 PWM3 Data Register (3PWM) Read: $0024 PWM4 Data Register (4PWM) Read: $0025 PWM5 Data Register (5PWM) Read: $0026 PWM6 Data Register (6PWM) Read: $0027 PWM7 Data Register (7PWM) Read: PWM Control Register 1 (PWMCR1) Read: $0028 Write: Write: Write: Write: Write: Write: Write: Write: Write: Reset: Technical Data 138 Bit 7 6 5 4 3 2 1 Bit 0 0PWM4 0PWM3 0PWM2 0PWM1 0PWM0 0BRM2 0BRM1 0BRM0 1PWM4 1PWM3 1PWM2 1PWM1 1PWM0 1BRM2 1BRM1 1BRM0 2PWM4 2PWM3 2PWM2 2PWM1 2PWM0 2BRM2 2BRM1 2BRM0 3PWM4 3PWM3 3PWM2 3PWM1 3PWM0 3BRM2 3BRM1 3BRM0 4PWM4 4PWM3 4PWM2 4PWM1 4PWM0 4BRM2 4BRM1 4BRM0 5PWM4 5PWM3 5PWM2 5PWM1 5PWM0 5BRM2 5BRM1 5BRM0 6PWM4 6PWM3 6PWM2 6PWM1 6PWM0 6BRM2 6BRM1 6BRM0 7PWM4 7PWM3 7PWM2 7PWM1 7PWM0 7BRM2 7BRM1 7BRM0 PWM7E PWM6E PWM5E PWM4E PWM3E PWM2E PWM1E PWM0E 0 0 0 0 0 0 0 0 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Table 11-1. PWM I/O Register Summary $0051 PWM8 Data Register (8PWM) Read: $0052 PWM9 Data Register (9PWM) Read: $0053 PWM10 Data Register (10PWM) Read: $0054 PWM11 Data Register (11PWM) Read: $0055 PWM12 Data Register (12PWM) Read: $0056 PWM13 Data Register (13PWM) Read: $0057 PWM14 Data Register (14PWM) Read: $0058 PWM15 Data Register (15PWM) Read: PWM Control Register 2 (PWMCR2) Read: $0059 Write: Write: Write: Write: Write: Write: Write: Write: Write: Reset: 8PWM4 8PWM3 8PWM2 8PWM1 8PWM0 8BRM2 8BRM1 8BRM0 9PWM4 9PWM3 9PWM2 9PWM1 9PWM0 9BRM2 9BRM1 9BRM0 10PWM4 10PWM3 10PWM2 10PWM1 10PWM0 10BRM2 10BRM1 10BRM0 11PWM4 11PWM3 11PWM2 11PWM1 11PWM0 11BRM2 11BRM1 11BRM0 12PWM4 12PWM3 12PWM2 12PWM1 12PWM0 12BRM2 12BRM1 12BRM0 13PWM4 13PWM3 13PWM2 13PWM1 13PWM0 13BRM2 13BRM1 13BRM0 14PWM4 14PWM2 14PWM1 14PWM0 14BRM2 14BRM1 14BRM0 15PWM4 15PWM3 15PWM2 15PWM1 15PWM0 15BRM2 15BRM1 15BRM0 PWM15E PWM14E PWM13E PWM12E PWM11E PWM10E PWM9E PWM8E 0 0 0 PWM3 0 0 0 0 0 11.4 PWM Registers The PWM module uses of 18 registers for data and control functions. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor • 16 PWM data registers ($0020–$0027 and $0051–$0058) • 2 PWM control registers ($0028 and $0059) Technical Data 139 11.4.1 PWM Data Registers 0 to 15 (0PWM–15PWM) Address: Read: Write: Reset: $0020–$0027 and $0051–$0058 Bit 7 6 5 4 3 2 1 Bit 0 xPWM4 xPWM3 xPWM2 xPWM1 xPWM0 xBRM2 xBRM1 xBRM0 0 0 0 0 0 0 0 0 Figure 11-1. PWM Data Registers 0 to 15 (0PWM–15PWM) The output waveform of the 16 PWM channels are each configured by an 8-bit register, which contains a 5-bit PWM in MSB portion and a 3-bit binary rate multiplier (BRM) in LSB portion xPWM4–xPWM0 — PWM Bits The value programmed in the 5-bit PWM portion will determine the pulse length of the output. The clock to the 5-bit PWM portion is the system clock (CPU clock), the repetition rate of the output is hence fOP ÷ 32. Examples of PWM output waveforms are shown in Figure 11-3. xBRM2–xBRM0 — Binary Rate Multiplier Bits The 3-bit BRM will generate a number of narrow pulses which are equally distributed among an 8-PWM-cycle frame. The number of pulses generated is equal to the number programmed in the 3-bit BRM portion. Examples of PWM output waveforms are shown in Figure 11-3. Technical Data 140 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 11.4.2 PWM Control Registers 1 and 2 (PWMCR1:PWMCR2) PWM Control Register 1 (PWMCR1) Read: $0028 PWM Control Register 2 (PWMCR2) Read: $0059 Write: Write: PWM7E PWM2E PWM1E PWM0E PWM15E PWM14E PWM13E PWM12E PWM11E PWM10E PWM9E PWM8E 0 0 Reset: 0 PWM6E 0 PWM5E 0 PWM4E 0 PWM3E 0 0 Figure 11-2. PWM Control Register 1 and 2 (PWMCR1:PWMCR2) PWM15E–PWM0E — PWM Output Enable Setting a bit to 1 will enable the corresponding PWM channel to use as PWM output. A zero configures the corresponding PWM pin as a standard I/O port pin. Reset clears these bits. 1 = Port pin configured as PWM output 0 = Port pin configured as standard I/O port pin. Table 11-2. PWM Channels and Port I/O pins MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Port Pin PWM Channel Control Bit Port Pin PWM Channel Control Bit PTB0 PWM0 PWM0E PTA0 PWM8 PWM8E PTB1 PWM1 PWM1E PTA1 PWM9 PWM9E PTB2 PWM2 PWM2E PTA2 PWM10 PWM10E PTB3 PWM3 PWM3E PTA3 PWM11 PWM11E PTB4 PWM4 PWM4E PTA4 PWM12 PWM12E PTB5 PWM5 PWM5E PTA5 PWM13 PWM13E PTB6 PWM6 PWM6E PTA6 PWM14 PWM14E PTB7 PWM7 PWM7E PTA7 PWM15 PWM15E Technical Data 141 1 PWM cycle = 32T M=$00 T M=$01 31T 16T M=$0F 16T 31T M=$1F Pulse inserted at end of PWM cycle depends on setting of N. T T=1 CPU clock period (0.167µs if CPU clock=6MHz) M = value set in 5-bit PWM (bit3-bit7) N = value set in 3-bit BRM (bit0-bit2) N xx1 x1x 1xx PWM cycles where pulses are Number of inserted pulses inserted in a 8-cycle frame in a 8-cycle frame 4 1 2, 6 2 1, 3, 5, 7 4 Figure 11-3. 8-Bit PWM Output Waveforms Technical Data 142 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 12. Analog-to-Digital Converter (ADC) 12.1 Contents 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 12.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 12.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146 12.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 12.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 12.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 12.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 12.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 12.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 12.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 12.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 12.7.1 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . . 148 12.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 12.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .148 12.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 12.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . 151 12.2 Introduction This section describes the analog-to-digital converter (ADC). The ADC is an 8-bit 6-channels analog-to-digital converter. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 143 12.3 Features Features of the ADC module include: • 6 Channels ADC with Multiplexed Input • Linear Successive Approximation • 8-Bit Resolution • Single or Continuous Conversion • Conversion Complete Flag or Conversion Complete Interrupt • Selectable ADC Clock Table 12-1. ADC Register Summary Addr. Register Name $005D ADC Status and Control Register (ADSCR) $005E ADC Data Register (ADR) Bit 7 Read: COCO Write: 6 5 4 3 2 1 Bit 0 AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 Reset: 0 0 0 1 1 1 1 1 Read: AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 Write: Reset: $005F ADC Input Clock Register (ADICLK) Read: Write: Reset: Indeterminate after Reset ADIV2 ADIV1 ADIV0 0 0 0 0 0 0 0 0 0 0 0 0 0 = Unimplemented 12.4 Functional Description Four ADC channels are available for sampling external sources at pins PTC5–PTC0. An analog multiplexer allows the single ADC converter to select one of the 6 ADC channels as ADC voltage input (ADCVIN). ADCVIN is converted by the successive approximation register-based counters. The ADC resolution is 8 bits. When the conversion is completed, ADC puts the result in the ADC data register and sets a flag or generates an interrupt. Figure 12-1 shows a block diagram of the ADC. Technical Data 144 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor INTERNAL DATA BUS READ DDRC DISABLE WRITE DDRC DDRCx RESET WRITE PTC PTCx/ADCx PTCx READ PTC DISABLE ADC CHANNEL x ADC DATA REGISTER INTERRUPT LOGIC AIEN CONVERSION COMPLETE ADC ADC VOLTAGE IN ADCVIN CHANNEL SELECT (1 OF 6 CHANNELS) ADCH[4:0] ADC CLOCK COCO CLOCK GENERATOR BUS CLOCK ADIV[2:0] ADICLK Figure 12-1. ADC Block Diagram 12.4.1 ADC Port I/O Pins PTC5–PTC0 are general-purpose I/O pins that are shared with the ADC channels. The channel select bits (ADC status control register, $005D), define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port register MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 145 or DDR will not have any affect on the port pin that is selected by the ADC. Read of a port pin which is in use by the ADC will return an unknown state if the corresponding DDR bit is at logic 0. If the DDR bit is at logic 1, the value in the port data latch is read. 12.4.2 Voltage Conversion 2 When the input voltage to the ADC equals ------ VDD, the ADC converts the 3 signal to $FF (full scale). If the input voltage equals VSS, the ADC 2 converts it to $00. Input voltage between ------ VDD and VSS are a 3 straight-line linear conversion. All other input voltages will result in $FF 2 if greater than ------ VDD and $00 if less than VSS. 3 NOTE: Input voltage should not exceed the analog supply voltages. 12.4.3 Conversion Time Twelve ADC internal clocks are required to perform one conversion. The ADC starts a conversion on the first rising edge of the ADC internal clock immediately following a write to the ADSCR. If the ADC internal clock is selected to run at 1MHz, then one conversion will take 12µs to complete. With a 1MHz ADC internal clock the maximum sample rate is 83.3kHz. Conversion Time = 12 ADC Clock Cycles ADC Clock Frequency Number of Bus Cycles = Conversion Time × Bus Frequency 12.4.4 Continuous Conversion In the continuous conversion mode, the ADC continuously converts the selected channel filling the ADC data register with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The COCO bit (ADC status control register, $005D) is set after each conversion and can be cleared by writing the ADC status and control register or reading of the ADC data register. Technical Data 146 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 12.4.5 Accuracy and Precision The conversion process is monotonic and has no missing codes. 12.5 Interrupts When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC conversion. A CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled. 12.6 Low-Power Modes The following subsections describe the low-power modes. 12.6.1 Wait Mode The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting the ADCH[4:0] bits in the ADC status and control register to logic 1’s before executing the WAIT instruction. 12.6.2 Stop Mode The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the analog circuitry before attempting a new ADC conversion after exiting stop mode. 12.7 I/O Signals The ADC module has 6 channels that are shared with I/O port C. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 147 12.7.1 ADC Voltage In (ADCVIN) ADCVIN is the input voltage signal from one of the 6 ADC channels to the ADC module. 12.8 I/O Registers Three I/O registers control and monitor ADC operation: • ADC status and control register (ADSCR, $005D) • ADC data register (ADR, $005E) • ADC clock register (ADICLK, $005F) 12.8.1 ADC Status and Control Register The following paragraphs describe the function of the ADC status and control register. Address: $005D Bit 7 Read: COCO Write: Reset: 0 6 5 4 3 2 1 Bit 0 AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 0 0 1 1 1 1 1 = Unimplemented Figure 12-2. ADC Status and Control Register (ADSCR) COCO — Conversions Complete Bit When the AIEN bit is a logic 0, the COCO is a read-only bit which is set each time a conversion is completed. This bit is cleared whenever the ADC status and control register is written or whenever the ADC data register is read. Reset clears this bit. 1 = conversion completed (AIEN = 0) 0 = conversion not completed (AIEN = 0) When the AIEN bit is a logic 1 (CPU interrupt enabled), the COCO is a read-only bit, and will always be logic 0 when read. Technical Data 148 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor AIEN — ADC Interrupt Enable Bit When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when the data register is read or the status/control register is written. Reset clears the AIEN bit. 1 = ADC interrupt enabled 0 = ADC interrupt disabled ADCO — ADC Continuous Conversion Bit When set, the ADC will convert samples continuously and update the ADR register at the end of each conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit. 1 = Continuous ADC conversion 0 = One ADC conversion ADCH[4:0] — ADC Channel Select Bits ADCH[4:0] form a 5-bit field which is used to select one of the ADC channels. The five channel select bits are detailed in the following table. Care should be taken when using a port pin as both an analog and a digital input simultaneously to prevent switching noise from corrupting the analog signal. (See Table 12-2.) The ADC subsystem is turned off when the channel select bits are all set to one. This feature allows for reduced power consumption for the MCU when the ADC is not used. Reset sets all of these bits to a logic 1. NOTE: MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Recovery from the disabled state requires one conversion cycle to stabilize. Technical Data 149 Table 12-2. MUX Channel Select ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 ADC Channel Input Select 0 0 0 0 0 ADC0 PTC0 0 0 0 0 1 ADC1 PTC1 0 0 0 1 0 ADC2 PTC2 0 0 0 1 1 ADC3 PTC3 0 0 1 0 0 ADC4 PTC4 0 0 1 0 1 ADC5 PTC5 0 0 1 1 0 : : : : : — Unused (see Note 1) 1 1 0 1 0 1 1 0 1 1 — Reserved 1 1 1 0 0 — Unused 1 1 1 0 1 VDDA (see Note 2) 1 1 1 1 0 VSSA (see Note 2) 1 1 1 1 1 ADC power off NOTES: 1. If any unused channels are selected, the resulting ADC conversion will be unknown. 2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the operation of the ADC converter both in production test and for user applications. 12.8.2 ADC Data Register One 8-bit result register is provided. This register is updated each time an ADC conversion completes. Address: Read: $005E Bit 7 6 5 4 3 2 1 Bit 0 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 Write: Reset: Indeterminate after Reset = Unimplemented Figure 12-3. ADC Data Register (ADR) Technical Data 150 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 12.8.3 ADC Input Clock Register This register selects the clock frequency for the ADC. Address: Read: Write: $005F Bit 7 6 5 ADIV2 ADIV1 ADIV0 0 0 0 Reset: 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 = Unimplemented Figure 12-4. ADC Input Clock Register (ADICLK) ADIV2:ADIV0 — ADC Clock Prescaler Bits ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 12-3 shows the available clock configurations. The ADC clock should be set to approximately 1MHz. With an internal bus frequency of 6MHz, set ADIV[2:0] = 010, for a divide by four ADC clock rate. Table 12-3. ADC Clock Divide Ratio ADIV2 ADIV1 ADIV0 ADC Clock Rate 0 0 0 Internal bus clock ÷ 1 0 0 1 Internal bus clock ÷ 2 0 1 0 Internal bus clock ÷ 4 0 1 1 Internal bus clock ÷ 8 1 X X Internal bus clock ÷ 16 X = don’t care MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 151 Technical Data 152 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 13. DDC12AB Interface 13.1 Contents 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 13.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 13.5 DDC Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 13.6 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 13.6.1 DDC Address Register (DADR) . . . . . . . . . . . . . . . . . . . . . 156 13.6.2 DDC2 Address Register (D2ADR) . . . . . . . . . . . . . . . . . . . 157 13.6.3 DDC Control Register (DCR) . . . . . . . . . . . . . . . . . . . . . . . 158 13.6.4 DDC Master Control Register (DMCR) . . . . . . . . . . . . . . . 159 13.6.5 DDC Status Register (DSR) . . . . . . . . . . . . . . . . . . . . . . . . 162 13.6.6 DDC Data Transmit Register (DDTR) . . . . . . . . . . . . . . . . 164 13.6.7 DDC Data Receive Register (DDRR) . . . . . . . . . . . . . . . . . 165 13.7 Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 166 13.2 Introduction This DDC12AB Interface module is used by the digital monitor to show its identification information to the video controller. It contains DDC1 hardware and a two-wire, bidirectional serial bus which is fully compatible with multi-master IIC bus protocol to support DDC2AB interface. This module not only can be applied in internal communications, but can also be used as a typical command reception serial bus for factory setup and alignment purposes. It also provides the flexibility of hooking additional devices to an existing system for future expansion without adding extra hardware. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 153 This DDC12AB module uses the DDCSCL clock line and the DDCSDA data line to communicate with external DDC host or IIC interface. These two pins are shared with port pins PTD3 and PTD2 respectively. The outputs of DDCSDA and DDCSCL pins are open-drain type — no clamping diode is connected between the pin and internal VDD. The maximum data rate typically is 100k-bps. The maximum communication length and the number of devices that can be connected are limited by a maximum bus capacitance of 400pF. 13.3 Features • DDC1 hardware • Compatibility with multi-master IIC bus standard • Software controllable acknowledge bit generation • Interrupt driven byte by byte data transfer • Calling address identification interrupt • Auto detection of R/W bit and switching of transmit or receive mode • Detection of START, repeated START, and STOP signals • Auto generation of START and STOP condition in master mode • Arbitration loss detection and No-ACK awareness in master mode • 8 selectable baud rate master clocks • Automatic recognition of the received acknowledge bit 13.4 I/O Pins The DDC12AB module uses two I/O pins, shared with standard port I/O pins. The full name of the DDC12AB I/O pins are listed in Table 13-1. The generic pin name appear in the text that follows. Table 13-1. Pin Name Conventions DDC12AB Generic Pin Names: Full MCU Pin Names: Pin Selected for DDC Function By: SDA PTD2/DDCSDA DDCDATE bit in PDCR ($0049) SCL PTD3/DDCSCL DDCSCLE bit in PDCR ($0049) Technical Data 154 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Table 13-2. DDC I/O Register Summary Addr. Register Name $0016 DDC Master Control Register (DMCR) Bit 7 6 5 4 3 2 1 Bit 0 ALIF NAKIF BB MAST MRW BR2 BR1 BR0 0 0 0 0 0 0 0 0 DAD7 DAD6 DAD5 DAD4 DAD3 DAD2 DAD1 EXTAD 1 0 1 0 0 0 0 0 DEN DIEN 0 0 TXAK SCLIEN DDC1EN Reset: 0 0 0 0 0 0 0 0 Read: RXIF TXIF MATCH SRW RXAK SCLIF TXBE RXBF Write: 0 0 Reset: 0 0 0 0 1 0 1 0 DTD7 DTD6 DTD5 DTD4 DTD3 DTD2 DTD1 DTD0 Reset: 1 1 1 1 1 1 1 1 Read: DRD7 DRD6 DRD5 DRD4 DRD3 DRD2 DRD1 DRD0 0 0 0 0 0 0 0 0 D2AD7 D2AD6 D2AD5 D2AD4 D2AD3 D2AD2 D2AD1 0 0 0 0 0 0 0 Read: Write: Reset: Read: $0017 DDC Address Register (DADR) Write: Reset: $0018 $0019 DDC Control Register (DCR) DDC Status Register (DSR) DDC $001A Data Transmit Register (DDTR) $001B DDC Data Receive Register (DDRR) Read: Write: Read: Write: 0 Write: Reset: Read: DDC2 Address Register $001C (D2ADR) 0 Write: Reset: 0 0 = Unimplemented MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 155 13.5 DDC Protocols In DDC1 protocol communication, the module is in transmit mode. The data written to the transmit register is continuously clocked out to the SDA line by the rising edge of the Vsync input signal. During DDC1 communication, a falling transition on the SCL line can be detected to generate an interrupt to the CPU for mode switching. In DDC2AB protocol communication, the module can be either in transmit mode or in receive mode, controlled by the calling master. In DDC2 protocol communication, the module will act as a standard IIC module, able to act as a master or a slave device. 13.6 Registers Seven registers are associated with the DDC module, they outlined in the following sections. 13.6.1 DDC Address Register (DADR) Address: Read: Write: Reset: $0017 Bit 7 6 5 4 3 2 1 Bit 0 DAD7 DAD6 DAD5 DAD4 DAD3 DAD2 DAD1 EXTAD 1 0 1 0 0 0 0 0 Figure 13-1. DDC Address Register (DADR) DAD[7:1] — DDC Address These 7 bits can be the DDC2 interface’s own specific slave address in slave mode or the calling address when in master mode. Reset sets a default value of $A0. Technical Data 156 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor EXTAD — DDC Expanded Address This bit is set to expand the calling address of the DDC in slave mode. When set, the DDC will acknowledge the general call address $00 and the matched 4-bit MSB address, DAD[7:4]. For example, when DAD[7:1] = $A1 and EXTAD = 1, the DDC calling address is $A0, and it will acknowledge calling addresses $00 and $A0 to $AF. Reset clears this bit. 1 = DDC calling address is $DAD[7:4]0 DDC respond address is $00, and $DAD[7:4]0 to $DAD[7:4]F 0 = DDC address id $DAD[7:1] 13.6.2 DDC2 Address Register (D2ADR) Address: Read: Write: Reset: $001C Bit 7 6 5 4 3 2 1 D2AD7 D2AD6 D2AD5 D2AD4 D2AD3 D2AD2 D2AD1 0 0 0 0 0 0 0 Bit 0 0 0 Figure 13-2. DDC2 Address Register (D2ADR) D2AD[7:1] — DDC2 Address These 7 bits represent the second slave address for the DDC2BI protocol. D2AD[7:1] should be set to the same value as DAD[7:1] in DADR if user application do not use DDC2BI. Reset clears all bits this register. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 157 13.6.3 DDC Control Register (DCR) Address: Read: Write: Reset: $0018 Bit 7 6 DEN DIEN 0 0 5 4 0 0 0 0 3 2 1 TXAK SCLIEN DDC1EN 0 0 0 Bit 0 0 0 = Unimplemented Figure 13-3. DDC Control Register (DCR) DEN — DDC Enable This bit is set to enable the DDC module. When DEN = 0, module is disabled and all flags will restore to its power-on default states. Reset clears this bit. 1 = DDC module enabled 0 = DDC module disabled DIEN — DDC Interrupt Enable When this bit is set, the TXIF, RXIF, ALIF, and NAKIF flags are enabled to generate an interrupt request to the CPU. When DIEN is cleared, the these flags are prevented from generating an interrupt request. Reset clears this bit. 1 = TXIF, RXIF, ALIF, and/or NAKIF bit set will generate interrupt request to CPU 0 = TXIF, RXIF, ALIF, and/or NAKIF bit set will not generate interrupt request to CPU TXAK — Transmit Acknowledge Enable This bit is set to disable the DDC from sending out an acknowledge signal to the bus at the 9th clock bit after receiving 8 data bits. When TXAK is cleared, an acknowledge signal will be sent at the 9th clock bit. Reset clears this bit. 1 = DDC does not send acknowledge signals at 9th clock bit 0 = DDC sends acknowledge signal at 9th clock bit Technical Data 158 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor SCLIEN — SCL Interrupt Enable When this bit is set, the SCLIF flag is enabled to generate an interrupt request to the CPU. When SCLIEN is cleared, SCLIF is prevented from generating an interrupt request. Reset clears this bit. 1 = SCLIF bit set will generate interrupt request to CPU 0 = SCLIF bit set will not generate interrupt request to CPU DDC1EN — DDC1 Protocol Enable This bit is set to enable DDC1 protocol. The DDC1 protocol will use the Vsync input (from sync processor) as the master clock input to the DDC module. Vsync rising-edge will continuously clock out the data to the output circuit. No calling address comparison is performed. The SRW bit in DDC status register (DSR) will always read as "1". Reset clears this bit. 1 = DDC1 protocol enabled 0 = DDC1 protocol disabled 13.6.4 DDC Master Control Register (DMCR) Address: Read: Write: Reset: $0016 Bit 7 6 5 4 3 2 1 Bit 0 ALIF NAKIF BB MAST MRW BR2 BR1 BR0 0 0 0 0 0 0 0 0 Figure 13-4. DDC Master Control Register (DMCR) ALIF — DDC Arbitration Lost Interrupt Flag The flag is set when software attempt to set MAST but the BB has been set by detecting the start condition on the lines or when the DDC is transmitting a "1" to SDA line but detected a "0" from SDA line in master mode – an arbitration loss. This bit generates an interrupt request to the CPU if the DIEN bit in DCR is also set. This bit is cleared by writing "0" to it or by reset. 1 = Lost arbitration in master mode 0 = No arbitration lost MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 159 NAKIF — No Acknowledge Interrupt Flag The flag is only set in master mode (MAST = 1) when there is no acknowledge bit detected after one data byte or calling address is transferred. This flag also clears MAST. NAKIF generates an interrupt request to CPU if the DIEN bit in DCR is also set. This bit is cleared by writing "0" to it or by reset. 1 = No acknowledge bit detected 0 = Acknowledge bit detected BB — Bus Busy Flag This flag is set after a start condition is detected (bus busy), and is cleared when a stop condition (bus idle) is detected or the DDC is disabled. Reset clears this bit. 1 = Start condition detected 0 = Stop condition detected or DDC is disabled MAST — Master Control Bit This bit is set to initiate a master mode transfer. In master mode, the module generates a start condition to the SDA and SCL lines, followed by sending the calling address stored in DADR. When the MAST bit is cleared by NAKIF set (no acknowledge) or by software, the module generates the stop condition to the lines after the current byte is transmitted. If an arbitration loss occurs (ALIF = 1), the module reverts to slave mode by clearing MAST, and releasing SDA and SCL lines immediately. This bit is cleared by writing "0" to it or by reset. 1 = Master mode operation 0 = Slave mode operation MRW — Master Read/Write This bit will be transmitted out as bit 0 of the calling address when the module sets the MAST bit to enter master mode. The MRW bit determines the transfer direction of the data bytes that follows. When it is "1", the module is in master receive mode. When it is "0", the module is in master transmit mode. Reset clears this bit. 1 = Master mode receive 0 = Master mode transmit Technical Data 160 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor BR2–BR0 — Baud Rate Select These three bits select one of eight clock rates as the master clock when the module is in master mode. Since this master clock is derived the CPU bus clock, the user program should not execute the WAIT instruction when the DDC module in master mode. This will cause the SDA and SCL lines to hang, as the WAIT instruction places the MCU in WAIT mode, with CPU clock is halted. These bits are cleared upon reset. (See Table 13-3 . Baud Rate Select.) Table 13-3. Baud Rate Select BR2 BR1 BR0 Baud Rate 0 0 0 100k 0 0 1 50k 0 1 0 25k 0 1 1 12.5k 1 0 0 6.25k 1 0 1 3.125k 1 1 0 1.56k 1 1 1 0.78k NOTE: CPU bus clock is external clock ÷ 4 = 6MHz MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 161 13.6.5 DDC Status Register (DSR) Address: $0019 Bit 7 6 5 4 3 2 1 Bit 0 Read: RXIF TXIF MATCH SRW RXAK SCLIF TXBE RXBF Write: 0 0 Reset: 0 0 1 0 0 0 0 1 0 = Unimplemented Figure 13-5. DDC Status Register (DSR) RXIF — DDC Receive Interrupt Flag This flag is set after the data receive register (DDRR) is loaded with a new received data. Once the DDRR is loaded with received data, no more received data can be loaded to the DDRR register until the CPU reads the data from the DDRR to clear RXBF flag. RXIF generates an interrupt request to CPU if the DIEN bit in DCR is also set. This bit is cleared by writing "0" to it or by reset; or when the DEN = 0. 1 = New data in data receive register (DDRR) 0 = No data received TXIF — DDC Transmit Interrupt Flag This flag is set when data in the data transmit register (DDTR) is downloaded to the output circuit, and that new data can be written to the DDTR. TXIF generates an interrupt request to CPU if the DIEN bit in DCR is also set. This bit is cleared by writing "0" to it or when the DEN = 0. 1 = Data transfer completed 0 = Data transfer in progress MATCH — DDC Address Match This flag is set when the received data in the data receive register (DDRR) is an calling address which matches with the address or its extended addresses (EXTAD=1) specified in the DADR register. 1 = Received address matches DADR 0 = Received address does not match Technical Data 162 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor SRW — DDC Slave Read/Write This bit indicates the data direction when the module is in slave mode. It is updated after the calling address is received from a master device. SRW = 1 when the calling master is reading data from the module (slave transmit mode). SRW = 0 when the master is writing data to the module (receive mode). 1 = Slave mode transmit 0 = Slave mode receive RXAK — DDC Receive Acknowledge When this bit is cleared, it indicates an acknowledge signal has been received after the completion of 8 data bits transmission on the bus. When RXAK is set, it indicates no acknowledge signal has been detected at the 9th clock; the module will release the SDA line for the master to generate "stop" or "repeated start" condition. Reset sets this bit. 1 = No acknowledge signal received at 9th clock bit 0 = Acknowledge signal received at 9th clock bit SCLIF — SCL Interrupt Flag This flag is set when a falling edge is detected on the SCL line, only if DDC1EN bit is set. SCLIF generates an interrupt request to CPU if the SCLIEN bit in DCR is also set. SCLIF is cleared by writing "0" to it or when the DCC1EN = 0, or DEN = 0. Reset clears this bit. 1 = Falling edge detected on SCL line 0 = No falling edge detected on SCL line TXBE — DDC Transmit Buffer Empty This flag indicates the status of the data transmit register (DDTR). When the CPU writes the data to the DDTR, the TXBE flag will be cleared. TXBE is set when DDTR is emptied by a transfer of its data to the output circuit. Reset sets this bit. 1 = Data transmit register empty 0 = Data transmit register full MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 163 RXBF — DDC Receive Buffer Full This flag indicates the status of the data receive register (DDRR). When the CPU reads the data from the DDRR, the RXBF flag will be cleared. RXBF is set when DDRR is full by a transfer of data from the input circuit to the DDRR. Reset clears this bit. 1 = Data receive register full 0 = Data receive register empty 13.6.6 DDC Data Transmit Register (DDTR) Address: Read: Write: Reset: $001A Bit 7 6 5 4 3 2 1 Bit 0 DTD7 DTD6 DTD5 DTD4 DTD3 DTD2 DTD1 DTD0 1 1 1 1 1 1 1 1 Figure 13-6. DDC Data Transmit Register (DDTR) When the DDC module is enabled, DEN = 1, data written into this register depends on whether module is in master or slave mode. In slave mode, the data in DDTR will be transferred to the output circuit when: • the module detects a matched calling address (MATCH = 1), with the calling master requesting data (SRW = 1); or • the previous data in the output circuit has be transmitted and the receiving master returns an acknowledge bit, indicated by a received acknowledge bit (RXAK = 0). If the calling master does not return an acknowledge bit (RXAK = 1), the module will release the SDA line for master to generate a "stop" or "repeated start" condition. The data in the DDTR will not be transferred to the output circuit until the next calling from a master. The transmit buffer empty flag remains cleared (TXBE = 0). In master mode, the data in DDTR will be transferred to the output circuit when: Technical Data 164 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor • the module receives an acknowledge bit (RXAK = 0), after setting master transmit mode (MRW = 0), and the calling address has been transmitted; or • the previous data in the output circuit has be transmitted and the receiving slave returns an acknowledge bit, indicated by a received acknowledge bit (RXAK = 0). If the slave does not return an acknowledge bit (RXAK = 1), the master will generate a "stop" or "repeated start" condition. The data in the DDTR will not be transferred to the output circuit. The transmit buffer empty flag remains cleared (TXBE = 0). The sequence of events for slave transmit and master transmit are illustrated in Figure 13-8. 13.6.7 DDC Data Receive Register (DDRR) Address: Read: $001B Bit 7 6 5 4 3 2 1 Bit 0 DRD7 DRD6 DRD5 DRD4 DRD3 DRD2 DRD1 DRD0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 13-7. DDC Data Receive Register (DDRR) When the DDC module is enabled, DEN = 1, data in this read-only register depends on whether module is in master or slave mode. In slave mode, the data in DDRR is: • the calling address from the master when the address match flag is set (MATCH = 1); or • the last data received when MATCH = 0. In master mode, the data in the DDRR is: • MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor the last data received. Technical Data 165 When the DDRR is read by the CPU, the receive buffer full flag is cleared (RXBF = 0), and the next received data is loaded to the DDRR. Each time when new data is loaded to the DDRR, the RXIF interrupt flag is set, indicating that new data is available in DDRR. The sequence of events for slave receive and master receive are illustrated in Figure 13-8. 13.7 Programming Considerations When the DDC module detects an arbitration loss in master mode, it will release both SDA and SCL lines immediately. But if there are no further STOP conditions detected, the module will hang up. Therefore, it is recommended to have time-out software to recover from such ill condition. The software can start the time-out counter by looking at the BB (Bus Busy) flag in the DMCR and reset the counter on the completion of one byte transmission. If a time-out occur, software can clear the DEN bit (disable DDC module) to release the bus, and hence clearing the BB flag. This is the only way to clear the BB flag by software if the module hangs up due to a no STOP condition received. The DDC can resume operation again by setting the DEN bit. Technical Data 166 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor (a) Master Transmit Mode START Address TXBE=0 MRW=0 MAST=1 Data1 → DDTR 0 ACK TX Data1 ACK TXBE=1 TXIF=1 Data3 → DDTR TXBE=1 TXIF=1 Data2 → DDTR TX DataN NAK STOP TXBE=1 NAKIF=1 TXIF=1 MAST=0 DataN+2 → DDTR TXBE=0 (b) Master Receive Mode START Address 1 ACK RX Data1 ACK Data1 → DDRR RXIF=1 RXBF=1 RXBF=0 MRW=1 MAST=1 TXBE=0 (dummy data → DDTR) RX DataN NAK STOP NAKIF=1 DataN → DDRR RXIF=1 MAST=0 RXBF=1 (c) Slave Transmit Mode START Address 1 ACK RXIF=1 RXBF=1 MATCH=1 SRW=1 Data1 → DDTR TXBE=1 RXBF=0 TX Data1 ACK TXBE=1 TXIF=1 Data2 → DDTR TX DataN NAK STOP TXBE=1 NAKIF=1 TXIF=1 TXBE=0 DataN+2 → DDTR (d) Slave Receive Mode START Address TXBE=0 RXBF=0 0 ACK RXIF=1 RXBF=1 MATCH=1 SRW=0 RX Data1 ACK Data1 → DDRR RXIF=1 RXBF=1 RX DataN NAK STOP DataN → DDRR RXIF=1 RXBF=1 KEY: shaded data packets indicate a transmit by the MCU’s DDC module Figure 13-8. Data Transfer Sequences for Master/Slave Transmit/Receive Modes MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 167 Technical Data 168 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 14. Sync Processor 14.1 Contents 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 14.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 14.5 Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 14.5.1 Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 14.5.1.1 Hsync Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . 174 14.5.1.2 Vsync Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . 174 14.5.1.3 Composite Sync Polarity Detection . . . . . . . . . . . . . . . . 174 14.5.2 Sync Signal Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 14.5.3 Polarity Controlled HSYNCO and VSYNCO Outputs. . . . . 175 14.5.4 Clamp Pulse Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 14.5.5 Low Vertical Frequency Detect . . . . . . . . . . . . . . . . . . . . . 177 14.6 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 14.6.1 Sync Processor Control & Status Register (SPCSR). . . . . 177 14.6.2 Sync Processor Input/Output Control Register (SPIOCR) . 179 14.6.3 Vertical Frequency Registers (VFRs). . . . . . . . . . . . . . . . . 181 14.6.4 Hsync Frequency Registers (HFRs). . . . . . . . . . . . . . . . . . 183 14.6.5 Sync Processor Control Register 1 (SPCR1). . . . . . . . . . . 185 14.6.6 H&V Sync Output Control Register (HVOCR) . . . . . . . . . . 186 14.7 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor System Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 Technical Data 169 14.2 Introduction The Sync Processor is designed to detect and process sync signals inside a digital monitor system — from separated Hsync and Vsync inputs, or from composite sync inputs such as Sync-On-Green (SOG). After detection and the necessary polarity correction and/or sync separation, the corrected sync signals are sent out. The MCU can also send commands to other monitor circuitry, such as for the geometry correction and OSD, using the DDC12AB and/or the IIC communication channels. The block diagram of the Sync Processor is shown in Figure 14-1. NOTE: All quoted timings in this section assume an internal bus frequency of 6MHz. 14.3 Features Features of the Sync Processor include the following: • Polarity detector • Horizontal frequency counter • Vertical frequency counter • Low vertical frequency indicator (40.7Hz) • Polarity controlled HSYNCO and VSYNCO outputs: – From separate Hsync and Vsync – From composite sync on HSYNC or SOG input pin – From internal selectable free running Hsync and Vsync pulses Technical Data 170 • CLAMP pulse output to the external pre-amp chip • Internal schmitt trigger on HSYNC, VSYNC, and SOG input pins to improve noise immunity MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 14.4 I/O Pins The Sync Processor uses six I/O pins, with four pins shared with standard port I/O pins. The full name of the Sync Processor I/O pins are listed in Table 14-1. The generic pin name appear in the text that follows. Table 14-1. Pin Name Conventions Sync Processor Generic Pin Names: Full MCU Pin Names: Pin Selected for Sync Processor Function By: HSYNC HSYNC — VSYNC VSYNC — SOG PTE0/SOG/TCH0 SOGE bit in CONFIG1 ($001D) HSYNCO PTE1/HSYNCO HSYNCOE bit in CONFIG 1 ($001D) VSYNCO PTE2/VSYNCO VSYNCOE bit in CONFIG 1 ($001D) CLAMP PTD4/CLAMP CLAMPE bit in PDCR ($0049) MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 171 Table 14-2. Sync Processor I/O Register Summary Addr. Register Name $0040 Sync Processor Control and Status Register (SPCSR) $0041 Vertical Frequency High Register (VFHR) $0042 Vertical Frequency Low Register (VFLR) $0043 $0044 $0045 Hsync Frequency High Register (HFHR) Hsync Frequency Low Register (HFLR) Sync Processor I/O Control Register (SPIOCR) $0046 Sync Processor Control Register 1 (SPCR1) $0047 H&V Sync Output Control Register (HVOCR) Bit 7 6 VSIE VEDGE Reset: 0 0 Read: VOF Read: Write: Write: 5 4 3 2 COMP VINVO HINVO 0 0 0 0 0 VF12 CPW1 CPW0 VSIF 0 172 Bit 0 VPOL HPOL 0 0 0 VF11 VF10 VF9 VF8 Reset: 0 0 0 0 0 0 0 0 Read: VF7 VF6 VF5 VF4 VF3 VF2 VF1 VF0 Reset: 0 0 0 0 0 0 0 0 Read: HFH7 HFH6 HFH5 HFH4 HFH3 HFH2 HFH1 HFH0 Reset: 0 0 0 0 0 0 0 0 Read: HOVER 0 0 HFL4 HFL3 HFL2 HFL1 HFL0 0 0 0 0 0 0 0 0 COINV R BPOR SOUT 0 0 0 0 0 0 HPS1 HPS0 R R ATPOL FSHF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Write: Write: Write: Reset: Read: VSYNCS HSYNCS Write: Reset: Read: Write: Reset: Read: Write: Reset: 0 LVSIE 0 R 0 0 LVSIF 0 = Unimplemented Technical Data 1 SOGSEL CLAMPOE R HVOCR2 HVOCR1 HVOCR0 0 0 0 = Reserved MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 14.5 Functional Blocks EXTRACTED VSYNC SVF 1 A VSYNC VINVO A1 VSYNCO B S B S SOUT COMP VSIF POLARITY DETECT VPOL VSIE EDGE DETECT ONE SHOT VEDGE VFLR INTERNAL BUS CLOCK (6MHz) (125kHz) ÷ 48 VFHR VOF OVERFLOW DETECT 13-BIT COUNTER $C00 DETECT TO INTERRUPT LOGIC LVSIF LVSIE ONE SHOT HFLR CLK32/32.768 A1 HSYNC HFHR 13-BIT COUNTER HOVER OVERFLOW DETECT B S SOG SOGSEL POLARITY DETECT VPOL A1 B S HPOL COMP EXTRACTED VSYNC VSYNC EXTRACTOR BPOR SVF 2µs H/V SYNC PULSE GENERATOR HVOCR[2:0] B SHF COINV CLAMP PULSE GENERATOR CLAMP A1 S SOUT HINVO HSYNCO Figure 14-1. Sync Processor Block Diagram MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 173 14.5.1 Polarity Detection 14.5.1.1 Hsync Polarity Detection The Hsync polarity detection circuit measures the length of high and low period of the HSYNC input. If the length of high is longer than L and the length of low is shorter than S, the HPOL bit will be "0", indicating a negative polarity HSYNC input. If the length of low is longer than L and the length of high is shorter than S, the HPOL bit will be "1", indicating a positive polarity HSYNC input. The table below shows three possible cases for HSYNC polarity detection — the conditions are selected by the HPS[1:0] bits in the Sync Processor Control Register 1 (SPCR1). Polarity Detection Pulse Width SPCR1 ($0046) Long is greater than (L) Short is less than (S) HPS1 HPS0 7µs 6µs 0 0 3.5µs 3µs 1 X 14µs 12µs 0 1 14.5.1.2 Vsync Polarity Detection The Vsync polarity detection circuit performs a similar function as for Hsync. If the length of high is longer than 4ms and the length of low is shorter than 2ms, the VPOL bit will be "0", indicating a negative polarity VSYNC input. If the length of low is longer than 4ms and the length of high is shorter than 2ms, the VPOL bit will be "1", indicating a positive polarity VSYNC input. 14.5.1.3 Composite Sync Polarity Detection When a composite sync signal is the input (COMP = 1 for composite sync processing), the HPOL bit = VPOL bit, and the polarity is detected using the VSYNC polarity detection criteria described in section 14.5.1.2. Technical Data 174 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 14.5.2 Sync Signal Counters There are two counters: a 13-bit horizontal frequency counter to count the number of horizontal sync pulses within a 32ms or 8ms period; and a 13-bit vertical frequency counter to count the number of system clock cycles between two vertical sync pulses. These two data can be read by the CPU to check the signal frequencies and to determine the video mode. The 13-bit vertical frequency register encompasses vertical frequency range from approximately 15Hz to 128kHz. Due to the asynchronous timing between the incoming VSYNC signal and internal system clock, there will be ±1 count error on reading the Vertical Frequency Registers (VFRs) for the same vertical frequency. The horizontal counter counts the pulses on HSYNC pin input, and is uploaded to the Hsync Frequency Registers (HFRs) every 32.768ms or 8.192ms. 14.5.3 Polarity Controlled HSYNCO and VSYNCO Outputs The processed sync signals are output on HSYNCO and VSYNCO when the corresponding bits in Configuration Register 0 ($001D) are set. The signal to these output pins depend on SOUT and COMP bits (see Table 14-3), with polarity controlled by ATPOL, HINVO, and VINVO bits as shown in Table 14-4. Table 14-3. Sync Output Control MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Sync Outputs: VSYNCO and HSYNCO SOUT COMP 1 X Free-running pulse with negative polarity 0 0 Sync outputs follow sync inputs VSYNC and HSYNC respectively, with polarity correction shown in Table 14-4. 0 1 HSYNCO follows the composite sync input and VSYNCO is the extracted Vsync (3 to 14µs delay to composite input), with polarity correction shown in Table 14-4. Technical Data 175 Table 14-4. Sync Output Polarity ATPOL SOUT VINVO or HINVO X 1 X Free-running pulse with negative polarity 0 0 0 Same polarity as sync input 0 0 1 Inverted polarity of sync input 1 0 0 Negative polarity sync output 1 0 1 Positive polarity sync output Sync Outputs: VSYNCO/HSYNCO When the SOUT bit is set, the HSYNCO output is a free-running pulse with 2µs width. Both HSYNCO and VSYNCO outputs are negative polarity, with frequencies selected by the H & V Sync Output Control Register (HVOCR). 14.5.4 Clamp Pulse Output When the CLAMPOE bit in SPIOCR is set to "1", a clamp signal is output on the CLAMP pin. This clamp pulse is triggered either on the leading edge or the trailing edge of HSYNC, controlled by BPOR bit, with the polarity controlled by the COINV bit. See Figure 14-2 . Clamp Pulse Output Timing. HSYNC (HPOL = 1) CLAMP (BPOR = 0) CLAMP (BPOR = 1) Pulse width = 0.33~2.1µs Pulse width = 0.33~2.1µs HSYNC (HPOL = 0) CLAMP (BPOR = 0) CLAMP (BPOR = 1) Pulse width = 0.33~2.1µs Pulse width = 0.33~2.1µs Figure 14-2. Clamp Pulse Output Timing Technical Data 176 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 14.5.5 Low Vertical Frequency Detect Logic monitors the value of the Vsync Frequency Register (VFR), and sets the low vertical frequency flag (LVSIF) when the value of VFR is higher than $C00 (frequency below 40.7Hz). LVSIF bit can generate an interrupt request to the CPU when the LVSIE bit is set and I-bit in the Condition Code Register is "0". The LVSIF bit can help the system to detect video off mode fast. 14.6 Registers Eight registers are associated with the Sync Processor, they outlined in the following sections. 14.6.1 Sync Processor Control & Status Register (SPCSR) Address: Read: Write: Reset: $0040 Bit 7 6 VSIE VEDGE 0 0 5 VSIF 0 0 4 3 2 COMP VINVO HINVO 0 0 0 1 Bit 0 VPOL HPOL 0 0 = Unimplemented Figure 14-3. Sync Processor Control & Status Register (SPCSR) VSIE — VSync Interrupt Enable When this bit is set, the VSIF flag is enabled to generate an interrupt request to the CPU. When VSIE is cleared, the VSIF flag is prevented from generating an interrupt request to the CPU. Reset clears this bit. 1 = VSIF bit set will generate interrupt request to CPU 0 = VSIF bit set does not generate interrupt request to CPU MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 177 VEDGE — VSync Interrupt Edge Select This bit specifies the triggering edge of Vsync interrupt. When it is "0", the rising edge of internal Vsync signal which is either from the VSYNC pin or extracted from the composite input signal will set VSIF flag. When it is "1", the falling edge of internal Vsync signal will set VSIF flag. Reset clears this bit. 1 = VSIF bit will be set by rising edge of Vsync 0 = VSIF bit will be set by falling edge of Vsync VSIF — VSync Interrupt Flag This flag is only set by the specified edge of the internal Vsync signal, which is either from the VSYNC input pin or extracted from the composite sync input signal. The triggering edge is specified by the VEDGE bit. VSIF generates an interrupt request to the CPU if the VSIE bit is also set. This bit is cleared by writing a "0" to it or by a reset. 1 = A valid edge is detected on the Vsync 0 = No valid Vsync is detected COMP — Composite Sync Input Enable This bit is set to enable the separator circuit which extracts the Vsync pulse from the composite sync input on HSYNC or SOG pin (select by SOGSEL bit). The extracted Vsync signal is used as it were from the VSYNC input. Reset clears this bit. 1 = Composite Sync Input Enabled 0 = Composite Sync Input Disabled VINVO —þVSYNCO Signal Polarity This bit, together with the ATPOL bit in SPCR1 controls the output polarity of the VSYNCO signal (see Table 14-5). HINVO — HSYNCO Signal Polarity This bit, together with the ATPOL bit in SPCR1 controls the output polarity of the HSYNCO signal (see Table 14-5). Technical Data 178 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Table 14-5. ATPOL, VINVO, and HINVO setting Sync Outputs: VSYNCO/HSYNCO ATPOL VINVO / HINVO 0 0 Same polarity as sync input 0 1 Inverted polarity of sync input 1 0 Negative polarity sync output 1 1 Positive polarity sync output VPOL — Vsync Input Polarity This bit indicates the polarity of the VSYNC input, or the extracted Vsync from a composite sync input (COMP=1). Reset clears this bit. 1 = Vsync is positive polarity 0 = Vsync is negative polarity HPOL —þHsync Input Polarity This bit indicates the polarity of the HSYNC input. This bit equals the VPOL bit when the COMP bit is set. Reset clears this bit. 1 = Hsync is positive polarity 0 = Hsync is negative polarity 14.6.2 Sync Processor Input/Output Control Register (SPIOCR) Address: $0045 Bit 7 6 Read: VSYNCS HSYNCS Write: Reset: 0 0 5 4 COINV R 0 0 = Unimplemented 3 2 SOGSEL CLAMPOE 0 R 0 1 Bit 0 BPOR SOUT 0 0 = Reserved Figure 14-4. Sync Processor Input/Output Control Register (SPIOCR) VSYNCS — VSYNC Input State This read-only bit reflects the logical state of the VSYNC input. HSYNCS — HSYNC Input State This read-only bit reflects the logical state of the HSYNC input. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 179 COINV — Clamp Output Invert This bit is set to invert the clamp pulse output to negative. Reset clears this bit. 1 = clamp output is set for negative pulses 0 = clamp output is set for positive pulses SOGSEL —þ SOG Select This bit selects either the HSYNC pin or SOG pin as the composite sync signal input pin. Reset clears this bit. 1 = SOG pin is used as the composite sync input 0 = HSYNC pin is used as the composite sync input CLAMPOE —þClamp Output Enable This bit is set to enable the clamp pulse output circuitry. Reset clears this bit. 1 = Clamp pulse circuit enabled 0 = Clamp pulse circuit disabled BPOR — Back Porch This bit defines the triggering edge of the clamp pulse output relative to the HSYNC input. Reset clears this bit. 1 = Clamp pulse is generated on the trailing edge of HSYNC 0 = Clamp pulse is generated on the leading edge of HSYNC SOUT — Sync Output Enable This bit will select the output signals for the VSYNCO and HSYNCO pins. Reset clears this bit. 1 = VSYNCO and HSYNCO outputs are internally generated free-running sync pulses with frequencies determined by HVCOR[2:0] bits in HVCOR. 0 = VSYNCO and HSYNCO outputs are processed VSYNC and HSYNC inputs respectively Technical Data 180 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 14.6.3 Vertical Frequency Registers (VFRs) This register pair contains the 13-bit vertical frequency count value, an overflow bit, and the clamp pulse width selection bits. Address: Read: $0041 Bit 7 6 5 4 3 2 1 Bit 0 VOF 0 0 VF12 VF11 VF10 VF9 VF8 CPW1 CPW0 0 0 0 0 0 0 0 Write: Reset: 0 Figure 14-5. Vertical Frequency High Register Address: Read: $0042 Bit 7 6 5 4 3 2 1 Bit 0 VF7 VF6 VF5 VF4 VF3 VF2 VF1 VF0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 14-6. Vertical Frequency Low Register VF[12:0] — Vertical Frame Frequency\ This read-only 13-bit contains information of the vertical frame frequency. An internal 13-bit counter counts the number of 8µs periods between two Vsync pulses. The most significant 5 bits of the counted value is transferred to the high byte register, and the least significant 8 bits is transferred to an intermediate buffer. When the high byte register is read, the 8-bit counted value stored in the intermediate buffer will be uploaded to the low byte register. Therefore, user program must read the high byte register first, then low byte register in order to get the complete counted value of one vertical frame. If the counter overflows, the overflow flag, VOF, will be set, indicating the counter value stored in the VFRs is meaningless. The data corresponds to the period of one vertical frame. This register can be read to determine if the frame frequency is valid, and to determine the video mode. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 181 The frame frequency is calculated by: 1 Vertical Frame Frequency = --------------------------------------------------VFR ± 1 × 48 × t CYC 1 = -------------------------------------VFR ± 1 × 8µ s for internal bus clock of 6 MHz Table 14-6 shows examples for the Vertical Frequency Register, all VFR numbers are in hexadecimal. Table 14-6. Sample Vertical Frame Frequencies VFR Max Freq. Min Freq. VFR Max Freq. Min Freq. $02A0 186.20 Hz 185.70 Hz $0780 65.10 Hz 65.00 Hz $03C0 130.34 Hz 130.07 Hz $0823 60.04 Hz 59.98 Hz $03C1 130.21 Hz 129.94 Hz $0824 60.01 Hz 59.95 Hz $03C2 130.07 Hz 129.80 Hz $0825 59.98 Hz 59.92 Hz $04E2 100.08 Hz 99.92 Hz $09C4 50.02 Hz 49.98 Hz $04E3 100.00 Hz 99.84 Hz $09C5 50.00 Hz 49.96 Hz $04E4 99.92 Hz 99.76 Hz $09C6 49.98 Hz 49.94 Hz $06F9 70.07 Hz 69.99 Hz $1FFD 15.266 Hz 15.262 Hz $06FA 70.03 Hz 69.95 Hz $1FFE 15.264 Hz 15.260 Hz $06FB 69.99 Hz 69.91 Hz $1FFF 15.262 Hz 15.258 Hz VOF — Vertical Frequency Counter Overflow This read-only bit is set when an overflow has occurred on the 13-bit vertical frequency counter. Reset clears this bit, and will be updated every vertical frame. An overflow occurs when the period of Vsync frame exceeds 64.768ms (a vertical frame frequency lower than 15.258Hz). 1 = A vertical frequency counter overflow has occurred 0 = No vertical frequency counter overflow has occurred Technical Data 182 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor CPW[1:0] — Clamp Pulse Width The CPW1 and CPW0 bits are used to select the output clamp pulse width. Reset clears these bits, selecting a default clamp pulse width between 0.33µs and 0.375µs. These bits always read as Zeros. Table 14-7. Clamp Pulse Width CPW1 CPW0 Clamp Pulse Width 0 0 0.33µs to 0.375µs 0 1 0.5µs to 0.542µs 1 0 0.75µs to 0.792µs 1 1 2µs to 2.042µs 14.6.4 Hsync Frequency Registers (HFRs) This register pair contains the 13-bit Hsync frequency count value and an overflow bit. Address: Read: $0043 Bit 7 6 5 4 3 2 1 Bit 0 HFH7 HFH6 HFH5 HFH4 HFH3 HFH2 HFH1 HFH0 0 0 0 0 0 0 0 0 Write: Reset: Figure 14-7. Hsync Frequency High Register Address: Read: $0044 Bit 7 6 5 4 3 2 1 Bit 0 HOVER 0 0 HFL4 HFL3 HFL2 HFL1 HFL0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 14-8. Hsync Frequency Low Register MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 183 HFH[7:0], HFL[4:0] — Horizontal Line Frequency This read-only 13-bit contains the number of horizontal lines in a 32ms window. An internal 13-bit counter counts the Hsync pulses within a 32ms window in every 32.768ms period. If the FSHF bit in SPCR1 is set, only the most 11-bits (HFH[7:0] & HFL[4:2]) will be updated by the counter. Thus, providing a Hsync pulse count in a 8ms window in every 8.192ms. The most significant 8 bits of counted value is transferred to the high byte register, and the least significant 5 bits is transferred to an intermediate buffer. When the high byte register is read, the 5-bit counted value stored in the intermediate buffer will be uploaded to the low byte register. Therefore, user the program must read the high byte register first then low byte register in order to get the complete counted value of Hsync pulses. If the counter overflows, the overflow flag, HOVER, will be set, indicating the number of Hsync pulses in 32ms are more than 8191 (213 –1), i.e. a Hsync frequency greater than 256kHz. For the 32ms window, the HFHR and HFLR are such that the frequency step unit in the 5-bit of HFLR is 0.03125kHz, and the step unit in the 8-bit HFHR is 1kHz. Therefore, the Hsync frequency can be easily calculated by: Hsync Frequency = [HFH + (HFL × 0.03125)]kHz where: HFH is the value of HFH[7:0] HFL is the value of HFL[4:0] HOVER — Hsync Frequency Counter Overflow This read-only bit is set when an overflow has occurred on the 13-bit Hsync frequency counter. Reset clears this bit, and will be updated every count period. An overflow occurs when the number Hsync pulses exceed 8191, a Hsync frequency greater than 256kHz. 1 = A Hsync frequency counter overflow has occurred 0 = No Hsync frequency counter overflow has occurred Technical Data 184 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 14.6.5 Sync Processor Control Register 1 (SPCR1) Address: $0046 Bit 7 Read: Write: Reset: LVSIE 0 6 LVSIF 0 0 5 4 3 2 1 Bit 0 HPS1 HPS0 R R ATPOL FSHF 0 0 0 0 0 0 = Unimplemented R = Reserved Figure 14-9. Sync Processor Control Register 1 (SPCR1) LVSIE — Low VSync Interrupt Enable When this bit is set, the LVSIF flag is enabled to generate an interrupt request to the CPU. When LVSIE is cleared, the LVSIF flag is prevented from generating an interrupt request to the CPU. Reset clears this bit. 1 = Low Vsync interrupt enabled 0 = Low Vsync interrupt disabled LVSIF — Low VSync Interrupt Flag This read-only bit is set when the value of VFR is higher than $C00 (vertical frame frequency below 40.7Hz). LVSIF generates an interrupt request to the CPU if the LVSIE is also set. This bit is cleared by writing a "0" to it or reset. 1 = Vertical frequency is below 40.7Hz 0 = Vertical frequency is higher than 40.7Hz HPS[1:0] — HSYNC input Detection Pulse Width These two bits control the detection pulse width of HSYNC input. Reset clears these two bits, setting a default middle frequency of HSYNC input. Table 14-8. HSYNC Polarity Detection Pulse Width MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor HPS1 HPS0 Polarity Detection Pulse Width 0 0 Long > 7µs and Short < 6µs 1 X Long > 3.5µs and Short < 3µs 0 1 Long > 14µs and Short < 12µs Technical Data 185 ATPOL — Auto Polarity This bit, together with the VINVO or HINVO bits in SPCSR controls the output polarity of the VSYNCO or HSYNCO signals respectively. Reset clears this bit (see Table 14-9). Table 14-9. ATPOL, VINVO, and HINVO setting Sync Outputs: VSYNCO/HSYNCO ATPOL VINVO / HINVO 0 0 Same polarity as sync input 0 1 Inverted polarity of sync input 1 0 Negative polarity sync output 1 1 Positive polarity sync output FSHF — Fast Horizontal Frequency Count This bit is set to shorten the measurement cycle of the horizontal frequency. If it is set, only HFH[7:0] and HFL[4:2] will be updated by the Hsync counter, providing a count in a 8ms window in every 8.192ms, with HFL[1:0] reading as zeros. Therefore, user can determine the horizontal frequency change within 8.192ms to protect critical circuitry. Reset clears this bit. 1 = Number of Hsync pulses is counted in an 8ms window 0 = Number of Hsync pulses is counted in a 32ms window 14.6.6 H&V Sync Output Control Register (HVOCR) Address: $0047 Bit 7 Read: Write: Reset: R 0 6 5 4 3 0 0 0 0 0 0 0 0 = Unimplemented R 2 1 Bit 0 HVOCR2 HVOCR1 HVOCR0 0 0 0 = Reserved Figure 14-10. H&V Sync Output Control Register (HVOCR) Technical Data 186 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor HVOCR[2:0] — H&V Output Select Bits These three bits select the frequencies of the internal generated free-running sync pulses for output to HSYNCO and VSYNCO pins, when the SOUT bit is set in the SPIOCR. Reset clears these bits, setting a default horizontal frequency of 31.25kHz and a vertical frequency of 60Hz, a video mode of 640×480. Table 14-10. Free-Running HSYNC and VSYNC Options HSYNCO VSYNCO HVOCR Video Mode Pulse width Frequency Pulse width Frequency 000 Negative 2µs 31.25kHz Negative 192µs 59.98 Hz 640 × 480 001 Negative 2µs 43.48kHz Negative 138µs 84.92 Hz 640 × 480 010 Negative 2µs 48.78kHz Negative 123µs 60.00 Hz 1024 × 768 011 Negative 2µs 54.05kHz Negative 111µs 84.98 Hz 800 × 600 100 Negative 2µs 60.61kHz Negative 99µs 75.01 Hz 1024 × 768 101 Negative 2µs 80.00kHz Negative 75µs 74.98 Hz 1280 × 1024 110 Negative 2µs 90.91kHz Negative 66µs 84.96 Hz 1280 × 1024 111 Negative 2µs 105.26kHz Negative 57µs 85.02 Hz 1600 × 1200 14.7 System Operation This Sync Processor is designed to assist in determining the video mode of incoming HSYNC and VSYNC of various frequencies and polarities, and DPMS modes. In the DPMS standard, a no sync pulses definition can be detected when the value of the Hsync Frequency Register (the number of Hsync pulses) is less than one or when the VOF bit is set. Since the Hsync Frequency Register is updated repeatedly in every 32.768ms, and a valid Vsync must have a frequency greater than 40.7Hz, a valid Vsync pulse will arrive within the 32.768ms window. Therefore, the user should read the Hsync Frequency Register every 32.768ms to determine the presence of Hsync and/or Vsync pulses. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 187 Technical Data 188 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 15. Input/Output (I/O) Ports 15.1 Contents 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 15.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 15.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 15.3.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . . 194 15.3.3 Port A Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 15.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 15.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 15.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . 197 15.4.3 Port B Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 15.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 15.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 15.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . . 200 15.5.3 Port C Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 15.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 15.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 15.6.2 Data Direction Register D. . . . . . . . . . . . . . . . . . . . . . . . . . 203 15.6.3 Port D Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 15.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 15.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 15.7.2 Data Direction Register E. . . . . . . . . . . . . . . . . . . . . . . . . . 207 15.7.3 Port E Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 189 15.2 Introduction Thirty-two (32) bidirectional input-output (I/O) pins form four parallel ports. All I/O pins are programmable as inputs or outputs. NOTE: Connect any unused I/O pins to an appropriate logic level, either VDD or VSS. Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage. Table 15-1. I/O Port Register Summary Addr. Register Name $0000 Read: Port A Data Register Write: (PTA) Reset: $0001 $0002 $0003 Read: Port B Data Register Write: (PTB) Reset: Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 PTB2 PTB1 PTB0 PTC2 PTC1 PTC0 PTD2 PTD1 PTD0 Unaffected by reset PTB7 PTB6 PTB5 PTB4 PTB3 Unaffected by reset Read: Port C Data Register Write: (PTC) Reset: 0 Read: Port D Data Register Write: (PTD) Reset: 0 0 PTC5 PTC4 PTC3 Unaffected by reset Read: DDRA7 Data Direction Register A Write: $0004 (DDRA) Reset: 0 Read: DDRB7 Data Direction Register B Write: $0005 (DDRB) Reset: 0 PTD6 PTD5 PTD4 PTD3 Unaffected by reset DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 = Unimplemented Technical Data 190 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Table 15-1. I/O Port Register Summary (Continued) Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 Read: Data Direction Register C Write: $0006 (DDRC) Reset: 0 0 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 0 0 0 0 0 0 0 0 Read: Data Direction Register D Write: $0007 (DDRD) Reset: 0 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 0 0 Read: Port E Data Register Write: (PTE) Reset: 0 0 0 0 0 PTE2 PTE1 PTE0 Read: Data Direction Register E Write: $0009 (DDRE) Reset: 0 0 0 0 0 DDRE2 DDRE1 DDRE0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PWM6E PWM5E PWM4E PWM3E PWM2E PWM1E PWM0E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PWM9E PWM8E 0 0 $0008 $001D $0028 $0049 $0059 Unaffected by reset Read: HSYNCOE VSYNCOE Configuration Register 0 Write: (CONFIG0) Reset: 0 0 Read: PWM7E PWM Control Register 1 Write: (PWMCR1) Reset: 0 Read: Port D Configuration Write: Register (PDCR) Reset: SOGE CLAMPE DDCSCLE DDCDATE 0 0 0 Read: PWM15E PWM14E PWM13E PWM12E PWM11E PWM10E PWM Control Register 2 Write: (PWMCR2) Reset: 0 0 0 0 0 0 = Unimplemented MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 191 Table 15-2. Port Control Register Bits Summary Port A B C D E Technical Data 192 Module Control Bit DDR 0 DDRA0 PWM8E PTA0/PWM8 1 DDRA1 PWM9E PTA1/PWM9 2 DDRA2 PWM10E PTA2/PWM10 3 DDRA3 PWM11E PTA3/PWM11 4 DDRA4 PWM12E PTA4/PWM12 5 DDRA5 PWM13E PTA5/PWM13 6 DDRA6 PWM14E PTA6/PWM14 7 DDRA7 PWM15E PTA7/PWM15 0 DDRB0 PWM0E PTB0/PWM0 1 DDRB1 PWM1E PTB1/PWM1 2 DDRB2 PWM2E PTB2/PWM2 3 DDRB3 PWM3E PTB3/PWM3 4 DDRB4 PWM4E PTB4/PWM4 5 DDRB5 PWM5E PTB5/PWM5 6 DDRB6 PWM6E PTB6/PWM6 7 DDRB7 PWM7E PTB7/PWM7 0 DDRC0 PTC0/ADC0 1 DDRC1 PTC1/ADC1 2 DDRC2 3 DDRC3 4 DDRC4 PTC4/ADC4 5 DDRC5 PTC5/ADC5 0 DDRD0 — — — PTD0 1 DDRD1 — — — PTD1 2 DDRD2 DDCDATE PTD2/DDCSDA DDC12AB PDCR $0049 DDCSCLE PTD3/DDCSCL CLAMPE PTD4/CLAMP Module PWM PWM ADC Register PWMCR2 $0059 PWMCR1 $0028 ADSCR $005D Control Bit ADCH[4:0] Pin PTC2/ADC2 PTC3/ADC3/ 3 DDRD3 4 DDRD4 SYNC 5 DDRD5 — — — PTD5 6 DDRD6 — — — PTD6 0 DDRE0 SYNC/TIM SOGE PTE0/SOG/TCH0 HSYNCOE PTE1/HSYNCO VSYNCOE PTE2/VSYNCO 1 DDRE1 2 DDRE2 SYNC CONFIG0 $001D MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 15.3 Port A Port A is an 8-bit special-function port that shares all eight of its pins with the pulse width modulator (PWM). 15.3.1 Port A Data Register The port A data register (PTA) contains a data latch for each of the eight port A pins. Address: Read: Write: $0000 Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 PWM10 PWM9 PWM8 Reset: Alternate Function: Unaffected by reset PWM15 PWM14 PWM13 PWM12 PWM11 Figure 15-1. Port A Data Register (PTA) PTA7–PTA0 — Port A Data Bits These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data. PWM15–PWM8 — PWM Outputs 15–8 The PWM output enable bits PWM15E–PWM8E, in PWM control register 2 (PWMCR2) enable port A pins as PWM output pins. (See 15.3.3 Port A Options.) MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 193 15.3.2 Data Direction Register A Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer. Address: Read: Write: Reset: $0004 Bit 7 6 5 4 3 2 1 Bit 0 DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 0 Figure 15-2. Data Direction Register A (DDRA) DDRA7–DDRA0 — Data Direction Register A Bits These read/write bits control port A data direction. Reset clears DDRA7–DDRA0, configuring all port A pins as inputs. 1 = Corresponding port A pin configured as output 0 = Corresponding port A pin configured as input NOTE: Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1. Figure 15-3 shows the port A I/O logic. INTERNAL DATA BUS READ DDRA ($0004) WRITE DDRA ($0004) RESET DDRAx WRITE PTA ($0000) PTAx PTAx READ PTA ($0000) Figure 15-3. Port A I/O Circuit Technical Data 194 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor When bit DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When bit DDRAx is a logic 0, reading address $0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 15-3 summarizes the operation of the port A pins. Table 15-3. Port A Pin Functions PTAPUE Bit DDRA Bit PTA Bit Accesses to DDRA I/O Pin Mode Accesses to PTA Read/Write Read Write 0 0 X(1) Input, Hi-Z(2) DDRA7–DDRA0 Pin PTA7–PTA0(3) X 1 X Output DDRA7–DDRA0 PTA7–PTA0 PTA7–PTA0 NOTES: 1. X = Don’t care 2. Hi-Z = High impedance 3. Writing affects data register, but does not affect input. 15.3.3 Port A Options The PWM control register 2 (PWMCR2) selects the port A pins for PWM function or as standard I/O function. See 11.4.2 PWM Control Registers 1 and 2 (PWMCR1:PWMCR2). Address: $0059 Bit 7 Read: Write: Reset: 6 5 4 3 2 PWM15E PWM14E PWM13E PWM12E PWM11E PWM10E 0 0 0 0 0 0 1 Bit 0 PWM9E PWM8E 0 0 Figure 15-4. PWM Control Register 1 (PWMCR1) PWM15E–PWM8E — PWM Output Enable 15–8 Setting a bit to "1" will configure the corresponding PTAx/PWMx pin for PWM output function. Reset clears these bits. 1 = PTAx/PWMx pin configured as PWMx output pin 0 = PTAx/PWMx pin configured as standard I/O pin MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 195 15.4 Port B Port B is an 8-bit special-function port that shares all eight of its pins with the pulse width modulator (PWM). 15.4.1 Port B Data Register The port B data register (PTB) contains a data latch for each of the eight port pins. Address: Read: Write: $0001 Bit 7 6 5 4 3 2 1 Bit 0 PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0 PWM2 PWM1 PWM0 Reset: Alternate Function: Unaffected by reset PWM7 PWM6 PWM5 PWM4 PWM3 Figure 15-5. Port B Data Register (PTB) PTB7–PTB0 — Port B Data Bits These read/write bits are software-programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data. PWM7–PWM0 — PWM Outputs 7–0 The PWM output enable bits PWM7E–PWM0E, in PWM control register 1 (PWMCR1) enable port B pins as PWM output pins. (See 15.4.3 Port B Options.) Technical Data 196 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 15.4.2 Data Direction Register B Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer. Address: Read: Write: Reset: $0005 Bit 7 6 5 4 3 2 1 Bit 0 DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 0 Figure 15-6. Data Direction Register B (DDRB) DDRB7–DDRB0 — Data Direction Register B Bits These read/write bits control port B data direction. Reset clears DDRB7–DDRB0], configuring all port B pins as inputs. 1 = Corresponding port B pin configured as output 0 = Corresponding port B pin configured as input NOTE: Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. Figure 15-7 shows the port B I/O logic. INTERNAL DATA BUS READ DDRB ($0005) WRITE DDRB ($0005) RESET DDRBx WRITE PTB ($0001) PTBx PTBx READ PTB ($0001) Figure 15-7. Port B I/O Circuit MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 197 When bit DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When bit DDRBx is a logic 0, reading address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 15-4 summarizes the operation of the port B pins. Table 15-4. Port B Pin Functions DDRB Bit PTB Bit Accesses to DDRB I/O Pin Mode Accesses to PTB Read/Write Read Write 0 X(1) Input, Hi-Z(2) DDRB7–DDRB0 Pin PTB7–PTB0(3) 1 X Output DDRB7–DDRB0 PTB7–PTB0 PTB7–PTB0 Notes: 1. X = Don’t care 2. Hi-Z = High impedance 3. Writing affects data register, but does not affect input. 15.4.3 Port B Options The PWM control register 1 (PWMCR1) selects the port B pins for PWM function or as standard I/O function. See 11.4.2 PWM Control Registers 1 and 2 (PWMCR1:PWMCR2). Address: Read: Write: Reset: $0028 Bit 7 6 5 4 3 2 1 Bit 0 PWM7E PWM6E PWM5E PWM4E PWM3E PWM2E PWM1E PWM0E 0 0 0 0 0 0 0 0 Figure 15-8. PWM Control Register 1 (PWMCR1) PWM7E–PWM0E — PWM Output Enable 7–0 Setting a bit to "1" will configure the corresponding PTBx/PWMx pin for PWM output function. Reset clears these bits. 1 = PTBx/PWMx pin configured as PWMx output pin 0 = PTBx/PWMx pin configured as standard I/O pin Technical Data 198 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 15.5 Port C Port C is an 6-bit special-function port that shares all six of its pins with the analog-to-digital converter (ADC) module. 15.5.1 Port C Data Register The port C data register (PTC) contains a data latch for each of the seven port C pins. Address: Read: Write: $0002 Bit 7 6 0 0 5 4 3 2 1 Bit 0 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0 ADC2 ADC1 ADC0 Reset: Alternate Function: Unaffected by reset ADC5 ADC4 ADC3 = Unimplemented Figure 15-9. Port C Data Register (PTC) PTC5–PTC0 — Port C Data Bits These read/write bits are software-programmable. Data direction of each port C pin is under the control of the corresponding bit in data direction register C. Reset has no effect on port C data. ADC5–ADC0 — Analog-to-Digital Input Bits ADC5–ADC0 are pins used for the input channels to the analog-todigital converter module. The channel select bits in the ADC Status and Control Register define which port C pin will be used as an ADC input and overrides any control from the port I/O logic by forcing that pin as the input to the analog circuitry. NOTE: MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Care must be taken when reading port C while applying analog voltages to ADC5–ADC0 pins. If the appropriate ADC channel is not enabled, excessive current drain may occur if analog voltages are applied to the PTCx/ADCx pin, while PTC is read as a digital input. Those ports not selected as analog input channels are considered digital I/O ports. Technical Data 199 15.5.2 Data Direction Register C Data direction register C (DDRC) determines whether each port C pin is an input or an output. Writing a logic 1 to a DDRC bit enables the output buffer for the corresponding port C pin; a logic 0 disables the output buffer. Address: $0006 Bit 7 Read: 0 Write: Reset: 0 6 5 4 3 2 1 Bit 0 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 0 0 0 0 0 0 0 = Unimplemented Figure 15-10. Data Direction Register C (DDRC) DDRC6–DDRC0 — Data Direction Register C Bits These read/write bits control port C data direction. Reset clears DDRC6–DDRC0, configuring all port C pins as inputs. 1 = Corresponding port C pin configured as output 0 = Corresponding port C pin configured as input NOTE: Avoid glitches on port C pins by writing to the port C data register before changing data direction register C bits from 0 to 1. Figure 15-11 shows the port C I/O logic. INTERNAL DATA BUS READ DDRC ($0006) WRITE DDRC ($0006) RESET DDRCx WRITE PTC ($0002) PTCx PTCx READ PTC ($0002) Figure 15-11. Port C I/O Circuit Technical Data 200 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor When bit DDRCx is a logic 1, reading address $0002 reads the PTCx data latch. When bit DDRCx is a logic 0, reading address $0002 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 15-5 summarizes the operation of the port C pins. Table 15-5. Port C Pin Functions Accesses to DDRC PTCPUE Bit DDRC Bit PTC Bit Accesses to PTC I/O Pin Mode Read/Write Read Write 0 0 X Input, Hi-Z(2) DDRC6–DDRC0 Pin PTC6–PTC0(3) X 1 X Output DDRC6–DDRC0 PTC6–PTC0 PTC6–PTC0 Notes: 1. X = Don’t care 2. Hi-Z = High impedance 3. Writing affects data register, but does not affect input. 15.5.3 Port C Options The ADCH4–ADCH0 bits in the ADC Status and Control Register (ADSCR) defines which PTCx/ADCx pin is used as an ADC input and overrides any control from the port I/O logic by forcing that pin as the input to the analog circuitry. See 12.8.1 ADC Status and Control Register. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 201 15.6 Port D Port D is an 7-bit special-function port that shares one of its pins with the sync processor and two of its pins with the DDC12AB module. NOTE: PTD1 and PTD0 are 3.3V pins. 15.6.1 Port D Data Register The port D data register (PTD) contains a data latch for each of the eight port D pins. Address: $0003 Bit 7 Read: Write: 0 6 5 4 3 2 1 Bit 0 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0 — — Reset: Alternate Function: Unaffected by reset — — CLAMP DDCSCL DDCSDA = Unimplemented Figure 15-12. Port D Data Register (PTD) PTD6–PTD0 — Port D Data Bits These read/write bits are software-programmable. Data direction of each port D pin is under the control of the corresponding bit in data direction register D. Reset has no effect on port D data. CLAMP — Sync Processor Clamp pulse output pin The PTD4/CLAMP pin is the sync processor clamp pulse output pin. When the CLAMPE bit in the port D configuration register (PDCR) is clear, the PTD4/CLAMP pin is available for general-purpose I/O. See 15.6.3 Port D Options. Technical Data 202 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor DDCSCL, DDCSDA — DDC12AB Data and Clock pins The PTD3/DDCSCL and PTD2/DDCSDA pins are DDC12AB clock and data pins respectively. When the DDCSCLE and DDCDATE bits in the port D configuration register (PDCR) is clear, the PTD3/DDCSCL and PTD2/DDCSDA pins are available for generalpurpose I/O. See 15.6.3 Port D Options. 15.6.2 Data Direction Register D Data direction register D (DDRD) determines whether each port D pin is an input or an output. Writing a logic 1 to a DDRD bit enables the output buffer for the corresponding port D pin; a logic 0 disables the output buffer. Address: $0007 Bit 7 Read: 0 Write: Reset: 0 6 5 4 3 2 1 Bit 0 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 0 Figure 15-13. Data Direction Register D (DDRD) DDRD6–DDRD0 — Data Direction Register D Bits These read/write bits control port D data direction. Reset clears DDRD6–DDRD0, configuring all port D pins as inputs. 1 = Corresponding port D pin configured as output 0 = Corresponding port D pin configured as input NOTE: Avoid glitches on port D pins by writing to the port D data register before changing data direction register D bits from 0 to 1. Figure 15-14 shows the port D I/O logic. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 203 READ DDRD ($0007) INTERNAL DATA BUS WRITE DDRD ($0007) RESET DDRDx WRITE PTD ($0003) PTDx PTDx READ PTD ($0003) Figure 15-14. Port D I/O Circuit When bit DDRDx is a logic 1, reading address $0003 reads the PTDx data latch. When bit DDRDx is a logic 0, reading address $0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 15-6 summarizes the operation of the port D pins. Table 15-6. Port D Pin Functions Accesses to DDRD PTDPUE Bit DDRD Bit PTD Bit Accesses to PTD I/O Pin Mode Read/Write Read Write 0 0 X Input, Hi-Z(2) DDRD7–DDRD0 Pin PTD7–PTD0(3) X 1 X Output DDRD7–DDRD0 PTD7–PTD0 PTD7–PTD0 Notes: 1. X = Don’t care 2. Hi-Z = High impedance 3. Writing affects data register, but does not affect input. Technical Data 204 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 15.6.3 Port D Options The port D configuration register (PDCR) selects the port D pins for module function or as standard I/O function. Address: Read: $0049 Bit 7 6 5 0 0 0 0 0 0 Write: Reset: 4 3 2 CLAMPE DDCSCLE DDCDATE 0 0 0 1 Bit 0 0 0 0 0 = Unimplemented Figure 15-15. Port D Configuration Register (PDCR) CLAMP — CLAMP Pin Enable This bit is set to configure the PTD4/CLAMP pin for sync processor clamp pulse output. Reset clears this bit. 1 = PTD4/CLAMP pin configured as CLAMP pin 0 = PTD4/CLAMP pin configured as standard I/O pin DDCSCLE — DDC Clock Pin Enable This bit is set to configure the PTD3/DDCSCL pin for DDCSCL function. Reset clears this bit. 1 = PTD3/DDCSCL pin configured as DDCSCL pin 0 = PTD3/DDCSCL pin configured as standard I/O port DDCDATE — DDC Data Pin Enable This bit is set to configure the PTD2/DDCSDA pin for DDCSDA function. Reset clears this bit. 1 = PTD2/DDCSDA pin configured as DDCSDA pin 0 = PTD2/DDCSDA pin configured as standard I/O port MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 205 15.7 Port E Port E is a 3-bit special-function port that shares all of its pins with the sync processor. 15.7.1 Port E Data Register The port E data register contains a data latch for each of the two port E pins. Address: Read: $0008 Bit 7 6 5 4 3 0 0 0 0 0 Write: Reset: 2 1 Bit 0 PTE2 PTE1 PTE0 Unaffected by reset Alternate Function: VSYNCO HSYNCO SOG or TCH0 = Unimplemented Figure 15-16. Port E Data Register (PTE) PTE2 and PTE0 — Port E Data Bits PTE2–PTE0 are read/write, software programmable bits. Data direction of each port E pin is under the control of the corresponding bit in data direction register E. VSYNCO — Vsync Output The PTE2/VSYNCO pin is the Vsync output from the sync processor. When the VSYNCOE is clear, the PTE2/VSYNCO pin is available for general-purpose I/O. See 15.7.3 Port E Options. HSYNC — Hsync Output The PTE1/HSYNCO pin is the Hsync output from the sync processor. When the HSYNCOE is clear, the PTE1/HSYNCO pin is available for general-purpose I/O. See 15.7.3 Port E Options. Technical Data 206 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor SOG/TCH0 — SOG Output or TCH0 Input The PTE0/SOG/TCH0 pin is the SOG input for the sync processor or the input capture of the TIM channel 0. See 15.7.3 Port E Options. 15.7.2 Data Direction Register E Data direction register E (DDRE) determines whether each port E pin is an input or an output. Writing a logic 1 to a DDRE bit enables the output buffer for the corresponding port E pin; a logic 0 disables the output buffer. Address: Read: $000C Bit 7 6 5 4 3 0 0 0 0 0 0 0 0 0 0 Write: Reset: 2 1 Bit 0 DDRE2 DDRE1 DDRE0 0 0 0 = Unimplemented Figure 15-17. Data Direction Register E (DDRE) DDRE2–DDRE0 — Data Direction Register E Bits These read/write bits control port E data direction. Reset clears DDRE2–DDRE0, configuring all port E pins as inputs. 1 = Corresponding port E pin configured as output 0 = Corresponding port E pin configured as input NOTE: Avoid glitches on port E pins by writing to the port E data register before changing data direction register E bits from 0 to 1. Figure 15-18 shows the port E I/O logic. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 207 INTERNAL DATA BUS READ DDRE ($0009) WRITE DDRE ($0009) RESET DDREx WRITE PTE ($0008) PTEx PTEx READ PTE ($0008) Figure 15-18. Port E I/O Circuit When bit DDREx is a logic 1, reading address $0008 reads the PTEx data latch. When bit DDREx is a logic 0, reading address $0008 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 15-7 summarizes the operation of the port E pins. Table 15-7. Port E Pin Functions Accesses to DDRE DDRE Bit PTE Bit Accesses to PTE I/O Pin Mode Read/Write Read Write 0 X(1) Input, Hi-Z(2) DDRE1–DDRE0 Pin PTE1–PTE0(3) 1 X Output DDRE1–DDRE0] PTE1–PTE0 PTE1–PTE0 Notes: 1. X = Don’t care 2. Hi-Z = High impedance 3. Writing affects data register, but does not affect input. Technical Data 208 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 15.7.3 Port E Options The configuration register 0 (CONFIG0) selects the port E pins for module function or as standard I/O function. Address: $001D Bit 7 Read: Write: Reset: 6 HSYNCOE VSYNCOE 0 0 5 SOGE 0 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 = Unimplemented Figure 15-19. Configuration Register 0 (CONFIG0) HSYNCOE — VSYNCO Enable This bit is set to configure the PTE1/HSYNCO pin for HSYNCO output function. Reset clears this bit. 1 = PTE1/HSYNCO pin configured as HSYNCO pin 0 = PTE1/HSYNCO pin configured as standard I/O pin VSYNCOE — VSYNCO Enable This bit is set to configure the PTE2/VSYNCO pin for VSYNCO output function. Reset clears this bit. 1 = PTE2/VSYNCO pin configured as VSYNCO pin 0 = PTE2/VSYNCO pin configured as standard I/O pin SOGE — SOG Enable This bit is set to configure the PTE0/SOG/TCH0 pin for SOG output function. Reset clears this bit. 1 = PTE0/SOG/TCH0 pin configured as SOG pin 0 = PTE0/SOG/TCH0 pin configured as standard I/O or TCH0 pin. TCH0 function is configured by ELS0B and ELS0A bits in TSC0 (bits 3 and 2 in $0010). MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 209 Technical Data 210 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 16. External Interrupt (IRQ) 16.1 Contents 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212 16.5 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 16.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 215 16.7 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 215 16.2 Introduction The IRQ (external interrupt) module provides a maskable interrupt input. 16.3 Features Features of the IRQ module include: MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor • A dedicated external interrupt pin (IRQ) • IRQ interrupt control bits • Hysteresis buffer • Programmable edge-only or edge and level interrupt sensitivity • Automatic interrupt acknowledge • Internal pullup resistor Technical Data 211 16.4 Functional Description A logic 0 applied to the external interrupt pin can latch a CPU interrupt request. Figure 16-1 shows the structure of the IRQ module. Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of the following actions occurs: • Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears the latch that caused the vector fetch. • Software clear — Software can clear an interrupt latch by writing to the appropriate acknowledge bit in the interrupt status and control register (INTSCR). Writing a logic 1 to the ACK bit clears the IRQ latch. • Reset — A reset automatically clears the interrupt latch. The external interrupt pin is falling-edge-triggered and is softwareconfigurable to be either falling-edge or falling-edge and low-leveltriggered. The MODE bit in the INTSCR controls the triggering sensitivity of the IRQ pin. When an interrupt pin is edge-triggered only, the interrupt remains set until a vector fetch, software clear, or reset occurs. When an interrupt pin is both falling-edge and low-level-triggered, the interrupt remains set until both of the following occur: • Vector fetch or software clear • Return of the interrupt pin to logic 1 The vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. When set, the IMASK bit in the INTSCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK bit is clear. Technical Data 212 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor NOTE: The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests. INTERNAL ADDRESS BUS ACK RESET TO CPU FOR BIL/BIH INSTRUCTIONS VECTOR FETCH DECODER VDD INTERNAL PULLUP DEVICE VDD IRQF D CLR Q SYNCHRONIZER CK IRQ IRQ INTERRUPT REQUEST IRQ FF IMASK MODE TO MODE SELECT LOGIC HIGH VOLTAGE DETECT Figure 16-1. IRQ Module Block Diagram Table 16-1. IRQ I/O Register Summary Addr $001E Register Name Read: IRQ Status and Control Write: Register (INTSCR) Reset: Bit 7 6 5 4 3 2 0 0 0 0 IRQF 0 ACK 0 0 0 0 0 0 1 Bit 0 IMASK MODE 0 0 = Unimplemented MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 213 16.5 IRQ Pin A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch. If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and lowlevel-sensitive. With MODE set, both of the following actions must occur to clear IRQ: • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACK bit in the interrupt status and control register (INTSCR). The ACK bit is useful in applications that poll the IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to the ACK bit another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the vector address at locations $FFFA and $FFFB. • Return of the IRQ pin to logic 1 — As long as the IRQ pin is at logic 0, IRQ remains active. The vector fetch or software clear and the return of the IRQ pin to logic 1 may occur in any order. The interrupt request remains pending as long as the IRQ pin is at logic 0. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With MODE clear, a vector fetch or software clear immediately clears the IRQ latch. The IRQF bit in the INTSCR register can be used to check for pending interrupts. The IRQF bit is not affected by the IMASK bit, which makes it useful in applications where polling is preferred. Use the BIH or BIL instruction to read the logic level on the IRQ pin. Technical Data 214 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine. 16.6 IRQ Module During Break Interrupts The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear the latch during the break state. See Section 18. Break Module (BRK). To allow software to clear the IRQ latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect CPU interrupt flags during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the ACK bit in the IRQ status and control register during the break state has no effect on the IRQ interrupt flags. 16.7 IRQ Status and Control Register The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. The INTSCR: MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor • Shows the state of the IRQ flag • Clears the IRQ latch • Masks IRQ interrupt request • Controls triggering sensitivity of the IRQ interrupt pin Technical Data 215 Address: $001E Bit 7 6 5 4 Read: 3 2 IRQF 0 Write: Reset: ACK 0 0 0 0 0 0 1 Bit 0 IMASK MODE 0 0 = Unimplemented Figure 16-2. IRQ Status and Control Register (INTSCR) IRQF — IRQ Flag Bit This read-only status bit is high when the IRQ interrupt is pending. 1 = IRQ interrupt pending 0 = IRQ interrupt not pending ACK — IRQ Interrupt Request Acknowledge Bit Writing a logic 1 to this write-only bit clears the IRQ latch. ACK always reads as logic 0. Reset clears ACK. IMASK — IRQ Interrupt Mask Bit Writing a logic 1 to this read/write bit disables IRQ interrupt requests. Reset clears IMASK. 1 = IRQ interrupt requests disabled 0 = IRQ interrupt requests enabled MODE — IRQ Edge/Level Select Bit This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears MODE. 1 = IRQ interrupt requests on falling edges and low levels 0 = IRQ interrupt requests on falling edges only Technical Data 216 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 17. Computer Operating Properly (COP) 17.1 Contents 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 17.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 17.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 17.4.1 OSCXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 17.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 17.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 17.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 17.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 17.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 17.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 17.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 220 17.5 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 17.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221 17.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221 17.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 17.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222 17.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222 17.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 222 17.2 Introduction The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the CONFIG register. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 217 17.3 Functional Description Figure 17-1 shows the structure of the COP module. RESET CIRCUIT RESET STATUS REGISTER COP TIMEOUT CLEAR STAGES 5–12 STOP INSTRUCTION INTERNAL RESET SOURCES RESET VECTOR FETCH CLEAR ALL STAGES 12-BIT COP PRESCALER OSCXCLK COPCTL WRITE COP CLOCK COP MODULE 6-BIT COP COUNTER COPEN (FROM SIM) COP DISABLE (COPD FROM CONFIG1) RESET COPCTL WRITE CLEAR COP COUNTER COP RATE SEL (COPRS FROM CONFIG1) Figure 17-1. COP Block Diagram The COP counter is a free-running 6-bit counter preceded by a 12-bit prescaler counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 218 – 24 or 213 – 24 OSCXCLK cycles, depending on the state of the COP rate select bit, COPRS, in configuration register 1. With a 218 – 24 OSCXCLK cycle overflow option, a 24MHz crystal gives a COP timeout period of 10.922ms. Writing any value to location $FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 12 through 5 of the prescaler. NOTE: Technical Data 218 Service the COP immediately after reset and before entering or after exiting stop mode to guarantee the maximum time before the first COP counter overflow. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor A COP reset pulls the RST pin low for 32 OSCXCLK cycles and sets the COP bit in the SIM reset status register (SRSR). In monitor mode, the COP is disabled if the RST pin or the IRQ1 is held at VTST. During the break state, VTST on the RST pin disables the COP. NOTE: Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly. 17.4 I/O Signals The following paragraphs describe the signals shown in Figure 17-1. 17.4.1 OSCXCLK OSCXCLK is the crystal oscillator output signal. OSCXCLK frequency is equal to the crystal frequency. 17.4.2 STOP Instruction The STOP instruction clears the COP prescaler. 17.4.3 COPCTL Write Writing any value to the COP control register (COPCTL) (see 17.5 COP Control Register) clears the COP counter and clears bits 12 through 5 of the prescaler. Reading the COP control register returns the low byte of the reset vector. 17.4.4 Power-On Reset The power-on reset (POR) circuit clears the COP prescaler 4096 OSCXCLK cycles after power-up. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 219 17.4.5 Internal Reset An internal reset clears the COP prescaler and the COP counter. 17.4.6 Reset Vector Fetch A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the COP prescaler. 17.4.7 COPD (COP Disable) The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register 1 (see Figure 17-2). 17.4.8 COPRS (COP Rate Select) The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register 1(see Figure 17-2). Address: Read: $001F Bit 7 6 5 4 0 0 0 0 0 0 0 0 Write: Reset: 3 2 1 Bit 0 SSREC COPRS STOP COPD 0 0 0 0 = Unimplemented Figure 17-2. Configuration Register 1 (CONFIG1) COPRS — COP Rate Select Bit COPRS selects the COP timeout period. Reset clears COPRS. 1 = COP timeout period = 213 – 24 OSCXCLK cycles 0 = COP timeout period = 218 – 24 OSCXCLK cycles COPD — COP Disable Bit COPD disables the COP module. 1 = COP module disabled 0 = COP module enabled Technical Data 220 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 17.5 COP Control Register The COP control register is located at address $FFFF and overlaps the reset vector. Writing any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low byte of the reset vector. Address: $FFFF Bit 7 6 5 4 3 Read: Low byte of reset vector Write: Clear COP counter Reset: Unaffected by reset 2 1 Bit 0 Figure 17-3. COP Control Register (COPCTL) 17.6 Interrupts The COP does not generate CPU interrupt requests. 17.7 Monitor Mode When monitor mode is entered with VTST on the IRQ pin, the COP is disabled as long as VTST remains on the IRQ pin or the RST pin. When monitor mode is entered by having blank reset vectors and not having VTST on the IRQ pin, the COP is automatically disabled until a POR occurs. 17.8 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 221 17.8.1 Wait Mode The COP remains active during wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine. 17.8.2 Stop Mode Stop mode turns off the OSCXCLK input to the COP and clears the COP prescaler. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. To prevent inadvertently turning off the COP with a STOP instruction, a configuration option is available that disables the STOP instruction. When the STOP bit in the configuration register has the STOP instruction is disabled, execution of a STOP instruction results in an illegal opcode reset. 17.9 COP Module During Break Mode The COP is disabled during a break interrupt when VTST is present on the RST pin. Technical Data 222 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 18. Break Module (BRK) 18.1 Contents 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224 18.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 226 18.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .226 18.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 226 18.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 226 18.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 18.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226 18.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 18.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 18.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . 227 18.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 228 18.6.3 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 228 18.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 230 18.2 Introduction This section describes the break module. The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 223 18.3 Features Features of the break module include: • Accessible input/output (I/O) registers during the break interrupt • CPU-generated break interrupts • Software-generated break interrupts • COP disabling during break interrupts 18.4 Functional Description When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal to the CPU. The CPU then loads the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode). The following events can cause a break interrupt to occur: • A CPU-generated address (the address in the program counter) matches the contents of the break address registers. • Software writes a logic 1 to the BRKA bit in the break status and control register. When a CPU-generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation. Figure 18-1 shows the structure of the break module. Technical Data 224 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor IAB15–IAB8 BREAK ADDRESS REGISTER HIGH 8-BIT COMPARATOR IAB15–IAB0 BREAK CONTROL 8-BIT COMPARATOR BREAK ADDRESS REGISTER LOW IAB7–IAB0 Figure 18-1. Break Module Block Diagram Table 18-1. Break Module I/O Register Summary Addr. Register Name Read: SIM Break Status Register $FE00 Write: (SBSR) Reset: $FE03 $FE0C $FE0D Read: SIM Break Flag Control Write: Register (SBFCR) Reset: Read: Break Address Register Write: High (BRKH) Reset: Read: Break Address Register Write: Low (BRKL) Reset: Read: Break Status and Control $FE0E Write: Register (BRKSCR) Reset: Note: Writing a logic 0 clears SBSW. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Bit 7 6 5 4 3 2 1 R R R R R R 0 0 0 0 0 0 0 0 BCFE R R R R R R R Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 BRKE BRKA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SBSW Note Bit 0 R 0 = Unimplemented R = Reserved Technical Data 225 18.4.1 Flag Protection During Break Interrupts The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. 18.4.2 CPU During Break Interrupts The CPU starts a break interrupt by: • Loading the instruction register with the SWI instruction • Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode) The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. 18.4.3 TIM During Break Interrupts A break interrupt stops the timer counters. 18.4.4 COP During Break Interrupts The COP is disabled during a break interrupt when VTST is present on the RST pin. 18.5 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 18.5.1 Wait Mode If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if SBSW is set (see Section 7. System Integration Module (SIM)). Clear the SBSW bit by writing logic 0 to it. Technical Data 226 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 18.5.2 Stop Mode A break interrupt causes exit from stop mode and sets the SBSW bit in the break status register. 18.6 Break Module Registers These registers control and monitor operation of the break module: • Break status and control register (BRKSCR) • Break address register high (BRKH) • Break address register low (BRKL) • SIM Break status register (SBSR) • SIM Break flag control register (SBFCR) 18.6.1 Break Status and Control Register The break status and control register (BRKSCR) contains break module enable and status bits. Address: Read: Write: Reset: $FE0E Bit 7 6 BRKE BRKA 0 0 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 = Unimplemented Figure 18-2. Break Status and Control Register (BRKSCR) BRKE — Break Enable Bit This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit. 1 = Breaks enabled on 16-bit address match 0 = Breaks disabled on 16-bit address match MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 227 BRKA — Break Active Bit This read/write status and control bit is set when a break address match occurs. Writing a logic 1 to BRKA generates a break interrupt. Clear BRKA by writing a logic 0 to it before exiting the break routine. Reset clears the BRKA bit. 1 = (When read) Break address match 0 = (When read) No break address match 18.6.2 Break Address Registers The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers. Address: Read: Write: Reset: $FE0C Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Figure 18-3. Break Address Register High (BRKH) Address: Read: Write: Reset: $FE0D Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Figure 18-4. Break Address Register Low (BRKL) 18.6.3 SIM Break Status Register The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from wait mode. The flag is useful in applications requiring a return to wait mode after exiting from a break interrupt. Technical Data 228 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Address: Read: Write: Reset: $FE00 Bit 7 6 5 4 3 2 R R R R R R 0 0 0 0 0 0 R = Reserved Note: Writing a logic 0 clears SBSW. 1 SBSW Note 0 Bit 0 R 0 Figure 18-5. SIM Break Status Register (SBSR) SBSW — SIM Break Stop/Wait Bit This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break interrupt. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt 0 = Stop mode or wait mode was not exited by break interrupt SBSW can be read within the break interrupt routine. The user can modify the return address on the stack by subtracting one from it. The following code is an example. ; This code works if the H register has been pushed onto the stack in the break ; service routine software. This code should be executed at the end of the break ; service routine software. HIBYTE EQU 5 LOBYTE EQU 6 ; If not SBSW, do RTI BRCLR SBSW,SBSR, RETURN ; See if wait mode or stop mode was exited by ; break. TST LOBYTE,SP ;If RETURNLO is not zero, BNE DOLO ;then just decrement low byte. DEC HIBYTE,SP ;Else deal with high byte, too. DOLO DEC LOBYTE,SP ;Point to WAIT/STOP opcode. RETURN PULH RTI MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor ;Restore H register. Technical Data 229 18.6.4 SIM Break Flag Control Register The SIM break flag control register (SBFCR) contains a bit that enables software to clear status bits while the MCU is in a break state. Address: Read: Write: Reset: $FE03 Bit 7 6 5 4 3 2 1 Bit 0 BCFE R R R R R R R 0 R = Reserved Figure 18-6. SIM Break Flag Control Register (SBFCR) BCFE — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break Technical Data 230 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 19. Electrical Specifications 19.1 Contents 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 19.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 232 19.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 233 19.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 19.6 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 234 19.7 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 19.8 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 19.9 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 19.10 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 237 19.11 Sync Processor Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 19.12 DDC12AB Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238 19.12.1 DDC12AB Interface Input Signal Timing . . . . . . . . . . . . . . 238 19.12.2 DDC12AB Interface Output Signal Timing . . . . . . . . . . . . . 238 19.2 Introduction This section contains electrical and timing specifications. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 231 19.3 Absolute Maximum Ratings Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it. NOTE: This device is not guaranteed to operate properly at the maximum ratings. Refer to 19.6 DC Electrical Characteristics for guaranteed operating conditions. Characteristic Symbol Value Unit Supply Voltage VDD –0.3 to +5.5 V Input Voltage VIN VSS –0.3 to VDD +0.3 V I ±25 mA Storage Temperature TSTG –55 to +150 °C Maximum Current Out of VSS IMVSS 100 mA Maximum Current Into VDD IMVDD 100 mA Maximum Current Per Pin Excluding VDD and VSS NOTE: 1. Voltages referenced to VSS. NOTE: Technical Data 232 This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that VIN and VOUT be constrained to the range VSS ≤ (VIN or VOUT) ≤ VDD. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either VSS or VDD.) MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 19.4 Functional Operating Range Characteristic Symbol Value Unit TA 0 to 85 °C VDD 4.5 to 5.5 V Symbol Value Unit Thermal Resistance QFP (44 Pins) SDIP (42 Pins) θJA 95 60 °C/W I/O Pin Power Dissipation PI/O User Determined W Power Dissipation(1) PD PD = (IDD × VDD) + PI/O = K/(TJ + 273 °C) W Constant(2) K PD × (TA + 273 °C) + PD2 × θJA W/°C Average Junction Temperature TJ TA + (PD × θJA) °C TJM 100 °C Operating Temperature Range Operating Voltage Range 19.5 Thermal Characteristics Characteristic Maximum Junction Temperature NOTES: 1. Power dissipation is a function of temperature. 2. K is a constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and TJ can be determined for any value of TA. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 233 19.6 DC Electrical Characteristics Characteristic Symbol Output High Voltage (ILOAD = –2.0mA) All I/O Pins (except PTD0, PTD1, OSC2) VOH PTD0, PTD1, OSC2 Output Low Voltage (ILOAD = 1.6mA) All I/O Pins (except PTD0, PTD1, OSC2) PTD0, PTD1, OSC2 Input High Voltage All ports (except PTD0, PTD1), IRQ, RST VSYNC, HSYNC VOL VIH PTD0, PTD1, OSC1 Input Low Voltage All ports (except PTD0, PTD1), IRQ, RST VSYNC, HSYNC VIL PTD0, PTD1, OSC1 Min Typ(2) Max VDD – 0.8 — — Unit V 2 --- VDD – 0.8 3 — — — — — — 0.4 0.4 0.7 × VDD 2.0 — — VDD VDD 2 0.7 × --- VDD 3 — 2 --- VDD 3 VSS VSS — — 0.2 × VDD 0.8 VSS — 2 0.2 × --- VDD 3 V V V VDD Supply Current Run(3) Wait (4) Stop(5) 0°C to 85°C IDD — — — 8 4 2 12 8 5 mA mA mA I/O Ports Hi-Z Leakage Current IIL — — ±10 µA Input Current IIN — — ±1 µA COUT CIN — — — — 12 8 pF VPOR 0 — 100 mV POR Rise Time Ramp Rate RPOR 0.035 — — V/ms Monitor Mode Entry Voltage VTST VDD + 2.5 — 8 V Pull-up Resistor RST, IRQ RPU 20 45 65 kΩ Low-Voltage Inhibit, trip falling voltage VTRIPF 3.4 3.6 3.8 V Low-Voltage Inhibit, trip rising voltage VTRIPR 3.6 3.8 4.0 V Low-Voltage Inhibit Reset/Recover Hysteresis VHYS — 200 — mV RAM data retention voltage VRDR 2 — — V Capacitance Ports (as Input or Output) POR ReArm Voltage(6) (7) Technical Data 234 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Characteristic Symbol Min Typ(2) Max Unit NOTES: 1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only. 3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 15 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fOSCXCLK = 24MHz); all inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. CL = 15pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly affects wait IDD. 5. STOP IDD measured with OSC1 grounded; no port pins sourcing current. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 19.7 Control Timing Characteristic Internal Operating Frequency(2) RST Input Pulse Width Low(3) Symbol Min Max Unit fOP — 6 MHz tIRL 50 — ns NOTES: 1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. 2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset. 19.8 Oscillator Characteristics Characteristic Symbol Min Typ Max Unit Frequency(1) fOSCXCLK — 24 — MHz External Clock Reference Frequency(1), (2) fOSCXCLK dc — 24 MHz Crystal Load Capacitance(3) CL — 15 — pF Crystal Fixed Capacitance(3) C1 — 2 × CL — C2 — 2 × CL — RB — 10 — RS — — — Crystal Crystal Tuning Capacitance(3) Feedback Bias Resistor Series Resistor(3), (4) MΩ NOTES: 1. The sync processor module is designed to function at fOSCXCLK = 24MHz. The values given here are oscillator specifications. 2. No more than 10% duty cycle deviation from 50% 3. Consult crystal vendor data sheet 4. Not Required for high frequency crystals MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 235 19.9 ADC Characteristics Characteristic(1) Symbol Min Max Unit Supply voltage VDDAD 4.5 (VDD min) 5.5 (VDD max) V Input voltages VADIN 0 ------ VDD 2 3 V Resolution BAD 8 8 Bits Absolute accuracy (VSS = 0 V, VDD = 5 V ± 10%) AAD — ±2 LSB Includes quantization ADC internal clock fADIC 0.375 6 MHz tAIC = 1/fADIC, tested only at 1.5 MHz Conversion range RAD VSS ------ VDD V Power-up time tADPU 16 Conversion time tADC 12 13 tAIC cycles Sample time(2) tADS 4 — tAIC cycles Zero input reading(3) ZADI 00 02 Hex Full-scale reading(3) FADI FD FF Hex Input capacitance CADI — 8 pF — — ±1 µA Input leakage(4) Port C 2 3 Comments tAIC cycles Not tested NOTES: 1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Source impedances greater than 10 kΩ adversely affect internal RC charging time during input sampling. 3. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions. 4. The external system error caused by input leakage current is approximately equal to the product of R source and input current. Technical Data 236 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Input Voltage, ADIN VDD = 5V @ 25°C, ADC Clock = 1.5MHz Offset is typically 22mV Steps Figure 19-1. ADC Input Voltage vs. Step Readings 19.10 Timer Interface Module Characteristics Characteristic Input Capture Pulse Width Input Clock Pulse Width Symbol Min Max Unit tTIH, tTIL 125 — ns tTCH, tTCL (1/fOP) + 5 — ns 19.11 Sync Processor Timing Characteristic Symbol Min Max Unit VSYNC input sync pulse tVI.SP 8 2048 µs HSYNC input sync pulse tHI.SP 0.1 6 µs VSYNC to VSYNCO delay (8pF loading) tVVd 30 40 µs HSYNC to HSYNCO delay (8pF loading) tHHd 30 40 µs NOTES: 1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 237 19.12 DDC12AB Timing SDA SCL tHD.STA tLOW tHIGH tSU.DAT tHD.DAT tSU.STA tSU.STO 19.12.1 DDC12AB Interface Input Signal Timing Characteristic Symbol Min Max Unit tHD.STA 2 — tCYC Clock low period tLOW 4 — tCYC Clock high period tHIGH 4 — tCYC Data set-up time tSU.DAT 250 — ns Data hold time tHD.DAT 0 — ns START condition set-up time (for repeated START condition only) tSU.STA 2 — tCYC STOP condition set-up time tSU.STO 2 — tCYC START condition hold time NOTES: 1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. 19.12.2 DDC12AB Interface Output Signal Timing Characteristic Symbol Min Max Unit SDA/SCL rise time(2) tR — 1 µs SDA/SCL fall time tF — 300 ns Data set-up time tSU.DAT tLOW — ns Data hold time tHD.DAT 0 — ns NOTES: 1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. 2. With 200pF loading on the SDA/SCL pins. Technical Data 238 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data — MC68HC08BD24 Section 20. Mechanical Specifications 20.1 Contents 20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 20.3 44-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . . 240 20.4 42-Pin Shrink Dual in-Line Package (SDIP) . . . . . . . . . . . . . . 241 20.2 Introduction This section gives the dimensions for: • 44-pin plastic quad flat pack (case 824E-02) • 42-pin shrink dual in-line package (case 858-01) The following figures show the latest package drawings at the time of this publication. To make sure that you have the latest package specifications, please visit the Freescale website at http://www.freescale.com. Follow the World Wide Web on-line instructions to retrieve the current mechanical specifications. MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 239 20.3 44-Pin Plastic Quad Flat Pack (QFP) S 0.20 (0.008) M T L-M S N S -L-, -M-, -N- A 0.20 (0.008) M H L-M S N S 0.05 (0.002) L-M PIN 1 IDENT 44 J1 34 33 -M- VIEW Y G 11 40X V 0.20 (0.008) M T L-M S N S -L- 0.05 (0.002) N J1 B 0.20 (0.008) M H L-M S N S 1 VIEW Y 3 PL F PLATING BASE METAL J B1 D 0.20 (0.008) M T L-M S N S 23 12 G 22 SECTION J1-J1 44 PL NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. -N- 3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. M VIEW P C E -H- DATUM PLANE 0.01 (0.004) W Y -T- 4. DATUMS -L-, -M- AND -N- TO BE DETERMINED AT DATUM PLANE -H-. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -T-. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.530 (0.021). q1 R DATUM PLANE -H- R K A1 R1 R2 q2 C1 VIEW P DIM A B C D E F G J K M S V W Y A1 B1 C1 R1 R2 q1 q2 MILLIMETERS MIN MAX 9.90 10.10 9.90 10.10 2.00 2.21 0.30 0.45 2.00 2.10 0.30 0.40 0.80 BSC 0.13 0.23 0.65 0.95 5° 10° 12.95 13.45 12.95 13.45 0.000 0.210 5° 10° 0.450 REF 0.130 0.170 1.600 REF 0.130 0.300 0.130 0.300 5° 10° 0° 7° INCHES MIN MAX 0.390 0.398 0.390 0.398 0.079 0.087 0.0118 0.0177 0.079 0.083 0.012 0.016 0.031 BSC 0.005 0.009 0.026 0.037 5° 10° 0.510 0.530 0.510 0.530 0.000 0.008 5° 10° 0.018 REF 0.005 0.007 0.063 REF 0.005 0.012 0.005 0.012 5° 10° 0° 7° Figure 20-1. 44-Pin QFP (Case 824E) Technical Data 240 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor 20.4 42-Pin Shrink Dual in-Line Package (SDIP) NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH. MAXIMUM MOLD FLASH 0.25 (0.010). –A– 42 22 –B– 1 21 DIM A B C D F G H J K L M N L H C –T– SEATING PLANE 0.25 (0.010) N G F D 42 PL K M T A S M J 42 PL 0.25 (0.010) M T B INCHES MIN MAX 1.435 1.465 0.540 0.560 0.155 0.200 0.014 0.022 0.032 0.046 0.070 BSC 0.300 BSC 0.008 0.015 0.115 0.135 0.600 BSC 0° 15° 0.020 0.040 MILLIMETERS MIN MAX 36.45 37.21 13.72 14.22 3.94 5.08 0.36 0.56 0.81 1.17 1.778 BSC 7.62 BSC 0.20 0.38 2.92 3.43 15.24 BSC 0° 15° 0.51 1.02 S Figure 20-2. 42-Pin SDIP (Case 858) MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor Technical Data 241 Technical Data 242 MC68HC08BD24 — Rev. 1.1 Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com E-mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 [email protected] Rev. 1.1 MC68HC08BD24/D July 14, 2005 RoHS-compliant and/or Pb- free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale.s Environmental Products program, go to http://www.freescale.com/epp. Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The ARM POWERED logo is a registered trademark of ARM Limited. ARM7TDMI-S is a trademark of ARM Limited. Java and all other Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. The Bluetooth trademarks are owned by their proprietor and used by Freescale Semiconductor, Inc. under license. © Freescale Semiconductor, Inc. 2005. All rights reserved.