Cirrus EP7312-EV-90 High-performance, low-power system on chip with sdram and enhanced digital audio interface Datasheet

EP7312 Data Sheet
FEATURES
High-Performance,
Low-Power System on Chip with
SDRAM and Enhanced Digital
Audio Interface
■ ARM®720T Processor
— ARM7TDMI CPU operating at speeds of 74 and 90
MHz
— 8 KBytes of four-way set-associative cache
— MMU with 64-entry TLB
— Thumb code support enabled
■ Ultra low power
— 90 mW at 74 MHz typical
— 108 mW at 90 MHz typical
— <.03 mW in the Standby State
■ Advanced audio decoder/decompression capability
— Supports bit streams with adaptive bit rates
— Allows for support of multiple audio
decompression algorithms (MP3, WMA, AAC,
Audible, etc.)
OVERVIEW
The Cirrus Logic™ EP7312 is designed for ultra-lowpower portable and line-powered applications such as
portable consumer entertainment devices, home and car
audio juke box systems, and general purpose industrial
control applications, or any device that features the
added capability of digital audio compression &
decompression. The core-logic functionality of the device
is built around an ARM720T processor with 8 KBytes of
four-way set-associative unified cache and a write buffer.
Incorporated into the ARM720T is an enhanced memory
management unit (MMU) which allows for support of
sophisticated operating systems like Microsoft®
Windows® CE and Linux®.
(cont.)
(cont.)
BLOCK DIAGRAM
S erial
In terfa ce
E PB B us
P o w er
M an ag em e n t
C lo c ks &
T im ers
ARM720T
IC E -J T A G
In terru p ts ,
P W M & G P IO
A R M 7T D M I C P U C o re
(2) U A R T s
w / IrD A
8 KB
C ache
B oo t
ROM
W rite
B u ffe r
B us
B rid g e
MMU
K e yp ad &
T o u ch
S cre en I/F
In tern al D a ta B u s
M em o ry C o n tro lle r
M a ve ric kK e y T M
S RAM I/F
S DRAM I/F
O n -c h ip S R A M
48 K B
USER INTERFACE
SERIAL PORTS
D ig ita l
A u d io
In terfa ce
LCD
C o n tro lle r
MEMORY and STORAGE
Copyright Cirrus Logic, Inc. 2003
http://www.cirrus.com
(All Rights Reserved)
Nov ’03
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
FEATURES (cont)
■ 48 KBytes of on-chip SRAM
■ MaverickKey™ IDs
— 32-bit unique ID can be used for DRM compliance
128-bit random ID
■ Available in 74 and 90 MHz clock speeds
■ LCD controller
— Interfaces directly to a single-scan panel
monochrome STN LCD
— Interfaces to a single-scan panel color STN LCD
with minimal external glue logic
■ Full JTAG boundary scan and Embedded ICE
support
■ Integrated Peripheral Interfaces
— 32-bit SDRAM Interface up to 2 external banks
— 8/32/16-bit SRAM/FLASH/ROM Interface
— Digital Audio Interface providing glueless
interface to low-power DACs, ADCs and CODECs
— Two Synchronous Serial Interfaces (SSI1, SSI2)
— CODEC Sound Interface
— 8×8 Keypad Scanner
— 27 General Purpose Input/Output pins
— Dedicated LED flasher pin from the RTC
■ Internal Peripherals
— Two 16550 compatible UARTs
— IrDA Interface
— Two PWM Interfaces
— Real-time Clock
— Two general purpose 16-bit timers
— Interrupt Controller
— Boot ROM
■ Package
— 208-Pin LQFP
— 256-Ball PBGA
— 204-Ball TFBGA
■ The fully static EP7312 is optimized for low power
dissipation and is fabricated on a 0.25 micron CMOS
process
OVERVIEW (cont.)
The EP7312 is designed for ultra-low-power operation.
Its core operates at only 2.5 V, while its I/O has an
operation range of 2.5 V–3.3 V. The device has three basic
power states: operating, idle and standby.
MaverickKey unique hardware programmed IDs are a
solution to the growing concern over secure web content
and commerce. With Internet security playing an
important role in the delivery of digital media such as
books or music, traditional software methods are quickly
becoming unreliable. The MaverickKey unique IDs
provide OEMs with a method of utilizing specific
hardware IDs such as those assigned for SDMI (Secure
Digital Music Initiative) or any other authentication
mechanism.
2
The EP7312 integrates an interface to enable a direct
connection to many low cost, low power, high quality
audio converters. In particular, high quality ADCs,
DACs, or CODECs such as the Cirrus Logic CS53L32A,
CS43L42, and CS42L50 are easily added to an EP73xx
design via the DAI. Some of these devices feature digital
bass and treble boost, digital volume control and
compressor-limiter functions.
Simply by adding desired memory and peripherals to the
highly integrated EP7312 completes a low-power system
solution. All necessary interface logic is integrated onchip.
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
Table of Contents
FEATURES ...........................................................................................................................................1
OVERVIEW ...........................................................................................................................................1
FEATURES (cont) .......................................................................................................................................................2
OVERVIEW (cont.) ......................................................................................................................................................2
Description of the EP7312’s Components, Functionality, and Interfaces ....................................6
Processor Core - ARM720T ..................................................................................................................................6
Power Management ..............................................................................................................................................6
MaverickKey™ Unique ID ......................................................................................................................................6
Memory Interfaces .................................................................................................................................................6
Digital Audio Capability .........................................................................................................................................7
Universal Asynchronous Receiver/Transmitters (UARTs) .....................................................................................7
Digital Audio Interface (DAI) ..................................................................................................................................7
CODEC Interface ..................................................................................................................................................8
SSI2 Interface ........................................................................................................................................................8
Synchronous Serial Interface ................................................................................................................................8
LCD Controller .......................................................................................................................................................8
64-Key Keypad Interface .......................................................................................................................................9
Interrupt Controller ................................................................................................................................................9
Real-Time Clock ....................................................................................................................................................9
PLL and Clocking ..................................................................................................................................................9
DC-to-DC Converter Interface (PWM) ................................................................................................................. 10
Timers ................................................................................................................................................................. 10
General Purpose Input/Output (GPIO) ................................................................................................................ 10
Hardware Debug Interface .................................................................................................................................. 10
LED Flasher ........................................................................................................................................................ 10
Internal Boot ROM ...............................................................................................................................................10
Packaging ............................................................................................................................................................ 10
Pin Multiplexing ................................................................................................................................................... 11
System Design ....................................................................................................................................................12
ELECTRICAL SPECIFICATIONS ......................................................................................................13
Absolute Maximum Ratings .................................................................................................................................13
Recommended Operating Conditions ................................................................................................................. 13
DC Characteristics .............................................................................................................................................. 13
Timings ...............................................................................................................................................15
Timing Diagram Conventions .................................................................................................................... 15
Timing Conditions ...................................................................................................................................... 15
SDRAM Interface ................................................................................................................................................ 16
SDRAM Load Mode Register Cycle .......................................................................................................... 17
SDRAM Burst Read Cycle ......................................................................................................................... 18
SDRAM Burst Write Cycle ......................................................................................................................... 19
SDRAM Refresh Cycle .............................................................................................................................. 20
Static Memory ..................................................................................................................................................... 21
Static Memory Single Read Cycle ............................................................................................................. 22
Static Memory Single Write Cycle ............................................................................................................. 23
Static Memory Burst Read Cycle ............................................................................................................... 24
Static Memory Burst Write Cycle ............................................................................................................... 25
SSI1 Interface ...................................................................................................................................................... 26
SSI2 Interface ...................................................................................................................................................... 27
LCD Interface ...................................................................................................................................................... 28
DS508PP5
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
3
EP7312
High-Performance, Low-Power System on Chip
JTAG Interface .................................................................................................................................................... 29
Packages ............................................................................................................................................ 30
208-Pin LQFP Package Characteristics ............................................................................................................. 30
EP7312
208-Pin LQFP ............................................................................................................................ 30
208-Pin LQFP Pin Diagram ................................................................................................................................ 31
EP7312 ............................................................................................................................................... 31
208-Pin LQFP Numeric Pin Listing ..................................................................................................................... 32
204-Ball TFBGA Package Characteristics .......................................................................................................... 38
204-Ball TFBGA Pinout (Top View) ..................................................................................................................... 39
204-Ball TFBGA Ball Listing ............................................................................................................................... 40
256-Ball PBGA Package Characteristics ............................................................................................................ 46
256-Ball PBGA Pinout (Top View) ....................................................................................................................... 48
256-Ball PBGA Ball Listing ................................................................................................................................. 49
JTAG Boundary Scan Signal Ordering ............................................................................................................... 54
CONVENTIONS ................................................................................................................................. 60
Acronyms and Abbreviations .............................................................................................................................. 60
Units of Measurement ......................................................................................................................................... 60
General Conventions .......................................................................................................................................... 61
Pin Description Conventions ............................................................................................................................... 61
Ordering Information ........................................................................................................................ 62
Ordering Information Legend .............................................................................................................................. 62
4
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
List of Figures
Figure 1. A Fully-Configured EP7312-Based System ................................................................................................... 12
Figure 2. Legend for Timing Diagrams ......................................................................................................................... 15
Figure 3. SDRAM Load Mode Register Cycle Timing Measurement ............................................................................ 17
Figure 4. SDRAM Burst Read Cycle Timing Measurement .......................................................................................... 18
Figure 5. SDRAM Burst Write Cycle Timing Measurement .......................................................................................... 19
Figure 6. SDRAM Refresh Cycle Timing Measurement ................................................................................................ 20
Figure 7. Static Memory Single Read Cycle Timing Measurement ...............................................................................22
Figure 8. Static Memory Single Write Cycle Timing Measurement ...............................................................................23
Figure 9. Static Memory Burst Read Cycle Timing Measurement ................................................................................ 24
Figure 10. Static Memory Burst Write Cycle Timing Measurement .............................................................................. 25
Figure 11. SSI1 Interface Timing Measurement ........................................................................................................... 26
Figure 12. SSI2 Interface Timing Measurement ........................................................................................................... 27
Figure 13. LCD Controller Timing Measurement .......................................................................................................... 28
Figure 14. JTAG Timing Measurement ......................................................................................................................... 29
Figure 15. 208-Pin LQFP Package Outline Drawing .................................................................................................... 30
Figure 16. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram .......................................................................... 31
Figure 17. 204-Ball TFBGA Package ............................................................................................................................38
Figure 18. 256-Ball PBGA Package .............................................................................................................................. 46
List of Tables
Table 1. Power Management Pin Assignments ..............................................................................................................6
Table 2. Static Memory Interface Pin Assignments ........................................................................................................6
Table 3. SDRAM Interface Pin Assignments ..................................................................................................................7
Table 4. Universal Asynchronous Receiver/Transmitters Pin Assignments ...................................................................7
Table 5. DAI Interface Pin Assignments .........................................................................................................................7
Table 6. CODEC Interface Pin Assignments ..................................................................................................................8
Table 7. SSI2 Interface Pin Assignments .......................................................................................................................8
Table 8. Serial Interface Pin Assignments ......................................................................................................................8
Table 9. LCD Interface Pin Assignments ........................................................................................................................8
Table 10. Keypad Interface Pin Assignments .................................................................................................................9
Table 11. Interrupt Controller Pin Assignments ..............................................................................................................9
Table 12. Real-Time Clock Pin Assignments ..................................................................................................................9
Table 13. PLL and Clocking Pin Assignments ................................................................................................................9
Table 14. DC-to-DC Converter Interface Pin Assignments ...........................................................................................10
Table 15. General Purpose Input/Output Pin Assignments .......................................................................................... 10
Table 16. Hardware Debug Interface Pin Assignments ................................................................................................ 10
Table 17. LED Flasher Pin Assignments ...................................................................................................................... 10
Table 18. DAI/SSI2/CODEC Pin Multiplexing ............................................................................................................... 11
Table 19. Pin Multiplexing .............................................................................................................................................11
Table 20. 208-Pin LQFP Numeric Pin Listing ............................................................................................................... 32
Table 21. 204-Ball TFBGA Ball Listing ......................................................................................................................... 40
Table 22. 256-Ball PBGA Ball Listing ........................................................................................................................... 49
Table 23. JTAG Boundary Scan Signal Ordering .........................................................................................................54
Table 24. Acronyms and Abbreviations ........................................................................................................................ 60
Table 25. Unit of Measurement ..................................................................................................................................... 60
Table 26. Pin Description Conventions ......................................................................................................................... 61
DS508PP5
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
5
EP7312
High-Performance, Low-Power System on Chip
Description of the EP7312’s Components, Functionality, and Interfaces
The following sections describe the EP7312 in more
detail.
Processor Core - ARM720T
The EP7312 incorporates an ARM 32-bit RISC micro
controller that controls a wide range of on-chip
peripherals. The processor utilizes a three-stage pipeline
consisting of fetch, decode and execute stages. Key
features include:
• ARM (32-bit) and Thumb (16-bit compressed)
instruction sets
• Enhanced MMU for Microsoft Windows CE and other
operating systems
• 8 KB of 4-way set-associative cache.
• Translation Look Aside Buffers with 64 Translated
Entries
Power Management
The EP7312 is designed for ultra-low-power operation.
Its core operates at only 2.5 V, while its I/O has an
operation range of 2.5 V–3.3 V. The device has three basic
power states:
• Operating — This state is the full performance
state. All the clocks and peripheral logic are
enabled.
• Idle — This state is the same as the Operating
State, except the CPU clock is halted while
waiting for an event such as a key press.
• Standby — This state is equivalent to the
computer being switched off (no display), and
the main oscillator shut down. An event such as
a key press can wake-up the processor.
Table 1 shows the power management pin assignments.
I/O
Pin Description
BATOK
I
Battery ok input
nEXTPWR
I
External power supply sense
input
nPWRFL
I
Power fail sense input
nBATCHG
I
Battery changed sense input
MaverickKey™ Unique ID
Memory Interfaces
There are two main external memory interfaces. The first
one is the ROM/SRAM/FLASH-style interface that has
programmable wait-state timings and includes burstmode capability, with six chip selects decoding six
256 MB sections of addressable space. For maximum
flexibility, each bank can be specified to be 8-, 16-, or 32bits wide. This allows the use of 8-bit-wide boot ROM
options to minimize overall system cost. The on-chip
boot ROM can be used in product manufacturing to
serially download system code into system FLASH
memory. To further minimize system memory
requirements and cost, the ARM Thumb instruction set is
supported, providing for the use of high-speed 32-bit
operations in 16-bit op-codes and yielding industryleading code density. shows the Static Memory Interface
pin assignments.
Table 2. Static Memory Interface Pin Assignments
I/O
Pin Description
nCS[5:0]
O
Chip select out
A[27:0]
O
Address output
D[31:0]
I/O
Data I/O
nMOE/nSDCAS
(Note)
O
ROM expansion OP enable
nMWE/nSDWE
(Note)
O
ROM expansion write enable
HALFWORD
O
Halfword access select
output
WORD
O
Word access select output
O
Transfer direction
WRITE/nSDRAS
MaverickKey unique hardware programmed IDs are a
solution to the growing concern over secure web content
and commerce. With Internet security playing an
important role in the delivery of digital media such as
books or music, traditional software methods are quickly
6
Both a specific 32-bit ID as well as a 128-bit random ID is
programmed into the EP7312 through the use of laser
probing technology. These IDs can then be used to match
secure copyrighted content with the ID of the target
device the EP7312 is powering, and then deliver the
copyrighted information over a secure connection. In
addition, secure transactions can benefit by also
matching device IDs to server IDs. MaverickKey IDs
provide a level of hardware security required for today’s
Internet appliances.
Pin Mnemonic
Table 1. Power Management Pin Assignments
Pin Mnemonic
becoming unreliable. The MaverickKey unique IDs
provide OEMs with a method of utilizing specific
hardware IDs such as those assigned for SDMI (Secure
Digital Music Initiative) or any other authentication
mechanism.
Note:
Pins are multiplexed. See Table 19 on page 11 for
more information.
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
(Note)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
The second is the programmable 16- or 32-bit-wide
SDRAM interface that allows direct connection of up to
two banks of SDRAM, totaling 512 Mb. To assure the
lowest possible power consumption, the EP7312
supports self-refresh SDRAMs, which are placed in a
low-power state by the device when it enters the lowpower Standby State. Table 3 shows the SDRAM
Interface pin assignments.
to drive an infrared communication interface directly.
Table 4 shows the UART pin assignments.
Table 4. Universal Asynchronous Receiver/Transmitters Pin
Assignments
Pin Mnemonic
I/O
Pin Description
TXD[1]
O
UART 1 transmit
RXD[1]
I
UART 1 receive
CTS
I
UART 1 clear to send
Table 3. SDRAM Interface Pin Assignments
Pin Mnemonic
I/O
Pin Description
DCD
I
UART 1 data carrier detect
SDCLK
O
SDRAM clock output
DSR
I
UART 1 data set ready
SDCKE
O
SDRAM clock enable output
TXD[2]
O
UART 2 transmit
nSDCS[1:0]
O
SDRAM chip select out
RXD[2]
I
UART 2 receive
WRITE/nSDRAS
(Note 2)
O
SDRAM RAS signal output
LEDDRV
O
Infrared LED drive output
nMOE/nSDCAS
(Note 2)
O
SDRAM CAS control signal
PHDIN
I
Photo diode input
nMWE/nSDWE
(Note 2)
O
SDRAM write enable control
signal
A[27:15]/DRA[0:12]
(Note 1)
O
SDRAM address
O
SDRAM internal bank select
I/O
SDRAM byte lane mask
SDQM[3:2]
O
SDRAM byte lane mask
D[31:0]
I/O
Data I/O
A[14:13]/DRA[12:14]
PD[7:6]/SDQM[1:0]
Note:
(Note 2)
1. Pins A[27:13] map to DRA[0:14] respectively.
(i.e. A[27}/DRA[0}, A[26}/DRA[1], etc.) This is to
balance the load for large memory systems.
2. Pins are multiplexed. See Table 19 on page 11 for
more information.
Digital Audio Interface (DAI)
The EP7312 integrates an interface to enable a direct
connection to many low cost, low power, high quality
audio converters. In particular, the DAI can directly
interface with the Crystal‚ CS43L41/42/43 low-power
audio DACs and the Crystal‚ CS53L32 low-power ADC.
Some of these devices feature digital bass and treble
boost, digital volume control and compressor-limiter
functions. Table 5 shows the DAI Interface pin
assignments.
Table 5. DAI Interface Pin Assignments
Pin Mnemonic
Digital Audio Capability
The EP7312 uses its powerful 32-bit RISC processing
engine to implement audio decompression algorithms in
software. The nature of the on-board RISC processor, and
the availability of efficient C-compilers and other
software development tools, ensures that a wide range of
audio decompression algorithms can easily be ported to
and run on the EP7312
Universal Asynchronous
Receiver/Transmitters (UARTs)
I/O
Pin Description
SCLK
O
Serial bit clock
SDOUT
O
Serial data out
SDIN
I
Serial data in
LRCK
O
Sample clock
MCLKIN
I
Master clock input
MCLKOUT
O
Master clock output
Note:
See Table 18 on page 11 for information on pin
multiplexes.
The EP7312 includes two 16550-type UARTs for RS-232
serial communications, both of which have two 16-byte
FIFOs for receiving and transmitting data. The UARTs
support bit rates up to 115.2 kbps. An IrDA SIR protocol
encoder/decoder can be optionally switched into the
RX/TX signals to/from UART 1 to enable these signals
DS508PP5
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
7
EP7312
High-Performance, Low-Power System on Chip
CODEC Interface
Synchronous Serial Interface
The EP7312 includes an interface to telephony-type
CODECs for easy integration into voice-over-IP and
other voice communications systems. The CODEC
interface is multiplexed to the same pins as the DAI and
SSI2. Table 6 shows the CODEC Interface Pin
Assignments.
The EP7312 Synchronous Serial Interface has these
features:
Table 6. CODEC Interface Pin Assignments
Pin Mnemonic
I/O
Pin Description
PCMCLK
O
Serial bit clock
PCMOUT
O
Serial data out
PCMIN
I
Serial data in
PCMSYNC
O
Frame sync
Note:
Table 8. Serial Interface Pin Assignments
Pin Mnemonic
See Table 18 on page 11 for information on pin
multiplexes.
SSI2 Interface
An additional SPI/Microwire1-compatible interface is
available for both master and slave mode
communications. The SSI2 unit shares the same pins as
the DAI and CODEC interfaces through a multiplexer.
The SSI2 Interface has these features:
•
•
•
•
Synchronous clock speeds of up to 512 kHz
Separate 16 entry TX and RX half-word wide FIFOs
Half empty/full interrupts for FIFOs
Separate RX and TX frame sync signals for
asymmetric traffic
Table 7 shows the SSI2 Interface pin assignments.
Table 7. SSI2 Interface Pin Assignments
Pin Mnemonic
I/O
Pin Description
SSICLK
I/O
Serial bit clock
SSITXDA
O
Serial data out
SSIRXDA
I
Serial data in
SSITXFR
I/O
Transmit frame sync
SSIRXFR
I/O
Receive frame sync
Note:
8
• ADC (SSI) Interface: Master mode only; SPI and
Microwire1-compatible (128 kbps operation)
• Selectable serial clock polarity
Table 8 shows the Synchronous Serial Interface pin
assignments.
See Table 18 on page 11 for information on pin
multiplexes.
I/O
Pin Description
ADCLK
O
SSI1 ADC serial clock
ADCIN
I
SSI1 ADC serial input
ADCOUT
O
SSI1 ADC serial output
nADCCS
O
SSI1 ADC chip select
SMPCLK
O
SSI1 ADC sample clock
LCD Controller
A DMA address generator is provided that fetches video
display data for the LCD controller from memory. The
display frame buffer start address is programmable,
allowing the LCD frame buffer to be in SDRAM, internal
SRAM or external SRAM. The LCD controller has these
features:
• Interfaces directly to a single-scan panel monochrome
STN LCD
• Interfaces to a single-scan panel color STN LCD with
minimal external glue logic
• Panel width size is programmable from 32 to 1024
pixels in 16-pixel increments
• Video frame buffer size programmable up to
128 KB
• Bits per pixel of 1, 2, or 4 bits
Table 9 shows the LCD Interface pin assignments.
Table 9. LCD Interface Pin Assignments
Pin Mnemonic
I/O
Pin Description
CL1
O
LCD line clock
CL2
O
LCD pixel clock out
DD[3:0]
O
LCD serial display data bus
FRM
O
LCD frame synchronization pulse
M
O
LCD AC bias drive
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
64-Key Keypad Interface
.
Table 11. Interrupt Controller Pin Assignments
Matrix keyboards and keypads can be easily read by the
EP7312. A dedicated 8-bit column driver output
generates strobes for each keyboard column signal. The
pins of Port A, when configured as inputs, can be
selectively OR'ed together to provide a keyboard
interrupt that is capable of waking the system from a
STANDBY or IDLE state. The Keypad Interface has these
features:
• Column outputs can be individually set high with the
remaining bits left at high-impedance
• Column outputs can be driven all-low, all-high, or allhigh-impedance
• Keyboard interrupt driven by OR'ing together all Port
A bits
• Keyboard interrupt can be used to wake up the
system
• 8×8 keyboard matrix usable with no external logic,
extra keys can be added with minimal glue logic
Table 10 shows the Keypad Interface Pin Assignments.
Pin Mnemonic
I/O
Pin Description
nEINT[2:1]
I
External interrupt
EINT[3]
I
External interrupt
nEXTFIQ
I
External Fast Interrupt input
I
Media change interrupt input
nMEDCHG/nBROM
Note:
(Note)
Pins are multiplexed. See Table 19 on page 11 for
more information.
Real-Time Clock
The EP7312 contains a 32-bit Real Time Clock (RTC) that
can be written to and read from in the same manner as
the timer counters. It also contains a 32-bit output match
register which can be programmed to generate an
interrupt.
• Driven by an external 32.768 kHz crystal oscillator
Table 12 shows the Real-Time Clock pin assignments.
Table 10. Keypad Interface Pin Assignments
Table 12. Real-Time Clock Pin Assignments
Pin Mnemonic
I/O
Pin Description
O
Keyboard scanner column drive
Pin Mnemonic
COL[7:0]
Pin Description
RTCIN
Real-Time Clock Oscillator Input
Interrupt Controller
RTCOUT
Real-Time Clock Oscillator Output
When unexpected events arise during the execution of a
program (i.e., interrupt or memory fault) an exception is
usually generated. When these exceptions occur at the
same time, a fixed priority system determines the order
in which they are handled. The EP7312 interrupt
controller has two interrupt types: interrupt request
(IRQ) and fast interrupt request (FIQ). The interrupt
controller has the ability to control interrupts from 22
different FIQ and IRQ sources. The Interrupt controller
has these features:
VDDRTC
Real-Time Clock Oscillator Power
VSSRTC
Real-Time Clock Oscillator Ground
• Supports 22 interrupts from a variety of sources (such
as UARTs, SSI1, and key matrix.)
• Routes interrupt sources to the ARM720T’s IRQ or
FIQ (Fast IRQ) inputs
• Five dedicated off-chip interrupt lines operate as level
sensitive interrupts
Table 11 shows the interrupt controller pin assignments.
PLL and Clocking
The EP7312 processor and peripheral clocks have these
features:
• Processor and peripheral clocks operate from a single
3.6864 MHz crystal or external 13 MHz clock
• Programmable clock speeds allow the peripheral bus
to run at 18 MHz when the processor is set to 18 MHz
and at 36 MHz when the processor is set to 36, 49 or
74 MHz, and at 45 MHz when the processor is set to
90 MHz.
Table 13 shows the PLL and clocking pin assignments.
Table 13. PLL and Clocking Pin Assignments
Pin Mnemonic
DS508PP5
Pin Description
MOSCIN
Main Oscillator Input
MOSCOUT
Main Oscillator Output
VDDOSC
Main Oscillator Power
VSSOSC
Main Oscillator Ground
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
9
EP7312
High-Performance, Low-Power System on Chip
DC-to-DC Converter Interface (PWM)
Table 16. Hardware Debug Interface Pin Assignments
• Provides two 96 kHz clock outputs with
programmable duty ratio (from 1-in-16 to 15-in-16)
that can be used to drive a positive or negative DC to
DC converter
Table 14 shows the DC-to-DC Converter Interface pin
assignments.
Table 14. DC-to-DC Converter Interface Pin Assignments
Pin Mnemonic
DRIVE[1:0]
I/O
I/O
FB[1:0]
I
Pin Description
PWM drive output
PWM feedback input
Timers
• Internal (RTC) timer
• Two internal 16-bit programmable hardware countdown timers
General Purpose Input/Output (GPIO)
• Three 8-bit and one 3-bit GPIO ports
• Supports scanning keyboard matrix
Table 15 shows the GPIO pin assignments.
Pin Mnemonic
I/O
Pin Description
TCLK
I
JTAG clock
TDI
I
JTAG data input
TDO
O
JTAG data output
nTRST
I
JTAG async reset input
TMS
I
JTAG mode select
LED Flasher
A dedicated LED flasher module can be used to generate
a low frequency signal on Port D pin 0 for the purpose of
blinking an LED without CPU intervention. The LED
flasher feature is ideal as a visual annunciator in battery
powered applications, such as a voice mail indicator on a
portable phone or an appointment reminder on a PDA.
Table 17 shows the LED Flasher pin assignments.
•
•
•
•
Software adjustable flash period and duty cycle
Operates from 32 kHz RTC clock
Will continue to flash in IDLE and STANDBY states
4 mA drive current
Table 17. LED Flasher Pin Assignments
Table 15. General Purpose Input/Output Pin Assignments
Pin Mnemonic
I/O
Pin Description
Pin Mnemonic
PD[0]/LEDFLSH
(Note)
I/O
O
Pin Description
LED flasher driver
PA[7:0]
I/O
GPIO port A
PB[7:0]
I/O
GPIO port B
I/O
GPIO port D
I/O
GPIO port D
(Note)
I/O
GPIO port D
PE[1:0]/BOOTSEL[1:0] (Note)
I/O
GPIO port E
The internal 128-byte Boot ROM facilitates download of
saved code to the on-board SRAM/FLASH.
PE[2]/CLKSEL
I/O
GPIO port E
Packaging
PD[0]/LEDFLSH
(Note)
PD[5:1]
PD[7:6]/SDQM[1:0]
Note:
(Note)
Note:
Pins are multiplexed. See Table 19 on page 11 for
more information.
Internal Boot ROM
Pins are multiplexed. See Table 19 on page 11 for
more information.
The EP7312 is available in a 208-pin LQFP package, 256ball PBGA package, or a 204-ball TFBGA package.
Hardware Debug Interface
• Full JTAG boundary scan and Embedded ICE
support
Table 16 shows the Hardware Debug Interface pin
assignments.
10
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
Pin Multiplexing
Table 18 shows the pin multiplexing of the DAI, SSI2 and
the CODEC. The selection between SSI2 and the CODEC
is controlled by the state of the SERSEL bit in SYSCON2.
The choice between the SSI2, CODEC, and the DAI is
controlled by the DAISEL bit in SYSCON3 (see the
EP7312 User’s Manual for more information).
Table 18. DAI/SSI2/CODEC Pin Multiplexing
Pin
Mnemonic
I/O
DAI
SSI2
CODEC
SSICLK
I/O
SCLK
SSICLK
PCMCLK
SSITXDA
O
SDOUT
SSITXDA
PCMOUT
SSIRXDA
I
SDIN
SSIRXDA
PCMIN
SSITXFR
I/O
LRCK
SSITXFR
PCMSYNC
SSIRXFR
I
MCLKIN
SSIRXFR
p/u
BUZ
O
MCLKOUT
DS508PP5
Table 19 shows the pins that have been multiplexed in
the EP7312.
Table 19. Pin Multiplexing
Signal
Block
Signal
Block
nMOE
Static Memory
nSDCAS
SDRAM
nMWE
Static Memory
nSDWE
SDRAM
WRITE
Static Memory
nSDRAS
SDRAM
A[27:15]
Static Memory
DRA[0:12]
SDRAM
A[14:13]
Static Memory
DRA[13:14]
SDRAM
PD[7:6]
GPIO
SDQM[1:0]
SDRAM
RUN
System
Configuration
CLKEN
System
Configuration
nMEDCHG
Interrupt
Controller
nBROM
Boot ROM
select
PD[0]
GPIO
LEDFLSH
LED Flasher
PE[1:0]
GPIO
BOOTSEL[1:0]
System
Configuration
PE[2]
GPIO
CLKSEL
System
Configuration
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
11
EP7312
High-Performance, Low-Power System on Chip
System Design
As shown in system block diagram, simply adding
desired memory and peripherals to the highly integrated
CRYSTAL
MOSCIN
CRYSTAL
RTCIN
EP7312 completes a low-power system solution. All
necessary interface logic is integrated on-chip.
DD[0-3]
CL1
CL2
FRM
M
LCD
COL[0-7]
KEYBOARD
D[0-31]
PA[0-7]
A[0-27]
PB[0-7]
nMOE
WRITE
PD[0-7]
SDRAS/
SDCAS
×16
SDRAM
×16
SDRAM
SDCS[0]
×16
SDRAM
×16
SDRAM
SDCS[1]
SDQM[0-3]
SDQM[0-3]
EP7312
PE[0-2]
nPOR
nPWRFL
BATOK
nEXTPWR
nBATCHG
RUN
WAKEUP
DRIVE[0-1]
FB[0-1]
nCS[0]
nCS[1]
DC-TO-DC
CONVERTERS
×16
FLASH
×16
FLASH
×16
FLASH
×16
FLASH
LEDDRV
PHDIN
IR LED AND
PHOTODIODE
RXD[[1/2]
TXD[1/2]
DSR
CTS
DCD
2× RS-232
TRANSCEIVERS
ADCCLK
nADCCS
ADCOUT
ADCIN
SMPCLK
ADC
EXTERNAL MEMORYMAPPED EXPANSION
BUFFERS
nCS[2]
nCS[3]
BUFFERS
AND
LATCHES
LEDFLSH
DC
INPUT
BATTERY
SSICLK
SSITXFR
SSITXDA
SSIRXDA
SSIRXFR
CS[n]
WORD
ADDITIONAL I/O
POWER
SUPPLY UNIT
AND
COMPARATORS
CODEC/SSI2/
DAI
DIGITIZER
Figure 1. A Fully-Configured EP7312-Based System
Note:
12
A system can only use one of the following peripheral interfaces at any given time: SSI2,CODEC or DAI.
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings
DC Core, PLL, and RTC Supply Voltage
2.9 V
DC I/O Supply Voltage (Pad Ring)
3.6 V
DC Pad Input Current
±10 mA/pin; ±100 mA cumulative
Storage Temperature, No Power
–40°C to +125°C
Recommended Operating Conditions
DC core, PLL, and RTC Supply Voltage
2.5 V ± 0.2 V
DC I/O Supply Voltage (Pad Ring)
2.3 V - 3.5 V
DC Input / Output Voltage
O–I/O supply voltage
Operating Temperature
Extended -20°C to +70°C; Commercial 0°C to +70°C;
Industrial -40°C to +85°C
DC Characteristics
All characteristics are specified at V DDCORE = 2.5 V, VDDIO = 3.3 V and VSS = 0 V over an operating temperature of 0°C
to +70°C for all frequencies of operation. The current consumption figures have test conditions specified per
parameter.”
Symbol
Parameter
Min
Typ
Max
Unit
Conditions
VIH
CMOS input high voltage
0.65 × VDDIO
-
VDDIO + 0.3
V
VDDIO = 2.5 V
VIL
CMOS input low voltage
VSS − 0.3
-
0.25 × VDDIO
V
VDDIO = 2.5 V
VT+
Schmitt trigger positive going
threshold
-
-
2.1
V
VT-
Schmitt trigger negative going
threshold
0.8
-
-
V
Vhst
Schmitt trigger hysteresis
0.1
-
0.4
V
VIL to VIH
VDD – 0.2
2.5
2.5
-
-
V
V
V
IOH = 0.1 mA
IOH = 4 mA
IOH = 12 mA
Output drive 2a
-
-
0.3
0.5
0.5
V
V
V
IOL = –0.1 mA
IOL = –4 mA
IOL = –12 mA
Input leakage current
-
-
1.0
µA
VIN = VDD or GND
25
-
100
µA
VOUT = VDD or GND
8
-
10.0
pF
CMOS output high voltagea
VOH
Output drive 1a
Output drive 2a
CMOS output low voltagea
VOL
IIN
IOZ
CIN
DS508PP5
Output drive 1a
Bidirectional 3-state leakage
currentb c
Input capacitance
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
13
EP7312
High-Performance, Low-Power System on Chip
Symbol
Parameter
Min
Typ
Max
Unit
COUT
Output capacitance
8
-
10.0
pF
CI/O
Transceiver capacitance
8
-
10.0
pF
IDDSTANDBY
@ 25 C
IDDSTANDBY
@ 70 C
IDDSTANDBY
@ 85 C
Standby current consumption1
Core, Osc, RTC @2.5 V
I/O @ 3.3 V
Standby current consumption1
Core, Osc, RTC @2.5 V
I/O @ 3.3 V
77
41
-
-
-
570
111
µA
Only nPOR, nPWRFAIL,
nURESET, PE0, PE1, and RTS
are driven, while all other float,
VIH = VDD ± 0.1 V,
VIL = GND ± 0.1 V
µA
Only nPOR, nPWRFAIL,
nURESET, PE0, PE1, and RTS
are driven, while all other float,
VIH = VDD ± 0.1 V,
VIL = GND ± 0.1 V
µA
Only nPOR, nPWRFAIL,
nURESET, PE0, PE1, and RTS
are driven, while all other float,
VIH = VDD ± 0.1 V,
VIL = GND ± 0.1 V
mA
Both oscillators running, CPU
static, Cache enabled, LCD
disabled, VIH = V DD ± 0.1 V, VIL
= GND ± 0.1 V
Both oscillators running, CPU
static, Cache enabled, LCD
disabled, VIH = V DD ± 0.1 V, VIL
= GND ± 0.1 V
Standby current consumption1
Core, Osc, RTC @2.5 V
I/O @ 3.3 V
IDD idle
at 74 MHz
Idle current consumption1
Core, Osc, RTC @2.5 V
I/O @ 3.3 V
IDD IDLE
at 90 MHz
Idle current consumption1
Core, Osc, RTC @2.5 V
I/O @ 3.3 V
VDD STANDBY Standby supply voltage
-
-
-
1693
163
6
10
-
-
7
11
-
mA
2.0
-
-
V
Minimum standby voltage for
state retention, internal SRAM
cache, and RTC operation only
a.
Refer to the strength column in the pin assignment tables for all package types.
b.
Assumes buffer has no pull-up or pull-down resistors.
c.
The leakage value given assumes that the pin is configured as an input pin but is not currently being driven.
Note:
14
-
Conditions
1) Total power consumption = IDDCORE x 2.5 V + IDDIO x 3.3 V
2) A typical design will provide 3.3 V to the I/O supply (i.e., VDDIO), and 2.5 V to the remaining logic. This is to allow the I/O to be
compatible with 3.3 V powered external logic (i.e., 3.3 V SDRAMs).
2) Pull-up current = 50 µA typical at VDD = 3.3 V.
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
Timings
Timing Diagram Conventions
This data sheet contains timing diagrams. The following key explains the components used in these diagrams. Any
variations are clearly labelled when they occur. Therefore, no additional meaning should be attached unless
specifically stated.
C lo c k
H ig h
H ig h /L o w
B u s
to
to
L o w
H ig h
C h a n g e
B u s
V a lid
U n d e fin e d /In v a lid
V a lid
B u s
to
T r is ta te
B u s / S ig n a l O m is s io n
Figure 2. Legend for Timing Diagrams
Timing Conditions
Unless specified otherwise, the following conditions are true for all timing measurements. All characteristics are
specified at VDDIO = 3.1 - 3.5 V and V SS = 0 V over an operating temperature of -40°C to +85°C. Pin loadings is 50 pF.
The timing values are referenced to 1/2 V DD.
DS508PP5
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
15
EP7312
High-Performance, Low-Power System on Chip
SDRAM Interface
Figure 3 through Figure 6 define the timings associated with all phases of the SDRAM. The following table contains the
values for the timings of each of the SDRAM modes.
Parameter
Symbol
Min
Typ
Max
Unit
SDCLK rising edge to SDCS assert delay time
tCSa
0
2
4
ns
SDCLK rising edge to SDCS deassert delay time
tCSd
−3
2
10
ns
SDCLK rising edge to SDRAS assert delay time
tRAa
1
3
7
ns
SDCLK rising edge to SDRAS deassert delay time
tRAd
−3
1
10
ns
SDCLK rising edge to SDRAS invalid delay time
tRAnv
2
4
7
ns
SDCLK rising edge to SDCAS assert delay time
tCAa
−2
2
5
ns
SDCLK rising edge to SDCAS deassert delay time
tCAd
−5
0
3
ns
SDCLK rising edge to ADDR transition time
tADv
−3
1
5
ns
SDCLK rising edge to ADDR invalid delay time
tADx
−2
2
5
ns
SDCLK rising edge to SDMWE assert delay time
tMWa
−2
1
5
ns
SDCLK rising edge to SDMWE deassert delay time
tMWd
−4
0
4
ns
DATA transition to SDCLK rising edge time
tDAs
-
-
2
ns
SDCLK rising edge to DATA transition hold time
tDAh
-
-
1
ns
SDCLK rising edge to DATA transition delay time
tDAd
0
-
15
ns
16
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
SDRAM Load Mode Register Cycle
SDCLK
tCSa
tCSd
tRAa
tRAd
tCAa
tCAd
SDCS
SDRAS
SDCAS
tADv
tADx
ADDR
DATA
SDQM
tMWa
tMWd
SDMWE
Figure 3. SDRAM Load Mode Register Cycle Timing Measurement
Note:
DS508PP5
1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
17
EP7312
High-Performance, Low-Power System on Chip
SDRAM Burst Read Cycle
SDCLK
tCSa
SDCS
tCSa
tCSd
tCSd
tRAa
SDRAS
tRAnv
tRAd
tCAa
tCAd
SDCAS
tADv
ADDR
tADv
ADRAS
ADCAS
tDAs
DATA
D1
tDAh
tDAs
D2
tDAh
tDAs
D3
tDAh
tDAs
D4
tDAh
SDQM
[0:3]
SDMWE
Figure 4. SDRAM Burst Read Cycle Timing Measurement
Note:
18
1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal.
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
SDRAM Burst Write Cycle
SDCLK
tCSa
tCSa
tCSd
SDCS
tCSd
tRAa
tRAd
SDRAS
tCAa
tCAd
SDCAS
tADv
tADv
tDAd
tDAd
tDAd
D1
DATA
SDQM
ADCAS
ADRAS
ADDR
D2
tDAd
D3
D4
0
tMWa
tMWd
SDMWE
Figure 5. SDRAM Burst Write Cycle Timing Measurement
Note:
DS508PP5
1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
19
EP7312
High-Performance, Low-Power System on Chip
SDRAM Refresh Cycle
SDCLK
tCSa
tCSd
tRAa
tRAd
SDCS
SDRAS
tCAd
SDCAS
tCAa
SDATA
ADDR
SDQM
[3:0]
SDMWE
Figure 6. SDRAM Refresh Cycle Timing Measurement
Note:
20
1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
Static Memory
Figure 7 through Figure 10 define the timings associated with all phases of the Static Memory. The following table
contains the values for the timings of each of the Static Memory modes.
Parameter
Symbol
Min
Typ
Max
Unit
EXPCLK rising edge to nCS assert delay time
tCSd
2
8
20
ns
EXPCLK falling edge to nCS deassert hold time
tCSh
2
7
20
ns
EXPCLK rising edge to A assert delay time
tAd
4
9
16
ns
EXPCLK falling edge to A deassert hold time
tAh
3
10
19
ns
EXPCLK rising edge to nMWE assert delay time
tMWd
3
6
10
ns
EXPCLK rising edge to nMWE deassert hold time
tMWh
3
6
10
ns
EXPCLK falling edge to nMOE assert delay time
tMOEd
3
7
10
ns
EXPCLK falling edge to nMOE deassert hold time
tMOEh
2
7
10
ns
EXPCLK falling edge to HALFWORD deassert delay time
tHWd
2
8
20
ns
EXPCLK falling edge to WORD assert delay time
tWDd
2
8
16
ns
EXPCLK rising edge to data valid delay time
tDv
8
13
21
ns
EXPCLK falling edge to data invalid delay time
tDnv
6
15
30
ns
Data setup to EXPCLK falling edge time
tDs
-
-
1
ns
EXPCLK falling edge to data hold time
tDh
-
-
3
ns
EXPCLK rising edge to WRITE assert delay time
tWRd
5
11
23
ns
EXPREADY setup to EXPCLK falling edge time
tEXs
-
-
0
ns
EXPCLK falling edge to EXPREADY hold time
tEXh
-
-
0
ns
DS508PP5
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
21
EP7312
High-Performance, Low-Power System on Chip
Static Memory Single Read Cycle
EXPCLK
tCSd
tCSh
nCS
tAd
A
nMWE
tMOEd
tMOEh
nMOE
tHWd
HALFWORD
tWDd
WORD
tDs
tDh
D
tEXs
tEXh
EXPRDY
tWRd
WRITE
Figure 7. Static Memory Single Read Cycle Timing Measurement
Note:
22
1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
2. Address, Halfword, Word, and Write hold state until next cycle.
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
Static Memory Single Write Cycle
EXPCLK
tCSd
tCSh
nCS
tAd
A
tMWd
tMWh
nMWE
nMOE
tHWd
HALFWORD
tWDd
WORD
tDv
D
tEXs
tEXh
EXPRDY
WRITE
Figure 8. Static Memory Single Write Cycle Timing Measurement
Note:
DS508PP5
1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
2. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with
valid timing under zero wait state conditions.
3. Address, Data, Halfword, Word, and Write hold state until next cycle.
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
23
EP7312
High-Performance, Low-Power System on Chip
Static Memory Burst Read Cycle
EXPCLK
tCSd
tCSh
nCS
tAd
tAh
tAh
tAh
A
nMWE
tMOEd
tMOEh
nMOE
tHWd
HALF
WORD
tWDd
WORD
tDs tDh
tDs
tDh
tDs tDh
tDs tDh
D
tEXs
tEXh
EXPRDY
tWRd
WRITE
Figure 9. Static Memory Burst Read Cycle Timing Measurement
Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-0-0-0). This is the maximum number of consecutive
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
3. Consecutive reads with sequential access enabled are identical except that the sequential access wait state field is used to
determine the number of wait states, and no idle cycles are inserted between successive non-sequential ROM/expansion
cycles. This improves performance so the SQAEN bit should always be set where possible.
4. Address, Halfword, Word, and Write hold state until next cycle.
24
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
Static Memory Burst Write Cycle
EXPCLK
tCSd
tCSh
nCS
tAh
tAd
tAh
tAh
A
tMWd
tMWd
tMWd
tMWh
nMWE
tMWd
tMWh
tMWh
tMWh
nMOE
tHWd
HALF
WORD
WORD
tWDd
tDv
tDnv
tDv
tDnv
tDv
tDnv
tDv
D
tEXs
tEXh
EXPRDY
WRITE
Figure 10. Static Memory Burst Write Cycle Timing Measurement
Note:
DS508PP5
1. Four cycles are shown in the above diagram (minimum wait states, 1-1-1-1). This is the maximum number of consecutive
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
3. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with
valid timing under zero wait state conditions.
4. Address, Data, Halfword, Word, and Write hold state until next cycle.
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
25
EP7312
High-Performance, Low-Power System on Chip
SSI1 Interface
Parameter
Symbol
Min
Max
Unit
ADCCLK falling edge to nADCCSS deassert delay time
tCd
9
10
ms
ADCIN data setup to ADCCLK rising edge time
tINs
-
15
ns
ADCIN data hold from ADCCLK rising edge time
tINh
-
14
ns
ADCCLK falling edge to data valid delay time
tOvd
−7
13
ns
ADCCLK falling edge to data invalid delay time
tOd
−2
3
ns
ADC
CLK
tCd
nADC
CSS
tINs
tINh
ADCIN
tOvd
tOd
ADC
OUT
Figure 11. SSI1 Interface Timing Measurement
26
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
SSI2 Interface
Parameter
Symbol
Min
Max
Unit
SSICLK period (slave mode)
tclk_per
185
2050
ns
SSICLK high time
tclk_high
925
1025
ns
SSICLK low time
tclk_low
925
1025
ns
SSICLK rise/fall time
tclkrf
3
18
ns
SSICLK rising edge to RX and/or TX frame sync high time
tFRd
-
3
ns
SSICLK rising edge to RX and/or TX frame sync low time
tFRa
-
8
ns
tFR_per
960
990
ns
SSIRXDA setup to SSICLK falling edge time
tRXs
3
7
ns
SSIRXDA hold from SSICLK falling edge time
tRXh
3
7
ns
SSICLK rising edge to SSITXDA data valid delay time
tTXd
-
2
ns
SSITXDA valid time
tTXv
960
990
ns
SSIRXFR and/or SSITXFR period
tclk_per
tclk_high
tclk_low
SSI
CLK
tclkrf
tFRd
tFRa
tFR_per
SSIRXFR/
SSITXFR
tRXh
tRXs
SSI
RXDA
D7
D2
D1
D0
D7
D2
D1
D0
tTXd
SSI
TXDA
tTXv
Figure 12. SSI2 Interface Timing Measurement
DS508PP5
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
27
EP7312
High-Performance, Low-Power System on Chip
LCD Interface
Parameter
Symbol
Min
Max
Unit
CL[2] falling to CL[1] rising delay time
tCL1d
− 10
25
ns
CL[1] falling to CL[2] rising delay time
tCL2d
80
3,475
ns
CL[1] falling to FRM transition time
tFRMd
300
10,425
ns
CL[1] falling to M transition time
tMd
− 10
20
ns
CL[2] rising to DD (display data) transition time
tDDd
− 10
20
ns
CL[2]
tCL2d
tCL1d
CL[1]
tFRMd
FRM
tMd
M
tDDd
DD [3:0]
Figure 13. LCD Controller Timing Measurement
28
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
JTAG Interface
Parameter
Symbol
Min
Max
Units
TCK clock period
tclk_per
2
-
ns
TCK clock high time
tclk_high
1
-
ns
TCK clock low time
tclk_low
1
-
ns
JTAG port setup time
tJPs
-
0
ns
JTAG port hold time
tJPh
-
3
ns
JTAG port clock to output
tJPco
-
10
ns
JTAG port high impedance to valid output
tJPzx
-
12
ns
JTAG port valid output to high impedance
tJPxz
-
19
ns
tclk_per
tclk_high
tclk_low
TCK
tJPs
tJPh
TMS
TDI
tJPzx
tJPco
tJPxz
TDO
Figure 14. JTAG Timing Measurement
DS508PP5
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
29
EP7312
High-Performance, Low-Power System on Chip
Packages
208-Pin LQFP Package Characteristics
29.60 (1.165)
30.40 (1.197)
27.80 (1.094)
28.20 (1.110)
0.17 (0.007)
0.27 (0.011)
27.80 (1.094)
28.20 (1.110)
EP7312
29.60 (1.165)
30.40 (1.197)
208-Pin LQFP
0.50
(0.0197)
BSC
Pin 1 Indicator
Pin 208
Pin 1
1.35 (0.053)
1.45 (0.057)
0.45 (0.018)
0.75 (0.030)
1.00 (0.039) BSC
0.09 (0.004)
0.20 (0.008)
0° MIN
7° MAX
0.05 (0.002)
0.15 (0.006)
1.40 (0.055)
1.60 (0.063)
Figure 15. 208-Pin LQFP Package Outline Drawing
Note:
30
1)
2)
3)
4)
Dimensions are in millimeters (inches), and controlling dimension is millimeter.
Drawing above does not reflect exact package pin count.
Before beginning any new design with this device, please contact Cirrus Logic for the latest package information.
For pin locations, please see Figure 16. For pin descriptions see the EP7312 User’s Manual.
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
nURESET
nMEDCHG/nBROM
nPOR
BATOK
nEXTPWR
nBATCHG
D[7]
VSSIO
A[7]
D[8]
A[8]
D[9]
A[9]
D[10]
A[10]
D[11]
VSSIO
VDDIO
A[11]
D[12]
A[12]
D[13]
A[13]\DRA[14]
D[14]
A[14]/DRA[13]
D[15]
A[15]/DRA[12]
D[16]
A[16]/DRA[11]
D[17]
A[17]/DRA[10]
nTRST
VSSIO
VDDIO
D[18]
A[18/DRA[9]
D[19]
A[19]/DRA[8]
D[20]
A[20]/DRA[7]
VSSIO
D[21]
A[21]/DRA[6]
D[22]
A[22]/DRA[5]
D[23]
A[23]/DRA[4]
D[24]
VSSIO
VDDIO
A[24]/DRA[3]
HALFWORD
208-Pin LQFP Pin Diagram
EP7312
208-Pin LQFP
(Top View)
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
D[25]
A[25]/DRA[2]
D[26]
A[26]/DRA[1]
D[27]
A[27]/DRA[0]
VSSIO
D[28]
D[29]
D[30]
D[31]
BUZ
COL[0]
COL[1]
TCLK
VDDIO
COL[2]
COL[3]
COL[4]
COL[5]
COL[6]
COL[7]
FB[0]
VSSIO
FB[1]
SMPCLK
ADCOUT
ADCCLK
DRIVE[0]
DRIVE[1]
VDDIO
VSSIO
VDDCORE
VSSCORE
nADCCS
ADCIN
SSIRXFR
SSIRXDA
SSITXDA
SSITXFR
VSSIO
SSICLK
PD[0]/LEDFLSH
PD[1]
PD[2]
PD[3]
TMS
VDDIO
PD[4]
PD[5]
PD[6]/SDQM[0]
PD[7]/SDQM[1]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
nCS[5]
VDDIO
VSSIO
EXPCLK
WORD
WRITE/nSDRAS
RUN/CLKEN
EXPRDY
TXD[2]
RXD[2]
TDI
VSSIO
PB[7]
PB[6]
PB[5]
PB[4]
PB[3]
PB[2]
PB[1]
PB[0]
VDDIO
TDO
PA[7]
PA[6]
PA[5]
PA[4]
PA[3]
PA[2]
PA[1]
PA[0]
LEDDRV
TXD[1]
VSSIO
PHDIN
CTS
RXD[1]
DCD
DSR
nTEST[1]
nTEST[0]
EINT[3]
nEINT[2]
nEINT[1]
nEXTFIQ
PE[2]/CLKSEL
PE[1]BOOTSEL[1]
PE[0]BOOTSEL[0]
VSSRTC
RTCOUT
RTCIN
VDDRTC
N/C
VDDOSC
MOSCIN
MOSCOUT
VSSOSC
WAKEUP
nPWRFL
A[6]
D[6]
A[5]
D[5]
VDDIO
VSSIO
A[4]
D[4]
A[3]
D[3]
A[2]
VSSIO
D[2]
A[1]
D[1]
A[0]
D[0]
VSSCORE
VDDCORE
VSSIO
VDDIO
CL[2]
CL[1]
FRM
M
DD[3]
DD[2]
VSSIO
DD[1]
DD[0]
nSDCS[1]
nSDCS[0]
SDQM[3]
SDQM[2]
VDDIO
VSSIO
SDCKE
SDCLK
nMWE/nSDWE
nMOE/nSDCAS
VSSIO
nCS[0]
nCS[1]
nCS[2]
nCS[3]
nCS[4]
Figure 16. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram
Note:
DS508PP5
1. N/C should not be grounded but left as no connects.
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
31
EP7312
High-Performance, Low-Power System on Chip
208-Pin LQFP Numeric Pin Listing
Table 20. 208-Pin LQFP Numeric Pin Listing
32
Pin
No.
Signal
Reset
State
Type
Description
1
nCS[5]
Low
O
Chip select 5
2
3
VDDIO
Pad Pwr
Digital I/O power, 3.3 V
VSSIO
Pad Gnd
4
EXPCLK
1
I/O ground
I
Expansion clock input
5
WORD
1
Low
O
Word access select output
6
WRITE/nSDRAS
1
Low
O
Transfer direction / SDRAM
RAS signal output
7
RUN/CLKEN
1
Low
O
Run output / clock enable
output
8
EXPRDY
1
I
Expansion port ready input
9
TXD[2]
1
High
O
UART 2 transmit data output
10
RXD[2]
I
UART 2 receive data input
11
TDI
I
JTAG data input
12
VSSIO
Strength
†
1
with p/u*
13
PB[7]
1
Input
14
PB[6]
1
Input
15
PB[5]
1
Input
16
PB[4]
1
Input
17
PB[3]
1
Input
18
PB[2]
1
Input
19
PB[1]
1
Input
20
PB[0]
1
Input
21
VDDIO
Pad Gnd
I/O ground
‡
I/O
GPIO port B
‡
I/O
GPIO port B
‡
I/O
GPIO port B
‡
I/O
GPIO port B
‡
I/O
GPIO port B
‡
I/O
GPIO port B
‡
I/O
GPIO port B
‡
I/O
GPIO port B
Pad Pwr
Digital I/O power, 3.3 V
‡
O
JTAG data out
‡
I/O
GPIO port A
‡
I/O
GPIO port A
‡
I/O
GPIO port A
‡
I/O
GPIO port A
‡
I/O
GPIO port A
‡
I/O
GPIO port A
‡
I/O
GPIO port A
‡
I/O
GPIO port A
22
TDO
1
Input
23
PA[7]
1
Input
24
PA[6]
1
Input
25
PA[5]
1
Input
26
PA[4]
1
Input
27
PA[3]
1
Input
28
PA[2]
1
Input
29
PA[1]
1
Input
30
PA[0]
1
Input
31
LEDDRV
1
Low
O
IR LED drive
32
TXD[1]
1
High
O
UART 1 transmit data out
33
VSSIO
1
High
Pad Gnd
I/O ground
34
PHDIN
I
Photodiode input
35
CTS
I
UART 1 clear to send input
36
RXD[1]
I
UART 1 receive data input
37
DCD
I
UART 1 data carrier detect
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
Table 20. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin
No.
DS508PP5
Signal
Strength
†
Reset
State
Type
Description
38
DSR
I
UART 1 data set ready input
39
nTEST[1]
With p/u*
I
Test mode select input
40
nTEST[0]
With p/u*
I
Test mode select input
41
EINT[3]
I
External interrupt
42
nEINT[2]
I
External interrupt input
43
nEINT[1]
I
External interrupt input
44
nEXTFIQ
I
External fast interrupt input
45
PE[2]/CLKSEL
1
Input
‡
I/O
GPIO port E / clock input
mode select
46
PE[1]/BOOTSEL[1]
1
Input
‡
I/O
GPIO port E / boot mode
select
47
PE[0]/BOOTSEL[0]
1
Input
‡
I/O
GPIO port E / Boot mode
select
48
VSSRTC
RTC Gnd
Real time clock ground
49
RTCOUT
O
Real time clock oscillator
output
50
RTCIN
I
Real time clock oscillator
input
51
VDDRTC
RTC power
Real time clock power, 2.5 V
52
N/C
53
PD[7]/SDQM[1]
1
Low
I/O
GPIO port D / SDRAM byte
lane mask
54
PD[6]/SDQM[0]
1
Low
I/O
GPIO port D / SDRAM byte
lane mask
55
PD[5]
1
Low
I/O
GPIO port D
56
PD[4]
1
Low
57
VDDIO
I/O
GPIO port D
Pad Pwr
Digital I/O power, 3.3 V
58
TMS
with p/u*
I
JTAG mode select
59
PD[3]
1
Low
I/O
GPIO port D
60
PD[2]
1
Low
I/O
GPIO port D
61
PD[1]
1
Low
I/O
GPIO port D
I/O
GPIO port D / LED blinker
output
I/O
DAI/CODEC/SSI2 serial clock
62
PD[0]/LEDFLSH
1
Low
63
SSICLK
1
Input
‡
64
VSSIO
Pad Gnd
I/O ground
65
SSITXFR
1
Low
I/O
DAI/CODEC/SSI2 serial clock
66
SSITXDA
1
Low
O
DAI/CODEC/SSI2 serial data
output
67
SSIRXDA
I
DAI/CODEC/SSI2 serial data
input
68
SSIRXFR
I/O
DAI/CODEC/SSI2 frame sync
69
ADCIN
70
nADCCS
71
Input
‡
I
SSI1 ADC serial input
O
SSI1 ADC chip select
VSSCORE
Core ground
Core ground
72
VDDCORE
Core Pwr
Core power, 2.5 V
73
VSSIO
Pad Gnd
I/O ground
74
VDDIO
Pad Pwr
Digital I/O power, 3.3 V
75
DRIVE[1]
2
High /
Low
I/O
PWM drive output
76
DRIVE[0]
2
High /
Low
I/O
PWM drive output
77
ADCCLK
1
Low
O
SSI1 ADC serial clock
78
ADCOUT
1
Low
O
SSI1 ADC serial data output
1
High
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
33
EP7312
High-Performance, Low-Power System on Chip
Table 20. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin
No.
Signal
79
SMPCLK
80
FB[1]
81
82
Type
Description
Low
O
SSI1 ADC sample clock
I
PWM feedback input
VSSIO
Pad Gnd
I/O ground
FB[0]
I
PWM feedback input
1
†
83
COL[7]
1
High
O
Keyboard scanner column
drive
84
COL[6]
1
High
O
Keyboard scanner column
drive
85
COL[5]
1
High
O
Keyboard scanner column
drive
86
COL[4]
1
High
O
Keyboard scanner column
drive
87
COL[3]
1
High
O
Keyboard scanner column
drive
88
COL[2]
1
High
O
Keyboard scanner column
drive
89
VDDIO
Pad Pwr
Digital I/O power, 3.3 V
90
TCLK
I
JTAG clock
91
COL[1]
1
High
O
Keyboard scanner column
drive
92
COL[0]
1
High
O
Keyboard scanner column
drive
93
BUZ
1
Low
O
Buzzer drive output
94
D[31]
1
Low
I/O
Data I/O
95
D[30]
1
Low
I/O
Data I/O
96
D[29]
1
Low
I/O
Data I/O
97
D[28]
1
Low
I/O
Data I/O
98
VSSIO
Pad Gnd
I/O ground
System byte address /
SDRAM address
99
A[27]/DRA[0]
2
Low
O
100
D[27]
1
Low
I/O
Data I/O
System byte address /
SDRAM address
101
A[26]/DRA[1]
2
Low
O
102
D[26]
1
Low
I/O
Data I/O
103
A[25]/DRA[2]
2
Low
O
System byte address /
SDRAM address
104
D[25]
1
Low
I/O
Data I/O
105
HALFWORD
1
Low
O
Halfword access select output
106
A[24]/DRA[3]
1
Low
O
System byte address /
SDRAM address
107
VDDIO
—
Pad Pwr
Digital I/O power, 3.3 V
108
VSSIO
—
Pad Gnd
I/O ground
109
D[24]
1
Low
I/O
Data I/O
110
A[23]/DRA[4]
1
Low
O
System byte address /
SDRAM address
111
D[23]
1
Low
I/O
Data I/O
System byte address /
SDRAM address
112
A[22]/DRA[5]
1
Low
O
113
D[22]
1
Low
I/O
Data I/O
O
System byte address /
SDRAM address
114
34
Reset
State
Strength
A[21]/DRA[6]
1
Low
115
D[21]
1
Low
116
VSSIO
117
A[20]/DRA[7]
1
Low
I/O
Data I/O
Pad Gnd
I/O ground
O
System byte address /
SDRAM address
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
Table 20. 208-Pin LQFP Numeric Pin Listing (Continued)
DS508PP5
Pin
No.
Signal
118
D[20]
Strength
1
†
Reset
State
Type
Low
I/O
Data I/O
System byte address /
SDRAM address
Description
119
A[19]/DRA[8]
1
Low
O
120
D[19]
1
Low
I/O
Data I/O
121
A[18]/DRA[9]
1
Low
O
System byte address /
SDRAM address
122
D[18]
1
Low
I/O
Data I/O
123
VDDIO
Pad Pwr
Digital I/O power, 3.3 V
124
VSSIO
Pad Gnd
I/O ground
125
nTRST
I
JTAG async reset input
126
A[17]/DRA[10]
1
Low
O
System byte address /
SDRAM address
127
D[17]
1
Low
I/O
Data I/O
128
A[16]/DRA[11]
1
Low
O
System byte address /
SDRAM address
129
D[16]
1
Low
I/O
Data I/O
System byte address /
SDRAM address
130
A[15]/DRA[12]
1
Low
O
131
D[15]
1
Low
I/O
Data I/O
System byte address /
SDRAM address
132
A[14]/DRA[13]
1
Low
O
133
D[14]
1
Low
I/O
Data I/O
134
A[13]/DRA[14]
1
Low
O
System byte address /
SDRAM address
135
D[13]
1
Low
I/O
Data I/O
System byte address
136
A[12]
1
Low
O
137
D[12]
1
Low
I/O
Data I/O
138
A[11]
1
Low
O
System byte address
139
VDDIO
Pad Pwr
Digital I/O power, 3.3 V
140
VSSIO
Pad Gnd
I/O ground
141
D[11]
1
Low
I/O
Data I/O
142
A[10]
1
Low
O
System byte address
143
D[10]
1
Low
I/O
Data I/O
144
A[9]
1
Low
O
System byte address
145
D[9]
1
Low
I/O
Data I/O
146
A[8]
1
Low
O
System byte address
147
D[8]
1
Low
I/O
Data I/O
148
A[7]
1
Low
O
System byte address
149
VSSIO
Pad Gnd
I/O ground
150
D[7]
151
1
Low
I/O
Data I/O
nBATCHG
I
Battery changed sense input
152
nEXTPWR
I
External power supply sense
input
153
BATOK
154
nPOR
155
nMEDCHG/nBROM
156
nURESET
157
VDDOSC
Schmitt
Schmitt
I
Battery OK input
I
Power-on reset input
I
Media change interrupt input /
internal ROM boot enable
I
User reset input
Oscillator Power
Oscillator power in, 2.5 V
158
MOSCIN
I
Main oscillator input
159
MOSCOUT
O
Main oscillator output
160
VSSOSC
Oscillator Ground
Oscillator Ground
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
35
EP7312
High-Performance, Low-Power System on Chip
Table 20. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin
No.
Signal
161
WAKEUP
162
nPWRFL
163
A[6]
164
D[6]
1
Low
I/O
Data I/O
165
A[5]
1
Low
Out
System byte address
166
D[5]
1
Low
167
VDDIO
168
VSSIO
169
A[4]
170
D[4]
171
A[3]
172
D[3]
173
A[2]
174
VSSIO
175
D[2]
1
Low
176
A[1]
2
177
D[1]
1
178
A[0]
179
D[0]
†
Reset
State
Schmitt
1
Low
Type
Description
I
System wake up input
I
Power fail sense input
O
System byte address
I/O
Data I/O
Pad Pwr
Digital I/O power, 3.3 V
Pad Gnd
I/O ground
Low
O
System byte address
1
Low
I/O
Data I/O
2
Low
O
System byte address
1
Low
I/O
Data I/O
2
Low
O
System byte address
Pad Gnd
I/O ground
I/O
Data I/O
Low
O
System byte address
Low
I/O
Data I/O
2
Low
O
System byte address
1
Low
I/O
Data I/O
1
180
VSSCORE
Core ground
Core ground
181
VDDCORE
Core Pwr
Core power, 2.5 V
182
VSSIO
Pad ground
I/O ground
183
VDDIO
Pad Power
Digital I/O power, 3.3 V
184
CL[2]
1
Low
O
LCD pixel clock out
185
CL[1]
1
Low
O
LCD line clock
O
LCD frame synchronization
pulse
186
36
Strength
FRM
1
Low
187
M
1
Low
O
LCD AC bias drive
188
DD[3]
1
Low
I/O
LCD serial display data
189
DD[2]
1
Low
I/O
LCD serial display data
190
VSSIO
191
DD[1]
1
192
DD[0]
193
194
Pad Gnd
I/O ground
Low
I/O
LCD serial display data
1
Low
I/O
LCD serial display data
nSDCS[1]
1
High
O
SDRAM chip select 1
nSDCS[0]
1
High
O
SDRAM chip select 0
195
SDQM[3]
2
Low
I/O
SDRAM byte lane mask
196
SDQM[2]
2
Low
I/O
SDRAM byte lane mask
197
VDDIO
Pad Pwr
Digital I/O power, 3.3 V
198
VSSIO
Pad Gnd
I/O ground
199
SDCKE
2
Low
I/O
SDRAM clock enable output
200
SDCLK
2
Low
I/O
SDRAM clock out
201
nMWE/nSDWE
1
High
O
ROM, expansion write
enable/ SDRAM write enable
control signal
202
nMOE/nSDCAS
1
High
O
ROM, expansion OP
enable/SDRAM CAS control
signal
203
VSSIO
Pad Gnd
I/O ground
204
nCS[0]
1
High
O
Chip select 0
205
nCS[1]
1
High
O
Chip select 1
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
Table 20. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin
No.
Signal
206
nCS[2]
207
nCS[3]
208
nCS[4]
Reset
State
Type
Description
1
High
O
Chip select 2
1
High
O
Chip select 3
1
High
O
Chip select 4
Strength
†
*“With p/u” means with internal pull-up of 100 KOhms on the pin.
†
‡
Strength 1 = 4 ma
Strength 2 = 12 ma
Input. Port A,B,D,E GPIOs default to input at nPOR and URESET conditions.
DS508PP5
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
37
EP7312
High-Performance, Low-Power System on Chip
204-Ball TFBGA Package Characteristics
TOP VIEW
BOTTOM VIEW
Ø0.08 M C
Ø0.15 M C A B
A1 CORNER
A1 CORNER
Ø0.25~0.35(204X)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
C
D
E
F
G
0.65
A
B
H
J
K
L
M
N
P
R
12.35
13±0.05
H
J
K
L
M
N
P
R
T
U
V
W
Y
T
U
V
W
Y
A
0.65
12.35
13±0.05
0.20 C
0.15(4X) C
0.10 C
0.53±0.05
B
Ball Pitch :
SEATING PLANE
Ball Diameter :
0.20~0.30
C
1.20 MAX.
0.36
0.65
Substrate Thickness :
0.36
Mold Thickness :
0.3
0.53
Figure 17. 204-Ball TFBGA Package
38
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
204-Ball TFBGA Pinout (Top View)
1
2
3
4
13
14
15
16
17
18
19
20
A
VDDIO
EXPCLK
nCS[3]
nCS[1]
A[2]
D[4]
A[5]
nPWRFL
MOSCOUT
GNDIO
GNDIO
GNDIO
B
WORD
VDDIO
nCS[5]
A[1]
D[3]
A[4]
D[6]
WAKEUP
MOSCIN
GNDIO
GNDIO
C
RUN/
CLKEN
EXPRDY
VDDIO
D[2]
A[3]
D[5]
A[6]
GNDOSC
VDDOSC
GNDIO
BATOK
nPOR
C
D
PB[7]
RXD[2]
VDDIO
GNDIO
nBATCHG
A[7]
D
E
PB[4]
TXD[2]
WRITE/
nSDRAS
nMEDCHG/n
nEXTPWR
BROM
D[9]
E
F
PB[3]
PB[6]
TDI
D[7]
A[8]
D[10]
F
G
PB[1]
PB[2]
PB[5]
D[8]
A[9]
D[11]
G
H
PA[7]
TDO
PB[0]
A[10]
D[12]
A[12]
H
J
PA[4]
PA[5]
PA[6]
A[11]
D[13]
K
PA[1]
PA[2]
VDDIO
D[14]
A[14]/
DRA[13]
L TXD[1]
LEDDRV
PA[3]
VDDIO
D[16]
M RXD[1]
CTS
PA[0]
A[15]/
DRA[12]
A[17]/
DRA[10]
nTRST
M
D[17]
D[19]
A[18]/
DRA[9]
N
D[18]
A[20]/
DRA[7]
D[20]
P
PE2/
nTEST[0]
CLKSEL
A[19]/
DRA[8]
D[22]
A[21]/
DRA6
R
PE[0]/
BOOT nEINT[1]
SEL[0]
D[21]
D[23]
A[22]/
DRA5
T
HALF
WORD
D[24]
A[23]/
DRA4
U
N
DSR
T
PE[1]/
BOOT
SEL[1]
6
7
8
9
10
nMWE/ SDQM[2
nSDCS[1] DD[2]
nSDWE
]
FRM
CL[1]
nCS[2]
nMOE/
SDCKE nSDCS[0] DD[1]
nSDCAS
M
CL[2]
D[0]
nCS[4]
nCS[0] SDCLK SDQM[3]
DD[3]
VDDCORE
A[0]
DD[0]
12
GNDCORE D[1]
DCD
U GNDRTC RTCOUT
RTCIN
V VDDRTC
GNDIO
GNDIO
PD[7]/
SDQM[1]
PD[4]
PD[2]
SSICLK
W GNDIO
GNDIO
GNDIO
PD[6]/
SDQM[0]
TMS
PD[1]
SSITXFR SSIRXFR GNDCORE
Y
GNDIO
GNDIO
PD[5]
PD[3]
PD[0]/
LED SSITXDA
FLSH
GNDIO
11
nTEST[1] PHDIN
P EINT[3] nEINT[2]
R nEXTFIQ
5
DS508PP5
SSIRXD
A
ADCIN
nADCCS
VDDCORE
VDDIO
ADCCLK COL[7] COL[4] TCLK
BUZ
A
nURESET B
A[13]/
J
DRA[14]
D[15]
K
A[16]/
L
DRA[11]
D[29]
A[26]/
DRA[1]
VDDIO
VDDIO
A[24]/
DRA3
V
DRIVE[1]
ADCOUT FB[0] COL[5] COL[2] COL[0]
D[30]
A[27]/
DRA[0]
D[26]
VDDIO
D[25]
W
DRIVE[0]
SMPCLK FB[1] COL[6] COL[3] COL[1]
D[31]
D[28]
D[27]
A[25]/
DRA[2]
VDDIO
Y
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
39
EP7312
High-Performance, Low-Power System on Chip
204-Ball TFBGA Ball Listing
The list is ordered by ball location.
Table 21. 204-Ball TFBGA Ball Listing
Ball Location
Name
Strength
†
Reset
State
Type
Digital I/O power,
3.3 V
A1
VDDIO
A2
EXPCLK
1
A3
nCS[3]
1
High
O
Chip select 3
A4
nCS[1]
1
High
O
Chip select 1
A5
nMWE/nSDWE
1
High
O
ROM, expansion write enable/ SDRAM write enable control signal
A6
SDQM[2]
2
Low
O
SDRAM byte lane mask
A7
nSDCS[1]
1
High
O
SDRAM chip select 2
A8
DD[2]
1
Low
O
LCD serial display data
A9
FRM
1
Low
O
LCD frame synchronization pulse
A10
CL[1]
1
Low
O
LCD line clock
A11
VSSCORE
A12
D[1]
1
Low
I/O
Data I/O
A13
A[2]
2
Low
O
System byte address
A14
D[4]
1
Low
I/O
Data I/O
A15
A[5]
1
Low
O
System byte address
A16
nPWRFL
I
Power fail sense input
A17
MOSCOUT
O
Main oscillator out
A18
VSSIO
Pad ground
I/O ground
A19
VSSIO
Pad ground
I/O ground
A20
VSSIO
Pad ground
I/O ground
B1
WORD
B2
VDDIO
B3
nCS[5]
1
Low
O
Chip select 5
B4
nCS[2]
1
High
O
Chip select 2
B5
nMOE/nSDCAS
1
High
O
ROM, expansion OP enable/SDRAM CAS control signal
B6
SDCKE
2
Low
O
SDRAM clock enable output
B7
nSDCS[0]
1
High
O
SDRAM chip select 0
B8
DD[1]
1
Low
O
LCD serial display data
B9
M
1
Low
O
LCD AC bias drive
B10
CL[2]
1
Low
0
LCD pixel clock out
B11
D[0]
1
Low
I/O
Data I/O
B12
A[1]
2
Low
O
System byte address
B13
D[3]
2
Low
I/O
Data I/O
40
Pad power
Description
I
Core ground
1
Low
O
Pad power
Expansion clock input
Core ground
Word access select output
Digital I/O power, 3.3 V
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
Strength
†
Reset
State
Type
Description
B14
A[4]
1
Low
O
System byte address
B15
D[6]
1
Low
I/O
Data I/O
B16
WAKEUP
B17
MOSCIN
B18
VSSIO
Pad ground
I/O ground
B19
VSSIO
Pad ground
I/O ground
B20
nURESET
C1
RUN/CLKEN
1
C2
EXPRDY
1
C3
VDDIO
C4
nCS[4]
1
High
O
Chip select 4
C5
nCS[0]
1
High
O
Chip select 0
C6
SDCLK
2
Low
O
SDRAM clock out
C7
SDQM[3]
2
Low
O
SDRAM byte lane mask
C8
DD[0]
1
Low
O
LCD serial display data
C9
DD[3]
1
Low
O
LCD serial display data
C10
VDDCORE
Core power
Digital core power, 2.5 V
C11
A[0]
2
Low
O
System byte address
C12
D[2]
1
Low
I/O
Data I/O
C13
A[3]
2
Low
O
System byte address
C14
D[5]
1
Low
I/O
Data I/O
C15
A[6]
1
Low
O
System byte address
C16
VSSOSC
Oscillator ground
PLL ground
C17
VDDOSC
Oscillator power
Oscillator power in, 2.5V
C18
VSSIO
Pad ground
C19
BATOK
I
DS508PP5
Schmitt
Schmitt
Low
I
System wake up input
I
Main oscillator input
I
User reset input
0
Run output / clock enable output
I
Expansion port ready input
Pad power
Digital I/O power,
3.3 V
I/O ground
Battery ok input
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
41
EP7312
High-Performance, Low-Power System on Chip
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
Strength
C20
nPOR
Schmitt
D1
PB[7]
1
D2
†
Reset
State
Type
Description
I
Power-on reset input
I
GPIO port B
RXD[2]
I
UART 2 receive data input
D3
VDDIO
Pad power
Digital I/O power, 3.3V
D18
VSSIO
Pad ground
I/O ground
D19
nBATCHG
D20
A[7]
1
Low
E1
PB[4]
1
Input
E2
TXD[2]
1
E3
WRITE/nSDRAS
1
E18
Input
‡
I
Battery changed sense input
O
System byte address
I
GPIO port B
High
O
UART 2 transmit data output
Low
O
Transfer direction / SDRAM RAS signal output
nMEDCHG/nBROM
I
Media change interrupt input / internal ROM boot enable
E19
nEXTPWR
I
External power supply sense input
E20
D[9]
1
Low
F1
PB[3]
1
Input
F2
PB[6]
1
Input
F3
TDI
with p/u*
F18
D[7]
1
Low
I/O
Data I/O
F19
A[8]
1
Low
O
System byte address
F20
D[10]
1
Low
I/O
Data I/O
G1
PB[1]
1
Input
G2
PB[2]
1
Input
G3
PB[5]
1
Input
G18
D[8]
1
Input
G19
A[9]
1
G20
D[11]
H1
‡
I/O
Data I/O
‡
I/O
GPIO port B
‡
I/O
I
GPIO port B
JTAG data input
‡
I/O
‡
I/O
GPIO port B
‡
I/O
GPIO port B
‡
I/O
Data I/O
Low
O
System byte address
1
Low
I/O
Data I/O
PA[7]
1
Input
‡
I/O
GPIO port A
H[2]
TDO
1
Input
‡
O
JTAG data out
H[3]
PB[0]
1
Input
‡
I/O
GPIO port B
H[18]
A[10]
1
Low
O
System byte address
H19
D[12]
1
Low
I/O
Data I/O
H20
A[12]
1
Low
O
System byte address
J1
PA[4]
1
Input
I/O
GPIO port A
42
‡
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
Strength
†
Reset
State
Type
Description
‡
I/O
GPIO port A
‡
I/O
GPIO port A
Low
O
System byte address
1
Low
I/O
Data I/O
A[13]/DRA[14]
1
Low
O
System byte address / SDRAM address
K1
PA[1]
1
Input
K2
PA[2]
1
Input
K3
VDDIO
K18
D[14]
1
Low
I/O
Data I/O
K19
A[14]/DRA[13]
1
Low
O
System byte address / SDRAM address
K20
D[15]
1
Low
I/O
Data I/O
L1
TXD[1]
1
High
O
UART 1 transmit data out
L2
LEDDRV
1
Low
O
IR LED drive
L3
PA[3]
1
Input
I/O
GPIO port A
L18
VDDIO
L19
D[16]
1
Low
I/O
Data I/O
L20
A[16]/DRA[11]
1
Low
O
System byte address / SDRAM address
M1
RXD[1]
I
UART 1 receive data input
M2
CTS
I
UART 1 clear to send input
M3
PA[0]
1
Input
M18
A[15]/DRA[12]
1
Low
O
System byte address / SDRAM address
M19
A[17]/DRA[10]
1
Low
O
System byte address / SDRAM address
M20
nTRST
I
JTAG async reset input
N1
DSR
I
UART 1 data set ready input
N2
nTEST[1]
I
Test mode select input
N3
PHDIN
I
Photodiode input
N18
D[17]
1
Low
I/O
Data I/O
N19
D[19]
1
Low
I/O
Data I/O
N20
A[18]/DRA[9]
1
Low
O
System byte address / SDRAM address
P1
EINT[3]
I
External interrupt
P2
nEINT[2]
I
External interrupt input
P3
DCD
I
UART 1 data carrier detect
P18
D[18]
1
Low
I/O
Data I/O
P19
A[20]/DRA[7]
1
Low
O
System byte address / SDRAM address
J2
PA[5]
1
Input
J3
PA[6]
1
Input
J18
A[11]
1
J19
D[13]
J20
DS508PP5
‡
I/O
GPIO port A
‡
I/O
GPIO port A
Pad power
‡
Pad power
‡
With p/u*
I/O
Digital I/O power, 3.3V
Digital I/O power, 3.3V
GPIO port A
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
43
EP7312
High-Performance, Low-Power System on Chip
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
Strength
†
Type
Low
I/O
Description
P20
D[20]
R1
nEXTFIQ
R2
PE[2]/CLKSEL
R3
nTEST[0]
R18
A[19]/DRA[8]
1
Low
O
System byte address / SDRAM address
R19
D[22]
1
Low
I/O
Data I/O
R20
A[21]/DRA[6]
1
Low
O
System byte address / SDRAM address
T1
PE[1]/BOOTSEL[1]
1
Input
T2
PE[0]/BOOTSEL[0]
1
Input
T3
nEINT[1]
T18
D[21]
1
Low
I/O
Data I/O
T19
D[23]
1
Low
I/O
Data I/O
T20
A[22]/DRA[5]
1
Low
O
System byte address / SDRAM address
U1
VSSRTC
RTC ground
U2
RTCOUT
O
Real time clock oscillator output
U3
RTCIN
I/O
Real time clock oscillator input
U18
HALFWORD
1
Low
O
Halfword access select output
U19
D[24]
1
Low
I/O
Data I/O
U20
A[23]/DRA[4]
1
Low
O
System byte address / SDRAM address
V1
VDDRTC
RTC power
Real time clock power, 2.5V
V2
VSSIO
Pad ground
I/O ground
V3
VSSIO
Pad ground
I/O ground
V4
PD[7]/SDQM[1]
1
Low
I/O
GPIO port D / SDRAM byte lane mask
V5
PD[4]
1
Low
I/O
GPIO port D
V6
PD[2]
1
Low
I/O
GPIO port D
V7
SSICLK
1
Input
I/O
DAI/CODEC/SSI2 serial clock
V8
SSIRXDA
I/O
DAI/CODEC/SSI2 serial data input
V9
nADCCS
O
SSI1 ADC chip select
V10
VDDIO
Pad power
Digital I/O power, 3.3V
V11
ADCCLK
1
Low
O
SSI1 ADC serial clock
V12
COL[7]
1
High
O
Keyboard scanner column drive
V13
COL[4]
1
High
O
Keyboard scanner column drive
V14
TCLK
I
JTAG clock
V15
BUZ
1
Low
O
Buzzer drive output
V16
D[29]
1
Low
I/O
Data I/O
44
1
Reset
State
I
1
Input
‡
With p/u*
I/O
External fast interrupt input
GPIO port E / clock input mode select
I
Test mode select input
‡
I/O
GPIO port E / boot mode select
‡
I/O
GPIO port E / boot mode select
I
1
Data I/O
‡
High
External interrupt input
Real time clock ground
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
Strength
†
Type
Low
O
Description
V17
A[26]/DRA[1]
V18
VDDIO
Pad power
Digital I/O power,
3.3 V
V19
VDDIO
Pad power
Digital I/O power,
3.3 V
V20
A[24]/DRA[3]
W1
VSSIO
Pad ground
I/O ground
W2
VSSIO
Pad ground
I/O ground
W3
VSSIO
Pad ground
I/O ground
W4
PD[6]/SDQM[0]
W5
TMS
with p/u*
W6
PD[1]
1
Low
I/O
GPIO port D
W7
SSITXFR
1
Low
I/O
DAI/CODEC/SSI2 frame sync
W8
SSIRXFR
1
Input
I/O
DAI/CODEC/SSI2 frame sync
W9
VSSCORE
W10
DRIVE[1]
2
High /
Low
I/O
PWM drive output
W11
ADCOUT
1
Low
O
SSI1 ADC serial data output
W12
FB[0]
I
PWM feedback input
W13
COL[5]
1
High
O
Keyboard scanner column drive
W14
COL[2]
1
High
O
Keyboard scanner column drive
W15
COL[0]
1
High
O
Keyboard scanner column drive
W16
D[30]
1
Low
I/O
Data I/O
W17
A[27]/DRA[0]
2
Low
O
System byte address / SDRAM address
W18
D[26]
1
Low
I/O
Data I/O
W19
VDDIO
W20
D[25]
Y1
VSSIO
Pad ground
I/O ground
Y2
VSSIO
Pad ground
I/O ground
Y3
VSSIO
Pad ground
I/O ground
Y4
PD[5]
1
Low
I/O
GPIO port D
Y5
PD[3]
1
Low
I/O
GPIO port D
Y6
PD[0]/LEDFLSH
1
Low
I/O
GPIO port D / LED blinker output
Y7
SSITXDA
1
Low
O
DAI/CODEC/SSI2 serial data output
Y8
ADCIN
I
SSI1 ADC serial input
Y9
VDDCORE
Y10
DRIVE[0]
DS508PP5
2
Reset
State
‘
1
Low
Low
O
I/O
I
‡
Core Ground
Pad power
1
Low
I/O
Core power
2
Input
‡
I/O
System byte address / SDRAM address
System byte address / SDRAM address
GPIO port D / SDRAM byte lane mask
JTAG mode select
Core Ground
Digital I/O power, 3.3V
Data I/O
Digital core power, 2.5V
PWM drive output
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
45
EP7312
High-Performance, Low-Power System on Chip
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
Strength
Reset
State
Type
Low
O
SSI1 ADC sample clock
I
PWM feedback input
Description
Y11
SMPCLK
Y12
FB[1]
Y13
COL[6]
1
High
O
Keyboard scanner column drive
Y14
COL[3]
1
High
O
Keyboard scanner column drive
Y15
COL[1]
1
High
O
Keyboard scanner column drive
Y16
D[31]
1
Low
I/O
Data I/O
Y17
D[28]
1
Low
I/O
Data I/O
Y18
D[27]
1
Low
I/O
Data I/O
Y19
A[25]/DRA[2]
2
Low
O
System byte address / SDRAM address
Y20
1
†
VDDIO
Pad power
Digital I/O power, 3.3V
*“With p/u” means with internal pull-up of 100 KOhms on the pin.
†
Strength 1 = 4 ma
Strength 2 = 12 ma
‡
Input. Port A,B,D,E GPIOs default to input at nPOR and URESET conditions.
256-Ball PBGA Package Characteristics
Figure 18. 256-Ball PBGA Package
Note:
46
1) For pin locations see Table 22.
2) Dimensions are in millimeters (inches), and controlling dimension is millimeter
3) Before beginning any new EP7312 design, contact Cirrus Logic for the latest package information.
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
0.85 (0.034)
±0.05 (.002)
17.00 (0.669)
±0.20 (.008)
Pin 1 Corner
D1
0.40 (0.016)
±0.05 (.002)
15.00 (0.590)
±0.20 (.008)
30° TYP
Pin 1 Indicator
17.00 (0.669)
±0.20 (.008)
E1
15.00 (0.590)
±0.20 (.008)
2 Layer
0.36 (0.014)
±0.09 (0.004)
TOP VIEW
SIDE VIEW
D
17.00 (0.669)
Pin 1 Corner
1.00 (0.040)
1.00 (0.040)
REF
E
16 15 14 13 12 11 10 9 8 7
6 5
1.00 (0.040)
REF
DS508PP5
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
1.00 (0.040)
0.50
R
3 Places
4 3 2
17.00 (0.669)
BOTTOM VIEW
JEDEC #: MO-151
Ball Diameter: 0.50 mm ± 0.10 mm
17 ¥ 17 ¥ 1.61 mm body
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
47
EP7312
High-Performance, Low-Power System on Chip
256-Ball PBGA Pinout (Top View)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A
VDDIO
nCS[4]
nCS[1]
SDCLK
SDQM[3]
DD[1]
M
VDDIO
D[0]
D[2]
A[3]
VDDIO
A[6]
MOSCOUT
VDDOSC
VSSIO
A
B
nCS[5]
VDDIO
nCS[3]
nMOE/
nSDCAS
VDDIO
nSDCS[1]
DD[2]
CL[1]
VDDCORE
D[1]
A[2]
A[4]
A[5]
WAKEUP
VDDIO
nURESET
B
C
VDDIO
EXPCLK
VSSIO
VDDIO
VSSIO
VSSIO
VSSIO
VDDIO
VSSIO
VSSIO
VSSIO
VDDIO
VSSIO
VSSIO
nPOR
nEXTPWR C
D
WRITE/
nSDRAS
EXPRDY
VSSIO
VDDIO
nCS[2]
nMWE/
nSDWE
nSDCS[0]
CL[2]
VSSRTC
D[4]
nPWRFL
MOSCIN
VDDIO
VSSIO
D[7]
D[8]
D
E
RXD[2]
PB[7]
TDI
WORD
VSSIO
nCS[0]
SDQM[2]
FRM
A[0]
D[5]
VSSOSC
VSSIO
nMEDCHG/
nBROM
VDDIO
D[9]
D[10]
E
F
PB[5]
PB[3]
VSSIO
TXD[2]
RUN/
CLKEN
VSSIO
SDCKE
DD[3]
A[1]
D[6]
VSSRTC
BATOK
nBATCHG
VSSIO
D[11]
VDDIO
F
G
PB[1]
VDDIO
TDO
PB[4]
PB[6]
VSSCore
VSSRTC
DD[0]
D[3]
VSSRTC
A[7]
A[8]
A[9]
VSSIO
D[12]
D[13]
G
H
PA[7]
PA[5]
VSSIO
PA[4]
PA[6]
PB[0]
PB[2]
VSSRTC
VSSRTC
A[10]
A[11]
A[12]
A[13]/
DRA[14]
VSSIO
D[14]
D[15]
H
J
PA[3]
PA[1]
VSSIO
PA[2]
PA[0]
TXD[1]
CTS
VSSRTC
VSSRTC
A[17]/
DRA[10]
A[16]/
DRA[11]
A[15]/
DRA[12]
A[14]/
DRA[13]
nTRST
D[16]
D[17]
J
K
LEDDRV
PHDIN
VSSIO
DCD
nTEST[1]
EINT[3]
VSSRTC
ADCIN
COL[4]
TCLK
D[20]
D[19]
D[18]
VSSIO
VDDIO
VDDIO
K
L
RXD[1]
DSR
VDDIO
nEINT[1]
PE[2]/
CLKSEL
VSSRTC
PD[0]/
LEDFLSH
VSSRTC
COL[6]
D[31]
VSSRTC
A[22]/
DRA[5]
A[21]/
DRA[6]
VSSIO
A[18]/
DRA[9]
A[19]/
DRA[8]
L
nEINT[2]
VDDIO
PE[0]/
BOOTSEL[0]
TMS
VDDIO
SSITXFR
DRIVE[1]
FB[0]
COL[0]
D[27]
VSSIO
A[23]/
DRA[4]
VDDIO
A[20]/
DRA[7]
D[21]
M
M nTEST[0]
N
nEXTFIQ
PE[1]/
BOOTSEL[1]
VSSIO
VDDIO
PD[5]
PD[2]
SSIRXDA
ADCCLK
SMPCLK
COL[2]
D[29]
D[26]
HALFWORD
VSSIO
D[22]
D[23]
N
P
VSSRTC
RTCOUT
VSSIO
VSSIO
VDDIO
VSSIO
VSSIO
VDDIO
VSSIO
VDDIO
VSSIO
VSSIO
VDDIO
VSSIO
D[24]
VDDIO
P
R
RTCIN
VDDIO
PD[4]
PD[1]
SSITXDA
nADCCS
VDDIO
ADCOUT
COL[7]
COL[3]
COL[1]
D[30]
A[27]/
DRA[0]
A[25]/
DRA[2]
VDDIO
A[24]\
DRA[3]
R
T
VDDRTC
PD[7]/
SDQM[1]
PD[6]/
SDQM[0]
PD[3]
SSICLK
SSIRXFR
VDDCORE
DRIVE[0]
FB[1]
COL[5]
VDDIO
BUZ
D[28]
A[26]/
DRA[1]
D[25]
VSSIO
T
48
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
256-Ball PBGA Ball Listing
The list is ordered by ball location.
Table 22. 256-Ball PBGA Ball Listing
†
Reset
State
Ball Location
Name
A1
VDDIO
A2
nCS[4]
1
High
O
Chip select 4
A3
nCS[1]
1
High
O
Chip select 1
A4
SDCLK
2
Low
O
SDRAM clock out
A5
SDQM[3]
2
Low
O
SDRAM byte lane mask
A6
DD[1]
1
Low
O
LCD serial display data
A7
M
1
Low
O
A8
VDDIO
A9
D[0]
1
Low
I/O
Data I/O
A10
D[2]
1
Low
I/O
Data I/O
A11
A[3]
2
Low
O
A12
VDDIO
A13
A[6]
A14
A15
Strength
Type
Pad power
Pad power
Pad power
1
Low
Description
Digital I/O power, 3.3 V
LCD AC bias drive
Digital I/O power, 3.3 V
System byte address
Digital I/O power, 3.3V
O
System byte address
MOSCOUT
O
Main oscillator out
VDDOSC
Oscillator power
A16
VSSIO
Pad ground
B1
nCS[5]
B2
VDDIO
B3
O
Oscillator power in, 2.5 V
I/O ground
1
Low
nCS[3]
1
High
O
Chip select 3
B4
nMOE/nSDCAS
1
High
O
ROM, expansion OP enable/SDRAM CAS control signal
B5
VDDIO
B6
nSDCS[1]
1
High
O
SDRAM chip select 1
B7
DD[2]
1
Low
O
LCD serial display data
B8
CL[1]
1
Low
B9
VDDCORE
B10
D[1]
1
Low
I/O
Data I/O
B11
A[2]
2
Low
O
System byte address
B12
A[4]
1
Low
O
System byte address
B13
A[5]
1
Low
O
System byte address
B14
WAKEUP
Schmitt
B15
VDDIO
B16
nURESET
C1
VDDIO
C2
EXPCLK
C3
VSSIO
C4
C5
Pad power
Pad power
O
Core power
Schmitt
Digital I/O power, 3.3 V
Digital I/O power, 3.3 V
LCD line clock
Digital core power, 2.5V
I
System wake up input
Pad power
Digital I/O power, 3.3 V
I
Pad power
1
Chip select 5
I
User reset input
Digital I/O power, 3.3V
Expansion clock input
Pad ground
I/O ground
VDDIO
Pad power
Digital I/O power, 3.3 V
VSSIO
Pad ground
I/O ground
C6
VSSIO
Pad ground
I/O ground
C7
VSSIO
Pad ground
I/O ground
C8
VDDIO
Pad power
Digital I/O power, 3.3 V
C9
VSSIO
Pad ground
I/O ground
C10
VSSIO
Pad ground
I/O ground
C11
VSSIO
Pad ground
I/O ground
C12
VDDIO
Pad power
Digital I/O power, 3.3 V
C13
VSSIO
Pad ground
I/O ground
DS508PP5
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
49
EP7312
High-Performance, Low-Power System on Chip
Table 22. 256-Ball PBGA Ball Listing (Continued)
†
Ball Location
Name
C14
VSSIO
C15
nPOR
C16
nEXTPWR
D1
WRITE/nSDRAS
1
D2
EXPRDY
1
Reset
State
Type
Pad ground
Schmitt
Low
Description
I/O ground
I
Power-on reset input
I
External power supply sense input
O
Transfer direction / SDRAM RAS signal output
I
Expansion port ready input
D3
VSSIO
Pad ground
I/O ground
D4
VDDIO
Pad power
Digital I/O power, 3.3V
D5
nCS[2]
1
High
O
Chip select 2
D6
nMWE/nSDWE
1
High
O
ROM, expansion write enable/ SDRAM write enable control signal
D7
nSDCS[0]
1
High
O
SDRAM chip select 2
D8
CL[2]
1
Low
O
LCD pixel clock out
1
Low
D9
VSSRTC
D10
D[4]
D11
nPWRFL
I
Power fail sense input
D12
MOSCIN
I
Main oscillator input
D13
VDDIO
Pad power
D14
VSSIO
Pad ground
D15
D[7]
1
Low
I/O
Data I/O
D16
D[8]
1
Low
I/O
Data I/O
E1
RXD[2]
E2
50
Strength
Core ground
‡
PB[7]
1
E3
TDI
with p/u*
E4
WORD
1
Low
1
High
Input
I/O
Real time clock ground
Data I/O
Digital I/O power, 3.3V
I/O ground
I
UART 2 receive data input
I
GPIO port B
I
JTAG data input
O
Word access select output
E5
VSSIO
E6
nCS[0]
Pad ground
E7
SDQM[2]
2
Low
O
SDRAM byte lane mask
E8
FRM
1
Low
O
LCD frame synchronization pulse
O
I/O ground
Chip select 0
E9
A[0]
2
Low
O
System byte address
E10
D[5]
1
Low
I/O
Data I/O
E11
VSSOSC
Oscillator ground
PLL ground
E12
VSSIO
Pad ground
I/O ground
E13
nMEDCHG/nBROM
I
E14
VDDIO
Pad power
Media change interrupt input / internal ROM boot enable
Digital I/O power, 3.3V
E15
D[9]
1
Low
I/O
Data I/O
E16
D[10]
1
Low
I/O
Data I/O
F1
PB[5]
1
Input
F2
PB[3]
1
Input
F3
VSSIO
F4
TXD[2]
1
High
F5
RUN/CLKEN
1
Low
F6
VSSIO
F7
SDCKE
2
Low
O
SDRAM clock enable output
F8
DD[3]
1
Low
O
LCD serial display data
‡
I
GPIO port B
‡
I
GPIO port B
Pad ground
O
O
Pad ground
I/O ground
UART 2 transmit data output
Run output / clock enable output
I/O ground
F9
A[1]
2
Low
O
System byte address
F10
D[6]
1
Low
I/O
Data I/O
F11
VSSRTC
RTC ground
F12
BATOK
I
Real time clock ground
Battery OK input
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
Table 22. 256-Ball PBGA Ball Listing (Continued)
†
Reset
State
Type
Ball Location
Name
F13
nBATCHG
I
F14
VSSIO
Pad ground
F15
D[11]
F16
VDDIO
Strength
I/O
Description
Battery changed sense input
I/O ground
1
Low
1
‡
Input
‡
O
‡
I
GPIO port B
‡
I
GPIO port B
Core ground
Pad power
Data I/O
Digital I/O power, 3.3V
G1
PB[1]
G2
VDDIO
G3
TDO
1
Input
G4
PB[4]
1
Input
G5
PB[6]
1
Input
G6
VSSCore
Core ground
G7
VSSRTC
RTC ground
Real time clock ground
G8
DD[0]
1
Low
O
LCD serial display data
G9
D[3]
1
Low
I/O
Data I/O
G10
VSSRTC
G11
A[7]
1
Low
O
System byte address
G12
A[8]
1
Low
O
System byte address
G13
A[9]
1
Low
O
System byte address
G14
VSSIO
G15
D[12]
1
Low
I/O
Data I/O
G16
D[13]
1
Low
I/O
Data I/O
H1
PA[7]
1
Input
I/O
GPIO port A
H2
PA[5]
1
Input
H3
VSSIO
H4
PA[4]
1
Input
H5
PA[6]
1
Input
H6
PB[0]
1
Input
H7
PB[2]
1
Input
H8
VSSRTC
RTC ground
Real time clock ground
H9
VSSRTC
RTC ground
Real time clock ground
H10
A[10]
1
Low
O
System byte address
H11
A[11]
1
Low
O
System byte address
H12
A[12]
1
Low
O
System byte address
H13
A[13]/DRA[14]
1
Low
O
System byte address / SDRAM address
H14
VSSIO
H15
D[14]
1
Low
I/O
Data I/O
H16
D[15]
1
Low
I/O
Data I/O
J1
PA[3]
1
Input
I/O
GPIO port A
J2
PA[1]
1
Input
J3
VSSIO
J4
PA[2]
1
Input
J5
PA[0]
1
Input
J6
TXD[1]
1
High
DS508PP5
I
Pad power
RTC ground
Pad ground
‡
‡
I/O
Pad ground
GPIO port B
Digital I/O power, 3.3V
JTAG data out
Real time clock ground
I/O ground
GPIO port A
I/O ground
‡
I/O
GPIO port A
‡
I/O
GPIO port A
‡
I/O
GPIO port B
‡
I/O
GPIO port B
Pad ground
‡
‡
I/O
Pad ground
I/O ground
GPIO port A
I/O ground
‡
I/O
GPIO port A
‡
I/O
GPIO port A
O
UART 1 transmit data out
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
51
EP7312
High-Performance, Low-Power System on Chip
Table 22. 256-Ball PBGA Ball Listing (Continued)
Ball Location
52
Name
†
Strength
Reset
State
Type
Description
J7
CTS
I
J8
VSSRTC
RTC ground
Real time clock ground
J9
VSSRTC
RTC ground
Real time clock ground
J10
A[17]/DRA[10]
1
Low
O
System byte address / SDRAM address
J11
A[16]/DRA[11]
1
Low
O
System byte address / SDRAM address
J12
A[15]/DRA[12]
1
Low
O
System byte address / SDRAM address
J13
A[14]/DRA[13]
1
Low
O
System byte address / SDRAM address
J14
nTRST
J15
D[16]
1
Low
I/O
Data I/O
J16
D[17]
1
Low
I/O
Data I/O
K1
LEDDRV
1
Low
O
IR LED drive
K2
PHDIN
I
K3
VSSIO
Pad ground
K4
DCD
K5
nTEST[1]
I
With p/u*
UART 1 clear to send input
JTAG async reset input
Photodiode input
I/O ground
I
UART 1 data carrier detect
I
Test mode select input
K6
EINT[3]
I
K7
VSSRTC
RTC ground
Real time clock ground
K8
ADCIN
K9
COL[4]
K10
TCLK
K11
External interrupt
I
SSI1 ADC serial input
1
High
O
Keyboard scanner column drive
D[20]
1
Low
I/O
Data I/O
K12
D[19]
1
Low
I/O
Data I/O
K13
D[18]
1
Low
I/O
Data I/O
I
JTAG clock
K14
VSSIO
Pad ground
I/O ground
K15
VDDIO
Pad power
Digital I/O power, 3.3V
K16
VDDIO
Pad power
Digital I/O power, 3.3V
L1
RXD[1]
I
UART 1 receive data input
L2
DSR
I
L3
VDDIO
Pad power
Digital I/O power, 3.3V
L4
nEINT[1]
I
External interrupt input
L5
PE[2]/CLKSEL
‡
1
Input
1
Low
I/O
RTC ground
UART 1 data set ready input
GPIO port E / clock input mode select
L6
VSSRTC
L7
PD[0]/LEDFLSH
L8
VSSRTC
L9
COL[6]
1
High
O
Keyboard scanner column drive
L10
D[31]
1
Low
I/O
Data I/O
L11
VSSRTC
L12
A[22]/DRA[5]
1
Low
O
L13
A[21]/DRA[6]
1
Low
O
L14
VSSIO
L15
A[18]/DRA[9]
L16
M1
M2
nEINT[2]
I
External interrupt input
M3
VDDIO
Pad power
Digital I/O power, 3.3V
M4
PE[0]/BOOTSEL[0]
1
M5
TMS
with p/u*
I/O
Core ground
RTC ground
Pad ground
Real time clock ground
GPIO port D / LED blinker output
Real time clock ground
Real time clock ground
System byte address / SDRAM address
System byte address / SDRAM address
I/O ground
1
Low
O
A[19]/DRA[8]
1
Low
O
System byte address / SDRAM address
nTEST[0]
With p/u*
I
Test mode select input
Input
‡
System byte address / SDRAM address
I
GPIO port E / Boot mode select
I
JTAG mode select
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
Table 22. 256-Ball PBGA Ball Listing (Continued)
Ball Location
Name
M6
VDDIO
M7
SSITXFR
†
Strength
Reset
State
Type
Pad power
Description
Digital I/O power, 3.3V
1
Low
I/O
DAI/CODEC/SSI2 frame sync
2
High /
Low
I/O
PWM drive output
M8
DRIVE[1]
M9
FB[0]
M10
COL[0]
1
High
O
Keyboard scanner column drive
M11
D[27]
1
Low
I/O
Data I/O
1
Low
M12
VSSIO
M13
A[23]/DRA[4]
I
Pad ground
O
Pad power
PWM feedback input
I/O ground
System byte address / SDRAM address
M14
VDDIO
M15
A[20]/DRA[7]
1
Low
O
System byte address / SDRAM address
M16
D[21]
1
Low
I/O
Data I/O
N1
nEXTFIQ
N2
PE[1]/BOOTSEL[1]
N3
VSSIO
N4
VDDIO
N5
PD[5]
1
Low
I/O
GPIO port D
N6
PD[2]
1
Low
I/O
GPIO port D
N7
SSIRXDA
I/O
DAI/CODEC/SSI2 serial data input
I
1
Input
‡
I/O
Digital I/O power, 3.3V
External fast interrupt input
GPIO port E / boot mode select
Pad ground
I/O ground
Pad power
Digital I/O power, 3.3V
N8
ADCCLK
1
Low
O
SSI1 ADC serial clock
N9
SMPCLK
1
Low
O
SSI1 ADC sample clock
N10
COL[2]
1
High
O
Keyboard scanner column drive
N11
D[29]
1
Low
I/O
Data I/O
N12
D[26]
1
Low
I/O
Data I/O
N13
HALFWORD
1
Low
O
N14
VSSIO
N15
D[22]
1
Low
N16
D[23]
1
Low
P1
VSSRTC
RTC ground
P2
RTCOUT
O
P3
VSSIO
Pad ground
P4
VSSIO
Pad ground
I/O ground
P5
VDDIO
Pad power
Digital I/O power, 3.3V
P6
VSSIO
Pad ground
I/O ground
P7
VSSIO
Pad ground
I/O ground
P8
VDDIO
Pad power
Digital I/O power, 3.3V
P9
VSSIO
Pad ground
I/O ground
P10
VDDIO
Pad power
Digital I/O power, 3.3V
P11
VSSIO
Pad ground
I/O ground
P12
VSSIO
Pad ground
I/O ground
P13
VDDIO
Pad power
Digital I/O power
P14
VSSIO
P15
D[24]
P16
VDDIO
Pad power
R1
RTCIN
I/O
R2
VDDIO
Pad power
R3
PD[4]
1
Low
I/O
GPIO port D
R4
PD[1]
1
Low
I/O
GPIO port D
DS508PP5
Pad ground
I/O
Data I/O
I/O
Data I/O
Pad ground
1
Low
Halfword access select output
I/O ground
I/O
Real time clock ground
Real time clock oscillator output
I/O ground
I/O ground
Data I/O
Digital I/O power, 3.3V
Real time clock oscillator input
Digital I/O power, 3.3V
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
53
EP7312
High-Performance, Low-Power System on Chip
Table 22. 256-Ball PBGA Ball Listing (Continued)
Reset
State
Type
1
Low
O
1
High
O
SSI1 ADC chip select
Pad power
Digital I/O power, 3.3V
†
Description
Ball Location
Name
R5
SSITXDA
R6
nADCCS
R7
VDDIO
R8
ADCOUT
1
Low
O
R9
COL[7]
1
High
O
Keyboard scanner column drive
R10
COL[3]
1
High
O
Keyboard scanner column drive
R11
COL[1]
1
High
O
Keyboard scanner column drive
R12
D[30]
1
Low
I/O
Data I/O
R13
A[27]/DRA[0]
2
Low
O
System byte address / SDRAM address
R14
A[25]/DRA[2]
2
Low
O
R15
VDDIO
R16
A[24]/DRA[3]
T1
VDDRTC
T2
PD[7]/SDQM[1]
1
Low
I/O
GPIO port D / SDRAM byte lane mask
T3
PD[6]/SDQM[0]
1
Low
I/O
GPIO port D / SDRAM byte lane mask
T4
PD[3]
1
Low
I/O
GPIO port D
I/O
DAI/CODEC/SSI2 serial clock
‡
I/O
DAI/CODEC/SSI2 frame sync
*
Strength
1
Low
SSICLK
1
T6
SSIRXFR
1
Input
T7
VDDCORE
2
High /
Low
T9
FB[1]
T10
COL[5]
T11
VDDIO
System byte address / SDRAM address
O
High
Real time clock power, 2.5V
Core power
Core power, 2.5V
I/O
PWM drive output
I
1
Digital I/O power, 3.3V
System byte address / SDRAM address
RTC power
T5
DRIVE[0]
SSI1 ADC serial data output
Pad power
‡
Input
T8
DAI/CODEC/SSI2 serial data output
PWM feedback input
O
Keyboard scanner column drive
Pad power
Digital I/O power, 3.3V
T12
BUZ
1
Low
O
Buzzer drive output
T13
D[28]
1
Low
I/O
Data I/O
T14
A[26]/DRA[1]
2
Low
O
System byte address / SDRAM address
T15
D[25]
1
Low
I/O
Data I/O
T16
VSSIO
Pad ground
I/O ground
“With p/u” means with internal pull-up of 100 KOhms on the pin.
†
Strength 1 = 4 ma
Strength 2 = 12 ma
‡
Input. Port A,B,D,E GPIOs default to input at nPOR and URESET conditions.
JTAG Boundary Scan Signal Ordering
Table 23. JTAG Boundary Scan Signal Ordering
54
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
1
B3
B1
nCS[5]
O
1
4
A2
C2
EXPCLK
I/O
3
5
B1
E4
WORD
O
6
6
E3
D1
WRITE/nSDRAS
O
8
7
C1
F5
RUN/CLKEN
O
10
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
Table 23. JTAG Boundary Scan Signal Ordering (Continued)
DS508PP5
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
8
C2
D2
EXPRDY
I
13
9
E2
F4
TXD2
O
14
10
D2
E1
RXD2
I
16
13
F3
E2
PB[7]
I/O
17
14
D1
G5
PB[6]
I/O
20
15
F2
F1
PB[5]
I/O
23
16
E1
G4
PB[4]
I/O
26
17
F1
F2
PB[3]
I/O
29
18
G2
H7
PB[2]
I/O
32
19
G1
G1
PB[1]
I/O
35
20
H3
H6
PB[0]
I/O
38
23
H1
H1
PA[7]
I/O
41
24
J3
H5
PA[6]
I/O
44
25
J2
H2
PA[5]
I/O
47
26
J1
H4
PA[4]
I/O
50
27
L3
J1
PA[3]
I/O
53
28
K2
J4
PA[2]
I/O
56
29
K1
J2
PA[1]
I/O
59
30
M3
J5
PA[0]
I/O
62
31
L2
K1
LEDDRV
O
65
32
L1
J6
TXD1
O
67
34
N3
K2
PHDIN
I
69
35
M2
J7
CTS
I
70
36
M1
L1
RXD1
I
71
37
P3
K4
DCD
I
72
38
N1
L2
DSR
I
73
39
N2
K5
nTEST1
I
74
40
R3
M1
nTEST0
I
75
41
P1
K6
EINT3
I
76
42
P2
M2
nEINT2
I
77
43
T3
L4
nEINT1
I
78
44
R1
N1
nEXTFIQ
I
79
45
R2
L5
PE[2]/CLKSEL
I/O
80
46
T1
N2
PE[1]/
BOOTSEL[1]
I/O
83
47
T2
M4
PE[0]/BOOTSEL0
I/O
86
53
V4
T2
PD[7]/SDQM[1]
I/O
89
54
W4
T3
PD[6/SDQM[0]]
I/O
92
55
Y4
N5
PD[5]
I/O
95
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
55
EP7312
High-Performance, Low-Power System on Chip
Table 23. JTAG Boundary Scan Signal Ordering (Continued)
56
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
56
V5
R3
PD[4]
I/O
98
59
Y5
T4
PD[3]
I/O
101
60
V6
N6
PD[2]
I/O
104
61
W6
R4
PD[1]
I/O
107
62
Y6
L7
PD[0]/LEDFLSH
O
110
68
W8
T6
SSIRXFR
I/O
122
69
Y8
K8
ADCIN
I
125
70
V9
R6
nADCCS
O
126
75
W10
M8
DRIVE1
I/O
128
76
Y10
T8
DRIVE0
I/O
131
77
V11
N8
ADCCLK
O
134
78
W11
R8
ADCOUT
O
136
79
Y11
N9
SMPCLK
O
138
80
Y12
T9
FB1
I
140
82
Y11
M9
FB0
I
141
83
Y12
R9
COL7
O
142
84
Y13
L9
COL6
O
144
85
W13
T10
COL5
O
146
86
V13
K9
COL4
O
148
87
Y14
R10
COL3
O
150
88
W14
N10
COL2
O
152
91
Y15
R11
COL1
O
154
92
W15
M10
COL0
O
156
93
V15
T12
BUZ
O
158
94
Y16
L10
D[31]
I/O
160
95
W16
R12
D[30]
I/O
163
96
V16
N11
D[29]
I/O
166
97
Y17
T13
D[28]
I/O
169
99
Y16
R13
A[27]/DRA[0]
Out
172
100
Y18
M11
D[27]
I/O
174
101
V17
T14
A[26]/DRA[1]
O
177
102
W18
N12
D[26]
I/O
179
103
Y19
R14
A[25]/DRA[2]
O
182
104
Y20
T15
D[25]
I/O
184
105
U18
N13
HALFWORD
O
187
106
V209
R16
A[24]/DRA[3]
O
189
109
U19
P15
D[24]
I/O
191
110
U20
M13
A[23]/DRA[4]
O
194
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
Table 23. JTAG Boundary Scan Signal Ordering (Continued)
DS508PP5
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
111
T19
N16
D[23]
I/O
196
112
T20
L12
A[22]/DRA[5]
O
199
113
R19
N15
D[22]
I/O
201
114
R20
L13
A[21]/DRA[6]
O
204
115
T18
M16
D[21]
I/O
206
117
P19
M15
A[20]/DRA[7]
O
209
118
P20
K11
D[20]
I/O
211
119
R18
L16
A[19]/DRA[8]
O
214
120
N19
K12
D[19]
I/O
216
121
N20
L15
A[18]/DRA[9]
O
219
122
P18
K13
D[18]
I/O
221
126
M19
J10
A[17]/DRA[10]
O
224
127
N18
J16
D[17]
I/O
226
128
L20
J11
A[16]/DRA[11]
O
229
129
L19
J15
D[16]
I/O
231
130
M18
J12
A[15]/DRA[12]
O
234
131
K20
H16
D[15]
I/O
236
132
K19
J13
A[14]/DRA[13]
O
239
133
K18
H15
D[14]
I/O
241
134
J20
H13
A[13]/DRA[14]
O
244
135
J19
G16
D[13]
I/O
246
136
H20
H12
A[12]
O
249
137
H19
G15
D[12]
I/O
251
138
J18
H11
A[11]
O
254
141
G20
F15
D[11]
I/O
256
142
H18
H10
A[10]
O
259
143
F20
E16
D[10]
I/O
261
144
G19
G13
A[9]
O
264
145
E20
E15
D[9]
I/O
266
146
F19
G12
A[8]
O
269
147
G18
D16
D[8]
I/O
271
148
D20
G11
A[7]
O
274
150
F18
D15
D[7]
I/O
276
151
D19
F13
nBATCHG
I
279
152
E19
C16
nEXTPWR
I
280
153
C19
F12
BATOK
I
281
154
C20
C15
nPOR
I
282
155
E18
E13
nMEDCHG/nBROM
I
283
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
57
EP7312
High-Performance, Low-Power System on Chip
Table 23. JTAG Boundary Scan Signal Ordering (Continued)
58
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
156
B20
B16
nURESET
I
284
161
B16
B14
WAKEUP
I
285
162
A16
D11
nPWRFL
I
286
163
C15
A13
A[6]
O
287
164
B15
F10
D[6]
I/O
289
165
A15
B13
A[5]
O
292
166
C14
E10
D[5]
I/O
294
169
B14
B12
A[4]
O
297
170
A14
D10
D[4]
I/O
299
171
C13
A11
A[3]
O
302
172
B13
G9
D[3]
I/O
304
173
A13
B11
A[2]
O
307
175
C12
A10
D[2]
I/O
309
176
B12
F9
A[1]
O
312
177
A12
B10
D[1]
I/O
314
178
C11
E9
A[0]
O
317
179
B11
A9
D[0]
I/O
319
184
B10
D8
CL2
O
322
185
A10
B8
CL1
O
324
186
A9
E8
FRM
O
326
187
B9
A7
M
O
328
188
C9
F8
DD[3]
O
330
189
A8
B7
DD[2]
O
333
191
B8
A6
DD[1]
O
336
192
C8
G8
DD[0]
O
339
193
A7
B6
nSDCS[1]
O
342
194
B7
D7
nSDCS[0]
O
344
195
C7
A5
SDQM[3]
I/O
346
196
A6
E7
SDQM[2]
I/O
349
199
B6
F7
SDCKE
I/O
352
200
C6
A4
SDCLK
I/O
355
201
A5
D6
nMWE/nSDWE
O
358
202
B5
B4
nMOE/nSDCAS
O
360
204
C5
E6
nCS[0]
O
362
205
A4
A3
nCS[1]
O
364
206
B4
D5
nCS[2]
O
366
207
A3
B3
nCS[3]
O
368
208
C4
A2
nCS[4]
O
370
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
1) See EP7312 Users’ Manual for pin naming / functionality.
2) For each pad, the JTAG connection ordering is input, output, then enable as applicable.
DS508PP5
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
59
EP7312
High-Performance, Low-Power System on Chip
CONVENTIONS
Table 24. Acronyms and Abbreviations (Continued)
Acronym/
Abbreviation
This section presents acronyms, abbreviations, units of
measurement, and conventions used in this data sheet.
Acronyms and Abbreviations
Table 24 lists abbreviations and acronyms used in this
data sheet.
Table 24. Acronyms and Abbreviations
Acronym/
Abbreviation
Definition
TAP
test access port
TLB
translation lookaside buffer
UART
universal asynchronous receiver
Units of Measurement
Table 25. Unit of Measurement
Definition
Symbol
Unit of Measure
A/D
analog-to-digital
ADC
analog-to-digital converter
°C
degree Celsius
CODEC
coder / decoder
fs
sample frequency
D/A
digital-to-analog
Hz
hertz (cycle per second)
DMA
direct-memory access
kbps
kilobits per second
EPB
embedded peripheral bus
KB
kilobyte (1,024 bytes)
FCS
frame check sequence
kHz
kilohertz
FIFO
first in / first out
kΩ
kilo Ohm
FIQ
fast interrupt request
Mbps
megabits (1,048,576 bits) per second
GPIO
general purpose I/O
MB
megabyte (1,048,576 bytes)
ICT
in circuit test
MBps
megabytes per second
IR
infrared
MHz
megahertz (1,000 kilohertz)
IRQ
standard interrupt request
µA
microampere
IrDA
Infrared Data Association
µF
microfarad
JTAG
Joint Test Action Group
µW
microwatt
LCD
liquid crystal display
µs
microsecond (1,000 nanoseconds)
LED
light-emitting diode
mA
milliampere
LQFP
low profile quad flat pack
mW
milliwatt
LSB
least significant bit
ms
millisecond (1,000 microseconds)
MIPS
millions of instructions per second
ns
nanosecond
MMU
memory management unit
V
volt
MSB
most significant bit
W
watt
PBGA
plastic ball grid array
PCB
printed circuit board
PDA
personal digital assistant
PLL
phase locked loop
p/u
pull-up resistor
RISC
reduced instruction set computer
RTC
Real-Time Clock
SIR
slow (9600–115.2 kbps) infrared
SRAM
static random access memory
SSI
synchronous serial interface
60
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
General Conventions
Hexadecimal numbers are presented with all letters in
uppercase and a lowercase “h” appended or with a 0x at
the beginning. For example, 0x14 and 03CAh are
hexadecimal numbers. Binary numbers are enclosed in
single quotation marks when in text (for example, ‘11’
designates a binary number). Numbers not indicated by
an “h”, 0x or quotation marks are decimal.
Registers are referred to by acronym, with bits listed in
brackets separated by a colon (:) (for example,
CODR[7:0]), and are described in the EP7312 User’s
Manual. The use of “TBD” indicates values that are “to be
determined,” “n/a” designates “not available,” and
“n/c” indicates a pin that is a “no connect.”
Pin Description Conventions
Abbreviations used for signal directions are listed in
Table 26.
Table 26. Pin Description Conventions
Abbreviation
Direction
I
Input
O
Output
I/O
Input or Output
DS508PP5
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
61
EP7312
High-Performance, Low-Power System on Chip
Ordering Information
The following EP7312 devices are available:
—
—
—
—
—
—
EP7312-CV
EP7312-CB
EP7312-CV-90
EP7312-CR-90
EP7312-IR
EP7312-IB-90
— EP7312-IV
— EP7312-CR
— EP7312-CB-90
— EP7312-IB
— EP7312-IV-90
— EP7312-IR-90
Ordering Information Legend
.
EP7312 — CV —XX
Processor Speed
Package Type:
V = Low Profile Quad Flat Pack (208-pin LQFP)
B = Plastic Ball Grid Array (17 mm x 17 mm) (256-ball PBGA)
R = Reduced Ball Grid Array (13 mm x 13 mm) (204-pin TFBGA)
Part Number
Product Line:
Embedded Processor
Note:
62
Temperature Range:
C = Commercial
E = Extended Operating Version
I = Industrial Operating Version
Go to the Cirrus Logic Internet site at http://cirrus.com/corporate/contacts to find contact information for your local sales
representative.
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
EP7312
High-Performance, Low-Power System on Chip
This page intentionally blank.
DS508PP5
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
63
EP7312
High-Performance, Low-Power System on Chip
Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/sales.cfm
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change
without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify,
before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information,
including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property
of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other
intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for
use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general
distribution, advertising or promotional purposes, or for creating any work for resale.
An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and
controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan. An export license and/or quota needs to be obtained from the
competent authorities of the Chinese Government if any of the products or technologies described in this material is subject to the PRC Foreign Trade Law and is to be
exported or taken out of the PRC.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT
SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS
(INCLUDING MEDICAL DEVICES, AIRCRAFT SYSTEMS OR COMPONENTS AND PERSONAL OR AUTOMOTIVE SAFETY OR SECURITY DEVICES). INCLUSION
OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE,
WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE
USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS,
EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM
OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, the Cirrus Logic logo designs, MaverickKey are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks
or service marks of their respective owners.
Microsoft Windows and Microsoft are registered trademarks of Microsoft Corporation.
LINUX is a registered trademark of Linus Torvalds.
64
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS508PP5
Similar pages