Intersil AN5766 8mhz power amps for military, industrial and commercial equipment Datasheet

CA3020, CA3020A
8MHz Power Amps For Military,
Industrial and Commercial Equipment
April 1997
[ /Title
(CA30
20,
CA302
0A)
/Subject
(8MHz
Power
Amps
For
Military,
Industrial
and
Commercial
Equipment)
/Autho
r ()
/Keywords
(Intersil
Corporation,
Semiconductor,
single,
power
amplifier,
class b
amplifier,
military
Features
Description
• High Power Output Class B Amplifier
- CA3020 . . . . . . . . . . . . . . . . . . . . 0.5W (Typ) at VCC = 9V
- CA3020A . . . . . . . . . . . . . . . . . . 1.0W (Typ) at VCC = 12V
The CA3020 and CA3020A are integrated-circuit, multistage, multipurpose, wide-band power amplifiers on a single
monolithic silicon chip. They employ a highly versatile and
stable direct coupled circuit configuration featuring wide
frequency range, high voltage and power gain, and high
power output. These features plus inherent stability over a
wide temperature range make the CA3020 and CA3020A
extremely useful for a wide variety of applications in military,
industrial, and commercial equipment.
• Wide Frequency Range . . Up to 8MHz with Resistive Loads
• High Power Gain. . . . . . . . . . . . . . . . . . . . . . . . . 75dB (Typ)
• Single Power Supply For Class B Operation With
Transformer
- CA3020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3V to 9V
- CA3020A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3V to 12V
The CA3020 and CA3020A are particularly suited for service
as class B power amplifiers. The CA3020A can provide a
maximum power output of 1W from a 12VDC supply with a
typical power gain of 75dB. The CA3020 provides 0.5W
power output from a 9V supply with the same power gain.
• Built-In Temperature-Tracking Voltage Regulator Provides
Stable Operation Over -55oC to 125oC Temperature Range
Applications
• AF Power Amplifiers For Portable and Fixed Sound and
Communications Systems
• Servo-Control Amplifiers
• Wide-Band Linear Mixers
• Video Power Amplifiers
• Transmission-Line Driver Amplifiers (Balanced and
Unbalanced)
• Fan-In and Fan-Out Amplifiers For Computer Logic Circuits
• Lamp-Control Amplifiers
• Motor-Control Amplifiers
• Power Multivibrators
• Power Switches
Pinout
Refer to AN5766 for application information.
Ordering Information
CA3020
-55 to 125
12 Pin Metal Can
T12.B
CA3020A
-55 to 125
12 Pin Metal Can
T12.B
9
R10
1.5K
R11
1.5K
VBUFFER AMP
OUT
12
1
11
2
DIFF IN2
OUTPUT 4
PACKAGE
PKG.
NO.
Schematic Diagram
CA3020
(METAL CAN)
TOP VIEW
DIFF IN3
TEMP.
RANGE (oC)
PART NUMBER
3
9
OUTPUT 5
8
5
6
7
11
RB11
10
4
8
BUFFER
AMP IN
VCC1
Q1
1
RB8
OUTPUT 7
D1
10
D2
0.3K
R4
R3
R1
Q4
Q2
R5
10K
OUTPUT 6
4
Q6
R6
D3
3
R9
5
Q3
12
6
Q5
R5
R2 12K
0.47K
R8
0.3K
Q7
7
2
The resistance values included on the schematic diagram have been supplied as a convenience to assist
Equipment Manufacturers in optimizing the selection of “outboard” components of equipment designs.
The values shown may vary as much as 30%.
Intersil reserves the right to make any changes in the Resistance Values provided such changes do not
adversely affect the published performance characteristics of the device.
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999
3-1
File Number
339.5
CA3020, CA3020A
Absolute Maximum Ratings
Operating Conditions
Maximum Pin 9 Supply Voltage, VCC1 (Note 1)
CA3020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10V
CA3020A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12V
Maximum Pin 9 Supply Current, ICC1 . . . . . . . . . . . . . . . . . . 20mA
Maximum Pin 11 Sink Current, I11 . . . . . . . . . . . . . . . . . . . . . 20mA
Output Voltage, V4 and V7 (Note 1)
CA3020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25V
CA3020A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18V
Output Current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mA
Input Voltage Range, V2, V3 . . . . . . . . . . . . . . . . . . . . . . . -2V to 2V
Maximum Input Voltage, V10 (Ref to Pin 1) . . . . . . . . . . . . . . . . -3V
Maximum Source Current, V1 . . . . . . . . . . . . . . . . . . . . . . . . . 1mA
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
Thermal Information
Thermal Resistance (Typical, Note 2)
θJA (oC/W) θJC (oC/W)
Metal Can Package . . . . . . . . . . . . . . .
165
80
Maximum Junction Temperature (Metal CanPackage) . . . . . . . . 175oC
Maximum Storage Temperature Range . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. The voltage ratings for Pin 9, Pin 4 and Pin 7 are referenced to the V- (Pin 12). A normal bias configuration for Pin 8 and Pin 11 is shown
in Figure 1B. Refer to Application Note AN5766 for other options.
2. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications
TA = 25oC
TEST CONDITIONS
CIRCUIT AND DC SUPPLY
PROCEDURE VOLTAGE
PARAMETER
SYMBOL
FIGURE
Collector-to-Emitter Breakdown
Voltage, Q6 and Q7 at 10mA
V(BR)CER
1A
-
Collector-to-Emitter Breakdown
Voltage, Q1 at 0.1mA
V(BR)CEO
-
I4 IDLE
I7 IDLE
Idle Currents, Q6 and Q7
Peak Output Currents, Q6 and Q7
Cutoff Currents, Q6 and Q7
VCC1 VCC2
CA3020
CA3020A
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
-
18
-
-
25
-
-
V
-
-
10
-
-
10
-
-
V
7
9.0
2.0
-
5.5
-
-
5.5
-
mA
I4PK
I7PK
7
9.0
2.0
140
-
-
180
-
-
mA
I4 CUTOFF
I7 CUTOFF
7
9.0
2.0
-
-
1.0
-
-
1.0
mA
ICC1
7
9.0
9.0
6.3
9.4
12.5
6.3
9.4
12.5
mA
ICC1 +
ICC2
7
9.0
9.0
8.0
21.5
35.0
14.0
21.5
30.0
mA
Differential Amplifier Input
Terminal Voltages
V2
V3
7
9.0
2.0
-
1.11
-
-
1.11
-
V
Regulator Terminal Voltage
V11
7
9.0
2.0
-
2.35
-
-
2.35
-
V
Q1 Cutoff (Leakage) Currents:
Collector-to-Emitter
ICEO
10.0
-
-
-
100
-
-
100
µA
3.0
-
-
-
0.1
-
-
0.1
µA
3.0
-
-
-
0.1
-
-
0.1
µA
30
75
-
30
75
-
Differential Amplifier Current Drain
Total Current Drain
Emitter-to-Base
IEBO
Collector-to-Base
ICBO
Forward Current Transfer Ratio,
Q1 at 3mA
Bandwidth at -3dB Point
Maximum Power Output for
RCC = 130Ω
-
hFE1
-
6.0
-
BW
8
6.0
6.0
-
8
-
-
8
-
MHz
PO(MAX)
9
6.0
6.0
200
300
-
200
300
-
mW
9
9.0
9.0
400
550
-
400
550
-
mW
9
9.0
12.0
-
-
-
800
1000
-
mW
Maximum Power Output for
RCC = 200Ω
Sensitivity for POUT = 400mW,
RCC = 130Ω
eIN
9
9.0
9.0
-
35
55
-
-
-
mV
Sensitivity for POUT = 800mW,
RCC = 200Ω
eIN
9
9.0
12.0
-
-
-
-
50
100
mV
RIN3
10
6.0
6.0
-
1000
-
-
1000
-
Ω
Input Resistance Terminal 3 to Ground
3-2
CA3020, CA3020A
Typical Performance Data (Note 3) A heat sink is recommended for high ambient temperature operation.
PARAMETER
SYMBOL
CA3020
CA3020A
UNITS
VCC1
9.0
9.0
V
VCC2
9.0
12.0
V
Power Supply Voltage
Zero Signal Current
Differential Amplifier
ICC1
15
15
mA
Output Amplifier
ICC2
24
24
mA
Differential Amplifier
ICC1
16
16.6
mA
Output Amplifier
ICC2
125
140
mA
Maximum Power Output at THD = 10%
PO
550
1000
mW
Sensitivity
eIN
35
45
mV
Power Gain
GP
75
75
dB
Input Resistance
RIN
55
55
kΩ
η
45
55
%
S/N
70
66
dB
3.1
3.3
%
1000
1000
Hz
130
200
Ω
Maximum Signal Current
Efficiency
Signal-to-Noise Ratio
THD at 150mW Level
Test Signal Frequency from 600Ω Generator
Equivalent Collector-to-Collector Load Resistance
RCC
NOTE:
3. Refer to Figures 7 through 11 for measurement and symbol information.
Test Circuits and Waveforms
VCC1
VCC
1K
510K
10mA
10mA
8
8
9
9
3K
11
4
7
10
CA3020
CA3020A
1
2
VCC2
eIN
VBR(CER)
Q7
VBR(CER)
12
Q6
6
~
-
+
11
4
7
10
CA3020
CA3020A
5µF
6V
1
12
6
5µF
3V 3
+ -
5
3
5.1K
5
2
0.01
µF
+
-
5µF
3V
FIGURE 1A. COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (Q6 AND Q7) CIRCUIT
FIGURE 1B. TYPICAL AUDIO AMPLIFIER CIRCUIT UTILIZING
THE CA3020 OR CA3020A AS AN AUDIO
PREAMPLIFIER AND CLASS B POWER AMPLIFIER
FIGURE 1.
3-3
CA3020, CA3020A
Test Circuits and Waveforms
POWER AMPLIFIER OUTPUT, I4, I7 (mA)
(Continued)
+9V
+2V
10
8
9
7
1
+
I7
2
3
CA3020
CA3020A
V23
3
I4
12
6
5
4
300
TA = -45oC
-45oC
25oC
200
25oC
125oC
125oC
100
0
75
50
-25
25
I4 “ON”
0
0
25
50
-25
I7 “ON”
75
DIFFERENTIAL AMPLIFIER INPUT, V23 (mV)
POWER AMPLIFIER OUTPUT, I4, I7 (mA)
FIGURE 2A. TEST SETUP
FIGURE 2B. CHARACTERISTICS WITH R10 SHORTED OUT
FIGURE 2. TYPICAL TRANSFER CHARACTERISTICS
+9V
+2V
10
8
9
7
1
+
I7
2
3
CA3020
CA3020A
V23
3
I4
12
6
5
300
TA = -45oC
-45oC
25oC
200
25oC
125oC
125oC
100
0
4
75
50
-25
25
I4 “ON”
0
0
25
50
-25
I7 “ON”
75
DIFFERENTIAL AMPLIFIER INPUT, V23 (mV)
FIGURE 3A. TEST SETUP
FIGURE 3B. CHARACTERISTIC WITH R10 IN CIRCUIT
FIGURE 3. TYPICAL TRANSFER CHARACTERISTICS
POWER AMPLIFIER OUTPUT, I4, I7 (mA)
+9V
V7
10
8
9
7
I7
(MAX I7 CURRENT
WITH PIN 2
RETURNED TO GND
THROUGH 10kΩ)
1
2
CA3020
CA3020A
3
10K
12
6
5
4
I4
V4
(MAX I4 CURRENT
WITH PIN 3
RETURNED TO GND
THROUGH 10kΩ)
TA = 25oC
300
200
100
0
0
1
2
3
4
POWER AMPLIFIER COLLECTOR VOLTAGE, V4, V7 (V)
FIGURE 4A. TEST SETUP
FIGURE 4B. CHARACTERISTIC
FIGURE 4. “MINIMUM DRIVE” TYPICAL CURRENT-VOLTAGE SATURATION CURVE
3-4
CA3020, CA3020A
Test Circuits and Waveforms
(Continued)
DIFFERENTIAL AMPLIFIER CURRENT (mA)
ICC1
VCC1
S
+2V
10
8
9
7
ICC2
1
2
CA3020
CA3020A
3
12
6
5
4
TA = 25oC
15
S CLOSED
10
S OPEN
5
0
2
4
6
8
10
DIFFERENTIAL AMPLIFIER SUPPLY VOLTAGE (V)
FIGURE 5A. TEST SETUP
FIGURE 5B. DIFFERENTIAL AMPLIFIER CHARACTERISTICS
OF ICC1 CURRENT vs VCC1 VOLTAGE
TA = 25oC
ZERO SIGNAL OUTPUT
AMPLIFIER CURRENT (mA)
15
S CLOSED
10
S OPEN
5
0
2
4
6
8
10
DIFFERENTIAL AMPLIFIER SUPPLY VOLTAGE (V)
FIGURE 5C. OUTPUT AMPLIFIER CHARACTERISTICS OF ICC2 CURRENT vs VCC1 VOLTAGE
FIGURE 5. ZERO SIGNAL AMPLIFIER CURRENT vs DIFFERENTIAL AMPLIFIER SUPPLY VOLTAGE
ICC1
VCC1
ZERO SIGNAL DIFFERENTIAL
AMPLIFIER CURRENT (mA)
S
+2V
10
8
9
7
ICC2
1
2
CA3020
CA3020A
3
12
6
5
15
VCC1 = 9V
10
VCC1 = 6V
S CLOSED
VCC1 = 9V
5
S CLOSED
S OPEN
VCC1 = 3V
S CLOSED
4
0
-50
-25
0
25
50
75
100
125
150
TEMPERATURE (oC)
FIGURE 6A. TEST SETUP
FIGURE 6B. DIFFERENTIAL AMPLIFIER CHARACTERISTICS
OF ICC1 CURRENT vs AMBIENT TEMPERATURE
FIGURE 6. ZERO SIGNAL AMPLIFIER CURRENT vs AMBIENT TEMPERATURE
3-5
CA3020, CA3020A
Test Circuits and Waveforms
(Continued)
ZERO SIGNAL OUTPUT
AMPLIFIER CURRENT (mA)
15
VCC1 = 9V
10
S CLOSED
VCC1 = 6V
5
VCC1 = 9V
S CLOSED
S OPEN
S CLOSED
0
-50
VCC1 = 3V
0
50
100
150
TEMPERATURE (oC)
FIGURE 6C. OUTPUT AMPLIFIER CHARACTERISTICS OF ICC2 CURRENT vs AMBIENT TEMPERATURE
FIGURE 6. ZERO SIGNAL AMPLIFIER CURRENT vs AMBIENT TEMPERATURE
VCC1
VCC2
ICC1
ICC2
V11
8
9
CA3020
CA3020A
3
7
10K
S2
V2
10K
2
12
S2
CURRENTS OR
VOLTAGES
S1
S2
I4 -IDLE
OPEN
OPEN
ICC1
OPEN
OPEN
I7 -IDLE
OPEN
OPEN
ICC2
OPEN
OPEN
I4 -PEAK
OPEN
CLOSE
V2
OPEN
OPEN
I7 -PEAK
CLOSE
OPEN
V3
OPEN
OPEN
I4 -CUTOFF
CLOSE
OPEN
V11
OPEN
OPEN
I7 -CUTOFF
OPEN
CLOSE
I4
10
V3
S1
11
4
1
CURRENTS OR
VOLTAGES
5
I7
6
S1
FIGURE 7. STATIC CURRENT AND VOLTAGE TEST CIRCUIT
3-6
CA3020, CA3020A
PROCEDURES:
+VCC2
+VCC1
1. Apply desired value of VCC1 and VCC2 .
2. Apply 1kHz input signal and adjust for eIN = 5mVRMS .
8
3. Record the resulting value of eOUT in dB (reference
value).
9
4
10µF
SIGNAL
SOURCE
CA3020
CA3020A
50
eIN
Ω
4. Vary input-signal frequency, keeping eIN constant at 5mV,
and record frequencies above and below 1kHz at which
eOUT decreases 3dB below reference value.
50
Ω
3
eOUT
5. Record bandwidth as frequency range between -3dB
points.
50
Ω
3
2
7
1µF
5
6
12
FIGURE 8. MEASUREMENT OF BANDWIDTH AT -3dB POINTS
+VCC1
+
ICC1
8
ICC2
9
3. Apply desired value of VCC1 and VCC2 and adjust eIN to
the value at which the Total Harmonic Distortion in the
output of the amplifier = 10%.
4
T
(NOTE)
10
5µF
CA3020
CA3020A
3
1
5kΩ
2. Record resulting values of ICC1 and ICC2 in mA as ZeroSignal DC Current Drain.
-
3kΩ
1kHz
SIGNAL eIN
SOURCE
1. Apply desired value of VCC1 and VCC2 and reduce eIN to
0V.
+
510
kΩ
PROCEDURES:
+VCC2
4. Record resulting value of ICC1 and ICC2 in mA as Maximum Signal DC Current Drain.
RL
5µF
0.01
µF
5. Determine resulting amplifier power output in watts and
record as Maximum Power Output (POUT).
eOUT
3
6. Calculate Circuit Efficiency (η) in % as follows:
2
5
6
12
7
P OUT
η = 100 ---------------------------------------------------------------------- .
V CC1 I CC1 + V CC2 I CC2
5µF
where POUT is in watts, VCC1 and VCC2 are in volts, and
ICC1 and ICC2 are in amperes.
NOTE: Push-pull output transformer; load resistance (RL) should be
selected to provide indicated collector-to-collector load impedance
(RCC).
7. Record value of eIN in mVRMS required in Step 3 as
Sensitivity (eIN).
8. Calculate Transducer Power Gain (Gp) in dB as follows:
P OUT
G p = 10log 10 ----------------P IN
e IN 2
where P IN ( in mW ) = ---------------------------------------------------------------3000 + R IN ( 10 ) ( Note 4 )
NOTE:
4. See Figure 10 for definition of RIN(10) .
FIGURE 9. MEASUREMENTS OF ZERO-SIGNAL DC CURRENT DRAIN, MAXIMUM-SIGNAL DC CURRENT DRAIN, MAXIMUM
POWER OUTPUT, CIRCUIT EFFICIENCY, SENSITIVITY, AND TRANSDUCER POWER GAIN
3-7
CA3020, CA3020A
PROCEDURES:
Input Resistance Terminal 10 to Ground (RIN10).
+VCC1 +VCC2
1. Apply desired value of VCC1 and VCC2 and set S in
Position 1.
510kΩ
R
5µF
S
8
e2
2. Adjust 1kHz input for desired signal level of measurement
7
3. Adjust R for e2 = e1/2.
10
4. Record resulting value of R as RIN10 .
1
e1
4
1
2
1kHz
SIGNAL
SOURCE
9
2
Input Resistance Terminal 3 to Ground (RIN3).
CA3020
CA3020A
3
1. Apply desired value of VCC1 and VCC2 and set S in
Position 2.
5µF
3
1
0.01µF
2. Adjust 1kHz input for desired signal level of measurement
5kΩ
2
5
6
3. Adjust R for e2 = e1/2.
12
4. Record resulting value of R as RIN3 .
1µF
FIGURE 10. MEASUREMENT OF INPUT RESISTANCE
+VCC1
+VCC2
DISTORTION
ANALYZER
510
kΩ
S1
3kΩ
8
T (NOTE)
9
4
5µF
S2
S3
10
1kHz
SIGNAL eIN
SOURCE
CA3020
CA3020A
3
1
600Ω
RL
5µF
5kΩ
3
7
0.01
µF
2
5
6
BAND-PASS
FILTER:
50Hz
TO
15kHz
eOUT
12
RMS
VOLTMETER
5µF
NOTE: Push-pull output transformer; load resistance (RL) should be selected to provide indicated collector-to-collector load impedance
(RCC).
PROCEDURES:
Signal-to-Noise Ratio
Total Harmonic Distortion
1. Close S1 and S3; open S2 .
2. Apply desired values of VCC1 and VCC2 .
1. Close S1 and S2; open S3.
2. Apply desired values of VCC1 and VCC2 .
3. Adjust eIN for an amplifier output of 150mW and record resulting value of EOUT in dB as eOUT1 (reference value).
3. Adjust eIN for desired level amplifier output power.
4. Record Total Harmonic Distortion (THD) in %.
4. Open S1 and record resulting value of eOUT in dB as eOUT2
5.
e OUT1
Signal-to-Noise Ratio ( S ⁄ N ) = 20log 10 -------------------- .
e OUT2
FIGURE 11. MEASUREMENT OF SIGNAL-TO-NOISE RATIO AND TOTAL HARMONIC DISTORTION
3-8
CA3020, CA3020A
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
3-9
ASIA
Intersil (Taiwan) Ltd.
Taiwan Limited
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029
Similar pages