TI MSP430G2213IRHB32R Mixed signal microcontroller Datasheet

MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
MIXED SIGNAL MICROCONTROLLER
FEATURES
1
•
•
•
•
•
•
•
•
Low Supply-Voltage Range: 1.8 V to 3.6 V
Ultra-Low Power Consumption
– Active Mode: 230 µA at 1 MHz, 2.2 V
– Standby Mode: 0.5 µA
– Off Mode (RAM Retention): 0.1 µA
Five Power-Saving Modes
Ultra-Fast Wake-Up From Standby Mode in
Less Than 1 µs
16-Bit RISC Architecture, 62.5-ns Instruction
Cycle Time
Basic Clock Module Configurations
– Internal Frequencies up to 16 MHz With
Four Calibrated Frequency
– Internal Very-Low-Power Low-Frequency
(LF) Oscillator
– 32-kHz Crystal
– External Digital Clock Source
Two 16-Bit Timer_A With Three
Capture/Compare Registers
Up to 24 Touch-Sense-Enabled I/O Pins
•
•
•
•
•
•
•
•
•
Universal Serial Communication Interface
(USCI)
– Enhanced UART Supporting Auto Baudrate
Detection (LIN)
– IrDA Encoder and Decoder
– Synchronous SPI
– I2C™
On-Chip Comparator for Analog Signal
Compare Function or Slope Analog-to-Digital
(A/D) Conversion
10-Bit 200-ksps Analog-to-Digital (A/D)
Converter With Internal Reference,
Sample-and-Hold, and Autoscan (See Table 1)
Brownout Detector
Serial Onboard Programming,
No External Programming Voltage Needed,
Programmable Code Protection by Security
Fuse
On-Chip Emulation Logic With Spy-Bi-Wire
Interface
Family Members are Summarized in Table 1
Package Options
– TSSOP: 20 Pin, 28 Pin
– PDIP: 20 Pin
– QFN: 32 Pin
For Complete Module Descriptions, See the
MSP430x2xx Family User’s Guide (SLAU144)
DESCRIPTION
The Texas Instruments MSP430 family of ultra-low-power microcontrollers consists of several devices featuring
different sets of peripherals targeted for various applications. The architecture, combined with five low-power
modes, is optimized to achieve extended battery life in portable measurement applications. The device features a
powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency.
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 µs.
The MSP430G2x13 and MSP430G2x53 series are ultra-low-power mixed signal microcontrollers with built-in
16-bit timers, up to 24 I/O touch-sense-enabled pins, a versatile analog comparator, and built-in communication
capability using the universal serial communication interface. In addition the MSP430G2x53 family members
have a 10-bit analog-to-digital (A/D) converter. For configuration details see Table 1.
Typical applications include low-cost sensor systems that capture analog signals, convert them to digital values,
and then process the data for display or for transmission to a host system.
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Table 1. Available Options (1) (2)
Device
BSL
EEM
Flash
(KB)
RAM
(B)
Timer_A
COMP_A+
Channel
ADC10
Channel
USCI
A0/B0
Clock
1
LF,
DCO,
VLO
MSP430G2553IRHB32
MSP430G2553IPW28
MSP430G2553IPW20
1
1
16
512
2x TA3
8
8
MSP430G2553IN20
MSP430G2453IRHB32
I/O
Package
Type
24
32-QFN
24
28-TSSOP
16
20-TSSOP
16
20-PDIP
24
32-QFN
24
28-TSSOP
16
20-TSSOP
MSP430G2453IN20
16
20-PDIP
MSP430G2353IRHB32
24
32-QFN
24
28-TSSOP
16
20-TSSOP
MSP430G2353IN20
16
20-PDIP
MSP430G2253IRHB32
24
32-QFN
24
28-TSSOP
MSP430G2453IPW28
MSP430G2453IPW20
MSP430G2353IPW28
MSP430G2353IPW20
MSP430G2253IPW28
MSP430G2253IPW20
1
1
1
1
1
1
8
4
2
512
256
256
2x TA3
2x TA3
2x TA3
8
8
8
8
8
8
1
1
1
LF,
DCO,
VLO
LF,
DCO,
VLO
LF,
DCO,
VLO
16
20-TSSOP
MSP430G2253IN20
16
20-PDIP
MSP430G2153IRHB32
24
32-QFN
24
28-TSSOP
16
20-TSSOP
MSP430G2153IN20
16
20-PDIP
MSP430G2513IRHB32
24
32-QFN
24
28-TSSOP
16
20-TSSOP
16
20-PDIP
MSP430G2153IPW28
MSP430G2153IPW20
MSP430G2513IPW28
MSP430G2513IPW20
1
1
1
1
1
16
256
512
2x TA3
2x TA3
8
8
8
-
1
1
LF,
DCO,
VLO
LF,
DCO,
VLO
MSP430G2513IN20
MSP430G2413IRHB32
24
32-QFN
24
28-TSSOP
16
20-TSSOP
MSP430G2413IN20
16
20-PDIP
MSP430G2313IRHB32
24
32-QFN
24
28-TSSOP
16
20-TSSOP
MSP430G2313IN20
16
20-PDIP
MSP430G2213IRHB32
24
32-QFN
24
28-TSSOP
MSP430G2413IPW28
MSP430G2413IPW20
MSP430G2313IPW28
MSP430G2313IPW20
MSP430G2213IPW28
MSP430G2213IPW20
1
1
1
1
1
1
8
4
2
512
256
256
2x TA3
2x TA3
2x TA3
8
8
8
-
-
-
1
1
1
LF,
DCO,
VLO
LF,
DCO,
VLO
LF,
DCO,
VLO
16
20-TSSOP
MSP430G2213IN20
16
20-PDIP
MSP430G2113IRHB32
24
32-QFN
24
28-TSSOP
16
20-TSSOP
16
20-PDIP
MSP430G2113IPW28
MSP430G2113IPW20
1
1
MSP430G2113IN20
(1)
(2)
2
1
256
2x TA3
8
-
1
LF,
DCO,
VLO
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com.
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Device Pinout, MSP430G2x13 and MSP430G2x53, 20-Pin Devices, TSSOP and PDIP
DVCC
P1.0/TA0CLK/ACLK/A0/CA0
P1.1/TA0.0/UCA0RXD/UCA0SOMI/A1/CA1
P1.2/TA0.1/UCA0TXD/PUCA0SIMO/A2/CA2
P1.3/ADC10CLK/CAOUT/VREF-/VEREF-/A3/CA3
P1.4/SMCLK/UCB0STE/UCA0CLK/VREF+/VEREF+/A4/CA4/TCK
P1.5/TA0.0/UCB0CLK/UCA0STE/A5/CA5/TMS
P2.0/TA1.0
P2.1/TA1.1
P2.2/TA1.1
1
20
2
19
3
18
4
17
N20
PW20
(TOP VIEW)
5
6
16
15
7
14
8
13
9
12
10
11
DVSS
XIN/P2.6/TA0.1
XOUT/P2.7
TEST/SBWTCK
RST/NMI/SBWTDIO
P1.7/CAOUT/UCB0SIMO/UCB0SDA/A7/CA7/TDO/TDI
P1.6/TA0.1/UCB0SOMI/UCB0SCL/A6/CA6/TDI/TCLK
P2.5/TA1.2
P2.4/TA1.2
P2.3/TA1.0
NOTE: ADC10 is available on MSP430G2x53 devices only.
NOTE: The pulldown resistors of port P3 should be enabled by setting P3REN.x = 1.
Device Pinout, MSP430G2x13 and MSP430G2x53, 28-Pin Devices, TSSOP
DVCC
P1.0/TA0CLK/ACLK/A0/CA0
P1.1/TA0.0/UCA0RXD/UCA0SOMI/A1/CA1
P1.2/TA0.1/UCA0TXD/PUCA0SIMO/A2/CA2
P1.3/ADC10CLK/CAOUT/VREF-/VEREF-/A3/CA3
P1.4/SMCLK/UCB0STE/UCA0CLK/VREF+/VEREF+/A4/CA4/TCK
P1.5/TA0.0/UCB0CLK/UCA0STE/A5/CA5/TMS
P3.1/TA1.0
P3.0/TA0.2
P2.0/TA1.0
P2.1/TA1.1
P2.2/TA1.1
P3.2/TA1.1
P3.3/TA1.2
1
28
2
27
3
26
4
25
5
24
6
23
PW28
(TOP VIEW)
7
8
22
21
9
20
10
19
11
18
12
17
13
16
14
15
DVSS
XIN/P2.6/TA0.1
XOUT/P2.7
TEST/SBWTCK
RST/NMI/SBWTDIO
P1.7/CAOUT/UCB0SIMO/UCB0SDA/A7/CA7/TDO/TDI
P1.6/TA0.1/UCB0SOMI/UCB0SCL/A6/CA6/TDI/TCLK
P3.7/TA1CLK/CAOUT
P3.6/TA0.2
P3.5/TA0.1
P2.5/TA1.2
P2.4/TA1.2
P2.3/TA1.0
P3.4/TA0.0
NOTE: ADC10 is available on MSP430G2x53 devices only.
NC
P1.0/TA0CLK/ACLK/A0/CA0
DVCC
AVCC
DVSS
AVSS
XIN/P2.6/TA0.1
XOUT/P2.7
Device Pinout, MSP430G2x13 and MSP430G2x53, 32-Pin Devices, QFN
32 31 30 29 28 27 26 25
P1.1/TA0.0/UCA0RXD/UCA0SOMI/A1/CA1
P1.2/TA0.1/UCA0TXD/UCA0SIMO/A2/CA2
P1.3/ADC10CLK/CAOUT/VREF-/VEREF-/A3/CA3
P1.4/SMCLK/UCB0STE/UCA0CLK/VREF+/VEREF+/A4/CA4/TCK
P1.5/TA0.0/UCB0CLK/UCA0STE/A5/CA5/TMS
P3.1/TA1.0
P3.0/TA0.2
NC
1
24
2
23
3
4
5
22
RHB32
(TOP VIEW)
21
20
6
19
7
18
8
17
TEST/SBWTCK
RST/NMI/SBWTDIO
P1.7/CAOUT/UCB0SIMO/UCB0SDA/A7/CA7/TDO/TDI
P1.6/TA0.1/UCB0SOMI/UCB0SCL/A6/CA6/TDI/TCLK
P3.7/TA1CLK/CAOUT
P3.6/TA0.2
P3.5/TA0.1
P2.5/TA1.2
P2.0/TA1.0
P2.1/TA1.1
P2.2/TA1.1
P3.2/TA1.1
P3.3/TA1.2
P3.4/TA0.0
P2.3/TA1.0
P2.4/TA1.2
9 10 11 12 13 14 15 16
NOTE: ADC10 is available on MSP430G2x53 devices only.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
3
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Functional Block Diagram, MSP430G2x53
XIN XOUT
DVCC
DVSS
P1.x
8
P2.x
8
P3.x
8
Port P1
Port P2
Port P3
8 I/O
Interrupt
capability
pullup/down
resistors
8 I/O
Interrupt
capability
pullup/down
resistors
8 I/O
ACLK
Clock
System
Flash
SMCLK
16KB
8KB
4KB
2KB
MCLK
16MHz
CPU
incl. 16
Registers
ADC
RAM
512B
256B
10-Bit
8 Ch.
Autoscan
1 ch DMA
Comp_A+
Watchdog
WDT+
pullup/
pulldown
resistors
MAB
MDB
Emulation
2BP
Brownout
Protection
JTAG
Interface
8 Channels
15-Bit
Timer0_A3
Timer1_A3
3 CC
Registers
3 CC
Registers
Spy-BiWire
USCI A0
UART/
LIN, IrDA,
SPI
USCI B0
SPI, I2C
RST/NMI
NOTE: Port P3 is available on 28-pin and 32-pin devices only.
Functional Block Diagram, MSP430G2x13
XIN XOUT
DVCC
DVSS
P1.x
8
P2.x
8
P3.x
8
Port P1
Port P2
Port P3
8 I/O
Interrupt
capability
pullup/down
resistors
8 I/O
Interrupt
capability
pullup/down
resistors
pullup/
pulldown
resistors
ACLK
Clock
System
Flash
SMCLK
RAM
16KB
8KB
4KB
2KB
MCLK
16MHz
CPU
incl. 16
Registers
8 I/O
MAB
MDB
Emulation
2BP
JTAG
Interface
512B
256B
Brownout
Protection
Comp_A+
8 Channels
Spy-BiWire
Watchdog
WDT+
15-Bit
Timer0_A3
Timer1_A3
3 CC
Registers
3 CC
Registers
USCI A0
UART/
LIN, IrDA,
SPI
USCI B0
SPI, I2C
RST/NMI
NOTE: Port P3 is available on 28-pin and 32-pin devices only.
4
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Table 2. Terminal Functions
TERMINAL
NO.
NAME
PW20,
N20
PW28
I/O
DESCRIPTION
RHB32
P1.0/
General-purpose digital I/O pin
TA0CLK/
Timer0_A, clock signal TACLK input
ACLK/
2
2
31
I/O
ACLK signal output
A0
ADC10 analog input A0 (1)
CA0
Comparator_A+, CA0 input
P1.1/
General-purpose digital I/O pin
TA0.0/
Timer0_A, capture: CCI0A input, compare: Out0 output
UCA0RXD/
UCA0SOMI/
3
3
1
I/O
USCI_A0 receive data input in UART mode,
USCI_A0 slave data out/master in SPI mode
A1/
ADC10 analog input A1 (1)
CA1
Comparator_A+, CA1 input
P1.2/
General-purpose digital I/O pin
TA0.1/
Timer0_A, capture: CCI1A input, compare: Out1 output
UCA0TXD/
UCA0SIMO/
4
4
2
I/O
USCI_A0 transmit data output in UART mode,
USCI_A0 slave data in/master out in SPI mode,
A2/
ADC10 analog input A2 (1)
CA2
Comparator_A+, CA2 input
P1.3/
General-purpose digital I/O pin
ADC10CLK/
ADC10, conversion clock output (1)
A3/
VREF-/VEREF-/
5
5
3
I/O
ADC10 analog input A3 (1)
ADC10 negative reference voltage
CA3/
Comparator_A+, CA3 input
CAOUT
Comparator_A+, output
P1.4/
General-purpose digital I/O pin
SMCLK/
SMCLK signal output
UCB0STE/
USCI_B0 slave transmit enable
UCA0CLK/
A4/
6
6
4
I/O
(1)
USCI_A0 clock input/output
ADC10 analog input A4 (1)
VREF+/VEREF+/
ADC10 positive reference voltage (1)
CA4/
Comparator_A+, CA4 input
TCK
JTAG test clock, input terminal for device programming and test
P1.5/
General-purpose digital I/O pin
TA0.0/
Timer0_A, compare: Out0 output
UCB0CLK/
UCA0STE/
USCI_B0 clock input/output,
7
7
5
I/O
USCI_A0 slave transmit enable
A5/
ADC10 analog input A5 (1)
CA5/
Comparator_A+, CA5 input
TMS
JTAG test mode select, input terminal for device programming and test
(1)
MSP430G2x53 devices only
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
5
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Table 2. Terminal Functions (continued)
TERMINAL
NO.
NAME
PW20,
N20
PW28
I/O
DESCRIPTION
RHB32
P1.6/
General-purpose digital I/O pin
TA0.1/
Timer0_A, compare: Out1 output
A6/
ADC10 analog input A6 (1)
CA6/
14
22
21
I/O
Comparator_A+, CA6 input
UCB0SOMI/
USCI_B0 slave out/master in SPI mode,
UCB0SCL/
USCI_B0 SCL I2C clock in I2C mode
TDI/TCLK
JTAG test data input or test clock input during programming and test
P1.7/
General-purpose digital I/O pin
A7/
ADC10 analog input A7 (1)
CA7/
Comparator_A+, CA7 input
CAOUT/
15
23
22
I/O
Comparator_A+, output
UCB0SIMO/
USCI_B0 slave in/master out in SPI mode
UCB0SDA/
USCI_B0 SDA I2C data in I2C mode
TDO/TDI
JTAG test data output terminal or test data input during programming and
test (2)
P2.0/
TA1.0
P2.1/
TA1.1
P2.2/
TA1.1
P2.3/
TA1.0
P2.4/
TA1.2
P2.5/
TA1.2
8
10
9
I/O
9
11
10
I/O
10
12
11
I/O
11
16
15
I/O
12
17
16
I/O
13
18
17
I/O
XIN/
P2.6/
P2.7
P3.0/
TA0.2
P3.1/
TA1.0
P3.2/
TA1.1
P3.3/
TA1.2
P3.4/
TA0.0
(2)
(3)
6
Timer1_A, capture: CCI0A input, compare: Out0 output
General-purpose digital I/O pin
Timer1_A, capture: CCI1A input, compare: Out1 output
General-purpose digital I/O pin
Timer1_A, capture: CCI1B input, compare: Out1 output
General-purpose digital I/O pin
Timer1_A, capture: CCI0B input, compare: Out0 output
General-purpose digital I/O pin
Timer1_A, capture: CCI2A input, compare: Out2 output
General-purpose digital I/O pin
Timer1_A, capture: CCI2B input, compare: Out2 output
Input terminal of crystal oscillator
19
27
26
I/O
TA0.1
XOUT/
General-purpose digital I/O pin
General-purpose digital I/O pin
Timer0_A, compare: Out1 output
18
26
25
I/O
-
9
7
I/O
-
8
6
I/O
-
13
12
I/O
-
14
13
I/O
-
15
14
I/O
Output terminal of crystal oscillator (3)
General-purpose digital I/O pin
General-purpose digital I/O pin
Timer0_A, capture: CCI2A input, compare: Out2 output
General-purpose digital I/O pin
Timer1_A, compare: Out0 output
General-purpose digital I/O pin
Timer1_A, compare: Out1 output
General-purpose digital I/O
Timer1_A, compare: Out2 output
General-purpose digital I/O
Timer0_A, compare: Out0 output
TDO or TDI is selected via JTAG instruction.
If XOUT/P2.7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection
to this pad after reset.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Table 2. Terminal Functions (continued)
TERMINAL
NO.
NAME
P3.5/
TA0.1
P3.6/
TA0.2
I/O
PW20,
N20
PW28
RHB32
-
19
18
I/O
-
20
19
I/O
-
21
20
I/O
P3.7/
TA1CLK/
DESCRIPTION
General-purpose digital I/O
Timer0_A, compare: Out1 output
General-purpose digital I/O
Timer0_A, compare: Out2 output
General-purpose digital I/O
Timer0_A, clock signal TACLK input
CAOUT
Comparator_A+, output
RST/
Reset
NMI/
16
24
23
I
SBWTDIO
Nonmaskable interrupt input
Spy-Bi-Wire test data input/output during programming and test
TEST/
Selects test mode for JTAG pins on Port 1. The device protection fuse is
connected to TEST.
17
25
24
I
DVCC
1
1
29, 30
NA
Supply voltage
DVSS
20
28
27, 28
NA
Ground reference
NC
NA
NA
8, 32
NA
Not connected
QFN Pad
NA
NA
Pad
NA
QFN package pad. Connection to VSS is recommended.
SBWTCK
Spy-Bi-Wire test clock input during programming and test
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
7
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
SHORT-FORM DESCRIPTION
CPU
The MSP430 CPU has a 16-bit RISC architecture
that is highly transparent to the application. All
operations, other than program-flow instructions, are
performed as register operations in conjunction with
seven addressing modes for source operand and four
addressing modes for destination operand.
Program Counter
PC/R0
Stack Pointer
SP/R1
Status Register
SR/CG1/R2
Constant Generator
The CPU is integrated with 16 registers that provide
reduced
instruction
execution
time.
The
register-to-register operation execution time is one
cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as
program counter, stack pointer, status register, and
constant generator, respectively. The remaining
registers are general-purpose registers.
Peripherals are connected to the CPU using data,
address, and control buses, and can be handled with
all instructions.
The instruction set consists of the original 51
instructions with three formats and seven address
modes and additional instructions for the expanded
address range. Each instruction can operate on word
and byte data.
Instruction Set
The instruction set consists of 51 instructions with
three formats and seven address modes. Each
instruction can operate on word and byte data.
Table 3 shows examples of the three types of
instruction formats; Table 4 shows the address
modes.
CG2/R3
General-Purpose Register
R4
General-Purpose Register
R5
General-Purpose Register
R6
General-Purpose Register
R7
General-Purpose Register
R8
General-Purpose Register
R9
General-Purpose Register
R10
General-Purpose Register
R11
General-Purpose Register
R12
General-Purpose Register
R13
General-Purpose Register
R14
General-Purpose Register
R15
Table 3. Instruction Word Formats
EXAMPLE
OPERATION
Dual operands, source-destination
INSTRUCTION FORMAT
ADD R4,R5
R4 + R5 ---> R5
Single operands, destination only
CALL R8
PC -->(TOS), R8--> PC
JNE
Jump-on-equal bit = 0
Relative jump, un/conditional
Table 4. Address Mode Descriptions (1)
(1)
8
ADDRESS MODE
S
D
SYNTAX
EXAMPLE
OPERATION
Register
✓
✓
MOV Rs,Rd
MOV R10,R11
R10 -- --> R11
Indexed
✓
✓
MOV X(Rn),Y(Rm)
MOV 2(R5),6(R6)
M(2+R5) -- --> M(6+R6)
Symbolic (PC relative)
✓
✓
MOV EDE,TONI
M(EDE) -- --> M(TONI)
Absolute
✓
✓
MOV &MEM,&TCDAT
M(MEM) -- --> M(TCDAT)
Indirect
✓
MOV @Rn,Y(Rm)
MOV @R10,Tab(R6)
M(R10) -- --> M(Tab+R6)
Indirect autoincrement
✓
MOV @Rn+,Rm
MOV @R10+,R11
M(R10) -- --> R11
R10 + 2-- --> R10
Immediate
✓
MOV #X,TONI
MOV #45,TONI
#45 -- --> M(TONI)
S = source, D = destination
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
www.ti.com
SLAS735A – APRIL 2011 – REVISED MAY 2011
Operating Modes
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt
event can wake up the device from any of the low-power modes, service the request, and restore back to the
low-power mode on return from the interrupt program.
The following six operating modes can be configured by software:
• Active mode (AM)
– All clocks are active
• Low-power mode 0 (LPM0)
– CPU is disabled
– ACLK and SMCLK remain active, MCLK is disabled
• Low-power mode 1 (LPM1)
– CPU is disabled
– ACLK and SMCLK remain active, MCLK is disabled
– DCO's dc generator is disabled if DCO not used in active mode
• Low-power mode 2 (LPM2)
– CPU is disabled
– MCLK and SMCLK are disabled
– DCO's dc generator remains enabled
– ACLK remains active
• Low-power mode 3 (LPM3)
– CPU is disabled
– MCLK and SMCLK are disabled
– DCO's dc generator is disabled
– ACLK remains active
• Low-power mode 4 (LPM4)
– CPU is disabled
– ACLK is disabled
– MCLK and SMCLK are disabled
– DCO's dc generator is disabled
– Crystal oscillator is stopped
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
9
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Interrupt Vector Addresses
The interrupt vectors and the power-up starting address are located in the address range 0FFFFh to 0FFC0h.
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.
If the reset vector (located at address 0FFFEh) contains 0FFFFh (for example, flash is not programmed), the
CPU goes into LPM4 immediately after power-up.
Table 5. Interrupt Sources, Flags, and Vectors
INTERRUPT SOURCE
INTERRUPT FLAG
Power-Up
External Reset
Watchdog Timer+
Flash key violation
PC out-of-range (1)
PORIFG
RSTIFG
WDTIFG
KEYV (2)
NMI
Oscillator fault
Flash memory access violation
NMIIFG
OFIFG
ACCVIFG (2) (3)
Timer1_A3
TACCR0 CCIFG (4)
Timer1_A3
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
10
WORD
ADDRESS
PRIORITY
Reset
0FFFEh
31, highest
(non)-maskable
(non)-maskable
(non)-maskable
0FFFCh
30
maskable
0FFFAh
29
maskable
0FFF8h
28
Comparator_A+
CAIFG (4)
maskable
0FFF6h
27
Watchdog Timer+
WDTIFG
maskable
0FFF4h
26
maskable
0FFF2h
25
maskable
0FFF0h
24
maskable
0FFEEh
23
maskable
0FFECh
22
maskable
0FFEAh
21
Timer0_A3
TACCR2 TACCR1 CCIFG, TAIFG
(2) (4)
SYSTEM
INTERRUPT
TACCR0 CCIFG
(4)
Timer0_A3
TACCR2 TACCR1 CCIFG, TAIFG
USCI_A0/USCI_B0 receive
USCI_B0 I2C status
UCA0RXIFG, UCB0RXIFG (2) (5)
USCI_A0/USCI_B0 transmit
USCI_B0 I2C receive/transmit
UCA0TXIFG, UCB0TXIFG (2) (6)
ADC10
(MSP430G2x53 only)
ADC10IFG (4)
0FFE8h
20
I/O Port P2 (up to eight flags)
P2IFG.0 to P2IFG.7 (2) (4)
maskable
0FFE6h
19
I/O Port P1 (up to eight flags)
(2) (4)
maskable
0FFE4h
18
0FFE2h
17
0FFE0h
16
See
(7)
0FFDEh
15
See
(8)
0FFDEh to
0FFC0h
14 to 0, lowest
(5) (4)
P1IFG.0 to P1IFG.7
A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from
within unused address ranges.
Multiple source flags
(non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.
Interrupt flags are located in the module.
In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.
In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.
This location is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A zero (0h)
disables the erasure of the flash if an invalid password is supplied.
The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if
necessary.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Special Function Registers (SFRs)
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits
not allocated to a functional purpose are not physically present in the device. Simple software access is provided
with this arrangement.
Legend
rw:
rw-0,1:
rw-(0,1):
Bit can be read and written.
Bit can be read and written. It is reset or set by PUC.
Bit can be read and written. It is reset or set by POR.
SFR bit is not present in device.
Table 6. Interrupt Enable Register 1 and 2
Address
7
6
00h
WDTIE
OFIE
NMIIE
ACCVIE
Address
5
4
1
0
ACCVIE
NMIIE
OFIE
WDTIE
rw-0
rw-0
rw-0
rw-0
2
Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured in
interval timer mode.
Oscillator fault interrupt enable
(Non)maskable interrupt enable
Flash access violation interrupt enable
7
6
5
4
01h
UCA0RXIE
UCA0TXIE
UCB0RXIE
UCB0TXIE
3
3
2
1
0
UCB0TXIE
UCB0RXIE
UCA0TXIE
UCA0RXIE
rw-0
rw-0
rw-0
rw-0
USCI_A0 receive interrupt enable
USCI_A0 transmit interrupt enable
USCI_B0 receive interrupt enable
USCI_B0 transmit interrupt enable
Table 7. Interrupt Flag Register 1 and 2
Address
7
6
5
02h
WDTIFG
OFIFG
PORIFG
RSTIFG
NMIIFG
Address
3
2
1
0
RSTIFG
PORIFG
OFIFG
WDTIFG
rw-0
rw-(0)
rw-(1)
rw-1
rw-(0)
Set on watchdog timer overflow (in watchdog mode) or security key violation.
Reset on VCC power-on or a reset condition at the RST/NMI pin in reset mode.
Flag set on oscillator fault.
Power-On Reset interrupt flag. Set on VCC power-up.
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power-up.
Set via RST/NMI pin
7
6
03h
UCA0RXIFG
UCA0TXIFG
UCB0RXIFG
UCB0TXIFG
4
NMIIFG
5
4
3
2
1
0
UCB0TXIFG
UCB0RXIFG
UCA0TXIFG
UCA0RXIFG
rw-1
rw-0
rw-1
rw-0
USCI_A0 receive interrupt flag
USCI_A0 transmit interrupt flag
USCI_B0 receive interrupt flag
USCI_B0 transmit interrupt flag
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
11
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Memory Organization
Table 8. Memory Organization
MSP430G2153
MSP430G2113
Memory
MSP430G2253
MSP430G2213
MSP430G2353
MSP430G2313
MSP430G2453
MSP430G2413
MSP430G2553
MSP430G2513
Size
1kB
2kB
4kB
8kB
16kB
Main: interrupt vector
Flash
0xFFFF to 0xFFC0
0xFFFF to 0xFFC0
0xFFFF to 0xFFC0
0xFFFF to 0xFFC0
0xFFFF to 0xFFC0
Main: code memory
Flash
0xFFFF to 0xFC00
0xFFFF to 0xF800
0xFFFF to 0xF000
0xFFFF to 0xE000
0xFFFF to 0xC000
Information memory
Size
256 Byte
256 Byte
256 Byte
256 Byte
256 Byte
Flash
010FFh to 01000h
010FFh to 01000h
010FFh to 01000h
010FFh to 01000h
010FFh to 01000h
RAM
Size
Peripherals
256 Byte
256 Byte
256 Byte
512 Byte
512 Byte
0x02FF to 0x0200
0x02FF to 0x0200
0x02FF to 0x0200
0x03FF to 0x0200
0x03FF to 0x0200
16-bit
01FFh to 0100h
01FFh to 0100h
01FFh to 0100h
01FFh to 0100h
01FFh to 0100h
8-bit
0FFh to 010h
0FFh to 010h
0FFh to 010h
0FFh to 010h
0FFh to 010h
0Fh to 00h
0Fh to 00h
0Fh to 00h
0Fh to 00h
0Fh to 00h
8-bit SFR
Bootstrap Loader (BSL)
The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access to
the MSP430 memory via the BSL is protected by user-defined password. For complete description of the
features of the BSL and its implementation, see the MSP430 Programming Via the Bootstrap Loader User's
Guide (SLAU319).
Table 9. BSL Function Pins
BSL FUNCTION
20-PIN PW PACKAGE
20-PIN N PACKAGE
28-PIN PACKAGE PW
32-PIN PACKAGE RHB
Data transmit
3 - P1.1
3 - P1.1
1 - P1.1
Data receive
7 - P1.5
7 - P1.5
5 - P1.5
Flash Memory
The flash memory can be programmed via the Spy-Bi-Wire/JTAG port or in-system by the CPU. The CPU can
perform single-byte and single-word writes to the flash memory. Features of the flash memory include:
• Flash memory has n segments of main memory and four segments of information memory (A to D) of
64 bytes each. Each segment in main memory is 512 bytes in size.
• Segments 0 to n may be erased in one step, or each segment may be individually erased.
• Segments A to D can be erased individually or as a group with segments 0 to n. Segments A to D are also
called information memory.
• Segment A contains calibration data. After reset segment A is protected against programming and erasing. It
can be unlocked but care should be taken not to erase this segment if the device-specific calibration data is
required.
12
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Peripherals
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all
instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide (SLAU144).
Oscillator and System Clock
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal
oscillator, an internal very-low-power low-frequency oscillator and an internal digitally controlled oscillator (DCO).
The basic clock module is designed to meet the requirements of both low system cost and low power
consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic
clock module provides the following clock signals:
• Auxiliary clock (ACLK), sourced either from a 32768-Hz watch crystal or the internal LF oscillator.
• Main clock (MCLK), the system clock used by the CPU.
• Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.
The DCO settings to calibrate the DCO output frequency are stored in the information memory segment A.
Main DCO Characteristics
• All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14
overlaps RSELx = 15.
• DCO control bits DCOx have a step size as defined by parameter SDCO.
• Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK
cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to:
faverage =
32 × fDCO(RSEL,DCO) × fDCO(RSEL,DCO+1)
MOD × fDCO(RSEL,DCO) + (32 – MOD) × fDCO(RSEL,DCO+1)
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
13
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Calibration Data Stored in Information Memory Segment A
Calibration data is stored for both the DCO and for ADC10 organized in a tag-length-value structure.
Table 10. Tags Used by the ADC Calibration Tags
NAME
ADDRESS
VALUE
TAG_DCO_30
0x10F6
0x01
DCO frequency calibration at VCC = 3 V and TA = 30°C at calibration
DESCRIPTION
TAG_ADC10_1
0x10DA
0x08
ADC10_1 calibration tag
TAG_EMPTY
-
0xFE
Identifier for empty memory areas
Table 11. Labels Used by the ADC Calibration Tags
LABEL
ADDRESS
OFFSET
SIZE
CAL_ADC_25T85
0x0010
word
INCHx = 0x1010, REF2_5 = 1, TA = 85°C
CONDITION AT CALIBRATION / DESCRIPTION
CAL_ADC_25T30
0x000E
word
INCHx = 0x1010, REF2_5 = 1, TA = 30°C
CAL_ADC_25VREF_FACTOR
0x000C
word
REF2_5 = 1, TA = 30°C, IVREF+ = 1 mA
CAL_ADC_15T85
0x000A
word
INCHx = 0x1010, REF2_5 = 0, TA = 85°C
CAL_ADC_15T30
0x0008
word
INCHx = 0x1010, REF2_5 = 0, TA = 30°C
CAL_ADC_15VREF_FACTOR
0x0006
word
REF2_5 = 0, TA = 30°C, IVREF+ = 0.5 mA
CAL_ADC_OFFSET
0x0004
word
External VREF = 1.5 V, fADC10CLK = 5 MHz
CAL_ADC_GAIN_FACTOR
0x0002
word
External VREF = 1.5 V, fADC10CLK = 5 MHz
CAL_BC1_1MHZ
0x0009
byte
-
CAL_DCO_1MHZ
0x0008
byte
-
CAL_BC1_8MHZ
0x0007
byte
-
CAL_DCO_8MHZ
0x0006
byte
-
CAL_BC1_12MHZ
0x0005
byte
-
CAL_DCO_12MHZ
0x0004
byte
-
CAL_BC1_16MHZ
0x0003
byte
-
CAL_DCO_16MHZ
0x0002
byte
-
Brownout
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and
power off.
Digital I/O
Up to three 8-bit I/O ports are implemented:
• All individual I/O bits are independently programmable.
• Any combination of input, output, and interrupt condition (port P1 and port P2 only) is possible.
• Edge-selectable interrupt input capability for all bits of port P1 and port P2 (if available).
• Read/write access to port-control registers is supported by all instructions.
• Each I/O has an individually programmable pullup/pulldown resistor.
• Each I/O has an individually programmable pin oscillator enable bit to enable low-cost touch sensing.
WDT+ Watchdog Timer
The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog
function is not needed in an application, the module can be disabled or configured as an interval timer and can
generate interrupts at selected time intervals.
14
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Timer_A3 (TA0, TA1)
Timer0/1_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
Table 12. Timer0_A3 Signal Connections
INPUT PIN NUMBER
PW20, N20
PW28
RHB32
DEVICE
INPUT
SIGNAL
P1.0-2
P1.0-2
P1.0-31
TACLK
MODULE
INPUT
NAME
TACLK
ACLK
ACLK
SMCLK
SMCLK
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
Timer
NA
OUTPUT PIN NUMBER
PW20, N20
PW28
RHB32
PinOsc
PinOsc
PinOsc
TACLK
INCLK
P1.1-3
P1.1-3
P1.1-1
TA0.0
CCI0A
P1.1-3
P1.1-3
P1.1-1
ACLK
CCI0B
P1.5-7
P1.5-7
P1.5-5
P3.4-15
P3.4-14
P1.2-4
PinOsc
P1.2-4
P1.2-2
VSS
GND
VCC
VCC
CCR0
TA0
TA0.1
CCI1A
P1.2-4
P1.2-4
P1.2-2
CAOUT
CCI1B
P1.6-14
P1.6-22
P1.6-21
VSS
GND
P2.6-19
P2.6-27
P2.6-26
VCC
VCC
P3.5-19
P3.5-18
P3.0-9
P3.0-7
P3.6-20
P3.6-19
P3.0-9
P3.0-7
TA0.2
CCI2A
PinOsc
PinOsc
TA0.2
CCI2B
VSS
GND
VCC
VCC
CCR1
CCR2
TA1
TA2
Table 13. Timer1_A3 Signal Connections
PW20, N20
INPUT PIN NUMBER
PW28
RHB32
DEVICE
INPUT
SIGNAL
MODULE
INPUT
NAME
-
P3.7-21
P3.7-20
TACLK
TACLK
ACLK
ACLK
SMCLK
SMCLK
P3.7-20
TACLK
INCLK
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
Timer
NA
OUTPUT PIN NUMBER
PW20, N20
PW28
RHB32
-
P3.7-21
P2.0-8
P2.0-10
P2.0-9
TA1.0
CCI0A
P2.0-8
P2.0-10
P2.0-9
P2.3-11
P2.3-16
P2.3-12
TA1.0
CCI0B
P2.3-11
P2.3-16
P2.3-15
VSS
GND
P3.1-8
P3.1-6
VCC
VCC
CCR0
TA0
P2.1-9
P1.7-23
P2.1-10
TA1.1
CCI1A
P2.1-9
P1.7-23
P2.1-10
P2.2-10
P2.2-12
P2.2-11
TA1.1
CCI1B
P2.2-10
P2.2-12
P2.2-11
VSS
GND
P3.2-13
P3.2-12
CCR1
TA1
VCC
VCC
P2.4-12
P2.4-17
P2.4-16
TA1.2
CCI2A
P2.4-12
P2.4-17
P2.4-16
P2.5-13
P2.5-18
P2.5-17
TA1.2
CCI2B
P2.5-13
P2.5-18
P2.5-17
VSS
GND
P3.3-14
P3.3-13
VCC
VCC
Copyright © 2011, Texas Instruments Incorporated
CCR2
TA2
Submit Documentation Feedback
15
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Universal Serial Communications Interface (USCI)
The USCI module is used for serial data communication. The USCI module supports synchronous
communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as
UART, enhanced UART with automatic baudrate detection (LIN), and IrDA. Not all packages support the USCI
functionality.
USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA.
USCI_B0 provides support for SPI (3 or 4 pin) and I2C.
Comparator_A+
The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions,
battery-voltage supervision, and monitoring of external analog signals.
ADC10 (MSP430G2x53 Only)
The ADC10 module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR
core, sample select control, reference generator, and data transfer controller (DTC) for automatic conversion
result handling, allowing ADC samples to be converted and stored without any CPU intervention.
16
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Peripheral File Map
Table 14. Peripherals With Word Access
MODULE
ADC10
(MSP430G2x53 devices only)
Timer1_A3
REGISTER DESCRIPTION
ADC data transfer start address
ADC10SA
1BCh
ADC10MEM
1B4h
ADC control register 1
ADC10CTL1
1B2h
ADC control register 0
ADC10CTL0
1B0h
Capture/compare register
TACCR2
0196h
Capture/compare register
TACCR1
0194h
Capture/compare register
TACCR0
0192h
TAR
0190h
Capture/compare control
TACCTL2
0186h
Capture/compare control
TACCTL1
0184h
Capture/compare control
TACCTL0
0182h
TACTL
0180h
Timer_A interrupt vector
TAIV
011Eh
Capture/compare register
TACCR2
0176h
Capture/compare register
TACCR1
0174h
Capture/compare register
TACCR0
0172h
Timer_A control
Timer_A register
TAR
0170h
Capture/compare control
TACCTL2
0166h
Capture/compare control
TACCTL1
0164h
Capture/compare control
TACCTL0
0162h
Timer_A control
TACTL
0160h
TAIV
012Eh
Flash control 3
FCTL3
012Ch
Flash control 2
FCTL2
012Ah
Flash control 1
FCTL1
0128h
WDTCTL
0120h
Timer_A interrupt vector
Flash Memory
Watchdog Timer+
OFFSET
ADC memory
Timer_A register
Timer0_A3
REGISTER
NAME
Watchdog/timer control
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
17
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Table 15. Peripherals With Byte Access
REGISTER
NAME
OFFSET
USCI_B0 transmit buffer
UCB0TXBUF
06Fh
USCI_B0 receive buffer
UCB0RXBUF
06Eh
UCB0STAT
06Dh
USCI B0 I2C Interrupt enable
UCB0CIE
06Ch
USCI_B0 bit rate control 1
UCB0BR1
06Bh
USCI_B0 bit rate control 0
UCB0BR0
06Ah
USCI_B0 control 1
UCB0CTL1
069h
USCI_B0 control 0
UCB0CTL0
068h
UCB0SA
011Ah
MODULE
USCI_B0
REGISTER DESCRIPTION
USCI_B0 status
USCI_B0 I2C slave address
USCI_B0 I2C own address
USCI_A0
UCB0OA
0118h
USCI_A0 transmit buffer
UCA0TXBUF
067h
USCI_A0 receive buffer
UCA0RXBUF
066h
USCI_A0 status
UCA0STAT
065h
USCI_A0 modulation control
UCA0MCTL
064h
USCI_A0 baud rate control 1
UCA0BR1
063h
USCI_A0 baud rate control 0
UCA0BR0
062h
USCI_A0 control 1
UCA0CTL1
061h
USCI_A0 control 0
ADC10
(MSP430G2x53 devices only)
Comparator_A+
UCA0CTL0
060h
USCI_A0 IrDA receive control
UCA0IRRCTL
05Fh
USCI_A0 IrDA transmit control
UCA0IRTCTL
05Eh
USCI_A0 auto baud rate control
UCA0ABCTL
05Dh
ADC analog enable 0
ADC10AE0
04Ah
ADC analog enable 1
ADC10AE1
04Bh
ADC data transfer control register 1
ADC10DTC1
049h
ADC data transfer control register 0
ADC10DTC0
048h
CAPD
05Bh
CACTL2
05Ah
Comparator_A+ port disable
Comparator_A+ control 2
Comparator_A+ control 1
Basic Clock System+
Port P3
(28-pin PW and 32-pin RHB only)
CACTL1
059h
Basic clock system control 3
BCSCTL3
053h
Basic clock system control 2
BCSCTL2
058h
Basic clock system control 1
BCSCTL1
057h
DCO clock frequency control
DCOCTL
056h
Port P3 selection 2. pin
P3SEL2
043h
Port P3 resistor enable
P3REN
010h
Port P3 selection
P3SEL
01Bh
Port P3 direction
P3DIR
01Ah
Port P3 output
P3OUT
019h
P3IN
018h
Port P3 input
Port P2
Port P2 selection 2
P2SEL2
042h
Port P2 resistor enable
P2REN
02Fh
Port P2 selection
P2SEL
02Eh
Port P2 interrupt enable
P2IE
02Dh
Port P2 interrupt edge select
P2IES
02Ch
Port P2 interrupt flag
P2IFG
02Bh
Port P2 direction
P2DIR
02Ah
Port P2 output
P2OUT
029h
P2IN
028h
Port P2 input
18
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Table 15. Peripherals With Byte Access (continued)
REGISTER
NAME
OFFSET
Port P1 selection 2
P1SEL2
041h
Port P1 resistor enable
P1REN
027h
Port P1 selection
P1SEL
026h
MODULE
Port P1
REGISTER DESCRIPTION
Port P1 interrupt enable
Special Function
P1IE
025h
Port P1 interrupt edge select
P1IES
024h
Port P1 interrupt flag
P1IFG
023h
Port P1 direction
P1DIR
022h
Port P1 output
P1OUT
021h
Port P1 input
P1IN
020h
SFR interrupt flag 2
IFG2
003h
SFR interrupt flag 1
IFG1
002h
SFR interrupt enable 2
IE2
001h
SFR interrupt enable 1
IE1
000h
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
19
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Absolute Maximum Ratings (1)
Voltage applied at VCC to VSS
–0.3 V to 4.1 V
Voltage applied to any pin (2)
–0.3 V to VCC + 0.3 V
±2 mA
Diode current at any device pin
Storage temperature range, Tstg
(3)
Unprogrammed device
–55°C to 150°C
Programmed device
–40°C to 85°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is
applied to the TEST pin when blowing the JTAG fuse.
Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow
temperatures not higher than classified on the device label on the shipping boxes or reels.
(1)
(2)
(3)
Recommended Operating Conditions
MIN
VCC
Supply voltage
VSS
Supply voltage
TA
Operating free-air temperature
(1)
(2)
MAX
During program execution
1.8
3.6
During flash
programming/erase
2.2
3.6
I version
–40
85
VCC = 1.8 V,
Duty cycle = 50% ± 10%
dc
6
VCC = 2.7 V,
Duty cycle = 50% ± 10%
dc
12
VCC = 3.3 V,
Duty cycle = 50% ± 10%
dc
16
0
Processor frequency (maximum MCLK frequency using the
USART module) (1) (2)
fSYSTEM
NOM
UNIT
V
V
°C
MHz
The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the
specified maximum frequency.
Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.
Legend :
System Frequency - MHz
16 MHz
Supply voltage range,
during flash memory
programming
12 MHz
Supply voltage range,
during program execution
6 MHz
1.8 V
Note:
2.7 V
2.2 V
Supply Voltage - V
3.3 V 3.6 V
Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC
of 2.2 V.
Figure 1. Safe Operating Area
20
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Electrical Characteristics
Active Mode Supply Current Into VCC Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2)
PARAMETER
Active mode (AM)
current at 1 MHz
IAM,1MHz
(1)
(2)
TEST CONDITIONS
TA
fDCO = fMCLK = fSMCLK = 1 MHz,
fACLK = 0 Hz,
Program executes in flash,
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
CPUOFF = 0, SCG0 = 0, SCG1 = 0,
OSCOFF = 0
VCC
MIN
TYP
2.2 V
230
3V
330
MAX
UNIT
µA
420
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external
load capacitance is chosen to closely match the required 9 pF.
Typical Characteristics, Active Mode Supply Current (Into VCC)
5.0
4.0
Active Mode Current − mA
Active Mode Current − mA
f DCO = 16 MHz
4.0
3.0
f DCO = 12 MHz
2.0
f DCO = 8 MHz
1.0
TA = 85 °C
3.0
TA = 25 °C
VCC = 3 V
2.0
TA = 85 °C
TA = 25 °C
1.0
f DCO = 1 MHz
0.0
1.5
2.0
2.5
3.0
3.5
VCC = 2.2 V
4.0
VCC − Supply Voltage − V
Figure 2. Active Mode Current vs VCC, TA = 25°C
Copyright © 2011, Texas Instruments Incorporated
0.0
0.0
4.0
8.0
12.0
16.0
f DCO − DCO Frequency − MHz
Figure 3. Active Mode Current vs DCO Frequency
Submit Documentation Feedback
21
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Low-Power Mode Supply Currents (Into VCC) Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
TA
VCC
Low-power mode 0
(LPM0) current (3)
fMCLK = 0 MHz,
fSMCLK = fDCO = 1 MHz,
fACLK = 32768 Hz,
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
CPUOFF = 1, SCG0 = 0, SCG1 = 0,
OSCOFF = 0
25°C
2.2 V
56
µA
ILPM2
Low-power mode 2
(LPM2) current (4)
fMCLK = fSMCLK = 0 MHz,
fDCO = 1 MHz,
fACLK = 32768 Hz,
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
CPUOFF = 1, SCG0 = 0, SCG1 = 1,
OSCOFF = 0
25°C
2.2 V
22
µA
ILPM3,LFXT1
Low-power mode 3
(LPM3) current (4)
fDCO = fMCLK = fSMCLK = 0 MHz,
fACLK = 32768 Hz,
CPUOFF = 1, SCG0 = 1, SCG1 = 1,
OSCOFF = 0
25°C
2.2 V
0.7
1.5
µA
ILPM3,VLO
Low-power mode 3
current, (LPM3) (4)
fDCO = fMCLK = fSMCLK = 0 MHz,
fACLK from internal LF oscillator (VLO),
CPUOFF = 1, SCG0 = 1, SCG1 = 1,
OSCOFF = 0
25°C
2.2 V
0.5
0.7
µA
0.5
ILPM4
fDCO = fMCLK = fSMCLK = 0 MHz,
fACLK = 0 Hz,
CPUOFF = 1, SCG0 = 1, SCG1 = 1,
OSCOFF = 1
0.1
Low-power mode 4
(LPM4) current (5)
0.8
1.7
ILPM0,1MHz
(1)
(2)
(3)
(4)
(5)
TEST CONDITIONS
MIN
(2)
TYP
25°C
2.2 V
85°C
MAX
UNIT
µA
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external
load capacitance is chosen to closely match the required 9 pF.
Current for brownout and WDT clocked by SMCLK included.
Current for brownout and WDT clocked by ACLK included.
Current for brownout included.
Typical Characteristics, Low-Power Mode Supply Currents
3.00
2.50
2.75
2.25
ILPM4 – Low-Power Mode Current – µA
ILPM3 – Low-Power Mode Current – µA
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
2.50
2.25
2.00
1.75
1.50
Vcc = 3.6 V
1.25
Vcc = 3 V
1.00
Vcc = 2.2 V
0.75
0.50
Vcc = 1.8 V
0.25
0.00
-40
-20
0
20
40
60
TA – Temperature – °C
Figure 4. LPM3 Current vs Temperature
22
Submit Documentation Feedback
80
2.00
1.75
1.50
1.25
Vcc = 3.6 V
1.00
Vcc = 3 V
0.75
Vcc = 2.2 V
0.50
0.25
0.00
-40
Vcc = 1.8 V
-20
0
20
40
60
80
TA – Temperature – °C
Figure 5. LPM4 Current vs Temperature
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Schmitt-Trigger Inputs, Ports Px
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIT+
Positive-going input threshold voltage
VIT–
Negative-going input threshold voltage
Vhys
Input voltage hysteresis (VIT+ – VIT–)
VCC
MIN
RPull
Pullup/pulldown resistor
CI
Input capacitance
VIN = VSS or VCC
MAX
0.45 VCC
0.75 VCC
1.35
2.25
3V
For pullup: VIN = VSS
For pulldown: VIN = VCC
TYP
UNIT
V
0.25 VCC
0.55 VCC
3V
0.75
1.65
3V
0.3
1
V
3V
20
50
kΩ
35
V
5
pF
Leakage Current, Ports Px
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Ilkg(Px.y)
(1)
(2)
TEST CONDITIONS
VCC
(1) (2)
High-impedance leakage current
MIN
3V
MAX
UNIT
±50
nA
The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is
disabled.
Outputs, Ports Px
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
VOH
High-level output voltage
I(OHmax) = –6 mA (1)
3V
VCC – 0.3
V
VOL
Low-level output voltage
I(OLmax) = 6 mA (1)
3V
VSS + 0.3
V
(1)
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop
specified.
Output Frequency, Ports Px
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
fPx.y
Port output frequency
(with load)
Px.y, CL = 20 pF, RL = 1 kΩ
fPort_CLK
Clock output frequency
Px.y, CL = 20 pF (2)
(1)
(2)
(1) (2)
VCC
MIN
TYP
MAX
UNIT
3V
12
MHz
3V
16
MHz
A resistive divider with two 0.5-kΩ resistors between VCC and VSS is used as load. The output is connected to the center tap of the
divider.
The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
23
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Typical Characteristics, Outputs
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
50
VCC = 2.2 V
P1.7
TA = 25°C
25
TA = 85°C
20
15
10
5
I OL − Typical Low-Level Output Current − mA
I OL − Typical Low-Level Output Current − mA
30
0
VCC = 3 V
P1.7
40
TA = 85°C
30
20
10
0
0
0.5
1
1.5
2
2.5
0
VOL − Low-Level Output Voltage − V
1
1.5
2
2.5
3
Figure 6.
Figure 7.
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
3.5
0
VCC = 2.2 V
P1.7
I OH − Typical High-Level Output Current − mA
I OH − Typical High-Level Output Current − mA
0.5
VOL − Low-Level Output Voltage − V
0
−5
−10
−15
TA = 85°C
−20
TA = 25°C
−25
0
0.5
VCC = 3 V
P1.7
−10
−20
−30
TA = 85°C
−40
TA = 25°C
−50
1
1.5
2
VOH − High-Level Output Voltage − V
Figure 8.
24
TA = 25°C
Submit Documentation Feedback
2.5
0
0.5
1
1.5
2
2.5
3
3.5
VOH − High-Level Output Voltage − V
Figure 9.
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Pin-Oscillator Frequency – Ports Px
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
foP1.x
Port output oscillation frequency
foP2.x
Port output oscillation frequency
foP2.6/7
Port output oscillation frequency
foP3.x
(1)
(2)
Port output oscillation frequency
P1.y, CL = 10 pF, RL = 100 kΩ
VCC
MIN
(1) (2)
3V
P1.y, CL = 20 pF, RL = 100 kΩ (1) (2)
P2.0 to P2.5, CL = 10 pF, RL = 100 kΩ (1) (2)
TYP
MAX
UNIT
1400
kHz
900
1800
P2.0 to P2.5, CL = 20 pF, RL = 100 kΩ (1) (2)
3V
1000
P2.6 and P2.7, CL = 20 pF, RL = 100
kΩ (1) (2)
3V
700
P3.y, CL = 10 pF, RL = 100 kΩ
(1) (2)
1800
P3.y, CL = 20 pF, RL = 100 kΩ
(1) (2)
1000
kHz
kHz
kHz
A resistive divider with two 0.5-kΩ resistors between VCC and VSS is used as load. The output is connected to the center tap of the
divider.
The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
Typical Characteristics, Pin-Oscillator Frequency
TYPICAL OSCILLATING FREQUENCY
vs
LOAD CAPACITANCE
TYPICAL OSCILLATING FREQUENCY
vs
LOAD CAPACITANCE
1.50
VCC = 3.0 V
1.35
1.20
1.05
P1.y
0.90
P2.0 ... P2.5
0.75
P2.6, P2.7
0.60
0.45
0.30
0.15
0.00
fosc − Typical Oscillation Frequency − MHz
fosc − Typical Oscillation Frequency − MHz
1.50
VCC = 2.2 V
1.35
1.20
1.05
P1.y
0.90
P2.0 ... P2.5
0.75
P2.6, P2.7
0.60
0.45
0.30
0.15
0.00
10
50
100
CLOAD − External Capacitance − pF
A. One output active at a time.
10
50
100
CLOAD − External Capacitance − pF
A. One output active at a time.
Figure 10.
Copyright © 2011, Texas Instruments Incorporated
Figure 11.
Submit Documentation Feedback
25
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
POR/Brownout Reset (BOR) (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
VCC(start)
See Figure 12
dVCC/dt ≤ 3 V/s
0.7 ×
V(B_IT--)
V(B_IT–)
See Figure 12 through Figure 14
dVCC/dt ≤ 3 V/s
1.35
V
Vhys(B_IT–)
See Figure 12
dVCC/dt ≤ 3 V/s
140
mV
td(BOR)
See Figure 12
2000
µs
t(reset)
Pulse length needed at RST/NMI pin to
accepted reset internally
(1)
2.2 V
2
V
µs
The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT–) +
Vhys(B_IT–)is ≤ 1.8 V.
VCC
Vhys(B_IT−)
V(B_IT−)
VCC(start)
1
0
t d(BOR)
Figure 12. POR/Brownout Reset (BOR) vs Supply Voltage
26
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Typical Characteristics, POR/Brownout Reset (BOR)
VCC
3V
2
VCC(drop) − V
VCC = 3 V
Typical Conditions
t pw
1.5
1
VCC(drop)
0.5
0
0.001
1
1000
1 ns
t pw − Pulse Width − µs
1 ns
t pw − Pulse Width − µs
Figure 13. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal
VCC
2
t pw
3V
VCC(drop) − V
VCC = 3 V
1.5
Typical Conditions
1
VCC(drop)
0.5
0
0.001
t f = tr
1
t pw − Pulse Width − µs
1000
tf
tr
t pw − Pulse Width − µs
Figure 14. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
27
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
DCO Frequency
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
Supply voltage
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
RSELx < 14
1.8
3.6
RSELx = 14
2.2
3.6
RSELx = 15
3
3.6
0.14
MHz
0.17
MHz
V
fDCO(0,0)
DCO frequency (0, 0)
RSELx = 0, DCOx = 0, MODx = 0
3V
0.06
fDCO(0,3)
DCO frequency (0, 3)
RSELx = 0, DCOx = 3, MODx = 0
3V
0.07
fDCO(1,3)
DCO frequency (1, 3)
RSELx = 1, DCOx = 3, MODx = 0
3V
0.15
MHz
fDCO(2,3)
DCO frequency (2, 3)
RSELx = 2, DCOx = 3, MODx = 0
3V
0.21
MHz
fDCO(3,3)
DCO frequency (3, 3)
RSELx = 3, DCOx = 3, MODx = 0
3V
0.30
MHz
fDCO(4,3)
DCO frequency (4, 3)
RSELx = 4, DCOx = 3, MODx = 0
3V
0.41
MHz
fDCO(5,3)
DCO frequency (5, 3)
RSELx = 5, DCOx = 3, MODx = 0
3V
0.58
MHz
fDCO(6,3)
DCO frequency (6, 3)
RSELx = 6, DCOx = 3, MODx = 0
3V
0.54
1.06
MHz
fDCO(7,3)
DCO frequency (7, 3)
RSELx = 7, DCOx = 3, MODx = 0
3V
0.80
1.50
MHz
fDCO(8,3)
DCO frequency (8, 3)
RSELx = 8, DCOx = 3, MODx = 0
3V
1.6
MHz
fDCO(9,3)
DCO frequency (9, 3)
RSELx = 9, DCOx = 3, MODx = 0
3V
2.3
MHz
fDCO(10,3)
DCO frequency (10, 3)
RSELx = 10, DCOx = 3, MODx = 0
3V
3.4
MHz
fDCO(11,3)
DCO frequency (11, 3)
RSELx = 11, DCOx = 3, MODx = 0
3V
4.25
fDCO(12,3)
DCO frequency (12, 3)
RSELx = 12, DCOx = 3, MODx = 0
3V
4.30
fDCO(13,3)
DCO frequency (13, 3)
RSELx = 13, DCOx = 3, MODx = 0
3V
6.00
fDCO(14,3)
DCO frequency (14, 3)
RSELx = 14, DCOx = 3, MODx = 0
3V
8.60
fDCO(15,3)
DCO frequency (15, 3)
RSELx = 15, DCOx = 3, MODx = 0
3V
fDCO(15,7)
DCO frequency (15, 7)
RSELx = 15, DCOx = 7, MODx = 0
3V
SRSEL
Frequency step between
range RSEL and RSEL+1
SRSEL = fDCO(RSEL+1,DCO)/fDCO(RSEL,DCO)
3V
1.35
ratio
SDCO
Frequency step between
tap DCO and DCO+1
SDCO = fDCO(RSEL,DCO+1)/fDCO(RSEL,DCO)
3V
1.08
ratio
Measured at SMCLK output
3V
50
Duty cycle
28
Submit Documentation Feedback
MHz
7.30
MHz
9.60
MHz
13.9
MHz
12.0
18.5
MHz
16.0
26.0
MHz
7.8
%
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Calibrated DCO Frequencies, Tolerance
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
VCC
MIN
TYP
MAX
UNIT
1-MHz tolerance over
temperature (1)
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
calibrated at 30°C and 3 V
0°C to 85°C
3V
-3
±0.5
3
%
1-MHz tolerance over VCC
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
calibrated at 30°C and 3 V
30°C
1.8 V to 3.6 V
-3
±2
3
%
1-MHz tolerance overall
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
calibrated at 30°C and 3 V
-40°C to 85°C
1.8 V to 3.6 V
-6
±3
6
%
8-MHz tolerance over
temperature (1)
BCSCTL1 = CALBC1_8MHZ,
DCOCTL = CALDCO_8MHZ,
calibrated at 30°C and 3 V
0°C to 85°C
3V
-3
±0.5
3
%
8-MHz tolerance over VCC
BCSCTL1 = CALBC1_8MHZ,
DCOCTL = CALDCO_8MHZ,
calibrated at 30°C and 3 V
30°C
2.2 V to 3.6 V
-3
±2
3
%
8-MHz tolerance overall
BCSCTL1 = CALBC1_8MHZ,
DCOCTL = CALDCO_8MHZ,
calibrated at 30°C and 3 V
-40°C to 85°C
2.2 V to 3.6 V
-6
±3
6
%
12-MHz tolerance over
temperature (1)
BCSCTL1 = CALBC1_12MHZ,
DCOCTL = CALDCO_12MHZ,
calibrated at 30°C and 3 V
0°C to 85°C
3V
-3
±0.5
3
%
12-MHz tolerance over VCC
BCSCTL1 = CALBC1_12MHZ,
DCOCTL = CALDCO_12MHZ,
calibrated at 30°C and 3 V
30°C
2.7 V to 3.6 V
-3
±2
3
%
12-MHz tolerance overall
BCSCTL1 = CALBC1_12MHZ,
DCOCTL = CALDCO_12MHZ,
calibrated at 30°C and 3 V
-40°C to 85°C
2.7 V to 3.6 V
-6
±3
6
%
16-MHz tolerance over
temperature (1)
BCSCTL1 = CALBC1_16MHZ,
DCOCTL = CALDCO_16MHZ,
calibrated at 30°C and 3 V
0°C to 85°C
3V
-3
±0.5
3
%
16-MHz tolerance over VCC
BCSCTL1 = CALBC1_16MHZ,
DCOCTL = CALDCO_16MHZ,
calibrated at 30°C and 3 V
30°C
3.3 V to 3.6 V
-3
±2
3
%
16-MHz tolerance overall
BCSCTL1 = CALBC1_16MHZ,
DCOCTL = CALDCO_16MHZ,
calibrated at 30°C and 3 V
-40°C to 85°C
3.3 V to 3.6 V
-6
±3
6
%
(1)
This is the frequency change from the measured frequency at 30°C over temperature.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
29
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Wake-Up From Lower-Power Modes (LPM3/4)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
tDCO,LPM3/4
DCO clock wake-up time from
LPM3/4 (1)
tCPU,LPM3/4
CPU wake-up time from LPM3/4 (2)
(1)
(2)
VCC
BCSCTL1 = CALBC1_1MHz,
DCOCTL = CALDCO_1MHz
MIN
3V
TYP
MAX
UNIT
1.5
µs
1/fMCLK +
tClock,LPM3/4
The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge
observable externally on a clock pin (MCLK or SMCLK).
Parameter applicable only if DCOCLK is used for MCLK.
Typical Characteristics, DCO Clock Wake-Up Time From LPM3/4
DCO Wake Time − µs
10.00
RSELx = 0...11
RSELx = 12...15
1.00
0.10
0.10
1.00
10.00
DCO Frequency − MHz
Figure 15. DCO Wake-Up Time From LPM3 vs DCO Frequency
30
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Crystal Oscillator, XT1, Low-Frequency Mode (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
fLFXT1,LF
LFXT1 oscillator crystal
frequency, LF mode 0, 1
fLFXT1,LF,logic
LFXT1 oscillator logic level
square wave input frequency, XTS = 0, XCAPx = 0, LFXT1Sx = 3
LF mode
OALF
Oscillation allowance for
LF crystals
CL,eff
Integrated effective load
capacitance, LF mode (2)
XTS = 0, LFXT1Sx = 0 or 1
10000
32768
200
1
XTS = 0, XCAPx = 1
5.5
XTS = 0, XCAPx = 2
8.5
XTS = 0, XCAPx = 3
11
XTS = 0, XCAPx = 0, LFXT1Sx = 3 (4)
UNIT
Hz
50000
Hz
kΩ
XTS = 0, XCAPx = 0
Oscillator fault frequency,
LF mode (3)
(4)
1.8 V to 3.6 V
XTS = 0, LFXT1Sx = 0,
fLFXT1,LF = 32768 Hz, CL,eff = 12 pF
fFault,LF
MAX
32768
500
LF mode
(3)
TYP
XTS = 0, LFXT1Sx = 0,
fLFXT1,LF = 32768 Hz, CL,eff = 6 pF
Duty cycle
(2)
MIN
1.8 V to 3.6 V
XTS = 0, Measured at P2.0/ACLK,
fLFXT1,LF = 32768 Hz
(1)
VCC
2.2 V
30
2.2 V
10
50
pF
70
%
10000
Hz
To improve EMI on the XT1 oscillator, the following guidelines should be observed.
(a) Keep the trace between the device and the crystal as short as possible.
(b) Design a good ground plane around the oscillator pins.
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
(g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This
signal is no longer required for the serial programming adapter.
Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a
correct setup, the effective load capacitance should always match the specification of the used crystal.
Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies in between might set the flag.
Measured with logic-level input frequency but also applies to operation with crystals.
Internal Very-Low-Power Low-Frequency Oscillator (VLO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TA
VCC
MIN
TYP
MAX
fVLO
VLO frequency
PARAMETER
-40°C to 85°C
3V
4
12
20
dfVLO/dT
VLO frequency temperature drift
-40°C to 85°C
3V
25°C
1.8 V to 3.6 V
dfVLO/dVCC VLO frequency supply voltage drift
UNIT
kHz
0.5
%/°C
4
%/V
Timer_A
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
fTA
Timer_A input clock frequency
SMCLK, duty cycle = 50% ± 10%
tTA,cap
Timer_A capture timing
TA0, TA1
Copyright © 2011, Texas Instruments Incorporated
VCC
MIN
TYP
MAX
fSYSTEM
3V
20
Submit Documentation Feedback
UNIT
MHz
ns
31
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
USCI (UART Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
SMCLK, duty cycle = 50% ± 10%
fUSCI
USCI input clock frequency
fmax,BITCLK
Maximum BITCLK clock frequency
(equals baudrate in MBaud) (1)
3V
2
tτ
UART receive deglitch time (2)
3V
50
(1)
(2)
TYP
MAX
fSYSTEM
UNIT
MHz
MHz
100
600
ns
The DCO wake-up time must be considered in LPM3/4 for baud rates above 1 MHz.
Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are
correctly recognized, their width should exceed the maximum specification of the deglitch time.
USCI (SPI Master Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 16 and
Figure 17)
PARAMETER
TEST CONDITIONS
VCC
MIN
SMCLK, duty cycle = 50% ± 10%
TYP
MAX
UNIT
fSYSTEM
MHz
fUSCI
USCI input clock frequency
tSU,MI
SOMI input data setup time
3V
75
ns
tHD,MI
SOMI input data hold time
3V
0
ns
tVALID,MO
SIMO output data valid time
UCLK edge to SIMO valid, CL = 20 pF
3V
20
ns
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tSU,MI
tHD,MI
SOMI
tHD,MO
tVALID,MO
SIMO
Figure 16. SPI Master Mode, CKPH = 0
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tSU,MI
tHD,MI
SOMI
tHD,MO
tVALID,MO
SIMO
Figure 17. SPI Master Mode, CKPH = 1
32
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
USCI (SPI Slave Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 18 and
Figure 19)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
STE lead time, STE low to clock
3V
tSTE,LAG
STE lag time, Last clock to STE high
3V
tSTE,ACC
STE access time, STE low to SOMI data out
3V
50
ns
tSTE,DIS
STE disable time, STE high to SOMI high
impedance
3V
50
ns
tSU,SI
SIMO input data setup time
3V
15
ns
tHD,SI
SIMO input data hold time
3V
10
ns
tVALID,SO
UCLK edge to SOMI valid,
CL = 20 pF
SOMI output data valid time
tSTE,LEAD
3V
50
UNIT
tSTE,LEAD
ns
10
ns
50
75
ns
tSTE,LAG
STE
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tSU,SI
tLO/HI
tHD,SI
SIMO
tHD,SO
tVALID,SO
tSTE,ACC
tSTE,DIS
SOMI
Figure 18. SPI Slave Mode, CKPH = 0
tSTE,LAG
tSTE,LEAD
STE
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tHD,SI
tSU,SI
SIMO
tSTE,ACC
tHD,MO
tVALID,SO
tSTE,DIS
SOMI
Figure 19. SPI Slave Mode, CKPH = 1
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
33
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
USCI (I2C Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 20)
PARAMETER
TEST CONDITIONS
fUSCI
USCI input clock frequency
fSCL
SCL clock frequency
VCC
MIN
3V
0
TYP
SMCLK, duty cycle = 50% ± 10%
fSCL ≤ 100 kHz
MAX
UNIT
fSYSTEM
MHz
400
kHz
4.0
3V
µs
tHD,STA
Hold time (repeated) START
tSU,STA
Setup time for a repeated START
tHD,DAT
Data hold time
3V
0
tSU,DAT
Data setup time
3V
250
ns
tSU,STO
Setup time for STOP
3V
4.0
µs
tSP
Pulse width of spikes suppressed by
input filter
3V
50
fSCL > 100 kHz
fSCL ≤ 100 kHz
4.7
3V
fSCL > 100 kHz
tSU,STA
tHD,STA
0.6
µs
0.6
tHD,STA
ns
100
600
ns
tBUF
SDA
tLOW
tHIGH
tSP
SCL
tSU,DAT
tSU,STO
tHD,DAT
Figure 20. I2C Mode Timing
Comparator_A+
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
I(DD) (1)
CAON = 1, CARSEL = 0, CAREF = 0
3V
45
µA
I(Refladder/
CAON = 1, CARSEL = 0, CAREF = 1/2/3,
No load at CA0 and CA1
3V
45
µA
Common–mode input voltage
CAON = 1
3V
V(Ref025)
(Voltage at 0.25 VCC node) / VCC
PCA0 = 1, CARSEL = 1, CAREF = 1,
No load at CA0 and CA1
3V
0.24
V(Ref050)
(Voltage at 0.5 VCC node) / VCC
PCA0 = 1, CARSEL = 1, CAREF = 2,
No load at CA0 and CA1
3V
0.48
V(RefVT)
See Figure 21 and Figure 22
PCA0 = 1, CARSEL = 1, CAREF = 3,
No load at CA0 and CA1, TA = 85°C
3V
490
mV
3V
±10
mV
3V
0.7
mV
120
ns
1.5
µs
RefDiode)
V(IC)
(2)
V(offset)
Offset voltage
Vhys
Input hysteresis
t(response)
Response time
(low-high and high-low)
(1)
(2)
34
CAON = 1
TA = 25°C, Overdrive 10 mV,
Without filter: CAF = 0
TA = 25°C, Overdrive 10 mV,
With filter: CAF = 1
0
VCC-1
V
3V
The leakage current for the Comparator_A+ terminals is identical to Ilkg(Px.y) specification.
The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The
two successive measurements are then summed together.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Typical Characteristics – Comparator_A+
650
650
VCC = 2.2 V
V(RefVT) – Reference Voltage – mV
V(RefVT) – Reference Voltage – mV
VCC = 3 V
600
Typical
550
500
450
400
-45
600
Typical
550
500
450
400
-25
-5
15
35
55
75
TA – Free-Air Temperature – °C
95
-45
115
Figure 21. V(RefVT) vs Temperature, VCC = 3 V
-25
-5
15
35
55
75
TA – Free-Air Temperature – °C
95
115
Figure 22. V(RefVT) vs Temperature, VCC = 2.2 V
Short Resistance – kW
100
VCC = 1.8 V
VCC = 2.2 V
VCC = 3 V
10
VCC = 3.6 V
1
0
0.2
0.4
0.6
0.8
1
VIN/VCC – Normalized Input Voltage – V/V
Figure 23. Short Resistance vs VIN/VCC
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
35
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
10-Bit ADC, Power Supply and Input Range Conditions (MSP430G2x53 Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
VCC
TEST CONDITIONS
Analog supply voltage
VAx
Analog input voltage
IADC10
IREF+
VCC
VSS = 0 V
(2)
ADC10 supply current
TA
(3)
Reference supply current,
reference buffer disabled (4)
All Ax terminals, Analog inputs
selected in ADC10AE register
fADC10CLK = 5.0 MHz,
ADC10ON = 1, REFON = 0,
ADC10SHT0 = 1, ADC10SHT1 = 0,
ADC10DIV = 0
fADC10CLK = 5.0 MHz,
ADC10ON = 0, REF2_5V = 0,
REFON = 1, REFOUT = 0
fADC10CLK = 5.0 MHz,
ADC10ON = 0, REF2_5V = 1,
REFON = 1, REFOUT = 0
3V
25°C
3V
MIN
TYP
MAX
UNIT
2.2
3.6
V
0
VCC
V
0.6
mA
0.25
25°C
3V
mA
0.25
IREFB,0
fADC10CLK = 5.0 MHz,
Reference buffer supply
ADC10ON = 0, REFON = 1,
current with ADC10SR = 0 (4) REF2_5V = 0, REFOUT = 1,
ADC10SR = 0
25°C
3V
1.1
mA
IREFB,1
fADC10CLK = 5.0 MHz,
Reference buffer supply
ADC10ON = 0, REFON = 1,
current with ADC10SR = 1 (4) REF2_5V = 0, REFOUT = 1,
ADC10SR = 1
25°C
3V
0.5
mA
CI
Input capacitance
Only one terminal Ax can be selected
at one time
25°C
3V
RI
Input MUX ON resistance
0 V ≤ VAx ≤ VCC
25°C
3V
(1)
(2)
(3)
(4)
36
27
1000
pF
Ω
The leakage current is defined in the leakage current table with Px.y/Ax parameter.
The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results.
The internal reference supply current is not included in current consumption parameter IADC10.
The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
10-Bit ADC, Built-In Voltage Reference (MSP430G2x53 Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC,REF+
IVREF+ ≤ 1 mA, REF2_5V = 0
Positive built-in reference
analog supply voltage range IVREF+ ≤ 1 mA, REF2_5V = 1
VREF+
Positive built-in reference
voltage
ILD,VREF+
Maximum VREF+ load
current
VREF+ load regulation
IVREF+ ≤ IVREF+max, REF2_5V = 0
IVREF+ ≤ IVREF+max, REF2_5V = 1
VCC
IVREF+ = 500 µA ± 100 µA,
Analog input voltage VAx ≉ 1.25 V,
REF2_5V = 1
TYP
MAX
2.2
3V
UNIT
V
2.9
3V
IVREF+ = 500 µA ± 100 µA,
Analog input voltage VAx ≉ 0.75 V,
REF2_5V = 0
MIN
1.41
1.5
1.59
2.35
2.5
2.65
±1
V
mA
±2
3V
LSB
±2
VREF+ load regulation
response time
IVREF+ = 100 µA→900 µA,
VAx ≉ 0.5 × VREF+,
Error of conversion result ≤ 1 LSB,
ADC10SR = 0
3V
400
ns
CVREF+
Maximum capacitance at
pin VREF+
IVREF+ ≤ ±1 mA, REFON = 1, REFOUT = 1
3V
100
pF
TCREF+
Temperature coefficient
IVREF+ = const with 0 mA ≤ IVREF+ ≤ 1 mA
3V
±100
ppm/
°C
tREFON
Settling time of internal
reference voltage to 99.9%
VREF
IVREF+ = 0.5 mA, REF2_5V = 0,
REFON = 0 → 1
3.6 V
30
µs
tREFBURST
Settling time of reference
buffer to 99.9% VREF
IVREF+ = 0.5 mA,
REF2_5V = 1, REFON = 1,
REFBURST = 1, ADC10SR = 0
3V
2
µs
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
37
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
10-Bit ADC, External Reference (1) (MSP430G2x53 Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VEREF+
TEST CONDITIONS
Positive external reference input
voltage range (2)
1.4
3
0
1.2
V
1.4
VCC
V
Differential external reference
input voltage range,
ΔVEREF = VEREF+ – VEREF–
VEREF+ > VEREF–
(1)
(2)
(3)
(4)
(5)
UNIT
VEREF– ≤ VEREF+ ≤ VCC – 0.15 V,
SREF1 = 1, SREF0 = 1 (3)
ΔVEREF
Static input current into VEREF–
MAX
VCC
VEREF+ > VEREF–
IVEREF–
TYP
1.4
Negative external reference input
voltage range (4)
Static input current into VEREF+
MIN
VEREF+ > VEREF–,
SREF1 = 1, SREF0 = 0
VEREF–
IVEREF+
VCC
V
(5)
0 V ≤ VEREF+ ≤ VCC,
SREF1 = 1, SREF0 = 0
3V
±1
0 V ≤ VEREF+ ≤ VCC – 0.15 V ≤ 3 V,
SREF1 = 1, SREF0 = 1 (3)
3V
0
0 V ≤ VEREF– ≤ VCC
3V
±1
µA
µA
The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the
dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.
The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply
current IREFB. The current consumption can be limited to the sample and conversion period with REBURST = 1.
The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with
reduced accuracy requirements.
10-Bit ADC, Timing Parameters (MSP430G2x53 Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
ADC10SR = 0
fADC10CLK
ADC10 input clock
frequency
For specified performance of
ADC10 linearity parameters
fADC10OSC
ADC10 built-in oscillator
frequency
ADC10DIVx = 0, ADC10SSELx = 0,
fADC10CLK = fADC10OSC
ADC10 built-in oscillator, ADC10SSELx = 0,
fADC10CLK = fADC10OSC
tCONVERT
Conversion time
tADC10ON
Turn-on settling time of
the ADC
(1)
ADC10SR = 1
VCC
MIN
TYP
MAX
0.45
6.3
0.45
1.5
3V
3.7
6.3
3V
2.06
3.51
3V
UNIT
MHz
MHz
µs
13 ×
ADC10DIV ×
1/fADC10CLK
fADC10CLK from ACLK, MCLK, or SMCLK:
ADC10SSELx ≠ 0
(1)
100
ns
The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already
settled.
10-Bit ADC, Linearity Parameters (MSP430G2x53 Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
MAX
UNIT
EI
Integral linearity error
PARAMETER
3V
±1
LSB
ED
Differential linearity error
3V
±1
LSB
EO
Offset error
3V
±1
LSB
EG
Gain error
3V
±1.1
±2
LSB
ET
Total unadjusted error
3V
±2
±5
LSB
38
Submit Documentation Feedback
TEST CONDITIONS
Source impedance RS < 100 Ω
VCC
MIN
TYP
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
10-Bit ADC, Temperature Sensor and Built-In VMID (MSP430G2x53 Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
ISENSOR
Temperature sensor supply
current (1)
TCSENSOR
TEST CONDITIONS
VCC
REFON = 0, INCHx = 0Ah,
TA = 25°C
ADC10ON = 1, INCHx = 0Ah
(2)
60
3V
3.55
tSensor(sample)
ADC10ON = 1, INCHx = 0Ah,
Error of conversion result ≤ 1 LSB
3V
IVMID
Current into divider at channel 11
ADC10ON = 1, INCHx = 0Bh
3V
VMID
VCC divider at channel 11
ADC10ON = 1, INCHx = 0Bh,
VMID ≉ 0.5 × VCC
3V
tVMID(sample)
Sample time required if channel
11 is selected (5)
ADC10ON = 1, INCHx = 0Bh,
Error of conversion result ≤ 1 LSB
3V
(2)
(3)
(4)
(5)
TYP
3V
Sample time required if channel
10 is selected (3)
(1)
MIN
MAX
UNIT
µA
mV/°C
µs
30
(4)
µA
1.5
V
1220
ns
The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is
high). When REFON = 1, ISENSOR is included in IREF+. When REFON = 0, ISENSOR applies during conversion of the temperature sensor
input (INCH = 0Ah).
The following formula can be used to calculate the temperature sensor output voltage:
VSensor,typ = TCSensor (273 + T [°C] ) + VOffset,sensor [mV] or
VSensor,typ = TCSensor T [°C] + VSensor(TA = 0°C) [mV]
The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on).
No additional current is needed. The VMID is used during sampling.
The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.
Flash Memory
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST
CONDITIONS
VCC
MIN
TYP
MAX
UNIT
VCC(PGM/ERASE)
Program and erase supply voltage
2.2
3.6
V
fFTG
Flash timing generator frequency
257
476
kHz
IPGM
Supply current from VCC during program
2.2 V/3.6 V
1
5
mA
IERASE
Supply current from VCC during erase
2.2 V/3.6 V
1
7
mA
tCPT
Cumulative program time (1)
2.2 V/3.6 V
10
ms
tCMErase
Cumulative mass erase time
2.2 V/3.6 V
20
104
Program/erase endurance
ms
105
cycles
tRetention
Data retention duration
TJ = 25°C
tWord
Word or byte program time
(2)
30
tFTG
0
Block program time for first byte or word
(2)
25
tFTG
tBlock,
1-63
Block program time for each additional byte or
word
(2)
18
tFTG
tBlock,
End
Block program end-sequence wait time
(2)
6
tFTG
tMass Erase
Mass erase time
(2)
10593
tFTG
tSeg Erase
Segment erase time
(2)
4819
tFTG
tBlock,
(1)
(2)
100
years
The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming
methods: individual word/byte write and block write modes.
These values are hardwired into the Flash Controller's state machine (tFTG = 1/fFTG).
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
39
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
RAM
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
V(RAMh)
(1)
RAM retention supply voltage
TEST CONDITIONS
(1)
MIN
CPU halted
MAX
1.6
UNIT
V
This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should
happen during this supply voltage condition.
JTAG and Spy-Bi-Wire Interface
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
MAX
UNIT
fSBW
Spy-Bi-Wire input frequency
PARAMETER
2.2 V
0
20
MHz
tSBW,Low
Spy-Bi-Wire low clock pulse length
2.2 V
0.025
15
µs
tSBW,En
Spy-Bi-Wire enable time
(TEST high to acceptance of first clock edge (1))
2.2 V
1
µs
tSBW,Ret
Spy-Bi-Wire return to normal operation time
2.2 V
15
100
fTCK
TCK input frequency (2)
2.2 V
0
5
MHz
RInternal
Internal pulldown resistance on TEST
2.2 V
25
90
kΩ
(1)
(2)
TEST CONDITIONS
VCC
MIN
TYP
60
µs
Tools accessing the Spy-Bi-Wire interface need to wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high before
applying the first SBWCLK clock edge.
fTCK may be restricted to meet the timing requirements of the module selected.
JTAG Fuse (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC(FB)
Supply voltage during fuse-blow condition
VFB
Voltage level on TEST for fuse blow
IFB
Supply current into TEST during fuse blow
tFB
Time to blow fuse
(1)
40
TEST CONDITIONS
TA = 25°C
MIN
MAX
2.5
6
UNIT
V
7
V
100
mA
1
ms
Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible, and JTAG is switched to
bypass mode.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
PORT SCHEMATICS
Port P1 Pin Schematic: P1.0 to P1.2, Input/Output With Schmitt Trigger
To Comparator
From Comparator
To ADC10 *
INCHx = y *
CAPD.y
or ADC10AE0.y *
PxSEL2.y
PxSEL.y
PxDIR.y
From Timer
0
1
2
From USCI
3
1
Direction
0: Input
1: Output
PxSEL2.y
PxSEL.y
PxREN.y
0
1
1
0
1
PxSEL2.y
PxSEL.y
PxOUT.y
From Timer
DVSS
0
1
DVCC
1
0
1
2
0
Bus
Keeper
EN
3
TAx.y
TAxCLK
P1.0/TA0CLK/ACLK/
A0*/CA0
P1.1/TA0.0/UCA0RXD/
UCA0SOMI/A1*/CA1
P1.2/TA0.1/UCA0TXD/
UCA0SIMO/A2*/CA2
PxIN.y
EN
To Module
D
PxIE.y
PxIRQ.y
Q
EN
Set
PxIFG.y
PxSEL.y
PxIES.y
Interrupt
Edge
Select
* Note: MSP430G2x53 devices only. MSP430G2x13 devices have no ADC10.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
41
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Table 16. Port P1 (P1.0 to P1.2) Pin Functions
PIN NAME
(P1.x)
CONTROL BITS / SIGNALS (1)
x
FUNCTION
P1DIR.x
P1SEL.x
P1SEL2.x
ADC10AE.x
INCH.x=1 (2)
CAPD.y
P1.0/
P1.x (I/O)
I: 0; O: 1
0
0
0
0
TA0CLK/
TA0.TACLK
0
1
0
0
0
ACLK/
ACLK
1
1
0
0
0
0
(2)
A0 /
A0
X
X
X
1 (y = 0)
0
CA0/
CA0
X
X
X
0
1 (y = 0)
Pin Osc
Capacitive sensing
X
0
1
0
0
P1.1/
P1.x (I/O)
I: 0; O: 1
0
0
0
0
TA0.0/
TA0.0
1
1
0
0
0
TA0.CCI0A
0
1
0
0
0
UCA0RXD
from USCI
1
1
0
0
UCA0SOMI
0
UCA0RXD/
UCA0SOMI/
1
from USCI
1
1
0
A1 (2)/
A1
X
X
X
1 (y = 1)
0
CA1/
CA1
X
X
X
0
1 (y = 1)
Pin Osc
Capacitive sensing
P1.2/
P1.x (I/O)
TA0.1/
TA0.1
UCA0TXD/
UCA0SIMO/
2
X
0
1
0
0
I: 0; O: 1
0
0
0
0
1
1
0
0
0
TA0.CCI1A
0
1
0
0
0
UCA0TXD
from USCI
1
1
0
0
UCA0SIMO
from USCI
1
1
0
0
A2 (2)/
A2
X
X
X
1 (y = 2)
0
CA2/
CA2
X
X
X
0
1 (y = 2)
Pin Osc
Capacitive sensing
X
0
1
0
0
(1)
(2)
42
X = don't care
MSP430G2x53 devices only
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Port P1 Pin Schematic: P1.3, Input/Output With Schmitt Trigger
SREF2 *
To ADC10 VREF- *
VSS
0
1
To Comparator
from Comparator
To ADC10 *
INCHx = y *
CAPD.y
or ADC10AE0.y *
PxDIR.y
PxSEL2.y PxSEL.y
0,2,3
1
Direction
0: Input
1: Output
PxSEL2.y
PxSEL.y
PxREN.y
0
1
1
0
1
PxSEL2.y
PxSEL.y
DVSS
0
1
DVCC
PxOUT.y
0
From ADC10 *
1
1
2
From Comparator
Bus
Keeper
EN
3
P1.3/ADC10CLK*/CAOUT/
A3*/VREF-*/VEREF-*/CA3
TAx.y
TAxCLK
PxIN.y
EN
D
To Module
PxIE.y
PxIRQ.y
EN
Q
Set
PxIFG.y
PxSEL.y
PxIES.y
Interrupt
Edge
Select
* Note: MSP430G2x53 devices only. MSP430G2x13 devices have no ADC10.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
43
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Table 17. Port P1 (P1.3) Pin Functions
PIN NAME
(P1.x)
CONTROL BITS / SIGNALS (1)
x
FUNCTION
P1DIR.x
P1SEL.x
P1SEL2.x
ADC10AE.x
INCH.x=1 (2)
CAPD.y
P1.3/
P1.x (I/O)
I: 0; O: 1
0
0
0
0
ADC10CLK (2)/
ADC10CLK
1
1
0
0
0
A3 (2)/
A3
X
X
X
1 (y = 3)
0
0
VREF-
(2)
VREF-
X
X
X
1
VEREF- (2)/
VEREF-
X
X
X
1
0
CA3/
CA3
X
X
X
0
1 (y = 3)
Pin Osc
Capacitive sensing
X
0
1
0
0
(1)
(2)
44
/
3
X = don't care
MSP430G2x53 devices only
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Port P1 Pin Schematic: P1.4, Input/Output With Schmitt Trigger
From/To ADC10 Ref+ *
To Comparator
from Comparator
To ADC10 *
INCHx = y *
CAPD.y
or ADC10AE0.y *
PxDIR.y
PxSEL.y
0
1
Direction
0: Input
1: Output
PxSEL2.y
PxSEL.y
PxREN.y
0
1
1
PxSEL2.y
PxSEL.y
PxOUT.y
0
1
DVSS
DVCC
SMCLK
0
1
From Module
2
3
0
1
Bus
Keeper
EN
1
P1.4/SMCLK/TA0.2/A4*/
VREF+*/VEREF+*/CA4/TCK
TAx.y
TAxCLK
PxIN.y
EN
To Module
D
PxIE.y
PxIRQ.y
EN
Q
Set
PxIFG.y
PxSEL.y
PxIES.y
Interrupt
Edge
Select
From JTAG
To JTAG
* Note: MSP430G2x52 devices only. MSP430G2x12 devices have no ADC10.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
45
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Table 18. Port P1 (P1.4) Pin Functions
PIN NAME
(P1.x)
CONTROL BITS / SIGNALS (1)
x
FUNCTION
P1DIR.x
P1SEL.x
P1SEL2.x
ADC10AE.x
INCH.x=1 (2)
JTAG Mode
CAPD.y
I: 0; O: 1
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
P1.4/
P1.x (I/O)
SMCLK/
SMCLK
UCB0STE/
UCB0STE
from USCI
UCA0CLK/
UCA0CLK
from USCI
1
1
0
0
0
VREF+ (2)/
VREF+
X
X
X
1
0
0
VEREF+
X
X
X
1
0
0
A4 /
A4
X
X
X
1 (y = 4)
0
0
CA4
CA4
X
X
X
0
0
1 (y = 4)
TCK/
TCK
X
X
X
0
1
0
Pin Osc
Capacitive
sensing
X
0
1
0
0
0
VEREF+ (2)/
(2)
(1)
(2)
46
4
X = don't care
MSP430G2x53 devices only
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Port P1 Pin Schematic: P1.5 to P1.7, Input/Output With Schmitt Trigger
To Comparator
From Comparator
To ADC10 *
INCHx = y *
CAPD.y
ADC10AE0.y *
PxSEL2.y
PxSEL.y
PxDIR.y
0
From Module
1
Direction
0: Input
1: Output
2
From Module
3
PxSEL2.y
PxSEL.y
PxREN.y
0
1
1
0
1
PxSEL2.y
PxSEL.y
DVSS
DVCC
PxOUT.y
0
From Module
1
From Module
3
2
0
1
Bus
Keeper
EN
TAx.y
TAxCLK
1
P1.5/TA0.0/UCB0CLK/UCA0STE/
A5*/CA5/TMS
P1.6/TA0.1/UCB0SOMI/UCB0SCL/
A6*/CA6/TDI/TCLK
P1.7/CAOUT/UCB0SIMO/UCB0SDA/
A7*/CA7/TDO/TDI
PxIN.y
EN
To Module
D
PxIE.y
PxIRQ.y
Q
PxIFG.y
PxSEL.y
PxIES.y
EN
Set
Interrupt
Edge
Select
From JTAG
To JTAG
* Note: MSP430G2x53 devices only. MSP430G2x13 devices have no ADC10.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
47
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Table 19. Port P1 (P1.5 to P1.7) Pin Functions
PIN NAME
(P1.x)
CONTROL BITS / SIGNALS (1)
x
FUNCTION
P1DIR.x
P1SEL.x
P1SEL2.x
ADC10AE.x
INCH.x=1 (2)
JTAG Mode
CAPD.y
I: 0; O: 1
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
P1.5/
P1.x (I/O)
TA0.0/
TA0.0
UCB0CLK/
UCB0CLK
from USCI
UCA0STE
UCA0STE/
from USCI
1
1
0
0
A5
X
X
X
1 (y = 5)
0
0
CA5
CA5
X
X
X
0
0
1 (y = 5)
TMS
TMS
X
X
X
0
1
0
Pin Osc
Capacitive
sensing
X
0
1
0
0
0
P1.6/
P1.x (I/O)
I: 0; O: 1
0
0
0
0
0
TA0.1/
TA0.1
1
1
0
0
0
0
UCB0SOMI/
UCB0SOMI
from USCI
1
1
0
0
0
UCB0SCL/
UCB0SCL
from USCI
1
1
0
0
0
5
A5 (2)/
6
(2)
A6 /
A6
X
X
X
1 (y = 6)
0
0
CA6
CA6
X
X
X
0
0
1 (y = 6)
TDI/TCLK/
TDI/TCLK
X
X
X
0
1
0
Pin Osc
Capacitive
sensing
X
0
1
0
0
0
P1.7/
P1.x (I/O)
I: 0; O: 1
0
0
0
0
0
UCB0SIMO/
UCB0SIMO
from USCI
1
1
0
0
0
UCB0SDA/
UCB0SDA
from USCI
1
1
0
0
0
A7 (2)/
A7
X
X
X
1 (y = 7)
0
0
CA7
X
X
X
0
0
1 (y = 7)
7
CA7
CAOUT
CAOUT
1
1
0
0
0
0
TDO/TDI/
TDO/TDI
X
X
X
0
1
0
Pin Osc
Capacitive
sensing
X
0
1
0
0
0
(1)
(2)
48
X = don't care
MSP430G2x53 devices only
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Port P2 Pin Schematic: P2.0 to P2.5, Input/Output With Schmitt Trigger
PxSEL.y
PxDIR.y
0
1
Direction
0: Input
1: Output
PxSEL2.y
PxSEL.y
PxREN.y
0
1
1
0
PxSEL2.y
PxSEL.y
1
PxOUT.y
DVSS
0
DVCC
1
1
0
From Timer
1
2
0
P2.0/TA1.0
P2.1/TA1.1
P2.2/TA1.1
P2.3/TA1.0
P2.4/TA1.2
P2.5/TA1.2
3
TAx.y
TAxCLK
PxIN.y
EN
To Module
D
PxIE.y
EN
PxIRQ.y
Q
Set
PxIFG.y
PxSEL.y
PxIES.y
Copyright © 2011, Texas Instruments Incorporated
Interrupt
Edge
Select
Submit Documentation Feedback
49
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Table 20. Port P2 (P2.0 to P2.5) Pin Functions
PIN NAME
(P2.x)
x
FUNCTION
CONTROL BITS / SIGNALS (1)
P2DIR.x
P2SEL.x
P2SEL2.x
P2.0/
P2.x (I/O)
I: 0; O: 1
0
0
TA1.0/
Timer1_A3.CCI0A
0
1
0
Timer1_A3.TA0
1
1
0
Pin Osc
Capacitive sensing
X
0
1
P2.1/
P2.x (I/O)
I: 0; O: 1
0
0
TA1.1/
Timer1_A3.CCI1A
0
1
0
Timer1_A3.TA1
1
1
0
0
1
Pin Osc
Capacitive sensing
P2.2/
P2.x (I/O)
TA1.1/
Timer1_A3.CCI1B
2
X
0
1
I: 0; O: 1
0
0
0
1
0
Timer1_A3.TA1
1
1
0
Pin Osc
Capacitive sensing
X
0
1
P2.3/
P2.x (I/O)
I: 0; O: 1
0
0
TA1.0/
Timer1_A3.CCI0B
0
1
0
3
Timer1_A3.TA0
1
1
0
Pin Osc
Capacitive sensing
X
0
1
P2.4/
P2.x (I/O)
I: 0; O: 1
0
0
Timer1_A3.CCI2A
0
1
0
Timer1_A3.TA2
1
1
0
Pin Osc
Capacitive sensing
X
0
1
P2.5/
P2.x (I/O)
I: 0; O: 1
0
0
TA1.2/
Timer1_A3.CCI2B
0
1
0
Timer1_A3.TA2
1
1
0
Capacitive sensing
X
0
1
TA1.2/
4
5
Pin Osc
(1)
50
X = don't care
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Port P2 Pin Schematic: P2.6, Input/Output With Schmitt Trigger
XOUT/P2.7
LF off
PxSEL.6 and PxSEL.7
BCSCTL3.LFXT1Sx = 11
0
1
LFXT1CLK
PxSEL.y
PxDIR.y
0
1
Direction
0: Input
1: Output
PxSEL2.y
PxSEL.y
PxREN.y
0
1
1
0
1
PxSEL2.y
PxSEL.y
DVSS
DVCC
PxOUT.y
0
From Module
1
0
1
1
2
XIN/P2.6/TA0.1
3
TAx.y
TAxCLK
PxIN.y
EN
D
To Module
PxIE.y
PxIRQ.y
Q
EN
Set
PxIFG.y
PxSEL.y
PxIES.y
Copyright © 2011, Texas Instruments Incorporated
Interrupt
Edge
Select
Submit Documentation Feedback
51
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Table 21. Port P2 (P2.6) Pin Functions
PIN NAME
(P2.x)
CONTROL BITS / SIGNALS (1)
x
FUNCTION
XIN
XIN
P2.6
P2.x (I/O)
P2DIR.x
P2SEL.6
P2SEL.7
P2SEL2.6
P2SEL2.7
0
1
1
0
0
I: 0; O: 1
0
X
0
0
6
TA0.1
Timer0_A3.TA1
1
1
0
0
0
Pin Osc
Capacitive sensing
X
0
X
1
X
(1)
52
X = don't care
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Port P2 Pin Schematic: P2.7, Input/Output With Schmitt Trigger
XIN
LF off
PxSEL.6 and PxSEL.7
BCSCTL3.LFXT1Sx = 11
LFXT1CLK
0
1
from P2.6
PxSEL.y
PxDIR.y
0
1
Direction
0: Input
1: Output
PxSEL2.y
PxSEL.y
PxREN.y
0
1
1
0
1
PxSEL2.y
PxSEL.y
PxOUT.y
From Module
DVSS
DVCC
0
1
1
0
1
2
XOUT/P2.7
3
TAx.y
TAxCLK
PxIN.y
EN
To Module
D
PxIE.y
PxIRQ.y
Q
PxIFG.y
PxSEL.y
PxIES.y
Copyright © 2011, Texas Instruments Incorporated
EN
Set
Interrupt
Edge
Select
Submit Documentation Feedback
53
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Table 22. Port P2 (P2.7) Pin Functions
PIN NAME
(P2.x)
CONTROL BITS / SIGNALS (1)
x
XOUT/
XOUT
P2.7/
7
Pin Osc
(1)
54
FUNCTION
P2.x (I/O)
Capacitive sensing
P2DIR.x
P2SEL.6
P2SEL.7
P2SEL2.6
P2SEL2.7
1
1
1
0
0
I: 0; O: 1
0
X
0
0
X
0
X
1
X
X = don't care
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Port P3 Pin Schematic: P3.0 to P3.7, Input/Output With Schmitt Trigger (RHB Package Only)
PxSEL.y
PxDIR.y
0
Direction
0: Input
1: Output
1
PxSEL2.y
PxSEL.y
PxREN.y
0
1
1
0
PxSEL2.y
PxSEL.y
PxOUT.y
0
From Module
1
1
DVSS
0
DVCC
1
1
2
P3.0/TA0.2
P3.1/TA1.0
P3.2/TA1.1
P3.3/TA1.2
P3.4/TA0.0
P3.5/TA0.1
P3.6/TA0.2
P3.7/TA1CLK/CAOUT
3
TAx.y
TAxCLK
PxIN.y
EN
To Module
D
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
55
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
Table 23. Port P3 (P3.0 to P3.7) Pin Functions (RHB Package Only)
PIN NAME
(P3.x)
x
FUNCTION
CONTROL BITS / SIGNALS (1)
P3DIR.x
P3SEL.x
P3SEL2.x
P3.0/
P3.x (I/O)
I: 0; O: 1
0
0
TA0.2/
Timer0_A3.CCI2A
0
1
0
Timer0_A3.TA2
1
1
0
Capacitive sensing
X
0
1
0
Pin Osc
P3.1/
P3.x (I/O)
TA1.0/
1
Pin Osc
P3.2/
I: 0; O: 1
0
0
Timer1_A3.TA0
1
1
0
Capacitive sensing
X
0
1
P3.x (I/O)
TA1.1/
2
Pin Osc
P3.3/
I: 0; O: 1
0
0
Timer1_A3.TA1
1
1
0
Capacitive sensing
X
0
1
P3.x (I/O)
I: 0; O: 1
0
0
Timer1_A3.TA2
1
1
0
Pin Osc
Capacitive sensing
X
0
1
P3.4/
P3.x (I/O)
I: 0; O: 1
0
0
TA1.2/
3
TA0.0/
Timer0_A3.TA0
1
1
0
Pin Osc
4
Capacitive sensing
X
0
1
P3.5/
P3.x (I/O)
I: 0; O: 1
0
0
TA0.1/
Timer0_A3.TA1
1
1
0
Pin Osc
5
Capacitive sensing
X
0
1
P3.6/
P3.x (I/O)
I: 0; O: 1
0
0
TA0.2/
Timer0_A3.TA2
1
1
0
Pin Osc
6
Capacitive sensing
X
0
1
P3.7/
P3.x (I/O)
I: 0; O: 1
0
0
TA1CLK/
Timer1_A3.TACLK
0
1
0
Comparator output
1
1
0
Capacitive sensing
X
0
1
CAOUT/
7
Pin Osc
(1)
56
X = don't care
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430G2x53
MSP430G2x13
SLAS735A – APRIL 2011 – REVISED MAY 2011
www.ti.com
REVISION HISTORY
REVISION
SLAS735
SLAS735A
DESCRIPTION
Initial release
Changed Control Bits / Signals column in Table 18
Changed Pin Name and Function columns in Table 23
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
57
PACKAGE OPTION ADDENDUM
www.ti.com
28-May-2011
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
MSP430G2153IN20
ACTIVE
PDIP
N
20
20
Pb-Free (RoHS)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2153IPW20
ACTIVE
TSSOP
PW
20
70
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2153IPW20R
ACTIVE
TSSOP
PW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2153IPW28
ACTIVE
TSSOP
PW
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2153IPW28R
ACTIVE
TSSOP
PW
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2153IRHB32R
ACTIVE
QFN
RHB
32
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430G2153IRHB32T
ACTIVE
QFN
RHB
32
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430G2213IN20
ACTIVE
PDIP
N
20
20
Pb-Free (RoHS)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2213IPW20
ACTIVE
TSSOP
PW
20
70
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2213IPW20R
ACTIVE
TSSOP
PW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2213IPW28
ACTIVE
TSSOP
PW
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2213IPW28R
ACTIVE
TSSOP
PW
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2213IRHB32R
ACTIVE
QFN
RHB
32
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430G2213IRHB32T
ACTIVE
QFN
RHB
32
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430G2253IN20
ACTIVE
PDIP
N
20
20
Pb-Free (RoHS)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2253IPW20
ACTIVE
TSSOP
PW
20
70
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2253IPW20R
ACTIVE
TSSOP
PW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2253IPW28
ACTIVE
TSSOP
PW
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Addendum-Page 1
Samples
(Requires Login)
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
28-May-2011
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
MSP430G2253IPW28R
ACTIVE
TSSOP
PW
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2253IRHB32R
ACTIVE
QFN
RHB
32
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430G2253IRHB32T
ACTIVE
QFN
RHB
32
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430G2313IN20
ACTIVE
PDIP
N
20
20
Pb-Free (RoHS)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2313IPW20
ACTIVE
TSSOP
PW
20
70
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2313IPW20R
ACTIVE
TSSOP
PW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2313IPW28
ACTIVE
TSSOP
PW
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2313IPW28R
ACTIVE
TSSOP
PW
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2313IRHB32R
ACTIVE
QFN
RHB
32
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430G2313IRHB32T
ACTIVE
QFN
RHB
32
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430G2353IN20
ACTIVE
PDIP
N
20
20
Pb-Free (RoHS)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2353IPW20
ACTIVE
TSSOP
PW
20
70
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2353IPW20R
ACTIVE
TSSOP
PW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2353IPW28
ACTIVE
TSSOP
PW
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2353IPW28R
ACTIVE
TSSOP
PW
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2353IRHB32R
ACTIVE
QFN
RHB
32
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430G2353IRHB32T
ACTIVE
QFN
RHB
32
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430G2413IN20
ACTIVE
PDIP
N
20
20
Pb-Free (RoHS)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2413IPW20
ACTIVE
TSSOP
PW
20
70
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Addendum-Page 2
Samples
(Requires Login)
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
28-May-2011
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
MSP430G2413IPW20R
ACTIVE
TSSOP
PW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2413IPW28
ACTIVE
TSSOP
PW
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2413IPW28R
ACTIVE
TSSOP
PW
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2413IRHB32R
ACTIVE
QFN
RHB
32
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430G2413IRHB32T
ACTIVE
QFN
RHB
32
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430G2453IN20
ACTIVE
PDIP
N
20
20
Pb-Free (RoHS)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2453IPW20
ACTIVE
TSSOP
PW
20
70
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2453IPW20R
ACTIVE
TSSOP
PW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2453IPW28
ACTIVE
TSSOP
PW
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2453IPW28R
ACTIVE
TSSOP
PW
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2453IRHB32R
ACTIVE
QFN
RHB
32
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430G2453IRHB32T
ACTIVE
QFN
RHB
32
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430G2513IN20
ACTIVE
PDIP
N
20
20
Pb-Free (RoHS)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2513IPW20
ACTIVE
TSSOP
PW
20
70
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2513IPW20R
ACTIVE
TSSOP
PW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2513IPW28
ACTIVE
TSSOP
PW
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2513IPW28R
ACTIVE
TSSOP
PW
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2513IRHB32R
ACTIVE
QFN
RHB
32
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430G2513IRHB32T
ACTIVE
QFN
RHB
32
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
Addendum-Page 3
Samples
(Requires Login)
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
MSP430G2553CY
28-May-2011
Status
(1)
PREVIEW
Package Type Package
Drawing
DIESALE
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
0
1
Green (RoHS
& no Sb/Br)
Call TI
N / A for Pkg Type
0
1
TBD
Call TI
Call TI
Call TI
Call TI
PREVIEW WAFERSALE
YS
MSP430G2553GACYS
PREVIEW WAFERSALE
Samples
(Requires Login)
Y
MSP430G2553CYS
(3)
YS
0
1
TBD
MSP430G2553IN20
ACTIVE
PDIP
N
20
20
Pb-Free (RoHS)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2553IPW20
ACTIVE
TSSOP
PW
20
70
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2553IPW20R
ACTIVE
TSSOP
PW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2553IPW28
ACTIVE
TSSOP
PW
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2553IPW28R
ACTIVE
TSSOP
PW
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
MSP430G2553IRHB32R
ACTIVE
QFN
RHB
32
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430G2553IRHB32T
ACTIVE
QFN
RHB
32
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Addendum-Page 4
PACKAGE OPTION ADDENDUM
www.ti.com
28-May-2011
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 5
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Audio
www.ti.com/audio
Communications and Telecom www.ti.com/communications
Amplifiers
amplifier.ti.com
Computers and Peripherals
www.ti.com/computers
Data Converters
dataconverter.ti.com
Consumer Electronics
www.ti.com/consumer-apps
DLP® Products
www.dlp.com
Energy and Lighting
www.ti.com/energy
DSP
dsp.ti.com
Industrial
www.ti.com/industrial
Clocks and Timers
www.ti.com/clocks
Medical
www.ti.com/medical
Interface
interface.ti.com
Security
www.ti.com/security
Logic
logic.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Power Mgmt
power.ti.com
Transportation and
Automotive
www.ti.com/automotive
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
Wireless
www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions
www.ti.com/lprf
TI E2E Community Home Page
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated
Similar pages