AD ADATE302-02 500 mhz dual integrated dcl Datasheet

500 MHz Dual Integrated DCL with Differential
Drive/Receive, Level Setting DACs, and Per Pin PMU
ADATE302-02
FEATURES
GENERAL DESCRIPTION
Driver
3-level driver with high-Z mode and built-in clamps
Precision trimmed output resistance
Low leakage mode (typically <10 nA)
Voltage range: −2.0 V to +6.0 V
1.0 ns minimum pulse width, 1 V terminated
Comparator
Window and differential comparator
>1 GHz input equivalent bandwidth
Load
±12 mA maximum current capability
Per pin PMU
Force voltage range: −2.0 V to +6.0 V
5 current ranges: 25 mA, 2 mA, 200 μA, 20 μA, and 2 μA
Levels
14-bit DAC for DCL levels
Typically <±5 mV INL (calibrated)
16-bit DAC for PMU levels
Typically <±1.5 mV INL (calibrated) linearity in FV mode
HVOUT output buffer
0 V to 13.5 V output range
Packages
84-ball, 9 mm × 9 mm, flip-chip BGA
100-lead TQFP_EP
1.7 W per channel with no load
The ADATE302-02 is a complete, single-chip solution that
performs the pin electronic functions of the driver, the comparator, and the active load (DCL), per pin PMU, and dc levels for
ATE applications. The device also contains an HVOUT driver
with a VHH buffer capable of generating up to 13.5 V.
The driver features three active states: data high mode, data low
mode, and term mode, as well as an inhibit state. The inhibit
state, in conjunction with the integrated dynamic clamp, facilitates
the implementation of a high speed active termination. The output
voltage range is −2.0 V to +6.0 V to accommodate a wide
variety of test devices.
The ADATE302-02 can be used as either a dual single-ended
drive/receive channel or a single differential drive/receive
channel. Each channel of the ADATE302-02 features a high
speed window comparator for functional testing as well as a per
pin PMU with FV or FI and MV or MI functions. All necessary
dc levels for DCL functions are generated by on-chip 14-bit
DACs. The per pin PMU features an on-chip 16-bit DAC for
high accuracy and contains integrated range resistors to
minimize external component counts.
The ADATE302-02 uses a serial bus to program all functional
blocks and has an on-board temperature sensor for monitoring
the device temperature.
APPLICATIONS
Automatic test equipment
Semiconductor test systems
Board test systems
Instrumentation and characterization equipment
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2008–2009 Analog Devices, Inc. All rights reserved.
ADATE302-02* PRODUCT PAGE QUICK LINKS
Last Content Update: 02/23/2017
COMPARABLE PARTS
DISCUSSIONS
View a parametric search of comparable parts.
View all ADATE302-02 EngineerZone Discussions.
DOCUMENTATION
SAMPLE AND BUY
Data Sheet
Visit the product page to see pricing options.
• ADATE302-02: 500 MHz Dual Integrated DCL with
Differential Drive/Receive, Level Setting DACs, and Per Pin
PMU Data Sheet
TECHNICAL SUPPORT
DESIGN RESOURCES
Submit a technical question or find your regional support
number.
• ADATE302-02 Material Declaration
DOCUMENT FEEDBACK
• PCN-PDN Information
Submit feedback for this data sheet.
• Quality And Reliability
• Symbols and Footprints
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.
ADATE302-02
TABLE OF CONTENTS
Features .............................................................................................. 1
Absolute Maximum Ratings ......................................................... 20
Applications ....................................................................................... 1
Thermal Resistance .................................................................... 20
General Description ......................................................................... 1
Explanation of Test Levels ......................................................... 20
Revision History ............................................................................... 2
ESD Caution................................................................................ 20
Functional Block Diagram .............................................................. 3
Pin Configuration and Function Descriptions........................... 21
Specifications..................................................................................... 4
Typical Performance Characteristics ........................................... 27
Total Function ............................................................................... 4
Serial Peripheral Interface Details ................................................ 39
Driver ............................................................................................. 5
Definition of SPI Word .............................................................. 40
Reflection Clamp .......................................................................... 7
Write Operation.......................................................................... 41
Normal Window Comparator .................................................... 7
Read Operation .......................................................................... 42
Differential Comparator .............................................................. 9
Reset Operation .......................................................................... 43
Active Load.................................................................................. 11
Register Map ................................................................................... 44
PMU ............................................................................................. 12
Details of Registers ......................................................................... 45
External Sense (PMUS_CHx)................................................... 16
User Information ............................................................................ 47
DUTGND Input ......................................................................... 17
Details of DACs vs. Levels ......................................................... 48
Serial Peripheral Interface ......................................................... 17
Recommended PMU Mode Switching Sequences ................ 50
HVOUT Driver ........................................................................... 17
Block Diagrams............................................................................... 53
Overvoltage Detector (OVD) ................................................... 18
Outline Dimensions ....................................................................... 57
16-Bit DAC Monitor Mux ......................................................... 19
Ordering Guide .......................................................................... 58
REVISION HISTORY
4/09—Rev. 0 to Rev. A
Added 100-Lead TQFP_EP Package ........................... Throughout
Added Figure 3, Renumbered Figures Sequentially................... 22
Added Table 17, Renumbered Tables Sequentially .................... 22
Updated Outline Dimensions ....................................................... 52
Changes to Ordering Guide .......................................................... 53
6/08—Revision 0: Initial Version
Rev. A | Page 2 of 58
ADATE302-02
FUNCTIONAL BLOCK DIAGRAM
CH1
PMU_FLAG
16-BIT DAC
*
DAC16_MON
PMU
MUX
MUX
*
OVD
MUX
VCH
CH1
OVD_CH0
VCL
MEASOUT01
VCL
SENSE
VCH
FORCE
PMUS_CH0
VH
VT
VL
ROUT
(TRIMMED)
DATA0P
100Ω
DRV
DUT0
DATA0N
*
RCV0P
100Ω
WINDOW
DIFF.
C
RCV0N
OTHER CHANNEL
DUT1
*
COMP_VTT0
VHH
50Ω
HVOUT
COMP_QH0P
C
VOH
C
VOL
COMP_QH0N
COMP_QL0P
COMP_QL0N
*
G
IOL
ADATE302-02
SDIN
RST
*
SCLK
SPI
CS
VCOM
14-BIT DAC
IOH
TEMPERATURE
SENSOR
*
TEMPSENSE
07278-001
SDOUT
*ONE PER DEVICE.
Figure 1. Functional Block Diagram with One of Two Channels Shown
Rev. A | Page 3 of 58
ADATE302-02
SPECIFICATIONS
VDD = 10.0 V, VCC = 3.3 V, VSS = −5.75 V, VPLUS = 16.75 V, VCOMP_VTTx = 1.5 V, VREF = 5.0 V, VREF_GND = 0.0 V. All default test conditions are as
defined in Table 38. All specified values are at TJ = 80°C, where TJ corresponds to the internal temperature sensor, unless otherwise noted.
Temperature coefficients are measured at TJ = 80°C ± 20°C, unless otherwise noted. Typical values are based on design, simulation
analyses, and/or limited bench evaluations. Typical values are not tested or guaranteed. Test levels are specified in the Explanation of Test
Levels section.
TOTAL FUNCTION
Table 1.
Parameter
TOTAL FUNCTION
Output Leakage Current
PE Disable, Range E
Min
Typ
Max
Unit
Test
Level
−20.0
+6.0
+20.0
nA
P
nA
CT
+400
nA
P
+6.0
pF
V
S
D
PE Disable, Range A, B, C, D
High-Z Mode
Output Capacitance
DUT Pin Range
POWER SUPPLIES
Total Supply Range, VPLUS to VSS
VPLUS Supply, VPLUS
Positive Supply, VDD
Negative Supply, VSS
Logic Supply, VCC
Comparator Termination, VCOMP_VTTx
VPLUS Supply Current, IPLUS
VPLUS Supply Current, IPLUS
Logic Supply Current, ICC
Comparator Termination Current,
ICOMP_VTTx
Positive Supply Current, IDD
Negative Supply Current, ISS
Total Power Dissipation
7.5
−400
4
−2.0
−2.0 V < VDUTx < +6.0 V; PMU and PE disabled via SPI;
VCH = 7.0 V, VCL = −2.5 V
−2.0 V < VDUTx < +6.0 V; PMU and PE disabled via SPI;
VCH = 7.0 V, VCL = −2.5 V
−2.0 V < VDUTx < +6.0 V; PMU disabled and PE enabled via
SPI; RCVx pins active, VCH = 7.0 V, VCL = −2.5V
VTERM mode operation
16.25
9.5
−6.0
3.1
1
−1.0
4.0
1.0
40.0
22.5
16.75
10.0
−5.75
3.3
1.5
+1.3
12.7
2.7
46
23.25
17.25
10.5
−5.5
3.5
3.3
+4.0
17.0
10.0
70.0
V
V
V
V
V
V
mA
mA
mA
mA
D
D
D
D
D
D
P
P
P
P
Defines PSRR conditions
Defines PSRR conditions
Defines PSRR conditions
Defines PSRR conditions
Defines PSRR conditions
140.0
170.0
200.0
230.0
2.5
3.0
190
231
272
311
3.55
4.2
256.0
311.0
406.0
461.0
4.0
5.5
mA
mA
mA
mA
W
W
P
P
P
P
P
P
Load power down (IOH = IOL = 0 mA)
Load active off (IOH = IOL = 12 mA)
Load power down (IOH = IOL = 0 mA)
Load active off (IOH = IOL = 12 mA)
Load power down (IOH = IOL = 0 mA)
Load active off (IOH = IOL = 12 mA)
mV/K
°C
CT
CT
TEMPERATURE MONITORS
Temperature Sensor Gain
Temperature Sensor Accuracy Without
Calibration over 25°C to 100°C
VREF INPUT
Reference Input Voltage Range for
DACs (VREF Pin)
Input Bias Current
+15
Conditions/Comments
10
6
4.95
HVOUT disabled
HVOUT enabled, RCVx pins active, no load, VHH = 12 V
Quiescent (SPI is static)
Temperature voltage available on Pin A1 at all times and
on Pin K1 when selected (see Table 25 and Table 37)
5
5.05
V
D
Referenced to VREF_GND; not referenced to VDUTGND
0.08
100
μA
P
Tested with 5 V applied
Rev. A | Page 4 of 58
ADATE302-02
DRIVER
VH − VL ≥ 200 mV (to meet dc/ac specifications).
Table 2.
Parameter
DC SPECIFICATIONS
High-Speed Differential Logic Input
Characteristics (DATAx, RCVx)
Input Termination Resistance
Input Voltage Differential
Common-Mode Voltage
Input Bias Current
Pin Output Characteristics
Output High Range, VH
Output Low Range, VL
Output Term Range, VT
Functional Amplitude (VH − VL)
Min
Typ
Max
Unit
Test
Level
92
100
108
Ω
P
+4.0
1.0
3.5
+20.0
V
V
μA
PF
PF
P
+6.0
+5.9
+6.0
V
V
V
V
D
D
D
D
0.2
0.85
−20.0
−1.9
−2.0
−2.0
0.0
8.0
DC Output Current Limit Source
75
100
120
mA
P
DC Output Current Limit Sink
Output Resistance, ±50 mA
−120
45.0
−100
48.5
−75
51.0
mA
Ω
P
P
−300
±75
±450
±1
±2.5
+300
+10
mV
μV/°C
mV
mV
P
CT
CT
P
0.6
1
mV
PF
±1.3
+7
mV
P
Conditions/Comments
Push 6 mA into xP pins, force 1.3 V on xN pins; measure
voltage from xP to xN, calculate resistance (V/I)
Each pin tested at 2.85 V and 0.35 V, while other high speed
pin left open
VH, VL, VT Crosstalk
±2
mV
CT
Overall Voltage Accuracy
±10
mV
CT
VH, VL, VT DC PSRR
AC SPECIFICATIONS
Rise/Fall Times
0.2 V Programmed Swing
1.0 V Programmed Swing
1.8 V Programmed Swing
2.0 V Programmed Swing
3.0 V Programmed Swing
3.0 V Programmed Swing
5.0 V Programmed Swing
Rise to Fall Matching
±15
mV/V
CT
Amplitude can be programmed to VH = VL, accuracy
specifications apply when VH − VL ≥ 200 mV
Driver high, VH = 6.0 V, short DUTx pin to −2.0 V, measure
current
Driver low, VL = −2.0 V, short DUTx pin to 6.0 V, measure current
Source: driver high, VH = 3.0 V, IDUTx = 1 mA and 50 mA;
sink: driver low, VL = 0.0 V, IDUTx = −1 mA and −50 mA; ΔVDUTx/ΔIDUTx
VH tests done with VL = −2.5 V and VT = −2.5 V;
VL tests done with VH = 7.5 V and VT = 7.5 V;
VT tests done with VL = −2.5 V and VH = 7.5 V;
unless otherwise specified
Error measured at calibration points of 0 V and 5 V
Measured at calibration points
After two-point gain/offset calibration
After two-point gain/offset calibration; measured over driver
output ranges
After two-point gain/offset calibration; range/number of DAC
bits as measured at calibration points of 0 V and 5 V
Over ±0.1 V range; measured at end points of VH, VL, and VT
functional range
VL = −2.0 V: VH = −1.9 V → 6.0 V, VT = −2.0 V → 6.0 V;
VH = 6.0 V: VL = −2.0 V → 5.9 V, VT = −2.0 V → 6.0 V;
VT = 1.5 V: VL = −2.0 V → 5.9 V, VH = −1.9 V → 6.0 V;
dc crosstalk on VL, VH, VT output level when other driver
DACs are varied
Sum of INL, crosstalk, DUTGND, and tempco over ±5°C,
after gain/offset calibration
Measured at calibration points
683
521
524
531
589
811
1105
6
ps
ps
ps
ps
ps
ps
ps
ps
CB
CB
P/CB
CB
CB
CB
CB
CB
Toggle DATAx pins
VH = 0.2 V, VL = 0.0 V, terminated; 20% to 80%
VH = 1.0 V, VL = 0.0 V, terminated; 20% to 80%
VH = 1.8 V, VL = 0.0 V, terminated; 20% to 80%
VH = 2.0 V, VL = 0.0 V, terminated; 20% to 80%
VH = 3.0 V, VL = 0.0 V, terminated; 20% to 80%
VH = 3.0 V, VL = 0.0 V, unterminated; 10% to 90%
VH = 5.0 V, VL = 0.0 V, unterminated; 10% to 90%
VH = 1.0 V, VL = 0.0 V, terminated; rise to fall within one channel
ABSOLUTE ACCURACY
VH, VL, VT Uncalibrated Accuracy
VH, VL, VT Offset Tempco
VH, VL, VT DNL
VH, VL, VT INL
−10
VH, VL, VT Resolution
DUTGND Voltage Accuracy
−7
430
630
Rev. A | Page 5 of 58
ADATE302-02
Parameter
Minimum Pulse Width
2.0 V Programmed Swing
Maximum Toggle Rate
Dynamic Performance, Drive
(VH to VL and VL to VH)
Propagation Delay Time
Propagation Delay Tempco
Delay Matching
Edge to Edge
Channel to Channel
Delay Change vs. Duty Cycle
Overshoot and Undershoot
Settling Time (VH to VL)
To Within 3% of Final Value
To Within 1% of Final Value
Dynamic Performance, VTERM
(VH or VL to VT and VT to
VH or VL)
Propagation Delay Time
Delay Matching, Edge to Edge
Propagation Delay Tempco
Transition Time, Active to VT,
VT to Active
Dynamic Performance,
Inhibit (VH or VL to/from Inhibit)
Propagation Delay Time
Active to Inhibit
Inhibit to Active
Transition Time
Active to Inhibit
Inhibit to Active
I/O Spike
Min
Unit
Test
Level
1.2
1.2
ns
ns
CB
CB
1.0
ns
CB
500
MHz
CB
2.1
4.5
ns
ps/°C
CB
CT
41
±15
±30
48
ps
ps
ps
mV
CB
CB
CB
CB
1.2
14
ns
ns
CB
CB
2.7
59
5.5
0.614
ns
ps
ps/°C
ns
CB
CB
CT
CB
Typ
Max
Conditions/Comments
Toggle DATAx pins
VH = 2.0 V, VL = 0.0 V, terminated; timing error ±27 ps
VH = 2.0 V, VL = 0.0 V, terminated; less than 10% amplitude
degradation
VH = 2.0 V, VL = 0.0 V, terminated; less than 20% amplitude
degradation
VH = 2.0 V, VH = 0.0 V, terminated, 18% amplitude degradation
Toggle DATAx pins
VH = 2.0 V, VL = 0.0 V, terminated
VH = 1.8 V, VL = 0.0 V, terminated
VH = 2.0 V, VL = 0.0 V, terminated
Rising vs. falling
Rising vs. rising, falling vs. falling
VH = 3.0 V, VL = 0.0 V, terminated; 5% to 95% duty cycle; 1 MHz
VH = 3.0 V, VL = 0.0 V, terminated
Toggle DATAx pins
VH = 3.0 V, VL = 0.0 V, terminated
VH = 3.0 V, VL = 0.0 V, terminated
Toggle RCVx pins
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated; rising vs. falling
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated
VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated; 20% to 80%
Toggle RCVx pins
VH = +1.0 V, VL = −1.0 V, terminated
2.7
3.7
ns
ns
CB
CB
1.3
0.4
157
ns
ns
mV
CB
CB
CB
VH = +1.0 V, VL = −1.0 V, terminated; 20% to 80%
Rev. A | Page 6 of 58
VH = 0.0 V, VL = 0.0 V, terminated
ADATE302-02
REFLECTION CLAMP
Clamp accuracy specifications apply when VCH > VCL.
Table 3.
Min
Typ
Max
Unit
Test
Level
−1.0
−200
±45
+6.0
+200
V
mV
D
P
Resolution
0.6
0.75
mV
PF
DNL
±1
mV
CT
mV
P
mV/°C
CT
Parameter
VCH
Range
Uncalibrated Accuracy
INL
Tempco
VCL
Range
Uncalibrated Accuracy
−40
±2
+40
−0.5
±70
+5.0
+200
V
mV
D
P
Resolution
0.6
0.75
mV
PF
DNL
±1
mV
CT
mV
P
mV/°C
CT
mA
mA
mV
P
P
P
INL
Tempco
DC CLAMP CURRENT LIMIT
VCH
VCL
DUTGND VOLTAGE ACCURACY
−2
−200
−40
±2
+40
0.6
−120
60
−7
−83
86
±1
−60
120
+7
Conditions/Comments
Driver high-Z, sinking 1 mA; VCH error measured at
calibration points of 0 V and 5 V
Driver high-Z, sinking 1 mA; after two-point gain/offset
calibration; range/number of DAC bits as measured at
calibration points of 0 V and 5 V
Driver high-Z, sinking 1 mA; after two-point gain/offset
calibration
Driver high-Z, sinking 1 mA; after two-point gain/offset
calibration; measured over VCH range of −1 V to +6 V
Measured at calibration points
Driver high-Z, sourcing 1 mA; VCL error measured at
calibration points of 0 V and 5 V
Driver high-Z, sourcing 1 mA; after two-point gain/offset
calibration; range/number of DAC bits as measured at
calibration points of 0 V and 5 V
Driver high-Z, sourcing 1 mA; after two-point gain/offset
calibration
Driver high-Z, sourcing 1 mA; after two-point gain/offset
calibration; measured over VCL range of −2 V to +5 V
Measured at calibration points
Driver high-Z, VCH = 0 V, VCL = −2.0 V, VDUTx = 5 V
Driver high-Z, VCH = 6.0 V, VCL = 5.0 V, VDUTx = 0.0 V
Over ±0.1 V range; measured at the end points of VCH
and VCL functional range
NORMAL WINDOW COMPARATOR
VOH tests done with VOL = −2.0 V, VOL tests done with VOH = 6.0 V, unless otherwise specified.
Table 4.
Parameter
DC SPECIFICATIONS
Input Voltage Range
Differential Voltage Range
Comparator Input Offset Voltage
Accuracy, Uncalibrated
Comparator Threshold Resolution
Comparator Threshold DNL
Comparator Threshold INL
Comparator Input Offset Voltage
Tempco
Min
−2.0
±0.1
−150
−7
Typ
Max
Unit
Test
Level
Conditions/Comments
±30
+6.0
±8.0
+150
V
V
mV
D
D
P
Offset measured at calibration points of 0 V and 5 V
0.61
1
mV
PF
±1
±1.2
+7
mV
mV
CT
P
μV/°C
CT
±200
Rev. A | Page 7 of 58
After two-point gain/offset calibration; range/
number of DAC bits as measured at calibration
points of 0 V and 5 V
After two-point gain/offset calibration
After two-point gain/offset calibration; measured
over VOH, VOL range of −2.0 V to +6.0 V
Measured at calibration points
ADATE302-02
Parameter
DUTGND Voltage Accuracy
Min
−7
Typ
±0.5
Max
+7
Unit
mV
Test
Level
P
Comparator Uncertainty Range
5.3
mV
CB
DC Hysteresis
DC PSRR
Digital Output Characteristics
Internal Pull-Up Resistance to
Comparator, COMP_VTTx Pin
0.5
±5
mV
mV/V
CB
CT
VCOMP_VTTx Range
Common-Mode Voltage
46
50
54
Ω
P
1
1.5
VCOMP_VTTx
− 0.3
3.3
V
V
D
CT
Measured with 100 Ω differential termination
VCOMP_VTTx
V
P
Measured with no external termination
550
mV
mV
ps
CT
P
CB
Measured with 100 Ω differential termination
Measured with no external termination
Measured with each comparator leg terminated
50 Ω to GND
Input transition time = 600 ps, 10% to 90%;
measured with each comparator leg terminated
50 Ω to GND; unless otherwise specified
VDUTx = 0 V to 1.0 V swing, driver VTERM mode,
VT = 0.0 V; high-side measurement: VOH = 0.5 V,
VOL = −2.0 V; low-side measurement: VOH = 6.0 V,
VOL = 0.5 V
VDUTx = 0 V to 0.9 V swing, driver VTERM mode,
VT = 0.0 V; VOL = VOH = 0.45 V
VDUTx = 0 V to 1.0 V swing, driver VTERM mode,
VT = 0.0 V; high-side measurement: VOH = 0.5 V,
VOL = −2.0 V; low-side measurement: VOH = 6.0 V,
VOL = 0.5 V
VCOMP_VTTx
− 0.5
Differential Voltage
450
Rise/Fall Time, 20% to 80%
Conditions/Comments
Over ±0.1 V range; measured at end points of VOH
and VOL functional range
VDUTx = 0 V, sweep comparator threshold to
determine uncertainty region
VDUTx = 0 V
Measured at calibration points
250
500
222
AC SPECIFICATIONS
Propagation Delay, Input to Output
1.4
ns
CB
Propagation Delay Tempco
4
ps/°C
CT
High Transition to Low Transition
High to Low Comparator
Propagation Delay Change with
Respect to
Slew Rate, 600 ps and 1 ns
(10% to 90%)
39
±30
ps
ps
CB
CB
19
ps
CB
Overdrive, 250 mV and 1.0 V
65
ps
CB
Pulse Width, 1 ns, 5 ns, 10 ns, and
15 ns
27
ps
CB
Duty Cycle, 5% to 95%
11.8
ps
CB
Propagation Delay Matching
Rev. A | Page 8 of 58
Pull 1 mA and 10 mA from Logic 1 leg and measure
ΔV to calculate resistance; measured ΔV/9 mA; done
for both comparator logic states
VDUTx = 0 V to 0.5 V swing, driver VTERM mode,
VT = 0.0 V; high-side measurement: VOH = 0.25 V,
VOL = −2.0 V; low-side measurement: VOH = 6.0 V,
VOL = 0.25 V
For 250 mV: VDUTx = 0 V to 0.5 V swing; for 1.0 V: VDUTx =
0 V to 1.25 V swing; driver VTERM mode, VT = 0.0 V;
high-side measurement: VOH = 0.25 V, VOL = −2.0 V;
low-side measurement: VOH = 6.0 V, VOL = 0.25 V;
input transition time = 400 ps (10%/90%)
VDUTx = 0 V to 1.0 V swing @ 32.0 MHz, driver VTERM
mode, VT = 0.0 V; high-side measurement: VOH = 0.5 V,
VOL = −2.0 V; low-side measurement: VOH = 6.0 V,
VOL = 0.5 V; input transition time = 400 ps (10%/90%)
VDUTx = 0 V to 1.0 V swing @ 1.0 MHz, driver VTERM
mode, VT = 0.0 V; high-side measurement: VOH = 0.5 V,
VOL = −2.0 V; low-side measurement: VOH = 6.0 V,
VOL = 0.5 V; input transition time = 400 ps (10%/90%)
ADATE302-02
Parameter
Minimum Pulse Width
Min
Typ
1
Max
Unit
ns
Test
Level
CB
Input Equivalent Bandwidth,
Terminated
1000
MHz
CB
ERT High-Z Mode, 3 V, 20% to 80%
0.9
ns
CB
Conditions/Comments
VDUTx = 0 V to 1.0 V swing, driver VTERM mode,
VT = 0.0 V; less than 10% amplitude degradation
measured by shmoo; input transition time = 400 ps
(10%/90%)
VDUTx = 0 V to 1.0 V swing, driver VTERM mode,
VT = 0.0 V; as measured by shmoo; input transition
time = 400 ps (10%/90%)
VDUTx = 0 V to 3.0 V swing, driver high-Z; as measured
by shmoo
DIFFERENTIAL COMPARATOR
VOH tests done with VOL = −1.1 V, VOL tests done with VOH = 1.1 V, unless otherwise specified.
Table 5.
Parameter
DC SPECIFICATIONS
Input Voltage Range
Operational Differential Voltage
Range
Maximum Differential Voltage Range
Comparator Input Offset Voltage
Accuracy, Uncalibrated
VOH, VOL Resolution
Min
Unit
Test
Level
+4.5
±1.1
V
V
D
D
±25
±8
+150
V
mV
D
P
0.61
1
mV
PF
mV
CT
mV
P
μV/°C
mV
CT
CB
mV
mV/V
CB
P
−1.5
±0.05
−150
VOH, VOL DNL
VOH, VOL INL
Max
Typ
±1
−7
±1.0
+7
VOH, VOL Offset Voltage Tempco
Comparator Uncertainty Range
±200
18
DC Hysteresis
CMRR
0.5
DC PSRR
AC SPECIFICATIONS
±15
mV/V
CT
Propagation Delay, Input to Output
1.4
ns
CB
Propagation Delay Tempco
4
ps/°C
CT
27
±32
ps
ps
CB
CB
1
Propagation Delay Matching
High Transition to Low Transition
High to Low Comparator
Propagation Delay Change with
Respect to
Conditions/Comments
Offset measured at differential calibration points of
+1 V and −1 V, with common mode = 0 V
After two-point gain/offset calibration; range/number of
DAC bits as measured at differential calibration points of
+1 V and −1 V, with common mode = 0 V
After two-point gain/offset calibration; common mode =
0V
After two-point gain/offset calibration; measured over
VOH, VOL range of −1.1 V to +1.1 V, common mode = 0 V
Measured at calibration points
VDUTx = 0 V, sweep comparator threshold to determine
uncertainty region
VDUTx = 0 V
Offset measured at common-mode voltage points of
−1.5 V and +4.5 V, with differential voltage = 0 V
Measured at calibration points
Input transition time = 600 ps, 10% to 90%, measured
with each comparator leg terminated 50 Ω to GND
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,
VOL = −1.1 V; low-side measurement: VOH = 1.1 V,
VOL = 0.0 V; repeat for other DUT channel
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM
mode, VT = 0.0 V; VOL = VOH = 0.0 V; repeat for other DUT
channel
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,
VOL = −1.1 V; low-side measurement: VOH = 1.1 V,
VOL = 0.0 V; repeat for other DUT channel
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,
VOL = −1.1 V; low-side measurement: VOH = 1.1 V,
Rev. A | Page 9 of 58
ADATE302-02
Parameter
Min
Typ
Max
Unit
Test
Level
Slew Rate, 400 ps and 1 ns
(10% to 90%)
25
ps
CB
Overdrive, 250 mV and 750 mV
79
ps
CB
Pulse Width, 1 ns, 5 ns, 10 ns, and
15 ns
56
ps
CB
Duty Cycle, 5% to 95%
16
ps
CB
Minimum Pulse Width
1
ns
CB
Input Equivalent Bandwidth,
Terminated
500
MHz
CB
Rev. A | Page 10 of 58
Conditions/Comments
VOL = 0.0 V; repeat for other DUT channel
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,
VOL = −1.1 V; low-side measurement: VOH = 1.1 V,
VOL = 0.0 V; repeat for other DUT channel
VDUT0 = 0 V, for 250 mV: VDUT1 = 0 V to 0.5 V swing;
for 750 mV: VDUT1 = 0 V to 1.0 V swing, driver VTERM mode,
VT = 0.0 V; VOH = −0.25 V; repeat for other DUT channel
with comparator threshold = 0.25 V
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing @ 32 MHz,
driver VTERM mode, VT = 0.0 V; high-side measurement:
VOH = 0.0 V, VOL = −1.1 V; low-side measurement:
VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing @ 32 MHz, driver
VTERM mode, VT = 0.0 V; high-side measurement:
VOH = 0.0 V, VOL = −1.1 V; low-side measurement:
VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,
VOL = −1.1 V; low-side measurement: VOH = 1.1 V,
VOL = 0.0 V; less than 22% amplitude degradation
measured by shmoo; repeat for other DUT channel
VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V,
VOL = −1.1 V; low-side measurement: VOH = 1.1 V,
VOL = 0.0 V
ADATE302-02
ACTIVE LOAD
See Table 30 for load control information.
Table 6.
Parameter
DC SPECIFICATIONS
Input Characteristics
VCOM Voltage Range
VDUTx Range
VCOM Accuracy, Uncalibrated
Min
−1.75
−2.0
−200
VCOM Resolution
Typ
Max
Unit
Test
Level
±25
+5.75
+6.0
+200
V
V
mV
D
D
P
0.61
1
mV
PF
VCOM DNL
VCOM INL
−7
±1
±2
+7
mV
mV
CT
P
DUTGND Voltage Accuracy
−7
±1
+7
mV
P
12
−600.0
±100
+600.0
mA
μA
D
P
−12
±1
+12
%
P
Resolution
1.5
2
μA
PF
DNL
±3.0
μA
CT
+70
μA
P
0.25
V
P
Output Characteristics
IOL
Maximum Source Current
Uncalibrated Offset
Uncalibrated Gain
INL
−70
±20
90% Commutation Voltage
IOH
Maximum Sink Current
Uncalibrated Offset
12
−600.0
±100
+600.0
mA
μA
D
P
−12
±1
+12
%
P
Resolution
1.5
2
μA
PF
DNL
±3.0
μA
CT
+70
μA
P
0.25
V
P
μA/°C
CT
Uncalibrated Gain
INL
−70
±20
90% Commutation Voltage
Output Current Tempco
±1.5
Rev. A | Page 11 of 58
Conditions/Comments
Load active on, RCVx pins active, unless otherwise noted
IOH = IOL = 6 mA, VCOM error measured at calibration
points of 0 V and 5 V
IOH = IOL = 6 mA, after two-point gain/offset
calibration; range/number of DAC bits as measured at
calibration points of 0 V and 5 V
IOH = IOL = 6 mA, after two-point gain/offset calibration
IOH = IOL = 6 mA, after two-point gain/offset
calibration; measured over VCOM range of −1.75 V to
+5.75 V
Over ±0.1 V range; measured at end points of VCOM
functional range
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, IOL offset
calculated from calibration points of 1 mA and 11 mA
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, IOL gain
calculated from calibration points of 1 mA and 11 mA
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point
gain/offset calibration; range/number of DAC bits as
measured at calibration points of 1 mA and 11 mA
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after twopoint gain/offset calibration
IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after twopoint gain/offset calibration; measured over IOL range
of 0 mA to 12 mA
IOH = IOL = 12 mA, VCOM = 2.0 V, measure IOL
reference at VDUTx = −1.0 V, measure IOL current at
VDUTx = 1.75 V, ensure >90% of reference current
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, IOH offset
calculated from calibration points of 1 mA and 11 mA
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, IOH gain
calculated from calibration points of 1 mA and 11 mA
IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point
gain/offset calibration; range/number of DAC bits as
measured at calibration points of 1 mA and 11 mA
IOL = 0 mA, VCOM = 1.5V, VDUTx = 3.0 V, after two-point
gain/offset calibration
IOL = 0 mA, VCOM = 1.5V, VDUTx = 3.0 V, after two-point
gain/offset calibration; measured over IOH range of
0 mA to 12 mA
IOH = IOL = 12 mA, VCOM = 2.0 V, measure IOH
reference at VDUTx = 5.0 V, measure IOH current at
VDUTx = 2.25 V, ensure >90% of reference current
Measured at calibration points
ADATE302-02
Unit
Test
Level
4.1
ns
CB
Propagation Delay, Load Active Off
to Load Active On; 50%, 90%
11
ns
CB
Propagation Delay Matching
6.9
ns
CB
Load Spike
156
mV
CB
Settling Time to 90%
1.6
ns
CB
Parameter
AC SPECIFICATIONS
Dynamic Performance
Propagation Delay, Load Active On
to Load Active Off; 50%, 90%
Min
Typ
Max
Conditions/Comments
Load active on, unless otherwise noted
Toggle RCVx pins, DUTx terminated 50 Ω to GND,
IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for
IOL and VCOM = −1.25 V for IOH; measured from 50%
point of RCVxP − RCVxN to 90% point of final output,
repeat for drive low and high
Toggle RCVx pins, DUTx terminated 50 Ω to GND,
IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for
IOL and VCOM = −1.25 V for IOH; measured from 50%
point of RCVxP − RCVxN to 90% point of final output,
repeat for drive low and high
Toggle RCVx pins, DUTx terminated 50 Ω to GND,
IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for
IOL and VCOM = −1.25 V for IOH; active on vs. active
off, repeat for drive low and high
Toggle RCVx pins, DUTx terminated 50 Ω to GND,
IOH = IOL = 0 mA, VH = VL = 0 V, VCOM = +1.25 V for
IOL and VCOM = −1.25 V for IOH; repeat for drive low
and high
Toggle RCVx pins, DUTx terminated 50 Ω to GND,
IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for
IOL and VCOM= −1.25 V for IOH; measured at 90% of
final value
PMU
FV = force voltage, MV = measure voltage, FI = force current, MI = measure current, FN = force nothing.
Table 7.
Parameter
FORCE VOLTAGE (FV)
Current Range A
Current Range B
Current Range C
Current Range D
Current Range E
Force Input Voltage Range at
Output For All Ranges
Force Voltage Uncalibrated
Accuracy for Range C
Force Voltage Uncalibrated
Accuracy for All Ranges
Force Voltage Offset Tempco
for All Ranges
Force Voltage Gain Tempco
for All Ranges
Forced Voltage INL
Min
Max
Unit
Test
Level
+6.0
mA
mA
μA
μA
μA
V
D
D
D
D
D
D
+100
mV
P
±25
mV
CT
±25
μV/°C
CT
PMU enabled, FV, PE disabled, error measured at calibration
points of 0 V and 5 V
PMU enabled, FV, PE disabled, error measured at calibration
points of 0 V and 5 V; repeat for each PMU current range
Measured at calibration points for each PMU current range
±75
ppm/°C
CT
Measured at calibration points for each PMU current range
mV
P
PMU enabled, FV, Range C, PE disabled, after two-point gain/
offset calibration; measured over output range of −2.0 V to
+6.0 V
PMU enabled, FV, PE disabled, force −2.0 V, measure voltage
while PMU sinking zero- and full-scale current; measure ΔV;
force 6.0 V, measure voltage while PMU sourcing zero- and fullscale current; measure ΔV; repeat for each PMU current range
mV
mV
CT
CT
Typ
±25
±2
±200
±20
±2
−2.0
−100
−7
±25
±2
+7
Force Voltage Compliance vs.
Current Load
Range A
Range B to Range E
±4
±1
Rev. A | Page 12 of 58
Conditions/Comments
ADATE302-02
Parameter
Current Limit, Source and Sink
Range A
Range B to Range E
DUTGND Voltage Accuracy
Min
Typ
Max
Unit
Test
Level
108
135
180
% FS
P
120
140
180
% FS
P
−7
±1
+7
mV
P
+6.0
V
D
μA
CT
μA
P
MEASURE CURRENT (MI)
Measure Current, Pin DUTx
Voltage Range for All Ranges
Measure Current Uncalibrated
Accuracy
Range A
Range B
−2.0
±650
−400
±20
+400
Conditions/Comments
PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx
to 6.0 V; source: force 2.5 V, short DUTx to −1.0 V;
Range A FS = 25 mA, 108% FS = 27 mA, 180% FS = 45 mA
PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx to
6.0 V; source: force 2.5 V, short DUTx to −1.0 V; repeat for each
PMU current range; example: Range B FS = 2 mA,
120% FS = 2.4 mA, 180% FS = 3.6 mA
Over ±0.1 V range; measured at end points of FV functional
range
VDUTx externally forced to 0.0 V, unless otherwise specified;
ideal MEASOUT transfer functions:
VMEASOUT01 [V] = (IMEASOUT01 × 5/FSR) + 2.5 + VDUTGND
I(VMEASOUT01) [A] = (VMEASOUT01 − VDUTGND − 2.5) × FSR/5
PMU enabled, FIMI, PE disabled, error at calibration points of
−20 mA and 20 mA, error = (I(VMEASOUT01) − IDUTx)
PMU enabled, FIMI, PE disabled, error at calibration points of
−1.6 mA and 1.6 mA, error = (I(VMEASOUT01) − IDUTx)
PMU enabled, FIMI, PE disabled, error at calibration points of
±80% FS, error = (I(VMEASOUT01) − IDUTx)
PMU enabled, FIMI, PE disabled, error at calibration points of
±80% FS, error = (I(VMEASOUT01) − IDUTx)
PMU enabled, FIMI, PE disabled, error at calibration points of
±80% FS, error = (I(VMEASOUT01) − IDUTx)
Range C
± 2.00
μA
CT
Range D
±0.20
μA
CT
Range E
±0.02
μA
CT
±2.5
±125
±20
±4
μA/°C
nA/°C
nA/°C
nA/°C
CT
CT
CT
CT
Measured at calibration points
Measured at calibration points
Measured at calibration points
Measured at calibration points
−3.5
%
CT
%
P
±2
%
CT
PMU enabled, FIMI, PE disabled, gain error from calibration
points of ±80% FS
PMU enabled, FIMI, PE disabled, gain error from calibration
points of ±1.6 mA
PMU enabled, FIMI, PE disabled, gain error from calibration
points of ±80% FS
Measured at calibration points
±300
±50
ppm/°C
ppm/°C
CT
CT
±0.05
% FSR
CT
% FSR
P
% FSR
CT
% FSR/V
P
mV
CT
Measure Current Offset Tempco
Range A
Range B
Range C
Range D and Range E
Measure Current Gain Error,
Nominal Gain = 1
Range A
Range B
−20
Range C to Range E
Measure Current Gain Tempco
Range A
Range B to Range E
Measure Current INL
Range A
Range B
−0.02
Range B to Range E
FVMI DUT Pin Voltage Rejection
DUTGND Voltage Accuracy
±2
±0.005
+20
0.02
±0.005
−0.01
0.01
±2.5
Rev. A | Page 13 of 58
PMU enabled, FIMI, PE disabled, after two-point gain/offset
calibration, measured over FSR output of −25 mA to +25 mA
PMU enabled, FIMI, PE disabled, after two-point gain/
offset calibration measured over FSR output of −2 mA to +2 mA
PMU enabled, FIMI, PE disabled, after two-point gain/offset
calibration; measured over FSR output
PMU enabled, FVMI, PE disabled, force −1 V and +5 V into load
of 1 mA; measure ΔI reported at MEASOUT01
Over ±0.1 V range; measured at end points of MI functional
range
ADATE302-02
Parameter
FORCE CURRENT (FI)
Force Current, DUTx Pin Voltage
Range for All Ranges
Force Current Uncalibrated
Accuracy
Range A
Min
Typ
−2.0
Max
Unit
Test
Level
+6.0
V
D
−5.0
±0.5
+5.0
mA
P
Range B
−400
±40
+400
μA
P
Range C
−40
±4
+40
μA
P
Range D
−4
±0.4
+4
μA
P
Range E
−400
±75
+400
nA
P
−20
±1
±80
±4
±4
+20
μA/°C
nA/°C
nA/°C
%
CT
CT
CT
P
ppm/°C
ppm/°C
CT
CT
Force Current Offset Tempco
Range A
Range B
Range C to Range E
Forced Current Gain Error,
Nominal Gain = 1
Forced Current Gain Tempco
Range A
Range B to Range E
Force Current INL
Range A
−500
±75
−0.3
±0.05
+0.3
% FSR
P
-0.2
±0.015
0.2
% FSR
P
−0.6
−1.0
±0.06
+±0.1
+0.6
+1.0
% FSR
% FSR
P
P
−2.0
−25
±2.0
+6.0
+25
V
mV
D
P
−2
±10
±0.01
+2
μV/°C
%
CT
P
Measure Voltage Gain Tempco
Measure Voltage INL
−7
25
±1
+7
ppm/°C
mV
CT
P
Rejection of Measure V vs. IDUTx
−1.5
±0.1
+1.5
mV
P
Range B to Range E
Force Current Compliance vs.
Voltage Load
Range A to Range D
Range E
MEASURE VOLTAGE
Measure Voltage Range
Measure Voltage Uncalibrated
Accuracy
Measure Voltage Offset Tempco
Measure Voltage Gain Error
Rev. A | Page 14 of 58
Conditions/Comments
VDUTx externally forced to 0.0 V, unless otherwise specified
Ideal force current transfer function:
IFORCE = (PMUDAC − 2.5) × (FSR/5)
PMU enabled, FIMI, PE disabled, error at calibration points of
−20 mA and +20 mA
PMU enabled, FIMI, PE disabled, error at calibration points of
−1.6 mA and +1.6 mA
PMU enabled, FIMI, PE disabled, error at calibration points of
±80% FS
PMU enabled, FIMI, PE disabled, error at calibration points of
±80% FS
PMU enabled, FIMI, PE disabled, error at calibration points of
±80% FS
Measured at calibration points
Measured at calibration points
Measured at calibration points
PMU enabled, FIMI, PE disabled, gain error from calibration
points of ±80% FS
Measured at calibration points
PMU enabled, FIMI, PE disabled, after two-point gain/offset
calibration; measured over FSR output of
−25 mA to +25 mA
PMU enabled, FIMI, PE disabled, after two-point gain/offset
calibration; measured over FSR output
PMU enabled, FIMV, PE disabled; force positive full-scale
current driving −2.0 V and +6.0 V, measure ΔI @ DUTx pin;
force negative full-scale current driving −2.0 V and +6.0 V,
measure ΔI @ DUTx pin
PMU enabled, FVMV, Range B, PE disabled, error at calibration
points of 0 V and 5 V, error = (VMEASOUT01 − VDUTx)
Measured at calibration points
PMU enabled, FVMV, Range B, PE disabled, gain error from
calibration points of 0 V and 5 V
Measured at calibration points
PMU enabled, FVMV, Range B, PE disabled, after two-point
gain/offset calibration; measured over output range of −2.0 V
to +6.0 V
PMU enabled, FVMV, Range D, PE disabled, force 0 V into load
of −10 μA and +10 μA; measure ΔV reported at MEASOUT01
ADATE302-02
Typ
Max
Unit
Test
Level
25
+6.0
4
200
V
mA
Ω
D
D
P
−1
+1
μA
P
−25
+25
mA
P
−2.0
0.0
−300
+50
+4.0
6.0
+300
V
V
mV
D
D
P
Negative Clamp Voltage Droop
−300
−50
+300
mV
P
Uncalibrated Accuracy
−250
±100
+250
mV
P
INL
−70
±5
+70
mV
P
±1
mV
CT
15
μs
S
20
μs
S
124
μs
S
1015
μs
S
3455
μs
S
Parameter
MEASOUT01 DC CHARACTERISTICS
MEASOUT01 Voltage Range
DC Output Current
MEASOUT01 Pin Output
Impedance
Output Leakage Current When
Tristated
Output Short-Circuit Current
VOLTAGE CLAMPS
Low Clamp Range (VCL)
High Clamp Range (VCH)
Positive Clamp Voltage Droop
DUTGND Voltage Accuracy
Min
−2.0
SETTLING/SWITCHING TIMES
Voltage Force Settling Time to
0.1% of Final Value
Range A, 200 pF and
2000 pF Load
Range B, 200 pF and
2000 pF Load
Range C, 200 pF and
2000 pF Load
Range D, 200 pF and
2000 pF Load
Range E, 200 pF and
2000 pF Load
Voltage Force Settling Time to
1.0% of Final Value
Range A, 200 pF and
2000 pF Load
Range B, 200 pF and
2000 pF Load
Range C, 200 pF and
2000 pF Load
Range D, 200 pF Load
Range D, 2000 pF Load
Range E, 200 pF Load
Range E, 2000 pF Load
Conditions/Comments
PMU enabled, FVMV, PE disabled; source resistance: PMU force
6.0 V and load with 0 mA and 4 mA; sink resistance: PMU force
−2.0 V and load with 0 mA and −4 mA; resistance = ΔV/ΔI at
MEASOUT01 pin
Tested at −2.0 V and +6.0 V
PMU enabled, FVMV, PE disabled; source: PMU force 6.0 V,
short MEASOUT01 to −2.0 V; sink: PMU force −2.0 V, short
MEASOUT01 to 6.0 V
PMU enabled, FIMI, Range A, PE disabled, PMU clamps
enabled, VCH = 5 V, VCL = −1 V, PMU force 1 mA and 25 mA
into open; ΔV seen at DUTx pin
PMU enabled, FIMI, Range A, PE disabled, PMU clamps
enabled, VCH = 5 V, VCL = −1 V, PMU force −1 mA and −25 mA
into open; ΔV seen at DUTx pin
PMU enabled, FIMI, Range B, PE disabled, PMU damps enabled,
PMU force ±1 mA into open; VCH errors at calibration points of
0 V and 5 V; VCL errors at the calibration points of 0 V and 4 V
PMU enabled, FIMI, Range B, PE disabled, PMU damps enabled,
PMU force ±1 mA into open; after two-point gain/offset
calibration; measured over PMU clamp range
Over ±0.1 V range; measured at end points of PMU clamp
functional range
SCAP = 330 pF, FFCAP = 220 pF
PMU enabled, FV, PE disabled, program PMUDAC steps of
500 mV and 5.0 V; simulation of worst case, 2000 pF load,
PMUDAC step of 5.0 V
PMU enabled, FV, PE disabled, start with PMUDAC
programmed to 0.0 V, program PMUDAC to 500 mV
8.0
μs
CB
8.0
μs
CB
8.0
μs
CB
8.1
585
8.1
590
μs
μs
μs
μs
CB
CB
CB
CB
Rev. A | Page 15 of 58
ADATE302-02
Parameter
Voltage Force Settling Time to
1.0% of Final Value
Range A, 200 pF and
2000 pF Load
Range B, 200 pF Load
Range B, 2000 pF Load
Range C, 200 pF Load
Range C, 2000 pF Load
Range D, 200 pF Load
Range D, 2000 pF Load
Range E, 200 pF Load
Range E, 2000 pF Load
Current Force Settling Time to
0.1% of Final Value
Range A, 200 pF in Parallel
with 120 Ω
Range B, 200 pF in Parallel
with 1.5 kΩ
Range C, 200 pF in Parallel
with 15.0 kΩ
Range D, 200 pF in Parallel
with 150 kΩ
Range E, 200 pF in Parallel
with 1.5 MΩ
Current Force Settling Time to
1.0% of Final Value
Range A, 200 pF in Parallel
with 120 Ω
Range B, 200 pF in Parallel
with 1.5 kΩ
Range C, 200 pF in Parallel
with 15.0 kΩ
Range D, 200 pF in Parallel
with 150 kΩ
Range E, 200 pF in Parallel
with 1.5 MΩ
INTERACTION AND CROSSTALK
Measure Voltage Channel-toChannel Crosstalk
Min
Measure Current Channel-toChannel Crosstalk
Unit
Test
Level
4.2
μs
CB
4.4
7.6
6.3
8.1
130
280
390
605
μs
μs
μs
μs
μs
μs
μs
μs
CB
CB
CB
CB
CB
CB
CB
CB
Typ
Max
Conditions/Comments
PMU enabled, FV, PE disabled, start with PMUDAC
programmed to 0.0 V, program PMUDAC to 5.0 V
PMU enabled, FI, PE disabled, start with PMUDAC
programmed to 0 current, program PMUDAC to FS current
8.2
μs
S
9.4
μs
S
30
μs
S
281
μs
S
2668
μs
S
PMU enabled, FI, PE disabled, start with PMUDAC
programmed to 0 current, program PMUDAC to FS current
3.3
μs
CB
4.4
μs
CB
8
μs
CB
205
μs
CB
505
μs
CB
±0.125
% FSR
CT
±0.01
% FSR
CT
PMU enabled, FIMV, PE disabled, Range B, forcing 0 mA into
0 V load; other channel: Range A, forcing a step of 0 mA to 25 mA
into 0 V load; report ΔV of MEASOUT01 pin under test;
0.125% × 8.0 V = 10 mV
PMU enabled, FVMI, PE disabled, Range E, forcing 0 V into
0 mA current load; other channel: Range E, forcing a step of 0 V
to 5 V into 0 mA current load; report ΔV of MEASOUT01 pin
under test; 0.01% × 5.0 V = 0.5 mV
EXTERNAL SENSE (PMUS_CHx)
Table 8.
Parameter
Min
Voltage Range
Input Leakage Current
−2.0
−20
Typ
Max
Unit
+6.0
+20
V
nA
Rev. A | Page 16 of 58
Test
Level
D
P
Conditions/Comments
Tested at −2.0 V and +6.0 V
ADATE302-02
DUTGND INPUT
Table 9.
Parameter
Input Voltage Range, Referenced to GND
Input Bias Current
Min
−0.1
Typ
Max
+0.1
100
1
Unit
V
μA
Test
Level
D
P
Conditions/Comments
Tested at −100 mV and +100 mV
SERIAL PERIPHERAL INTERFACE
Table 10.
Parameter
Serial Input Logic High
Serial Input Logic Low
Input Bias Current
SCLK Clock Rate
SCLK Pulse Width
SCLK Crosstalk on DUTx Pin
Serial Output Logic High
Serial Output Logic Low
Update Time
Min
1.8
0
−10
Typ
+1
50
9
8
VCC − 0.4
0
Max
VCC
0.7
+10
Test
Level
PF
PF
P
PF
CT
CB
PF
PF
D
Unit
V
V
μA
MHz
ns
mV
V
V
μs
VCC
0.8
10
Conditions/Comments
Tested at 0.0 V and 3.3 V
PE disabled, PMU FV enabled and forcing 0 V
Sourcing 2 mA
Sinking 2 mA
Maximum delay time required for the part to enter
a stable state after a serial bus command is loaded
HVOUT DRIVER
Table 11.
Parameter
VHH BUFFER
Voltage Range
Min
Output High
13.5
Max
Unit
Test
Level
VPLUS − 3.25
V
D
V
P
5.9
V
P
±100
+500
mV
P
1
1.21
1.5
mV/°C
mV
CT
PF
±15
+30
mV
P
mV
CT
10
Ω
P
Typ
5.9
Output Low
Accuracy Uncalibrated
−500
Offset Tempco
Resolution
INL
−30
DUTGND Voltage Accuracy
±1
Output Resistance
1
DC Output Current Limit Source
60
100
mA
P
DC Output Current Limit Sink
−100
−60
mA
P
ns
CB
Rise Time (From VL or VH to
VHH)
175
Rev. A | Page 17 of 58
Conditions/Comments
VHH = (VT + 1 V) × 2 + DUTGND
VPLUS = 16.75 V nominal; in this condition,
VHVOUT maximum = 13.5 V
VHH mode enabled, RCVx pins active, VHH level = full
scale, sourcing 15 mA
VHH mode enabled, RCVx pins active, VHH level = zero
scale, sinking 15 mA
VHH mode enabled, RCVx pins active, VHVOUT error
measured at calibration points of 7 V and 12 V
Measured at calibration points
VHH mode enabled, RCVx pins active, after two-point
gain/offset calibration; range/number of DAC bits as
measured at calibration points of 7 V and 12 V
VHH mode enabled, RCVx pins active, after two-point gain/
offset calibration; measured over VHH range of 5.9 V to 13.5 V
Over ±0.1 V range; measured at end points of VHH
functional range
VHH mode enabled, RCVx pins active, source: VHH = 10.0 V,
IHVOUT = 0 mA and 15 mA; sink: VHH = 6.5 V, IHVOUT = 0 mA
and −15 mA; ΔV/ΔI
VHH mode enabled, RCVx pins active, VHH = 10.0 V, short
HVOUT pin to 5.9 V, measure current
VHH mode enabled, RCVx pins active, VHH = 6.5 V, short
HVOUT pin to 14.1 V, measure current
VHH mode enabled, toggle RCVx pins, VHH = 13.5 V, VL =
VH = 3.0 V; 20% to 80%, for DATAx high and DATAx low
ADATE302-02
Parameter
Fall Time (From VHH to VL or VH)
Preshoot, Overshoot, and
Undershoot
VL/VH BUFFER
Voltage Range
Accuracy Uncalibrated
Min
Max
±100
−0.1
−500
Offset Tempco
Resolution
INL
Typ
23
−20
DUTGND Voltage Accuracy
Unit
ns
Test
Level
CB
mV
CB
±100
+6.0
+500
V
mV
D
P
1
0.61
0.75
mV/°C
mV
CT
PF
±4
+20
mV
P
mV
CT
50
Ω
P
±2
Output Resistance
46
48
DC Output Current Limit Source
60
100
mA
P
DC Output Current Limit Sink
−100
−60
mA
P
Rise Time (VL to VH)
10.0
ns
CB
Fall Time (VH to VL)
11.3
ns
CB
Preshoot, Overshoot, and
Undershoot
±54
mV
CB
Conditions/Comments
VHH mode enabled, toggle RCVx pins, VHH = 13.5 V, VL =
VH = 3.0 V; 20% to 80%, for DATAx high and DATAx low
VHH mode enabled, toggle RCVx pins, VHH = 13.5 V, VL =
VH = 3.0 V; for DATAx high and DATAx low
VHH mode enabled, RCVx pins inactive, error measured at
calibration points of 0 V and 5 V
Measured at calibration points
VHH mode enabled, RCVx pins inactive, after two-point
gain/offset calibration; range/number of DAC bits as
measured at calibration points of 0 V and 5 V
VHH mode enabled, RCVx pins inactive, after two-point
gain/offset calibration; measured over range of −0.1 V to
+6.0 V
Over ±0.1 V range; measured at end points of VH and VL,
functional range
VHH mode enabled, RCVx pins inactive, source: VH = 3.0 V,
IHVOUT = 1 mA and 50 mA; sink: VL = 2.0 V, IHVOUT = −1 mA
and −50 mA; ΔV/ΔI
VHH mode enabled, RCVx pins inactive, VH = 6.0 V, short
HVOUT pin to −0.1 V, DATAx high, measure current
VHH mode enabled, RCVx pins inactive, VL = −0.1 V, short
HVOUT pin to 6.0 V, DATAx low, measure current
VHH mode enabled, RCVx pins inactive, VL = 0.0 V,
VH = 3.0 V, toggle DATAx pins; 20% to 80%
VHH mode enabled, RCVx pins inactive, VL = 0.0 V,
VH = 3.0 V, toggle DATAx pins; 20% to 80%
VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V,
toggle DATAx pins
OVERVOLTAGE DETECTOR (OVD)
Table 12.
Parameter
DC CHARACTERISTICS
Programmable Voltage Range
Accuracy Uncalibrated
Hysteresis
LOGIC OUTPUT CHARACTERISTICS
Off State Leakage
Min
Typ
−3.0
−200
Max
Unit
Test
Level
+7.0
+200
V
mV
D
P
mV
CB
112
10
1000
nA
P
Maximum On Voltage @100 μA
0.2
0.7
V
P
Propagation Delay
1.8
μs
CB
Rev. A | Page 18 of 58
Conditions/Comments
OVD offset errors measured at programmed levels of
7.0 V and −3.0 V
Disable OVD alarm, apply 3.3 V to OVD_CHx pin,
measure leakage current
Activate alarm, force 100 μA into OVD_CHx, measure
active alarm voltage
For OVD high: DUTx = 0 V to 6 V swing, OVD_CHx high =
3.0 V, OVD_CHx low = −3.0 V; for OVD_CHx low:
DUTx = 0 V to 6 V swing, OVD_CHx high = 7.0 V,
OVD_CHx low = 3.0 V
ADATE302-02
16-BIT DAC MONITOR MUX
Table 13.
Parameter
DC CHARACTERISTICS
Programmable Voltage Range
Output Resistance
Min
Typ
−2.5
16
Max
Unit
Test
Level
Conditions/Comments
+7.5
V
kΩ
D
CT
PMUDAC = 0.0 V, FV, I = 0 μA, 200 μA; ΔV/ΔI
Rev. A | Page 19 of 58
ADATE302-02
ABSOLUTE MAXIMUM RATINGS
Table 14.
Parameter
Supply Voltages
Positive Supply Voltage (VDD to GND)
Positive VCC Supply Voltage (VCC to GND)
Negative Supply Voltage (VSS to GND)
Supply Voltage Difference (VDD to VSS)
Reference Ground (DUTGND to GND)
AGND to DGND
VPLUS Supply Voltage (VPLUS to GND)
Input Voltages
Input Common-Mode Voltage
Short-Circuit Voltage 1
High Speed Input Voltage 2
High Speed Differential Input Voltage 3
VREF
DUTx I/O Pin Current
DCL Maximum Short-Circuit Current 4
Temperature
Operating Temperature, Junction
Storage Temperature Range
1
Rating
−0.5 V to +11.0 V
−0.5 V to +4.0 V
−6.25 V to +0.5 V
−1.0 V to +16.5 V
−0.5 V to +0.5 V
−0.5 V to +0.5 V
−0.5 V to +17.5 V
VSS to VDD
−3.0 V to +8.0 V
0 to VCC
0 to VCC
−0.5 V to +5.5 V
±140 mA
125°C
−65°C to +150°C
RL = 0 Ω, VDUTx continuous short-circuit condition (VH, VL, VT, high-Z, VCOM,
clamp modes).
2
DATAxP, DATAxN, RCVxP, RCVxN, under source R = 0 Ω.
3
DATAxP to DATAxN, RCVxP, RCVxN.
4
RL = 0 Ω, VDUTx = −3 V to +8 V; DCL current limit. Continuous short-circuit
condition. ADATE302-02 must current limit and survive continuous short
circuit.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL RESISTANCE
Table 15. Thermal Resistance
Package Type
84-Ball CSP_BGA
θJA
31.1
θJC
0.51
Unit
°C/W
EXPLANATION OF TEST LEVELS
D
Definition
S
Design verification simulation
P
100% production tested
PF
Functionally checked during production test
CT
Characterized on tester
CB
Characterized on bench
ESD CAUTION
Rev. A | Page 20 of 58
ADATE302-02
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
10
9
8
7
6
5
4
3
2
1
A
HVOUT
PMUS_CH0
VSSO_0
(DRIVE)
DUT0
VDDO_0
(DRIVE)
VDDO_1
(DRIVE)
DUT1
VSSO_1
(DRIVE)
PMUS_CH1
TEMPSENSE
B
VPLUS
SCAP0
VSS
AGND
VDD
VDD
AGND
VSS
SCAP1
VDD/VDD_
TMPSNS
C
FFCAP_0B
AGND
DATA0N
VSS
VDD
VDD
VSS
DATA1N
AGND
FFCAP_1B
D
OVD_CH0
VDD
DATA0P
DATA1P
VDD
OVD_CH1
E
FFCAP_0A
VSS
RCV0N
RCV1N
VSS
FFCAP_1A
F
AGND
AGND
RCV0P
RCV1P
AGND
AGND
COMP_QL0P COMP_QL0N COMP_VTT0
H
COMP_QH0P COMP_QH0N
COMP_VTT1 COMP_QL1N COMP_QL1P
AGND
VSS
VDD
VDD
VSS
AGND
COMP_QH1N COMP_QH1P
J
AGND
AGND
AGND
RST
SDIN
DGND
DAC16_MON
AGND
AGND
AGND
K
VREF_GND
VREF
AGND
VCC
SCLK
SDOUT
CS
AGND
DUTGND
MEASOUT01/
TEMPSENSE
Figure 2. 84-Ball BGA Pin Configuration, Bottom Side (BGA Balls Are Visible)
Table 16. Pin Function Descriptions
BGA Designator
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
B1
B2
Mnemonic
TEMPSENSE
PMUS_CH1
VSSO_1 (Drive)
DUT1
VDDO_1 (Drive)
VDDO_0 (Drive)
DUT0
VSSO_0 (Drive)
PMUS_CH0
HVOUT
VDD/VDD_TMPSNS
SCAP1
Description
Temperature Sense Output
PMU External Sense Path Channel 1
Driver Output Supply −5.75 V Channel 1
Device Under Test Channel 1
Driver Output Supply +10.0 V Channel 1
Driver Output Supply +10.0 V Channel 0
Device Under Test Channel 0
Driver Output Supply −5.75 V Channel 0
PMU External Sense Path Channel 0
High Voltage Driver Output
Temperature Sense Supply +10.0 V
PMU Stability Capacitor Connection Channel 1 (330 pF)
Rev. A | Page 21 of 58
07278-002
G
ADATE302-02
BGA Designator
B3
B4
B5
B6
B7
B8
B9
B10
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
D1
D2
D3
D8
D9
D10
E1
E2
E3
E8
E9
E10
F1
F2
F3
F8
F9
F10
G1
G2
G3
G8
G9
G10
H1
H2
H3
H4
H5
H6
H7
H8
Mnemonic
VSS
AGND
VDD
VDD
AGND
VSS
SCAP0
VPLUS
FFCAP_1B
AGND
DATA1N
VSS
VDD
VDD
VSS
DATA0N
AGND
FFCAP_0B
OVD_CH1
VDD
DATA1P
DATA0P
VDD
OVD_CH0
FFCAP_1A
VSS
RCV1N
RCV0N
VSS
FFCAP_0A
AGND
AGND
RCV1P
RCV0P
AGND
AGND
COMP_QL1P
COMP_QL1N
COMP_VTT1
COMP_VTT0
COMP_QL0N
COMP_QL0P
COMP_QH1P
COMP_QH1N
AGND
VSS
VDD
VDD
VSS
AGND
Description
Supply −5.75 V
Analog Ground
Supply +10.0 V
Supply +10.0 V
Analog Ground
Supply −5.75 V
PMU Stability Capacitor Connection Channel 0 (330 pF)
Supply +16.75 V
PMU Feedforward Capacitor Connection B Channel 1 (220 pF)
Analog Ground
Driver Data Input (Negative) Channel 1
Supply −5.75 V
Supply +10.0 V
Supply +10.0 V
Supply −5.75 V
Driver Data Input (Negative) Channel 0
Analog Ground
PMU Feedforward Capacitor Connection B Channel 0 (220 pF)
Overvoltage Detection Flag Output Channel 1
Supply +10.0 V
Driver Data Input (Positive) Channel 1
Driver Data Input (Positive) Channel 0
Supply +10.0 V
Overvoltage Detection Flag Output Channel 0
PMU Feedforward Capacitor Connection A Channel 1 (220 pF)
Supply −5.75 V
Receive Data Input (Negative) Channel 1
Receive Data Input (Negative) Channel 0
Supply −5.75 V
PMU Feedforward Capacitor Connection A Channel 0 (220 pF)
Analog Ground
Analog Ground
Receive Data Input (Positive) Channel 1
Receive Data Input (Positive) Channel 0
Analog Ground
Analog Ground
Low-Side Comparator Output (Positive) Channel 1
Low-Side Comparator Output (Negative) Channel 1
Comparator Supply Termination Channel 1
Comparator Supply Termination Channel 0
Low-Side Comparator Output (Negative) Channel 0
Low-Side Comparator Output (Positive) Channel 0
High-Side Comparator Output (Positive) Channel 1
High-Side Comparator Output (Negative) Channel 1
Analog Ground
Supply −5.75 V
Supply +10.0 V
Supply +10.0 V
Supply −5.75 V
Analog Ground
Rev. A | Page 22 of 58
ADATE302-02
BGA Designator
H9
H10
J1
J2
J3
J4
J5
J6
J7
Mnemonic
COMP_QH0N
COMP_QH0P
AGND
AGND
AGND
DAC16_MON
DGND
SDIN
RST
Description
High-Side Comparator Output (Negative) Channel 0
High-Side Comparator Output (Positive) Channel 0
Analog Ground
Analog Ground
Analog Ground
16-Bit DAC Monitor Mux Output
Digital Ground
Serial Peripheral Interface (SPI) Data In
Serial Peripheral Interface (SPI) Reset
J8
J9
J10
K1
AGND
AGND
AGND
MEASOUT01/TEMPSENSE
K2
K3
K4
DUTGND
AGND
CS
Analog Ground
Analog Ground
Analog Ground
Muxed Output Shared by PMU MEASOUT Channel 0, PMU MEASOUT Channel 1,
Temperature Sense and Temperature Sense GND Reference
DUT Ground Reference
Analog Ground
Serial Peripheral Interface (SPI) Chip Select
K5
K6
K7
K8
K9
K10
SDOUT
SCLK
VCC
AGND
VREF
VREF_GND
Serial Peripheral Interface (SPI) Data Out
Serial Peripheral Interface (SPI) Clock
Supply +3.3 V
Analog Ground
+5 V DAC Reference Voltage
DAC Ground Reference
Rev. A | Page 23 of 58
NC
NC
PMUS_CH0
VSS
VDD
VSSO_0 (DRIVE)
DUT0
VDDO_0 (DRIVE)
AGND
AGND
VSS
VDD
AGND
VDD
VSS
AGND
AGND
VDDO_1 (DRIVE)
DUT1
VSSO_1 (DRIVE)
VDD
VSS
PMUS_CH1
NC
NC
ADATE302-02
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76
75
NC
74
NC
3
73
HVOUT
VDD/VDD_TMPSNS
4
72
VPLUS
SCAP1
5
71
SCAP0
FFCAP_1B
6
70
FFCAP_0B
VDD
7
69
VDD
OVD_CH1
8
68
OVD_CH0
DATA1N
9
67
DATA0N
DATA1P 10
66
DATA0P
FFCAP_1A 11
65
FFCAP_0A
64
VSS
NC
1
NC
2
TEMPSENSE
PIN 1
ADATE302-02
VSS 12
TOP VIEW
(Not to Scale)
RCV1N 13
63 RCV0N
62
RCV0P
AGND 15
61
AGND
COMP_QL1P 16
60
COMP_QL0P
COMP_QL1N 17
59 COMP_QL0N
RCV1P 14
COMP_VTT1 18
58
COMP_VTT0
COMP_QH1P 19
57
COMP_QH0P
COMP_QH1N 20
56
COMP_QH0N
AGND 21
55
AGND
AGND 22
54
AGND
AGND 23
53
AGND
NC 24
52
NC
NC 25
51
NC
NC
NC
VREF_GND
VREF
AGND
AGND
AGND
RST
VSS
VCC
VDD
SDIN
SCLK
SDOUT
DGND
VDD
VSS
DAC16_MON
CS
AGND
AGND
DUTGND
MEASOUT01/TEMP SENSE
NC
NC
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
07278-002
NOTES
1. NC = NO CONNECT.
2. EXPOSED PAD IS CONNEC TED TO VSS.
Figure 3. 100-Lead TQFP_EP Pin Configuration
Table 17. Pin Function Descriptions
Pin No.
1
2
3
4
5
6
7
8
9
10
11
12
Mnemonic
NC
NC
TEMPSENSE
VDD/VDD_TMPSNS
SCAP1
FFCAP_1B
VDD
OVD_CH1
DATA1N
DATA1P
FFCAP_1A
VSS
Description
No Connect. No physical connection to die.
No Connect. No physical connection to die.
Temperature Sense Output.
Temperature Sense Supply +10.0 V.
PMU Stability Capacitor Connection Channel 1 (330 pF).
PMU Feed Forward Capacitor Connection B Channel 1 (220 pF).
Supply +10.0 V.
Overvoltage Detection Flag Output Channel 1.
Driver Data Input (Negative) Channel 1.
Driver Data Input (Positive) Channel 1.
PMU Feedforward Capacitor Connection A Channel 1 (220 pF).
Supply −5.75 V.
Rev. A | Page 24 of 58
ADATE302-02
Pin No.
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Mnemonic
RCV1N
RCV1P
AGND
COMP_QL1P
COMP_QL1N
COMP_VTT1
COMP_QH1P
COMP_QH1N
AGND
AGND
AGND
NC
NC
NC
NC
MEASOUT01/TEMP SENSE
29
30
31
32
DUTGND
AGND
AGND
CS
Description
Receive Data Input (Negative) Channel 1.
Receive Data Input (Positive) Channel 1.
Analog Ground.
Low-Side Comparator Output (Positive) Channel 1.
Low-Side Comparator Output (Negative) Channel 1.
Comparator Supply Channel 1.
High-Side Comparator Output (Positive) Channel 1.
High-Side Comparator Output (Negative) Channel 1.
Analog Ground.
Analog Ground.
Analog Ground.
No Connect. No physical connection to die.
No Connect. No physical connection to die.
No Connect. No physical connection to die.
No Connect. No physical connection to die.
Shared Muxed Output. Muxed output shared by PMU MEASOUT Channel 0, PMU
MEASOUT Channel 1, and the temperature sense and temperature sense GND
reference.
Device Under Test Ground Reference.
Analog Ground.
Analog Ground.
Serial Peripheral Interface (SPI®) Chip Select.
33
34
35
36
37
38
39
40
41
42
43
DAC16_MON
VSS
VDD
DGND
SDOUT
SCLK
SDIN
VDD
VCC
VSS
RST
16-Bit DAC Monitor Mux Output.
Supply −5.75 V.
Supply +10.0 V.
Digital Ground.
Serial Programmable Interface (SPI) Data Output.
Serial Programmable Interface (SPI) Clock.
Serial Programmable Interface (SPI) Data Input.
Supply +10.0 V.
Supply +3.3 V.
Supply −5.75 V.
Serial Peripheral Interface (SPI) Reset.
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
AGND
AGND
AGND
VREF
VREF_GND
NC
NC
NC
NC
AGND
AGND
AGND
Comp_QH0N
Comp_QH0P
Comp_VTT0
Comp_QL0N
Comp_QL0P
Analog Ground.
Analog Ground.
Analog Ground.
+5 V DAC Reference Voltage.
DAC Ground Reference.
No Connect. No physical connection to die.
No Connect. No physical connection to die.
No Connect. No physical connection to die.
No Connect. No physical connection to die.
Analog Ground.
Analog Ground.
Analog Ground.
High-Side Comparator Output (Negative) Channel 0.
High-Side Comparator Output (Positive) Channel 0.
Comparator Supply Channel 0.
Low-Side Comparator Output (Negative) Channel 0.
Low-Side Comparator Output (Positive) Channel 0.
Rev. A | Page 25 of 58
ADATE302-02
Pin No.
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
EP
Mnemonic
AGND
RCV0P
RCV0N
VSS
FFCAP_0A
DATA0P
DATA0N
OVD_CH0
VDD
FFCAP_0B
SCAP0
VPLUS
HVOUT
NC
NC
NC
NC
PMUS_CH0
VSS
VDD
VSSO_0 (DRIVE)
DUT0
VDDO_0 (DRIVE)
AGND
AGND
VSS
VDD
AGND
VDD
VSS
AGND
AGND
VDDO_1 (DRIVE)
DUT1
VSSO_1 (DRIVE)
VDD
VSS
PMUS_CH1
NC
NC
Description
Analog Ground.
Receive Data Input (Positive) Channel 0.
Receive Data Input (Negative) Channel 0.
Supply −5.75 V.
PMU Feedforward Capacitor Connection A Channel 0 (220 pF).
Driver Data Input (Positive) Channel 0.
Driver Data Input (Negative) Channel 0.
Overvoltage Detection Flag Output Channel 0.
Supply +10.0 V.
PMU Feedforward Capacitor Connection B Channel 0 (220 pF).
PMU Stability Capacitor Connection Channel 0 (330 pF).
Supply +16.75 V.
High Voltage Driver Output.
No Connect. No physical connection to die.
No Connect. No physical connection to die.
No Connect. No physical connection to die.
No Connect. No physical connection to die.
PMU External Sense Path Channel 0.
Supply −5.75 V.
Supply +10.0 V.
Driver Output Supply −5.75 V Channel 0.
Device Under Test Channel 0.
Driver Output Supply +10.0 V Channel 0.
Analog Ground.
Analog Ground.
Supply −5.75 V.
Supply +10.0 V.
Analog Ground.
Supply +10.0 V.
Supply −5.75 V.
Analog Ground.
Analog Ground.
Driver Output Supply +10.0 V Channel 1.
Device Under Test Channel 1.
Driver Output Supply −5.75 V Channel 1.
Supply +10.0 V.
Supply −5.75 V.
PMU External Sense Path Channel 1.
No Connect. No physical connection to die.
No Connect. No physical connection to die.
Exposed Pad. The exposed pad is connected to VSS.
Rev. A | Page 26 of 58
ADATE302-02
TYPICAL PERFORMANCE CHARACTERISTICS
0.30
1.8
0.5V
1.6
0.25
1.4
1.2
VOLTAGE (V)
VOLTAGE (V)
0.20
0.15
0.2V
0.10
1.0
0.8
0.6
0.4
0.2
0.05
2
4
6
8
10
12
14
16
18
TIME (ns)
Figure 4. Driver Small Signal Response;
VH = 0.2 V, 0.5 V; VL = 0.0 V; 50 Ω Termination
1.4
1.4
1.2
1.2
1.0
1.0
VOLTAGE (V)
1.6
0.8
0.6
0.2
0.2
0
0
4
6
8
10
12
14
16
18
TIME (ns)
Figure 5. Driver Large Signal Response;
VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination
–0.2
10
12
14
16
18
0
1
2
3
4
5
6
7
8
9
10
Figure 8. 300 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V;
50 Ω Termination
1.6
5
1.4
1.2
VOLTAGE (V)
4
3
2
1
1.0
0.8
0.6
0.4
0
0.2
2
4
6
8
10
TIME (ns)
12
14
16
18
0
07278-078
0
Figure 6. Driver Large Signal Response; VH = 1.0 V, 3.0 V, 5.0 V; VL = 0.0 V;
500 Ω Termination
0
1
2
3
4
5
TIME (ns)
6
7
8
9
07278-083
VOLTAGE (V)
8
TIME (ns)
6
–1
6
0.6
0.4
2
4
0.8
0.4
0
2
Figure 7. 100 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V;
50 Ω Termination
1.6
–0.2
0
TIME (ns)
07278-079
VOLTAGE (V)
–0.2
07278-084
0
07278-080
0
07278-085
0
Figure 9. 400 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V;
50 Ω Termination
Rev. A | Page 27 of 58
ADATE302-02
1.6
1.2
1.4
1.0
0.8
1.0
VOLTAGE (V)
0.8
0.6
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
TIME (ns)
–0.2
1.6
0.9
1.4
0.8
1.2
0.7
6
8
10
12
14
16
18
20
20
1.0
VOLTAGE (V)
VOLTAGE (V)
4
Figure 13. Driver Active (VH/VL) to/from VTERM Transition;
VH = 2.0 V; VT = 1.0 V; VL = 0.0 V
1.0
0.6
0.5
0.4
0.8
0.6
0.4
0.3
0.2
0.2
0
0.1
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
–0.2
07278-082
0
TIME (ns)
0.5
0
TRAILING EDGE ERROR (ps)
10
0.3
0.2
2
4
6
8
10
12
14
16
18
Figure 14. Driver Active (VH/VL) to/from VTERM Transition;
VH = 3.0 V; VT = 1.5 V; VL = 0.0 V
0.6
0.4
0
TIME (ns)
Figure 11. 600 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V; VL = 0.0 V;
50 Ω Termination
NEGATIVE PULSE
–10
–20
POSITIVE PULSE
–30
–40
0
2
4
6
8
10
12
14
16
18
TIME (ns)
07278-075
0.1
0
2
TIME (ns)
Figure 10. 500 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V;
50 Ω Termination
0
0
07278-076
0.5
07278-081
0
07278-077
0
0.2
VOLTAGE (V)
0.4
0.2
0.4
0
0.6
–50
1
10
PULSE WIDTH (ns)
Figure 15. Driver Minimum Pulse Width;
VH = 0.2 V; VL = 0.0 V
Figure 12. Driver Active (VH/VL) to/from VTERM Transition;
VH = 1.0 V; VT = 0.5 V; VL = 0.0 V
Rev. A | Page 28 of 58
07278-063
VOLTAGE (V)
1.2
ADATE302-02
10
10
–10
POSITIVE PULSE
–20
–30
–40
–10
POSITIVE PULSE
–20
–30
1
10
PULSE WIDTH (ns)
–50
1
10
PULSE WIDTH (ns)
Figure 16. Driver Minimum Pulse Width;
VH = 0.5 V; VL = 0.0 V
07278-067
–40
07278-064
–50
NEGATIVE PULSE
0
NEGATIVE PULSE
TRAILING EDGE ERROR (ps)
TRAILING EDGE ERROR (ps)
0
Figure 19. Driver Minimum Pulse Width;
VH = 3.0 V; VL = 0.0 V
10
1.5
0.5
0
LINEARITY ERROR (mV)
TRAILING EDGE ERROR (ps)
1.0
NEGATIVE PULSE
–10
POSITIVE PULSE
–20
0
–0.5
–1.0
–1.5
–2.0
10
PULSE WIDTH (ns)
–3.0
–2
–1
0
1
2
3
4
5
6
07278-020
1
07278-065
–30
5
6
07278-021
–2.5
DRIVER OUTPUT VOLTAGE (V)
Figure 17. Driver Minimum Pulse Width;
VH = 1.0 V; VL = 0.0 V
Figure 20. Driver VH Linearity Error
2.0
10
1.0
LINEARITY ERROR (mV)
0
NEGATIVE PULSE
–10
POSITIVE PULSE
–20
0.5
0
–0.5
–1.0
–1.5
–2.0
–30
1
10
PULSE WIDTH (ns)
07278-066
TRAILING EDGE ERROR (ps)
1.5
Figure 18. Driver Minimum Pulse Width;
VH = 2.0 V; VL = 0.0 V
–2.5
–2
–1
0
1
2
3
4
DRIVER OUTPUT VOLTAGE (V)
Figure 21. Driver VL Linearity Error
Rev. A | Page 29 of 58
ADATE302-02
2.0
0.2
1.5
0
INTERACTION ERROR (mV)
0.5
0
–0.5
–1.0
–1.5
–2.0
–0.4
–0.6
–0.8
–1.0
1
2
3
4
5
6
DRIVER OUTPUT VOLTAGE (V)
–1.4
–2
DRIVER OUTPUT RESISTANCE (Ω)
INTERACTION ERROR (mV)
2
3
4
5
6
60
6
53
1.2
1.0
0.8
0.6
0.4
0.2
–1
0
1
2
3
4
5
6
PROGRAMMED VL DAC LEVEL (V)
52
51
50
49
48
47
–60
07278-023
0
–40
–20
0
20
40
DRIVER OUTPUT CURRENT (mA)
Figure 23. Driver Interaction Error;
VH = 6.0 V; VL Swept from −2.0 V to +5.9 V
Figure 26. Driver Output Resistance vs. Output Current
0.6
120
DRIVER OUTPUT CURRENT (mA)
0.5
0.4
0.3
0.2
0.1
0
–1
0
1
2
3
4
PROGRAMMED VH DAC LEVEL (V)
5
6
07278-024
INTERACTION ERROR (mV)
1
Figure 25. Driver Interaction Error;
VL = −2.0 V; VH Swept from −1.9 V to +6.0 V
1.4
–0.1
–2
0
PROGRAMMED VH DAC LEVEL (V)
Figure 22. Driver VT Linearity Error
–0.2
–2
–1
07278-025
0
07278-022
–1
07278-026
–1.2
–2.5
–3.0
–2
–0.2
07278-027
LINEARITY ERROR (mV)
1.0
Figure 24. Driver Interaction Error;
VT = 1.5 V; VH Swept from −1.9 V to +6.0 V
100
80
60
40
20
0
–2
–1
0
1
2
3
4
5
VDUTx (V)
Figure 27. Driver Output Current Limit;
Driver Programmed to −2.0 V; VDUTx Swept from −2.0 V to +6.0 V
Rev. A | Page 30 of 58
0
6
–10
4
–20
2
LINEARITY ERROR (mV)
–30
–40
–50
–60
–70
0
–2
–4
–6
–8
–80
0
1
2
3
4
5
6
VDUTx (V)
–12
7
6
14
80
HVOUT DRIVER CURRENT (mA)
90
VOLTAGE (V)
12
10
8
6
4
2
11
12
13
14
6
15
70
60
50
40
30
20
10
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0
–1
07278-086
0
4.5
TIME (µs)
0
1
2
3
4
5
VHVOUT (V)
Figure 32. HVOUT VH Current Limit;
VH = −0.1 V; VHVOUT Swept from −0.1 V to +6.0 V
Figure 29. HVOUT VHH Response;
VHH = 13.5 V
100
3
80
HVOUT DRIVER CURRENT (mA)
2
1
0
–1
–2
–3
60
40
20
0
–20
–40
–60
–80
0
1
2
3
4
VL PROGRAMMED VOLTAGE (V)
5
6
07278-037
LINEARITY ERROR (mV)
10
Figure 31. HVOUT VHH Linearity Error
16
–4
9
VHH PROGRAMMED VOLTAGE (V)
Figure 28. Driver Output Current Limit;
Driver Programmed to 6.0 V; VDUTx Swept from −2.0 V to +6.0 V
0
8
07278-038
–1
07278-028
–100
–2
07278-040
–10
–90
07278-041
DRIVER OUTPUT CURRENT (mA)
ADATE302-02
5
6
7
8
9
10
11
12
13
VHVOUT (V)
Figure 33. HVOUT VHH Current Limit;
VHH = 10.0 V; VHVOUT Swept from 5.9 V to 14.1 V
Figure 30. HVOUT VL Linearity Error
Rev. A | Page 31 of 58
14
ADATE302-02
30
PROPAGATION DELAY VARIATION (ps)
1.0
0.9
0.8
0.6
SHMOO
INPUT EDGE
0.5
0.4
0.3
0.2
0.1
0
1.2
2.4
3.6
4.8
6.0
TIME (ns)
INPUT RISING EDGE
15
INPUT FALLING EDGE
10
5
0
0.8
1.0
Figure 37.Comparator Slew Rate Dispersion
1.1
0.8
COMP_QH0P
1.0
INPUT EDGE
0.7
0.9
SHMOO
0.8
0.6
VOLTAGE (V)
0.7
0.6
0.5
0.4
0.3
0.2
COMP_QH0N
0.5
0.4
0.3
0.2
0.1
19.30
TIME (ns)
07278-088
17.90
16.60
15.20
13.80
12.40
TIME (ns)
0
9.66
6.0
11.00
4.8
8.28
3.6
6.90
2.4
0
1.2
07278-090
0
5.52
0.1
0
4.14
VOLTAGE (V)
0.6
INPUT SLEW RATE [10%/90%] (ns)
Figure 34. Comparator Shmoo;
1.0 V Swing; 200 ps (10%/90%)
–0.1
0.4
2.76
–0.1
07278-089
0
20
1.38
VOLTAGE (V)
0.7
INPUT VOLTAGE SWING = 1V
COMPARATOR THRESHOLD = 0.5V
25
07278-087
1.1
Figure 38. Comparator Output Waveform; COMP_QH0P, COMP_QH0N
Figure 35. Comparator Shmoo;
1.0 V Swing; 200 ps (10%/90%)
0.4
10
0
LINEARITY ERROR (mV)
0
POSITIVE PULSE
–10
NEGATIVE PULSE
–20
–0.2
–0.4
–0.6
–0.8
–1.0
–1.2
1
10
PULSE WIDTH (ns)
–1.6
–2
–1
0
1
2
3
4
PROGRAM THRESHOLD VOLTAGE (V)
Figure 39. Comparator Threshold Linearity
Figure 36. Comparator Minimum Pulse Width Input;
1.0 V Swing; 200 ps (10%/90%)
Rev. A | Page 32 of 58
5
6
07278-029
–1.4
–30
07278-091
TRAILING EDGE ERROR (ps)
0.2
ADATE302-02
8
6
LINEARITY ERROR (µA)
0
–0.2
–0.4
–0.6
–0.8
4
2
0
–2
–1.0
–2
–1
0
1
2
3
4
5
INPUT COMMON-MODE VOLTAGE (V)
–6
10
12
0.6
0.4
LINEARITY ERROR (mV)
–3
–6
–9
0.2
0
–0.2
–0.4
–0.6
–0.8
10
20
30
50
40
TIME (ns)
–1.2
–2
07278-092
0
10
5.0
5
4.5
IDUTx (nA)
5.5
0
–10
3.0
2
3
4
5
VDUTx (V)
6
07278-031
3.5
1
2
3
4
5
6
5
6
4.0
–5
0
1
Figure 44. Active Load VCOM Linearity
15
–1
0
VCOM VOLTAGE (V)
Figure 41. Active Load Response
–15
–2
–1
07278-033
–1.0
FULL LOAD CURRENTTO/FROM
DRIVER ACTIVE LOW (VL)
07278-034
LOAD CURRENT (mA)
8
0.8
DRIVER ACTIVE LOW (VL)
TO/FROM FULL LOAD CURRENT
–12
LOAD CURRENT (mA)
6
Figure 43. Active Load Current Linearity
0
–15
4
ACTIVE LOAD CURRENT (mA)
Figure 40. Differential Comparator CMRR
3
2
0
07278-032
–4
07278-030
DIFFERENTIAL COMPARATOR OFFSET (mV)
0.2
Figure 42. Active Load Commutation Response;
VCOM = 2.0 V; IOH = IOL = 12 mA
2.5
–2
–1
0
1
2
3
4
VDUTx (V)
Figure 45. DUTx Pin Leakage Current in Low Leakage Mode
Rev. A | Page 33 of 58
ADATE302-02
6
30
20
4
LINEARITY ERROR (µA)
10
IDUTx (nA)
2
0
–2
0
–10
–20
–30
–40
–50
–4
1
2
3
4
5
6
VDUTx (V)
–70
–30
–20
–10
0
10
20
30
07278-043
0
07278-035
–1
2.0
07278-044
–60
–6
–2
PMU OUTPUT CURRENT (mA)
Figure 49. PMU Force Current Range A Linearity
Figure 46. DUTx Pin Leakage Current in High-Z Mode
0.5
0.5
0.4
0.4
LINEARITY ERROR (µA)
ERROR VOLTAGE (mV)
0.3
0.3
0.2
0.1
0
–0.1
0.1
0
–0.1
–0.2
–0.3
–0.2
–0.4
–0.15
–0.10
–0.05
0
0.05
0.10
0.15
0.20
DUTGND VOLTAGE (mV)
–0.5
–2.0
07278-039
–0.3
–0.20
0.2
–1.5
–1.0
–0.5
0
0.5
1.0
1.5
PMU OUTPUT CURRENT (mA)
Figure 47. DUTGND Voltage Effects
Figure 50. PMU Force Current Range B Linearity
0.04
0.4
0.03
0.2
–0.4
–0.6
0.01
0
–0.01
–0.02
–0.8
–0.03
–1.0
–0.04
–1.2
–3
–2
–1
0
1
2
3
4
5
PMU OUTPUT VOLTAGE (V)
6
7
–0.05
–0.20
–0.15
–0.10
–0.05
0
0.05
0.10
0.15
PMU OUTPUT CURRENT (mA)
Figure 51. PMU Force Current Range C Linearity
Figure 48. PMU Force Voltage Linearity
Rev. A | Page 34 of 58
0.20
07278-045
LINEARITY ERROR (µA)
–0.2
07278-042
LINEARITY ERROR (mV)
0.02
0
ADATE302-02
0.004
0.5
0.003
0.4
0.3
PMU VOLTAGE ERROR (mV)
0.001
0
–0.001
–0.002
–0.003
0.1
0
–0.1
–0.2
–0.3
–0.4
–0.004
–0.5
0
0.005
0.010
0.015
0.020
–0.6
–2.0
07278-046
–0.005
–0.020 –0.015 –0.010 –0.005
PMU OUTPUT CURRENT (mA)
Figure 52. PMU Force Current Range D Linearity
–1.5
–1.0
–0.5
0
0.5
1.0
1.5
2.0
IDUTx (mA)
Figure 55. PMU Force Voltage Range B Output Voltage Error at −2.0 V vs.
Output Current
0.0004
4
3
PMU VOLTAGE ERROR (mV)
0.0002
LINEARITY ERROR (µA)
0.2
07278-049
LINEARITY ERROR (µA)
0.002
0
–0.0002
–0.0004
–0.0006
2
1
0
–1
–2
–0.0020 –0.0015 –0.0010 –0.0005
0
0.0005
0.0010
0.0015
0.0020
PMU OUTPUT CURRENT (mA)
–4
–25
07278-047
–0.0008
Figure 53. PMU Force Current Range E Linearity
–10
–5
0
5
10
15
20
25
Figure 56. PMU Force Voltage Range A Output Voltage Error at 6.0 V vs.
Output Current
4
3
PMU VOLTAGE ERROR (mV)
0.4
0.2
0
–0.2
–0.4
2
1
0
–1
–2
–3
–1.0
–0.5
0
IDUTx (mA)
0.5
1.0
1.5
2.0
–4
–25
07278-048
–1.5
Figure 54. PMU Force Voltage Range B Output Voltage Error at 6.0 V vs.
Output Current
–20
–15
–10
–5
0
IDUTx (mA)
5
10
15
20
25
07278-051
PMU VOLTAGE ERROR (mV)
–15
IDUTx (mA)
0.6
–0.6
–2.0
–20
07278-050
–3
Figure 57. PMU Force Voltage Range A Output Voltage Error at −2.0 V vs.
Output Current
Rev. A | Page 35 of 58
ADATE302-02
2
1.0
0.8
PMU CURRENT ERROR (µA)
–2
–4
–6
–8
0
1
2
3
4
5
6
Figure 58. PMU Force Current Range A Output Current Error at −25 mA vs.
Output Voltage
0
1
2
3
4
5
6
Figure 61. PMU Force Current Range B Output Current Error at 2 mA vs.
Output Voltage; Output Voltage Is Pulled Externally
0.004
PMU CURRENT ERROR (µA)
0.003
–10
–20
–30
–40
0.002
0.001
0
0
1
2
3
4
5
6
VDUTx (V)
–0.002
–2
07278-053
–1
Figure 59. PMU Force Current Range A Output Current Error at 25 mA vs.
Output Voltage; Output Voltage Is Pulled Externally
0.0030
PMU CURRENT ERROR (µA)
0.8
0.2
0
–0.2
1
2
3
4
5
6
Figure 62. PMU Force Current Range E Output Current Error at −2 μA vs.
Output Voltage; Output Voltage Is Pulled Externally
0.0035
0.4
0
VDUTx (V)
1.0
0.6
–1
07278-056
–0.001
–50
–0.4
0.0025
0.0020
0.0015
0.0010
0.0005
0
–0.0005
–1
0
1
2
VDUTx (V)
3
4
5
6
–0.0010
07278-054
–0.6
–2
–1
VDUTx (V)
0
PMU CURRENT ERROR (µA)
0
–0.4
–2
10
PMU CURRENT ERROR (µA)
0.2
07278-055
–1
VDUTx (V)
–60
–2
0.4
–0.2
07278-052
–10
–2
0.6
Figure 60. PMU Force Current Range B Output Current Error at −2 mA vs.
Output Voltage; Output Voltage Is Pulled Externally
–2
–1
0
1
2
VDUTx (V)
3
4
5
6
07278-057
PMU CURRENT ERROR (µA)
0
Figure 63. PMU Force Current Range E Output Current Error at 2 μA vs.
Output Voltage; Output Voltage Is Pulled Externally
Rev. A | Page 36 of 58
ADATE302-02
40
0.20
30
0.15
LINEARITY ERROR (µA)
10
0
–10
–20
0.10
0.05
0
–1
0
1
2
3
4
5
6
VDUTx (V)
–0.10
–2.0
07278-058
–40
–2
–1.0
–0.5
0
0.5
1.0
1.5
2.0
5
IDUTx (mA)
Figure 64. PMU Range A Internal Current Limit, Programmed to Force 2.5 V;
VDUTx Swept from −2.0 V to +6.0 V
Figure 67. PMU Range B Measure Current Linearity
0.003
0.7
0.6
PMU VOLTAGE ERROR (mV)
0.002
PMU CURRENT (mA)
–1.5
07278-061
–0.05
–30
07278-062
PMU CURRENT (mA)
20
0.001
0
–0.001
–0.002
0.5
0.4
0.3
0.2
0.1
–1
0
1
2
3
4
5
6
VDUTx (V)
0
–2
07278-059
–0.003
–2
Figure 65. PMU Range E Internal Current Limit, Programmed to Force 2.5 V;
VDUTx Swept from −2.0 V to +6.0 V
–1
0
1
2
3
4
VDUTx (V)
Figure 68. PMU Measure Current CMRR, Externally Pulling 1 mA, FVMI;
Error of MI vs. External 1 mA
0.05
0.04
100mV/DIV
0.02
0.01
0
–0.01
07278-068
–0.02
–0.03
–0.04
–2
–1
0
1
2
3
4
5
VDUTx (V)
6
07278-060
LINEARITY ERROR (mV)
0.03
1ns/DIV
Figure 69. Eye Diagram, 200 Mbps, PRBS31;
VH = 1.0 V; VL = 0.0 V
Figure 66. PMU Range B Measure Voltage Linearity
Rev. A | Page 37 of 58
07278-072
07278-069
100mV/DIV
199.5mV/DIV
ADATE302-02
200ps/DIV
Figure 73. Eye Diagram, 800 Mbps, PRBS31;
VH = 2.0 V; VL= 0.0 V
07278-070
07278-073
100mV/DIV
199.5mV/DIV
500ps/DIV
Figure 70. Eye Diagram, 400 Mbps, PRBS31;
VH = 1.0 V; VL = 0.0 V
200ps/DIV
Figure 71. Eye Diagram, 400 Mbps, PRBS31;
VH = 2.0 V; VL = 0.0 V
Figure 74. Eye Diagram, 1000 Mbps, PRBS31;
VH = 1.0 V; VL = 0.0 V
07278-071
07278-074
100mV/DIV
199.5mV/DIV
500ps/DIV
200ps/DIV
200ps/DIV
Figure 72. Eye Diagram, 800 Mbps, PRBS31;
VH = 1.0 V; VL = 0.0 V
Figure 75. Eye Diagram, 1000 Mbps, PRBS31;
VH = 2.0 V; VL = 0.0 V
Rev. A | Page 38 of 58
ADATE302-02
SERIAL PERIPHERAL INTERFACE DETAILS
tCH
SCLK
tCL
tCSSA
tCSHA
tCSHD
tCSSD
CS
tCSW
tDH
tDS
DATA[15]
DATA[14]
DO_15LAST
SDOUT
DO_14 LAST
CH[1]
R/W
DO_13LAST
DO_12 LAST
ADDR[1]
DO_2LAST
ADDR[0]
DO_1LAST
07278-003
SDIN
DO_0LAST
tDO
Figure 76. SPI Timing Diagram
Table 18. Serial Peripheral Interface Timing Requirements
Symbol
tCH
tCL
tCSHA
Parameter
SCLK minimum high
SCLK minimum low
CS assert hold
Min
9.0
9.0
3.0
tCSSA
CS assert setup
3.0
ns
tCSHD
CS deassert hold
3.0
ns
tCSSD
CS deassert setup
3.0
ns
tDH
tDS
tDO
tCSW
SDIN hold
SDIN setup
SDOUT Data Out
CS minimum between assertions 1
3.0
3.0
ns
ns
ns
SCLK cycles
tCSTP
1
Max
15.0
2
Unit
ns
ns
ns
CS minimum directly after a read request
3
SCLK cycles
Minimum delay after CS is deasserted before SCLK can be
stopped (not shown in Figure 76); this allows any internal
operations to complete
16
SCLK cycles
Extra cycle is needed after read request to prime read data into SPI shift register.
Rev. A | Page 39 of 58
ADATE302-02
DEFINITION OF SPI WORD
The SPI can take variable length words, depending on the operation. At most, the word is 24 bits longs: 16 bits of data, two channel
selects, one R/W selector, and a 5-bit address.
Depending on the operation, the data can be smaller (or nonexistent in the case of a read operation).
Example 1
DATA[15:0]
CH[1:0]
R/W
07278-004
Write 16 bits of data to a register or DAC; unused MSBs are ignored. For example, Bit 15 and Bit 14 are ignored, and Bit 13 through Bit 0
are applied to the 14-bit DAC.
ADDR[4:0]
Figure 77.
Example 2
DATA[13:0]
CH[1:0]
R/W
ADDR[4:0]
07278-005
Write 14 bits of data to the DAC.
Figure 78.
Example 3a
DATA[1:0]
CH[1:0]
R/W
07278-006
Write two bits of data to the 2-bit register.
ADDR[4:0]
Figure 79.
Example 3b
DATA[15:0]
CH[1:0]
R/W
ADDR[4:0]
07278-007
Write two bits of data to the 2-bit register. Bit 15 through Bit 2 are ignored, while Bit 1 through Bit 0 are applied to the register.
Figure 80.
Example 4
DATA[15:0]
CH[1:0]
R/W = 0
ADDR[4:0]
CH[1:0]
R/W
ADDR[4:0]
07278-008
Read request and follow with a 2nd instruction (could be NOP) to clock out the data.
Figure 81.
Table 19. Channel Selection
Table 20. R/W Definition
Channel 1
0
Channel 0
0
R/W
0
0
1
1
1
0
1
Channel Selected
NOP (no channel selected, no register
changes)
Channel 0 selected
Channel 1 selected
Channel 0 and Channel 1 selected
1
Rev. A | Page 40 of 58
Description
Current register specified by address is shifted out
of SDOUT on next shift operation
Current data is written to register specified by
address and channel select
ADATE302-02
WRITE OPERATION
CS
INPUT
SCLK
INPUT
SDIN
INPUT
DATA[2] DATA[1] DATA[0]
DATA[15] DATA[14] DATA[13]
0
1
2
13
14
15
CH[1]
CH[0]
R/W
16
17
18
SDOUT
OUTPUT
ADDR[4]
19
ADDR[3]
20
ADDR[2]
21
ADDR[1]
22
X
ADDR[0]
23
24
25
07278-009
X
R/W = 1
Figure 82. 16-Bit SPI Write
CS
INPUT
SCLK
INPUT
DATA[1] DATA[0]
0
SDOUT
OUTPUT
1
CH[1]
CH[0]
R/W
2
3
4
ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]
5
6
7
8
X
9
10
11
X
07278-010
SDIN
INPUT
R/W = 1
Figure 83. 2-Bit SPI Write
Rev. A | Page 41 of 58
ADATE302-02
previous specified data. The NOP address can be used for this
read if there is no need to write/read another register. It is
strongly recommended that the NOP address be used for all
reads for clarity of operations.
READ OPERATION
The read operation is a two-stage operation. First, a word is
shifted in, specifying which register to read. CS is deasserted for
three clock cycles, and then a second word is shifted in to get
the readback data. This second word can be either another
operation or an NOP address. If another operation is shifted in,
it needs to shift in at least eight bits of data to read back the
Any register read that is less than 16 bits has zeros filled in the
top bits to make it a 16-bit word.
CS
INPUT
SCLK
INPUT
SDIN
INPUT
READ INSTRUCTION
SDOUT
OUTPUT
X
NOP
READ DATA
X
07278-011
X
X
Figure 84. SPI Read Overview
CS
INPUT
SCLK
INPUT
SDIN
INPUT
DATA[15:0], VALUE IS A DON’T CARE
0
1
2
13
14
CH[1]
CH[0]
R/W
16
17
18
15
SDOUT
OUTPUT
X
ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]
19
20
21
22
23
24
25
07278-012
X
Figure 85. SPI Read—Details of Read Request
CS
INPUT
SCLK
INPUT
SDIN
INPUT
DATA[15:0], VALUE IS A DON’T CARE
SDOUT
OUTPUT
RDATA[15]
1
2
RDATA[14]
13
RDATA[2]
CH[1]
14
15
16
RDATA[1]
RDATA[0]
CH[0]
17
ADDR[4:0] = 0x00 (NOP)
R/W = 1
18
19
20
21
22
X
23
24
25
X
07278-013
0
RDATA IS THE REGISTER VALUE BEING READ.
Figure 86. SPI Read—Details of Read Out
Rev. A | Page 42 of 58
ADATE302-02
RESET OPERATION
The ADATE302-02 contains an asynchronous reset feature. The
ADATE302-02 can be reset to the default values shown in Table 21
by utilizing the RST pin. To initiate the reset operation, deassert
the RST pin for a minimum of 100 ns and deassert the CS pin
for a minimum of two SCLK cycles.
100ns
MINIMUM
RST
SCLK
MINIMUM OF TWO SCLK EDGES AFTER ASSERTING RST BEFORE RESUMING NORMAL OPERATION.
Figure 87. Reset Operation
Rev. A | Page 43 of 58
07278-093
CS
ADATE302-02
REGISTER MAP
The ADDR[4:0] bits determine the destination register of the data being written to the ADATE302-02.
Table 21. Register Selection
Data[15:0]
N/A
Data[13:0]
Data[13:0]
Data[13:0]
Data[13:0]
Data[13:0]
Data[13:0]
Data[13:0]
Data[13:0]
Data[13:0]
Data[13:0]
Data[13:0]
Data[15:0]
Data[2:0]
Data[2:0]
Data[9:0]
Data[2:0]
Data[0]
Data[1:0]
Data[1:0]
Data[2:0]
N/A
CH[1:0]
N/A
CH[1:0]
CH[1:0]
CH[1:0]
CH[1:0]
CH[1:0]
CH[1:0]
CH[1:0]
CH[1:0]
CH[1:0]
CH[1]
CH[0]
CH[1:0]
CH[1:0]
CH[1:0]
CH[1:0]
CH[1:0]
CH[1:0]
CH[1:0]
CH[1:0]
CH[1:0]
N/A
R/W
N/A
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R
N/A
ADDR[4:0]
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x11
0x12
0x13
0x14 to 0x1F
Register Selected
NOP
VH DAC level
VL DAC level
VT/VCOM DAC level
VOL DAC level
VOH DAC level
VCH DAC level
VCL DAC level
V(IOH ) DAC level
V(IOL ) DAC level
OVD high level
OVD low level
PMUDAC level
PE/PMU enable
Channel state
PMU state
PMU measure enable
Differential comparator enable
16-bit DAC monitor
OVD_CHx alarm mask
OVD_CHx alarm state
Reserved
Rev. A | Page 44 of 58
Reset State
N/A
4096d
4096d
4096d
4096d
4096d
4096d
4096d
4096d
4096d
4096d
4096d
16384d
000b
000b
0d
000b
0b
00b
01b
N/A
N/A
ADATE302-02
DETAILS OF REGISTERS
Table 22. PE/PMU Enable (ADDR[4:0] = 0x0C)
Bit
Data[2]
Name
PMU enable
Data[1]
Force VT
Data[0]
PE disable
Description
0 = disable PMU force output and clamps, place PMU in MV mode
1 = enable PMU force output
When set to 0, the PMU State bits are ignored, except for PMU Sense Path (Data[7]).
0 = normal driver operation
1 = force driver to VT
See Table 30 for complete functionality of this bit.
0 = enable driver functions
1 = disable driver (low leakage)
See Table 30 for complete functionality of this bit.
Table 23. Channel State (ADDR[4:0] = 0x0D)
Bit
Data[2]
Name
HVOUT mode select
Data[1]
Load enable
Data[0]
Driver high-Z/VT
Description
0 = HVOUT driver in low impedance
1 = enable HVOUT driver
This bit affects Channel 0 only. Ensure that Channel 0 bit in SPI write is active.
Channel 1 bit in SPI write is don’t care.
0 = disable load
1 = enable load
See Table 30 for complete functionality of this bit.
0 = enable driver high-Z function
1 = enable driver VTERM function
See Table 30 for complete functionality of this bit.
Table 24. PMU State (ADDR[4:0] = 0x0E) 1, 2
Bit
Data[9:8]
Name
PMU input selection
Data[7]
PMU sense path
Data[6]
Data[5]
Reserved
PMU clamp enable
Data[4]
PMU measure V/I
Data[3]
PMU force V/I
Data[2:0]
PMU range
Description
00 = VDUTGND (calibrated for 0.0 V voltage reference)
01 = 2.5 V + VDUTGND (calibrated for 0.0 A current reference)
1X = PMUDAC
0 = internal sense
1 = external sense
0 = disable clamps
1 = enable clamps
0 = measure voltage mode
1 = measure current mode
0 = force voltage mode
1 = force current mode
0XX = Range E (2 μA)
100 = Range D (20 μA)
101 = Range C (200 μA)
110 = Range B (2 mA)
111 = Range A (25 mA)
1
Note that when the ADDR[4:0] = 0x0C PMU enable bit (Data[2]) = 0, the PMU force outputs and clamps are disabled, and the PMU is placed into measure voltage
mode. Data[9:8] and Data[6:0] of the PMU state register are ignored, and only Data[7], the PMU sense path bit, is valid.
2
X = don’t care.
Rev. A | Page 45 of 58
ADATE302-02
Table 25. PMU Measure Enable (ADDR[4:0] = 0x0F) 1
Bit
Data[2:1]
Name
MEASOUT01 select
Data[0]
MEASOUT01 output enable
1
Description
00 = PMU MEASOUT Channel 0
01 = PMU MEASOUT Channel 1
10 = Temp sensor ground reference
11 = Temp sensor
0 = MEASOUT01 is tristated
1 = MEASOUT01 is enabled
This register is written to or read from if either of the CH[1:0] bits is 1.
Table 26. Differential Comparator Enable (ADDR[4:0] = 0x10) 1
Bit
Data[0]
1
Name
Differential comparator enable
Description
0 = differential comparator is disabled, Channel 0 normal window comparator (NWC)
outputs are on Channel 0
1 = differential comparator is enabled, the differential comparator outputs are on Channel 0
This register is written to or read from if either of the CH[1:0] bits is 1.
Table 27. DAC16_MON (16-Bit DAC Monitor) (ADDR[4:0] = 0x11) 1
Bit
Data[1]
Name
16-bit DAC mux enable
Data[0]
16-bit DAC mux select
1
Description
0 = 16-bit DAC mux is tristated
1 = 16-bit DAC mux is enabled
0 = 16-bit DAC Channel 0
1 = 16-bit DAC Channel 1
This register is written to or read from if either of the CH[1:0] bits is 1.
Table 28. OVD_CHx Alarm Mask (ADDR[4:0] = 0x12)
Bit
Data[1]
Name
PMU mask
Data[0]
OVD mask
Description
0 = disable PMU alarm flag
1 = enable PMU alarm flag
0 = disable OVD alarm flag
1 = enable OVD alarm flag
Table 29. OVD_CHx Alarm State (ADDR[4:0] = 0x13) 1
Bit
Data[2]
Name
PMU clamp flag
Data[1]
OVD high flag
Data[0]
OVD low flag
1
Description
0 = PMU not clamped
1 = PMU clamped
0 = DUT voltage < OVD high voltage
1 = DUT voltage > OVD high voltage
0 = DUT voltage > OVD low voltage
1 = DUT voltage < OVD low voltage
This register is a read-only register.
Rev. A | Page 46 of 58
ADATE302-02
USER INFORMATION
Table 30. Driver and Load Truth Table 1
Registers
Signals
PE Disable
Data[0]
ADDR[4:0] = 0x0C
1
Force VT
Data[1]
ADDR[4:0] = 0x0C
X
Load Enable
Data[1]
ADDR[4:0] = 0x0D
X
Driver High-Z/VT
Data[0]
ADDR[4:0] = 0x0D
X
DATAx
X
RCVx
X
0
0
0
1
0
0
X
0
0
X
0
0
X
0
0
X
0
1
0
0
0
0
0
0
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
1
0
1
0
1
0
0
0
0
1
1
0
0
1
1
0
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
0
0
1
1
1
1
1
1
0
1
1
Driver State
High-Z without
clamps
VT
VL
High-Z with
clamps
VH
High-Z with
clamps
VL
VT
VH
VT
VL
High-Z with
clamps
VH
High-Z with
clamps
VL
High-Z with
clamps
VH
High-Z with
clamps
Load State
Power-down
Power-down
Power-down
Power-down
Power-down
Power-down
Power-down
Power-down
Power-down
Power-down
Active off
Active on
Active off
Active on
Active on
Active on
Active on
Active on
X = don’t care.
Table 31. HVOUT Truth Table 1
HVOUT Mode Select
Data[2]
ADDR[4:0] = 0x0D
1
1
1
0
1
Channel 0
RCV
1
0
0
X
Channel 0
Data
X
0
1
X
HVOUT Driver Output
VHH mode; VHH = (VT + 1 V) × 2 + DUTGND (Channel 0 VT DAC)
VL (Channel 0 VL DAC)
VH (Channel 0 VH DAC)
Disabled (HVOUT pin set to 0 V low impedance)
X = don’t care.
Table 32. Comparator Truth Table
Differential
Comparator Enable
Data[0]
ADDR[4:0] = 0x10
0
1
COMP_QH0
Normal window mode
Logic high: VOH0 < VDUT0
Logic low: VOH0 > VDUT0
Differential comparator mode
Logic high: VOH0 < VDUT0 − VDUT1
Logic low: VOH0 > VDUT0 − VDUT1
COMP_QL0
Normal window mode
Logic high: VOL0 < VDUT0
Logic low: VOL0 > VDUT0
Differential comparator mode
Logic high: VOL0 < VDUT0 − VDUT1
Logic low: VOL0 > VDUT0 − VDUT1
Rev. A | Page 47 of 58
COMP_QH1
Normal window mode
Logic high: VOH1 < VDUT1
Logic low: VOH1 > VDUT1
Normal window mode
Logic high: VOH1 < VDUT1
Logic low: VOH1 > VDUT1
COMP_QL1
Normal window mode
Logic high: VOL1 < VDUT1
Logic low: VOL1 > VDUT1
Normal window mode
Logic high: VOL1 < VDUT1
Logic low: VOL1 > VDUT1
ADATE302-02
DETAILS OF DACs vs. LEVELS
There are ten 14-bit DACs per channel. These DACs provide
levels for the driver, comparator, load currents, VHH buffer, OVD,
and clamp levels. There are three versions of output levels:
•
•
•
There is one 16-bit DAC per channel. This DAC provides the
levels for the PMU. The output level is:
•
−2.5 V to +7.5 V; tracks DUTGND. Controls PMU levels.
−2.5 V to +7.5 V; tracks DUTGND. Controls VH, VL,
VT/VCOM/VHH, VOH, VOL, VCH, and VCL levels.
−3.0 V to +7.0 V; tracks DUTGND. Controls OVD levels.
−2.5 V to +7.5 V; does not track DUTGND. Controls IOH
and IOL levels.
Table 33. Level Transfer Functions
DAC Transfer Function
VOUT = 2.0 × (VREF − VREF_GND) × (Code/(214)) − 0.5 × (VREF − VREF_GND) + VDUTGND
Code = [VOUT − VDUTGND + 0.5 × (VREF − VREF_GND)] × [(214)/(2.0 × (VREF − VREF_GND))]
VOUT = 4.0 × (VREF − VREF_GND) × (Code/(214)) − 1.0 × (VREF − VREF_GND) + 2.0 + VDUTGND
Code = [VOUT − VDUTGND − 2.0 + 1.0 × (VREF − VREF_GND)] × [(214)/(4.0 × (VREF − VREF_GND))]
VOUT = 2.0 × (VREF − VREF_GND) × (Code/(214)) − 0.6 × (VREF − VREF_GND) + VDUTGND
Code = [VOUT − VDUTGND + 0.6 × (VREF − VREF_GND)] × [(214)/(2.0 × (VREF − VREF_GND))]
IOUT = [2.0 × (VREF − VREF_GND) × (Code/(214)) − 0.5 × (VREF − VREF_GND)] × (0.012/5.0)
Code = [(IOUT × (5.0/0.012)) + 0.5 × (VREF − VREF_GND)] × [(214)/(2.0 × (VREF − VREF_GND))]
VOUT = 2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) + VDUTGND
Code = [VOUT − VDUTGND + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))]
IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.050/5.0)
Code = [(IOUT × (5.0/0.050)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))]
IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.004/5.0)
Code = [(IOUT × (5.0/0.004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))]
IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.0004/5.0)
Code = [(IOUT × (5.0/0.0004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))]
IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.00004/5.0)
Code = [(IOUT × (5.0/0.00004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))]
IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.000004/5.0)
Code = [(IOUT × (5.0/0.000004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))]
1
Programmable Range 1
(All 0s to All 1s)
−2.5 V to +7.5 V
−3.0 V to +17.0 V
VHH
−3.0 V to +7.0 V
OVD
−6 mA to +18 mA
IOH, IOL
−2.5 V to +7.5 V
PMUDAC
−50 mA to +50 mA
PMUDAC
(PMU FI Range A)
−4 mA to +4 mA
PMUDAC
(PMU FI Range B)
−400 μA to +400 μA
PMUDAC
(PMU FI Range C)
−40 μA to +40 μA
PMUDAC
(PMU FI Range D)
−4 μA to +4 μA
PMUDAC
(PMU FI Range E)
Programmable range includes margin outside of specified part performance, allowing for offset/gain calibration.
Table 34. Load Transfer Functions
Load Level
IOL
IOH
1
Transfer Function 1
V(IOL)/5 V × 12 mA
V(IOH)/5 V × 12 mA
V(IOH), V(IOL) DAC levels are not referenced to DUTGND.
Table 35. PMU Transfer Functions
PMU Mode
Force Voltage
Measure Voltage
Force Current
Measure Current
1
Transfer Function
VOUT = PMUDAC
VMEASOUT01 = VDUTx (internal sense) or VMEASOUT01 = VPMUS_CHx (external sense)
IOUT = [PMUDAC − (VREF/2)]/(R 1 × 5)
VMEASOUT01 = (VREF/2) + VDUTGND + (IDUTx × 5 × R1)
R = 20 Ω for Range A; 250 Ω for Range B; 2.5 kΩ for Range C; 25 kΩ for Range D; 250 kΩ for Range E.
Rev. A | Page 48 of 58
Levels
VH, VL, VT/VCOM,
VOL, VOH, VCH, VCL
ADATE302-02
Table 36. PMU User Required Capacitors
Capacitor
220 pF
220 pF
330 pF
330 pF
Location
Across Pin C10 (FFCAP_0B) and Pin E10 (FFCAP_0A)
Across Pin C1 (FFCAP _1B) and Pin E1 (FFCAP_1A)
Between GND and Pin B9 (SCAP0)
Between GND and Pin B2 (SCAP1)
Table 37. Temperature Sensor
Temperature
0K
300 K
xK
Output
0V
3V
(x K) × 10 mV/K
Table 38. Default Test Conditions
Name
VH DAC Level
VL DAC Level
VT/VCOM DAC Level
VOL DAC Level
VOH DAC Level
VCH DAC Level
VCL DAC Level
IOH DAC Level
IOL DAC Level
OVD Low DAC Level
OVD High DAC Level
PMUDAC DAC Level
PE/PMU Enable
Channel State
PMU State
PMU Measure Enable
Differential Comparator Enable
16-Bit DAC Monitor
OVD_CHx Alarm Mask
Data Input
Receive Input
DUTx Pin
Comparator Output
Default Test Condition
2.0 V
0.0 V
1.0 V
−2.0 V
6.0 V
7.5 V
−2.5 V
0.0 A
0.0 A
−2.5 V
6.5 V
0.0 V
0x0000: PMU disabled, not force VT, PE enabled
0x0000: HVOUT mode disabled, load disabled, VTERM inactive
0x0000: input of DUTGND, internal sense, clamps disabled, FVMV, Range E
0x0000: MEASOUT01 pin tristated
0x0000: normal window comparator mode
0x0000: DAC16_MON tristated
0x0000: disable alarm functions
Logic low
Logic low
Unterminated
Unterminated
Rev. A | Page 49 of 58
ADATE302-02
RECOMMENDED PMU MODE SWITCHING SEQUENCES
To minimize any possible aberrations and voltage spikes on the DUT output, specific mode switching sequences are recommended for the
following transitions:
•
•
•
PMU disable to PMU enable
PMU force voltage mode to PMU force current mode
PMU force current mode to PMU force voltage mode.
PMU Disable to PMU Enable
Step 1: See Table 39 for state of registers in PMU disabled mode.
Table 39.
Register
PE/PMU Enable Register, ADDR[4:0] = 0x0C
PMU State Register, ADDR[4:0] = 0x0E
Bit
Data[2]
Data[9:8]
Data[7]
Data[6]
Data[5]
Data[4]
Data[3]
Data[2:0]
Setting
0
XX
X
X
X
X
X
XXX
Step 2: Write to Register ADDR[4:0] = 0x0E (see Table 40).
Table 40.
Register
PMU State Register, ADDR[4:0] = 0x0E
Bit
Data[9:8]
Data[7]
Data[6]
Data[5]
Data[4]
Data[3]
Setting
1X or 00
X
X
X
X
0
Comments
Set desired input selection
Data[2:0]
XXX
This bit must be set to force voltage mode to
reduce aberrations
Set desired range
Setting
1
Comments
PMU is now enabled in force voltage mode
Step 3: Write to Register ADDR[4:0] = 0x0C (see Table 41).
Table 41.
Register
PE/PMU Enable Register, ADDR[4:0] = 0x0C
Bit
Data[2]
Rev. A | Page 50 of 58
ADATE302-02
PMU Force Voltage Mode to PMU Force Current Mode
Step 1: See Table 42 for state of registers in force voltage mode.
Table 42.
Register
PE/PMU Enable Register, ADDR[4:0] = 0x0C
PMU State Register, ADDR[4:0] = 0x0E
Bit
Data[2]
Data[9:8]
Data[7]
Data[6]
Data[5]
Data[4]
Data[3]
Data[2:0]
Setting
1
XX
X
X
X
X
0
XXX
Step 2: Write to Register ADDR[4:0] = 0x0E (see Table 43).
Table 43.
Register
PMU State Register, ADDR[4:0] = 0x0E
Bit
Data[9:8]
Data[7]
Data[6]
Data[5]
Data[4]
Data[3]
Data[2:0]
Setting
01
X
X
X
X
1
0XX
Comments
Set 2.5 V + VDUTGND input selection
Set to force current mode
2 μA range has the minimum offset current
Step 3: Write to Register ADDR[4:0] = 0x0B (see Table 44).
Table 44.
Register
PMUDAC Level, ADDR[4:0] = 0x0B
Bit
Data[15:0]
Setting
X
Comments
Update the PMUDAC level register to the
desired value
Setting
1X
X
X
X
X
1
XXX
Comments
PMUDAC input selection
Step 4: Write to Register ADDR[4:0] = 0x0E (see Table 45).
Table 45.
Register
PMU State Register, ADDR[4:0] = 0x0E
Bit
Data[9:8]
Data[7]
Data[6]
Data[5]
Data[4]
Data[3]
Data[2:0]
Rev. A | Page 51 of 58
Set to force current mode
Set to the desired current range
ADATE302-02
Transition from PMU Force Current Mode to PMU Force Voltage Mode
Step 1: See Table 46 for state of registers in force current mode.
Table 46.
Register
PE/PMU Enable Register, ADDR[4:0] = 0x0C
PMU State Register, ADDR[4:0] = 0x0E
Bits
Data[2]
Data[9:8]
Data[7]
Data[6]
Data[5]
Data[4]
Data[3]
Data[2:0]
Setting
1
XX
X
X
X
X
1
XXX
Step 2: Write to Register ADDR[4:0] = 0x0E (see Table 47).
Table 47.
Register
PMU State Register, ADDR[4:0] = 0x0E
Bits
Data[9:8]
Data[7]
Data[6]
Data[5]
Data[4]
Data[3]
Data[2:0]
Setting
00
X
X
X
X
0
XXX
Comments
Set DUTGND input selection
Setting
X
Comments
Update the PMUDAC level register to the
desired value
Setting
1X
X
X
X
X
0
XXX
Comments
PMUDAC input selection
Set to force voltage mode
Set to the desired current range
Step 3: Write to Register ADDR[4:0] = 0x0B (see Table 48).
Table 48.
Register
PMUDAC Level, ADDR[4:0] = 0x0B
Bits
Data[15:0]
Step 4: Write to Register ADDR[4:0] = 0x0E (see Table 49).
Table 49.
Register
PMU State Register, ADDR[4:0] = 0x0E
Bits
Data[9:8]
Data[7]
Data[6]
Data[5]
Data[4]
Data[3]
Data[2:0]
Rev. A | Page 52 of 58
Force voltage mode
ADATE302-02
BLOCK DIAGRAMS
VCL
VCH
PE DISABLE DATA[0] (ADDR[4:0] = 0x0C)
FORCES SWITCH OPEN WHEN 1
VH
ROUT = 48Ω
(TRIMMED)
DRIVER
VL
DUT
DATA
VT
DRIVER HIGH-Z/VT DATA[0]
(ADDR[4:0] = 0x0D)
VT BUFFER WHEN 1
HIGH-Z BUFFER WHEN 0
V(IOH)
RCV
VCOM
FORCE VT DATA[1] (ADDR[4:0] = 0x0C)
OVERRIDES THE RCV PIN AND FORCES
VTERM MODE ON THE DRIVER AND LOAD
POWER-DOWN MODE
LOAD ENABLE DATA[1] (ADDR[4:0] = 0x0D)
FORCES SWITCHES OPEN AND POWERS
DOWN LOAD WHEN 0
Figure 88. Driver and Load Block Diagram
~1Ω
VHH = (VT + 1V) × 2 + DUTGND
HVOUT
VH
VL
DATA
48Ω
HV MODE SELECT DATA[2]
(ADDR [4:0] = 0x0D) DISABLES
HV DRIVER AND FORCES
0V ON HVOUT WHEN 0
Figure 89. HVOUT Driver Output Stage
Rev. A | Page 53 of 58
07278-015
RCV (SHOWN IN
RCV = 0 STATE)
07278-014
V(IOL)
ADATE302-02
DUT0
VOL0
VOH0
DUT1
–
VOH
NWC
+
2:1 COMP_QH0
MUX
+
VOL
NWC
–
DIFFERENTIAL
COMPARATOR ENABLE
DATA[0] (ADDR[4:0] = 0x10)
–
VOH
DMC
+
2:1 COMP_QL0
MUX
DU T0 –
DUT0–
DU T1
DUT1
DIFFERENTIAL
BUFFER
VOL0
+
VOL
DMC
–
07278-016
VOH0
NOTES
1. DIFFERENTIAL COMPARATOR ONLY ON CHANNEL 0.
Figure 90. Comparator Block Diagram
COMP_VTT
COMP_QP
50Ω
50Ω
10mA
07278-017
COMP_QN
Figure 91. Comparator Output Scheme
Rev. A | Page 54 of 58
ADATE302-02
PMU MEASURE V/I DATA[4]
(ADDR[4:0] = 0x0E)
PMU SENSE PATH DATA[7]
(ADDR[4:0] = 0x0E)
EXTERNAL DUT
SENSE PIN
MEASURE V
MEASURE I
MEASOUT01 SELECT DATA[2:1]
(ADDR[4:0] = 0x0F)
MUX
MUX
PMU FORCE V/I DATA[3]
(ADDR[4:0] = 0x0E)
MEASURE
OUT
CH[1] PMU V/I
TEMP SENSE
GND REF
TEMP SENSE
IN-AMP G = 5
10kΩ
REF
MUX
2.5 + DUTGND
MUX
MEASOUT01 OUTPUT
ENABLE DATA[0]
(ADDR[4:0] = 0x0F)
ONE PER DEVICE
225kΩ
2µA
PMU INPUT SELECTION DATA[9:8]
(ADDR[4:0] = 0x0E)
20µA
22.5kΩ
200µA
2.25kΩ
250Ω DUT
20Ω
2mA
MV
VIN
2.5V + DUTGND
DUTGND
FFCAP_A
MUX
PMU CLAMP ENABLE DATA[5]
(ADDR[4:0] = 0x0E)
330pF
SCAP
(EXTERNAL)
25mA BUFFER
FFCAP_B
CRA = 220pF
VCH
VCL
25mA
NOTES
1. SWITCHES CONNECTED WITH DOTTED LINES REPRESENT PMU RANGE DATA[2:0] (ADDR[4:0] = 0x0E); WHEN PMU ENABLE D ATA[2] = 0 (ADDR[4:0] = 0x0C), ALL
SWITCHES OPEN AND PMU POWERS DOWN.
2. THE EXTERNAL SENSE PATH MUST CLOSE THE LOOP TO ENABLE THE CLAMPS TO OPERATE CORRECTLY.
3. 25mA RANGE HAS ITS OWN OUTPUT BUFFER.
4. 25mA BUFFER WILL BE TRISTATED WHEN NOT IN USE.
Figure 92. PMU Block Diagram
Rev. A | Page 55 of 58
07278-018
MEASURE V
(AT OUTPUT OF
SENSE MUX)
ADATE302-02
(ADDR[4:0] = 0x12) DATA[0]
OVD MASK ENABLES OVD
FLAGS TO ALARM OVD_CHx PIN
6.5V 1
OVD HIGH LEVEL
DAC (ADDR[4:0] = 0x0A, CH[1])
OVD_CHx
SHORT CIRCUIT
CURRENT = 100µA
DUT
ADATE302-02
–2.5V 1
OVD LOW LEVEL
DAC (ADDR[4:0] = 0x0A, CH[0])
PMU
V/I CLAMP
FLAG
(ADDR[4:0] = 0x12) DATA[1]
PMU MASK ENABLES PMU V/I
FLAG TO ALARM OVD_CHx PIN
1THE
OVD HIGH/LOW LEVEL DAC IS SHARED BY EACH CHANNEL; THEREFORE, ONLY ONE OVD HIGH/LOW VOLTAGE
LEVEL CAN BE SET PER CHIP. THE OVD DACs PROVIDE A VOLTAGE RANGE OF –3V TO +7V. THE RECOMMENDED
HIGH/LOW SETTINGS ARE +6.5V/–2.5V. (THESE VALUES NEED TO BE PROGRAMMED BY THE USER UPON STARTUP/RESET.)
2THIS IS A READ ONLY REGISTER THAT ALLOWS THE USER TO DETERMINE THE CAUSE OF THE ACTIVE OVD FLAG.
Figure 93. OVD Block Diagram
Rev. A | Page 56 of 58
07278-019
(ADDR[4:0] = 0x13) 2 DATA[2] DATA[1] DATA[0]
ADATE302-02
OUTLINE DIMENSIONS
9.10
9.00 SQ
8.90
A1 BALL
CORNER
A1 BALL
CORNER
10
9
8
7
6
5
4
3
2
1
A
B
C
6.731
REF SQ
7.20
BSC SQ
D
E
0.80
BSC
F
G
H
J
K
TOP VIEW
BOTTOM VIEW
0.90 REF
0.305 REF
DETAIL A
*1.20
1.09
1.00
0.83
0.76
0.69
DETAIL A
0.36
REF
0.38
0.33
0.28
0.53
0.48
0.43
BALL DIAMETER
SEATING
PLANE
COPLANARITY
0.12
091108-A
*COMPLIANT TO JEDEC STANDARDS MO-219 WITH
EXCEPTION TO PACKAGE HEIGHT.
Figure 94. 84-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
(BC-84-2)
Dimensions shown in millimeters
0.75
0.60
0.45
16.00 BSC SQ
1.20
MAX
14.00 BSC SQ
76
100
1
75
PIN 1
8.00
BSC SQ
EXPOSED
PAD
0.15
0.05
SEATING
PLANE
0.20
0.09
7°
3.5°
0°
0.08 MAX
COPLANARITY
TOP VIEW
(PINS DOWN)
25
26
VIEW A
51
50
0.50 BSC
LEAD PITCH
0.27
0.22
0.17
VIEW A
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
ROTATED 90° CCW
COMPLIANT TO JEDEC STANDARDS MS-026-AED-HU
Figure 95. 100-Lead Thin Quad Flatpack, Exposed Pad [TQFP_EP]
(SV-100-7)
Dimensions shown in millimeters
Rev. A | Page 57 of 58
072408-A
0° MIN
1.05
1.00
0.95
ADATE302-02
ORDERING GUIDE
Model
ADATE302-02BBCZ 1
ADATE302-02BSVZ1
1
Temperature Range
−40°C to +85°C
−40°C to +85°C
Package Description
84-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
100-Lead Thin Quad Flatpack, Exposed Pad [TQFP_EP]
Z = RoHS Compliant Part.
©2008–2009 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D07278-0-4/09(A)
Rev. A | Page 58 of 58
Package Option
BC-84-2
SV-100-7
Similar pages