SILABS EFR32FG1P132F64GM32-B0 Efr32fg1 flex gecko proprietary protocol soc family data sheet Datasheet

EFR32FG1 Flex Gecko Proprietary
Protocol SoC Family Data Sheet
The Flex Gecko proprietary protocol family of SoCs is part of the
Wireless Gecko portfolio. Flex Gecko SoCs are ideal for enabling
energy-friendly proprietary protocol networking for IoT devices.
KEY FEATURES
• 32-bit ARM® Cortex®-M4 core with 40
MHz maximum operating frequency
The single-die solution provides industry-leading energy efficiency, ultra-fast wakeup
times, a scalable power amplifier, an integrated balun and no-compromise MCU features.
• Scalable Memory and Radio configuration
options available in several footprint
compatible QFN packages
Flex Gecko applications include:
• 12-channel Peripheral Reflex System
enabling autonomous interaction of MCU
peripherals
•
•
•
•
•
Commercial and Retail
Home and Building Automation and Security
Metering
Electronic Shelf Labels
Industrial Automation
• Autonomous Hardware Crypto Accelerator
and Random Number Generator
• Integrated 2.4 GHz balun and PA with up
to 19.5 dBm transmit power
• Integrated DC-DC with RF noise mitigation
Core / Memory
ARM CortexTM M4 processor
with DSP extensions and FPU
Flash Program
Memory
Clock Management
Memory
Protection Unit
RAM Memory
Debug Interface
DMA Controller
Energy Management
Other
High Frequency
Crystal
Oscillator
High Frequency
RC Oscillator
Voltage
Regulator
Voltage Monitor
CRYPTO
Low Frequency
RC Oscillator
Auxiliary High
Frequency RC
Oscillator
DC-DC
Converter
Power-On Reset
CRC
Low Frequency
Crystal
Oscillator
Ultra Low
Frequency RC
Oscillator
Brown-Out
Detector
32-bit bus
Peripheral Reflex System
RFSENSE
Serial
Interfaces
FRC
DEMOD
LNA
PGA
IFADC
I/O Ports
Timers and Triggers
External
Interrupts
Timer/Counter
Protocol Timer
ADC
Low Energy
UARTTM
General
Purpose I/O
Low Energy
Timer
Watchdog Timer
Analog
Comparator
I2C
Pin Reset
Pulse Counter
Real Time
Counter and
Calendar
IDAC
AGC
Frequency
Synthesizer
RAC
Q
Analog I/F
USART
RF Frontend
PA
CRC
BALUN
I
BUFC
Radio Transceiver
MOD
Pin Wakeup
Cryotimer
Lowest power mode with peripheral operational:
EM0—Active
EM1—Sleep
EM2—Deep Sleep
EM3—Stop
silabs.com | Smart. Connected. Energy-friendly.
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
EM4—Hibernate
EM4—Shutoff
Preliminary Rev. 0.9
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Feature List
1. Feature List
The EFR32FG1 highlighted features are listed below.
• Low Power Wireless System-on-Chip.
• High Performance 32-bit 40 MHz ARM Cortex®-M4 with
DSP instruction and floating-point unit for efficient signal
processing
• Up to 256 kB flash program memory
• Up to 32 kB RAM data memory
• 2.4 GHz radio operation
• TX power up to 19.5 dBm
• Low Energy Consumption
• 8.7 mA RX current at 2.4 GHz
• 8.8 mA TX current @ 0 dBm output power at 2.4 GHz
• 63 μA/MHz in Active Mode (EM0)
• 1.4 μA EM2 DeepSleep current (full RAM retention and
RTCC running from LFXO)
• 1.1 μA EM3 Stop current (State/RAM retention)
• Wake on Radio with signal strength detection, preamble
pattern detection, frame detection and timeout
• High Receiver Performance
• -94 dBm sensitivity @ 1 Mbit/s GFSK (2.4GHz)
• Supported Modulation Formats
• 2-FSK / 4-FSK with fully configurable shaping
• Shaped OQPSK / (G)MSK
• Configurable DSSS and FEC
• Supported Protocols:
• 2.4 GHz Proprietary Protocols
• Support for Internet Security
• General Purpose CRC
• Random Number Generator
• Hardware Cryptographic Acceleration for AES 128/256,
SHA-1, SHA-2 (SHA-224 and SHA-256) and ECC
silabs.com | Smart. Connected. Energy-friendly.
• Wide selection of MCU peripherals
• 12-bit 1 Msps SAR Analog to Digital Converter (ADC)
• 2× Analog Comparator (ACMP)
• Digital to Analog Current Converter (IDAC)
• Up to 31 pins connected to analog channels (APORT)
shared between Analog Comparators, ADC, and IDAC
• Up to 31 General Purpose I/O pins with output state retention and asynchronous interrupts
• 8 Channel DMA Controller
• 12 Channel Peripheral Reflex System (PRS)
• 2×16-bit Timer/Counter
• 3 + 4 Compare/Capture/PWM channels
• 32-bit Real Time Counter and Calendar
• 16-bit Low Energy Timer for waveform generation
• 32-bit Ultra Low Energy Timer/Counter for periodic wake-up
from any Energy Mode
• 16-bit Pulse Counter with asynchronous operation
• Watchdog Timer with dedicated RC oscillator @ 50nA
• 2×Universal Synchronous/Asynchronous Receiver/Transmitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I2S)
• Low Energy UART (LEUART™)
• I2C interface with SMBus support and address recognition
in EM3 Stop
• Wide Operating Range
• 1.85 V to 3.8 V single power supply
• Integrated DC-DC, down to 1.8 V output with up to 200 mA
load current for system
• -40 °C to 85 °C
• QFN32 5x5 mm Package
• QFN48 7x7 mm Package
Preliminary Rev. 0.9 | 1
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Ordering Information
2. Ordering Information
Ordering Code
Protocol Stack
Frequency
Band
Max TX
Power
(dBm)
EFR32FG1P132F256GM48-B0*
Proprietary
2.4 GHz
19.5
EFR32FG1P132F256GM32-B0*
Proprietary
2.4 GHz
EFR32FG1P132F128GM48-B0*
Proprietary
EFR32FG1P132F128GM32-B0*
Encryption
Flash
(KB)
RAM
(KB)
GPIO
Package
Full
256
32
31
QFN48
19.5
Full
256
32
16
QFN32
2.4 GHz
19.5
Full
128
32
31
QFN48
Proprietary
2.4 GHz
19.5
Full
128
32
16
QFN32
EFR32FG1P132F64GM48-B0*
Proprietary
2.4 GHz
19.5
Full
64
16
31
QFN48
EFR32FG1P132F64GM32-B0*
Proprietary
2.4 GHz
19.5
Full
64
16
16
QFN32
EFR32FG1V132F256GM48-B0*
Proprietary
2.4 GHz
16.5
AES only
256
32
31
QFN48
EFR32FG1V132F256GM32-B0*
Proprietary
2.4 GHz
16.5
AES only
256
32
16
QFN32
EFR32FG1V132F128GM48-B0*
Proprietary
2.4 GHz
16.5
AES only
128
16
31
QFN48
EFR32FG1V132F128GM32-B0*
Proprietary
2.4 GHz
16.5
AES only
128
16
16
QFN32
EFR32FG1V132F64GM48-B0*
Proprietary
2.4 GHz
16.5
AES only
64
16
31
QFN48
EFR32FG1V132F64GM32-B0*
Proprietary
2.4 GHz
16.5
AES only
64
16
16
QFN32
EFR32FG1V132F32GM48-B0*
Proprietary
2.4 GHz
16.5
AES only
32
8
31
QFN48
EFR32FG1V132F32GM32-B0*
Proprietary
2.4 GHz
16.5
AES only
32
8
16
QFN32
* Engineering Samples
EFR32 X G 1 P 132 F 256 G M 32 – B0 R
Tape and Reel (Optional)
Revision
Pin Count
Package – M (QFN), J (CSP)
Temperature Grade – G (-40 to +85 °C), -I (-40 to +125 °C)
Flash Memory Size in kB
Memory Type (Flash)
Feature Set Code – r2r1r0
r2: Reserved
r1: RF Type – 3 (TRX), 2 (RX), 1 (TX)
r0: Frequency Band – 1 (Sub-GHz), 2 (2.4 GHz), 3 (Dual-Band)
Performance Grade – P (Performance), B (Basic), V (Value)
Generation
Gecko
Family – M (Mighty), B (Blue), F (Flex)
Wireless Gecko 32-bit
Figure 2.1. OPN Decoder
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 2
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
System Overview
3. System Overview
3.1 Introduction
The EFR32 product family combines an energy-friendly MCU with a highly integrated radio transceiver. The devices are well suited for
any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a
short introduction to the full radio and MCU system. The detailed functional description can be found in the EFR32 Reference Manual.
A block diagram of the EFR32FG1 family is shown in Figure 3.1 Detailed EFR32FG1 Block Diagram on page 3. The diagram shows
a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.
Radio Transciever
RF Frontend
I
IFADC
PGA
FRC
Digital Peripherals
LETIMER
LNA
PA
Frequency
Synthesizer
Q
AGC
MOD
TIMER
RAC
BALUN
CRC
2G4RF_IOP
2G4RF_ION
IOVDD
CRYOTIMER
PCNT
RTC / RTCC
ARM Cortex-M4 Core
USART
RFVDD
Up to 256 KB ISP Flash
Program Memory
LEUART
IOVDD
Up to 32 KB RAM
Energy Management
PAVDD
Voltage
Monitor
Memory Protection Unit
DVDD
Floating Point Unit
bypass
VREGVDD
VREGSW
DC-DC
Converter
Serial Wire Debug /
Programming
DECOUPLE
VSS
VREGVSS
RFVSS
PAVSS
RESETn
Watchdog
Timer
Brown Out /
Power-On
Reset
A A
H P
B B
CRYPTO
CRC
Analog Peripherals
Internal
Reference
VDD
ULFRCO
AUXHFRCO
12-bit ADC
LFXTAL_P / N
LFXO
HFXO
HFXTAL_N
Port C
Drivers
PCn
Port D
Drivers
PDn
Port F
Drivers
PFn
VDD
Temp
Sensor
LFRCO
HFRCO
HFXTAL_P
PBn
IDAC
VREF
Clock Management
Reset
Management
Unit
Port B
Drivers
I2C
DMA Controller
Voltage
Regulator
PAn
Port
Mapper
Input MUX
AVDD
Port A
Drivers
APORT
RFSENSE
BUFC
Port I/O Configuration
DEMOD
+
Analog Comparator
Figure 3.1. Detailed EFR32FG1 Block Diagram
3.2 Radio
The Flex Gecko family features a radio transceiver supporting proprietary wireless protocols.
3.2.1 Antenna Interface
The 2.4 GHz antenna interface consists of two pins (2G4RF_IOP and 2G4RF_ION) that interface directly to the on-chip BALUN. The
2G4RF_ION pin should be grounded externally.
The external components and power supply connections for the antenna interface typical applications are shown in the RF Matching
Networks section.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 3
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
System Overview
3.2.2 Fractional-N Frequency Synthesizer
The EFR32FG1 contains a high performance, low phase noise, fully integrated fractional-N frequency synthesizer. The synthesizer is
used in receive mode to generate the LO frequency used by the down-conversion mixer. It is also used in transmit mode to directly
generate the modulated RF carrier.
The fractional-N architecture provides excellent phase noise performance combined with frequency resolution better than 100 Hz, with
low energy consumption. The synthesizer has fast frequency settling which allows very short receiver and transmitter wake up times to
optimize system energy consumption.
3.2.3 Receiver Architecture
The EFR32FG1 uses a low-IF receiver architecture, consisting of a Low-Noise Amplifier (LNA) followed by an I/Q down-conversion mixer, employing a crystal reference. The I/Q signals are further filtered and amplified before being sampled by the IF analog-to-digital
converter (IFADC).
The IF frequency is configurable from 150 kHz to 1371 kHz. The IF can further be configured for high-side or low-side injection, providing flexibility with respect to known interferers at the image frequency.
The Automatic Gain Control (AGC) module adjusts the receiver gain to optimize performance and avoid saturation for excellent selectivity and blocking performance. Devices are production-calibrated to improve image rejection performance.
Demodulation is performed in the digital domain. The demodulator performs configurable decimation and channel filtering to allow receive bandwidths ranging from 0.1 to 2530 kHz. High carrier frequency and baud rate offsets are tolerated by active estimation and
compensation. Advanced features supporting high quality communication under adverse conditions include forward error correction by
block and convolutional coding as well as Direct Sequence Spread Spectrum (DSSS).
A Received Signal Strength Indicator (RSSI) is available for signal quality metrics, for level-based proximity detection, and for RF channel access by Collision Avoidance (CA) or Listen Before Talk (LBT) algorithms. An RSSI capture value is associated with each received
frame and the dynamic RSSI measurement can be monitored throughout reception.
The EFR32FG1 features integrated support for antenna diversity to improve link budget, using complementary control outputs to an
external switch. Internal configurable hardware controls automatic switching between antennae during RF receive detection operations.
3.2.4 Transmitter Architecture
The EFR32FG1 uses a direct-conversion transmitter architecture. For constant envelope modulation formats, the modulator controls
phase and frequency modulation in the frequency synthesizer. Transmit symbols or chips are optionally shaped by a digital shaping
filter. The shaping filter is fully configurable, including the BT product, and can be used to implement Gaussian or Raised Cosine shaping.
Carrier Sense Multiple Access - Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) algorithms can be automatically timed by
the EFR32FG1. These algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth between devices that otherwise lack synchronized RF channel access.
3.2.5 Wake on Radio
The Wake on Radio feature allows flexible, autonomous RF sensing, qualification, and demodulation without required MCU activity, using a subsystem of the EFR32FG1 including the Radio Controller (RAC), Peripheral Reflex System (PRS), and Low Energy peripherals.
3.2.6 RFSENSE
The RFSENSE module generates a system wakeup interrupt upon detection of wideband RF energy at the antenna interface, providing
true RF wakeup capabilities from low energy modes including EM2, EM3 and EM4.
RFSENSE triggers on a relatively strong RF signal and is available in the lowest energy modes, allowing exceptionally low energy consumption. RFSENSE does not demodulate or otherwise qualify the received signal, but software may respond to the wakeup event by
enabling normal RF reception.
Various strategies for optimizing power consumption and system response time in presence of false alarms may be employed using
available timer peripherals.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 4
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
System Overview
3.2.7 Flexible Frame Handling
EFR32FG1 has an extensive and flexible frame handling support for easy implementation of even complex communication protocols.
The Frame Controller (FRC) supports all low level and timing critical tasks together with the Radio Controller and Modulator/Demodulator:
• Highly adjustable preamble length
• Up to 2 simultaneous synchronization words, each up to 32 bits and providing separate interrupts
• Frame disassembly and address matching (filtering) to accept or reject frames
• Automatic ACK frame assembly and transmission
• Fully flexible CRC generation and verification:
• Multiple CRC values can be embedded in a single frame
• 8, 16, 24 or 32-bit CRC value
• Configurable CRC bit and byte ordering
• Selectable bit-ordering (least significant or most significant bit first)
• Optional data whitening
• Optional Forward Error Correction (FEC), including convolutional encoding / decoding and block encoding / decoding
• Half rate convolutional encoder and decoder with constraint lengths from 2 to 7 and optional puncturing
• Optional symbol interleaving, typically used in combination with FEC
• Symbol coding, such as Manchester or DSSS, or biphase space encoding using FEC hardware
• UART encoding over air, with start and stop bit insertion / removal
• Test mode support, such as modulated or unmodulated carrier output
• Received frame timestamping
3.2.8 Packet and State Trace
The EFR32FG1 Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It
features:
• Non-intrusive trace of transmit data, receive data and state information
• Data observability on a single-pin UART data output, or on a two-pin SPI data output
• Configurable data output bitrate / baudrate
• Multiplexed transmitted data, received data and state / meta information in a single serial data stream
3.2.9 Data Buffering
The EFR32FG1 features an advanced Radio Buffer Controller (BUFC) capable of handling up to 4 buffers of adjustable size from 64
bytes to 4096 bytes. Each buffer can be used for RX, TX or both. The buffer data is located in RAM, enabling zero-copy operations.
3.2.10 Radio Controller (RAC)
The Radio Controller controls the top level state of the radio subsystem in the EFR32FG1. It performs the following tasks:
• Precisely-timed control of enabling and disabling of the receiver and transmitter circuitry
• Run-time calibration of receiver, transmitter and frequency synthesizer
• Detailed frame transmission timing, including optional LBT or CSMA-CA
3.2.11 Random Number Generator
The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain.
The data is suitable for use in cryptographic applications.
Output from the random number generator can be used either directly or as a seed or entropy source for software-based random number generator algorithms such as Fortuna.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 5
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
System Overview
3.3 Power
The EFR32FG1 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a
single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator can
be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor.
AVDD and VREGVDD need to be 1.85 V or higher for the MCU to operate across all conditions; however the rest of the system will
operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components.
Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB
components, supplying up to a total of 200 mA.
3.3.1 Energy Management Unit (EMU)
The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and
features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM
blocks, and it contains control registers for the dc-dc regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple
supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen
below a chosen threshold.
3.3.2 DC-DC Converter
The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2
and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Patented RF noise mitigation allows operation
of the DC-DC converter without degrading sensitivity of radio components. Protection features include programmable current limiting,
short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low
for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance
switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.
3.4 General Purpose Input/Output (GPIO)
EFR32FG1 has up to 31 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input.
More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin.
The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals.
The GPIO subsystem supports asynchronous external pin interrupts.
3.5 Clocking
3.5.1 Clock Management Unit (CMU)
The Clock Management Unit controls oscillators and clocks in the EFR32FG1. Individual enabling and disabling of clocks to all peripheral modules is perfomed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility
allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and
oscillators.
3.5.2 Internal and External Oscillators
The EFR32FG1 supports two crystal oscillators and fully integrates four RC oscillators, listed below.
• A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can
also be applied to the HFXO input for improved accuracy over temperature.
• A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
• An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The
HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.
• An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial
Wire debug port with a wide frequency range.
• An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
• An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 6
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
System Overview
3.6 Counters/Timers and PWM
3.6.1 Timer/Counter (TIMER)
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the
PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one
of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output
reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width
modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional
dead-time insertion available in timer unit TIMER_0 only.
3.6.2 Real Time Counter and Calendar (RTCC)
The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a
Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving
frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy
and convenient data storage in all energy modes.
3.6.3 Low Energy Timer (LETIMER)
The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.
3.6.4 Ultra Low Power Wake-up Timer (CRYOTIMER)
The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal
oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events
and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.
3.6.5 Pulse Counter (PCNT)
The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The
clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from
among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2
Deep Sleep, and EM3 Stop.
3.6.6 Watchdog Timer (WDOG)
The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed
monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can
also monitor autonomous systems driven by PRS.
3.7 Communications and Other Digital Peripherals
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous
UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:
• ISO7816 SmartCards
• IrDA
• I2S
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 7
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
System Overview
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow
UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication
possible with a minimum of software intervention and energy consumption.
3.7.3 Inter-Integrated Circuit Interface (I2C)
The I2C module provides an interface between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and
supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10
kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The
interface provided to software by the I2C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.
3.7.4 Peripheral Reflex System (PRS)
The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement.
Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality can be applied by the PRS. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.
3.8 Security Features
3.8.1 GPCRC (General Purpose Cyclic Redundancy Check)
The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the
needs of the application.
3.8.2 Crypto Accelerator (CRYPTO)
The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices support various levels of hardware-accelerated encryption, depending on the part number. The Ordering Information Table specifies whether this part has full or AES-only crypto support. AES-only devices support AES encryption and decryption with 128- or 256-bit keys.
Full crypto support adds ECC over both GF(P) and GF(2m), SHA-1 and SHA-2 (SHA-224 and SHA-256).
Supported modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, CBC-MAC, GMAC and CCM.
Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.
The CRYPTO is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on data
buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations.
3.9 Analog
3.9.1 Analog Port (APORT)
The Analog Port (APORT) is an analog interconnect matrix allowing access to analog modules ADC, ACMP, and IDAC on a flexible
selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs.
3.9.2 Analog Comparator (ACMP)
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption
is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The
ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the
programmable threshold.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 8
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
System Overview
3.9.3 Analog to Digital Converter (ADC)
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 MSamples/s. The
output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple
samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide
range of sources, including pins configurable as either single-ended or differential.
3.9.4 Digital to Analog Current Converter (IDAC)
The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin
or routed to the selected ADC input pin for capacitive sensing. The current is programmable between 0.05 µA and 64 µA with several
ranges with various step sizes.
3.10 Reset Management Unit (RMU)
The RMU is responsible for handling reset of the EFR32FG1. A wide range of reset sources are available, including several power
supply monitors, pin reset, software controlled reset, core lockup reset and watchdog reset.
3.11 Core and Memory
3.11.1 Processor Core
The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:
• ARM Cortex-M4 RISC processor achieving 1.25 Dhrystone MIPS/MHz
• Memory Protection Unit (MPU) supporting up to 8 memory segments
• Up to 256 KB flash program memory
• Up to 32 KB RAM data memory
• Configuration and event handling of all modules
• 2-pin Serial-Wire debug interface
3.11.2 Memory System Controller (MSC)
The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable
from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code
is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a
read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.
3.11.3 Linked Direct Memory Access Controller (LDMA)
The Linked Direct Memory Access (LDMA) controller features 8 channels capable of performing memory operations independently of
software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 9
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
System Overview
3.12 Memory Map
The EFR32FG1 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.
Figure 3.2. EFR32FG1 Memory Map — Core Peripherals and Code Space
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 10
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
System Overview
Figure 3.3. EFR32FG1 Memory Map — Peripherals
3.13 Configuration Summary
The features of the EFR32FG1 are a subset of the feature set described in the device reference manual. The table below describes
device specific implementation of the features. Remaining modules support full configuration.
Table 3.1. Configuration Summary
Module
Configuration
Pin Connections
USART0
IrDA SmartCard
US0_TX, US0_RX, US0_CLK, US0_CS
USART1
IrDA I2S SmartCard
US1_TX, US1_RX, US1_CLK, US1_CS
TIMER0
with DTI.
TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1
silabs.com | Smart. Connected. Energy-friendly.
TIM1_CC[3:0]
Preliminary Rev. 0.9 | 11
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4. Electrical Specifications
4.1 Electrical Characteristics
All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:
• Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization.
• Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna.
• Minimum and maximum values represent the worst conditions across supply voltage, process variation, and an operating temperature of -40 to +85 °C, unless stated otherwise.
Refer to Table 4.2 General Operating Conditions on page 14 for more details about operational supply and temperature limits.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 12
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.1 Absolute Maximum Ratings
Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of
the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure
to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.
Table 4.1. Absolute Maximum Ratings
Parameter
Symbol
Storage temperature range
TSTG
Min
Typ
Max
Unit
-50
—
150
°C
External main supply voltage VDDMAX
0
—
3.8
V
External main supply voltage VDDRAMPMAX
ramp rate
—
—
1
V / μs
-0.3
—
Min of 5.25
and IOVDD
+2
V
-0.3
—
IOVDD+0.3
V
-0.3
—
1.4
V
Voltage on any 5V tolerant
GPIO pin1
VDIGPIN
Voltage on non-5V tolerant
GPIO pins
Test Condition
Voltage on HFXO pins
VHFXOPIN
Input RF level on pins
2G4RF_IOP and
2G4RF_ION
PRFMAX2G4
—
—
10
dBm
Voltage differential between
RF pins (2G4RF_IOP 2G4RF_ION)
VMAX2G4
-50
—
50
mV
-0.3
—
3.3
V
Total current into VSS ground IVSSMAX
lines (sink)
—
—
200
mA
Current per I/O pin (sink)
—
—
50
mA
—
—
50
mA
—
—
200
mA
—
—
200
mA
—
—
0.3
V
Absolute Voltage on RF pins VMAXDIFF2G4
2G4RF_IOP and
2G4RF_ION
IIOMAX
Current per I/O pin (source)
Current for all I/O pins (sink)
IIOALLMAX
Current for all I/O pins
(source)
Voltage difference between
AVDD and VREGVDD
ΔVDD
Note:
1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 13
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.2 Operating Conditions
When assigning supply sources, the following requirements must be observed:
• VREGVDD must be the highest voltage in the system
• VREGVDD = AVDD
• DVDD ≤ AVDD
• IOVDD ≤ AVDD
• RFVDD ≤ AVDD
• PAVDD ≤ AVDD
4.1.2.1 General Operating Conditions
Table 4.2. General Operating Conditions
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
-G temperature grade
-40
25
85
°C
1.85
3.3
3.8
V
2.4
3.3
3.8
V
DCDC in bypass 50mA load
TBD
3.3
3.8
V
DCDC not in use. DVDD externally shorted to VREGVDD
1.85
3.3
3.8
V
1.62
—
VVREGVDD
V
DVDD Operating supply volt- VDVDD
age
1.62
—
VVREGVDD
V
PAVDD Operating supply
voltage
VPAVDD
1.62
—
VVREGVDD
V
IOVDD Operating supply
voltage
VIOVDD
1.62
—
VVREGVDD
V
—
—
0.1
V
0 wait-states (MODE = WS0) 3
—
—
26
MHz
1 wait-states (MODE = WS1) 3
—
38.4
40
MHz
Operating temperature range TOP
AVDD Supply voltage1
VAVDD
VREGVDD Operating supply VVREGVDD
voltage12
RFVDD Operating supply
voltage
DCDC in regulation
VRFVDD
Difference between AVDD
dVDD
and VREGVDD, ABS(AVDDVREGVDD)
HFCLK frequency
fCORE
Note:
1. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate.
2. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for
other loads can be calculated as VDVDD_min+ILOAD * RBYP_max
3. in MSC_READCTRL register
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 14
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.3 Thermal Characteristics
Table 4.3. Thermal Characteristics
Parameter
Symbol
Test Condition
Thermal Resistance
THETAJA
silabs.com | Smart. Connected. Energy-friendly.
Min
Typ
Max
Unit
QFN32 Package, 2-Layer PCB,
Air velocity = 0 m/s
—
79
—
°C/W
QFN32 Package, 2-Layer PCB,
Air velocity = 1 m/s
—
62.2
—
°C/W
QFN32 Package, 2-Layer PCB,
Air velocity = 2 m/s
—
54.1
—
°C/W
QFN32 Package, 4-Layer PCB,
Air velocity = 0 m/s
—
32
—
°C/W
QFN32 Package, 4-Layer PCB,
Air velocity = 1 m/s
—
28.1
—
°C/W
QFN32 Package, 4-Layer PCB,
Air velocity = 2 m/s
—
26.9
—
°C/W
QFN48 Package, 2-Layer PCB,
Air velocity = 0 m/s
—
64.5
—
°C/W
QFN48 Package, 2-Layer PCB,
Air velocity = 1 m/s
—
51.6
—
°C/W
QFN48 Package, 2-Layer PCB,
Air velocity = 2 m/s
—
47.7
—
°C/W
QFN48 Package, 4-Layer PCB,
Air velocity = 0 m/s
—
26.2
—
°C/W
QFN48 Package, 4-Layer PCB,
Air velocity = 1 m/s
—
23.1
—
°C/W
QFN48 Package, 4-Layer PCB,
Air velocity = 2 m/s
—
22.1
—
°C/W
Preliminary Rev. 0.9 | 15
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.4 DC-DC Converter
Test conditions: LDCDC=4.7 µH, CDCDC=1.0 µF (Murata GRM188R71A105KA61D), VDCDC_I=3.3 V, VDCDC_O=1.8 V, IDCDC_LOAD=50
mA, Heavy Drive configuration, FDCDC_LN=8 MHz, unless otherwise indicated.
Table 4.4. DC-DC Converter
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input voltage range
VDCDC_I
Bypass mode, Strong Bypass with
PMOS enabled, assumes inductor
DCR of 140 mOhms, IDCDC_LOAD
= 50 mA
TBD
—
3.8
V
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or
Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA
2.4
—
3.8
V
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 200 mA
TBD
—
3.8
V
Output voltage programmable range
VDCDC_O
1.8V configuration
TBD
1.8
—
V
Regulation DC Accuracy
ACCDC
Low noise (LN) mode, 1.8 V target
output
TBD
—
TBD
mV
Low power (LP) mode,
LPCMPBIAS1 = 0, 1.8 V target
output, IDCDC_LOAD = 200 μA
TBD
—
TBD
mV
Low power (LP) mode,
LPCMPBIAS1 = 3, 1.8 V target
output, IDCDC_LOAD = 10 mA
TBD
—
TBD
mV
Steady-state output ripple
VR
Radio disabled.
—
3
—
mVpp
Output voltage under/overshoot
VOV
CCM Mode (LNFORCECCM1 =
1), Load changes between 0 mA
and 100 mA
—
—
150
mV
DCM Mode (LNFORCECCM1 =
0), Load changes between 0 mA
and 10 mA
—
—
150
mV
DC line regulation
VREG
Input changes between 3.8 V and
2.4 V
—
0.1
—
%
DC load regulation
IREG
Load changes between 0 mA and
100 mA in CCM mode
—
0.1
—
%
Max load current
ILOAD_MAX
Low noise (LN) Heavy Drive2
—
—
200
mA
Low noise (LN) mode, Medium
Drive2
—
—
100
mA
Low noise (LN) mode, Light
Drive2
—
—
50
mA
Low power (LP) mode,
LPCMPBIAS1 = 3
—
—
10
mA
DCDC output capacitor
CDCDC
25% tolerance
TBD
1
TBD
μF
DCDC output inductor
LDCDC
20% tolerance
—
4.7
—
μH
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 16
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Resistance in Bypass mode
RBYP
BYPPFETEN = 0
TBD
1.2
TBD
Ω
BYPPFETEN = 1
TBD
0.8
TBD
Ω
Note:
1. In EMU_DCDCMISCCTRL register
2. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 17
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.5 Current Consumption
4.1.5.1 Current Consumption 1.85 V without DC-DC Converter
Unless otherwise indicated VREGVDD = AVDD = DVDD = RFVDD = PAVDD= 1.85 V. EMU_PWRCFG_PWRCG=NODCDC.
EMU_DCDCCTRL_DCDCMODE=BYPASS. See Figure 5.1 EFR32FG1 Typical Application Circuit: Direct Supply Configuration without
DC-DC converter on page 48.
Table 4.5. Current Consumption 1.85V without DC/DC
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash
—
128
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
87
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
103
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
112
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
105
—
μA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
235
—
μA/MHz
38.4 MHz crystal
—
61
—
μA/MHz
38 MHz HFRCO
—
35
—
μA/MHz
26 MHz HFRCO
—
37
—
μA/MHz
1 MHz HFRCO
—
167
—
μA/MHz
Full RAM retention and RTCC
running from LFXO
—
3.36
—
μA
4 kB RAM retention and RTCC
running from LFRCO
—
3.13
—
μA
Current consumption in EM3 IEM3
Stop mode
Full RAM retention and CRYOTIMER running from ULFRCO
—
2.84
—
μA
Current consumption in
EM4H Hibernate mode
128 byte RAM retention, RTCC
running from LFXO
—
1.08
—
μA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.64
—
μA
128 byte RAM retention, no RTCC
—
0.63
—
μA
No RAM retention, no RTCC
—
0.02
—
μA
Current consumption in EM0 IACTIVE
Active mode with radio disabled, All peripherals disabled
Current consumption in EM1 IEM1
Sleep mode with radio disabled. All peripherals disabled
Current consumption in EM2 IEM2
Deep Sleep mode.
Current consumption in
EM4S Shutoff mode
IEM4
IEM4S
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Preliminary Rev. 0.9 | 18
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.5.2 Current Consumption 3.3 V without DC-DC Converter
Unless otherwise indicated VREGVDD = AVDD = DVDD = RFVDD = PAVDD= 3.3 V. EMU_PWRCFG_PWRCG=NODCDC.
EMU_DCDCCTRL_DCDCMODE=BYPASS. See Figure 5.3 EFR32FG1 Typical Application Circuit: Configuration with DC-DC Coverter
(PAVDD from VDD) on page 49.
Table 4.6. Current Consumption 3.3V without DC/DC
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash
—
129
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
87
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
103
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
112
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
105
—
μA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
237
—
μA/MHz
38.4 MHz crystal
—
61
—
μA/MHz
38 MHz HFRCO
—
35
—
μA/MHz
26 MHz HFRCO
—
37
—
μA/MHz
1 MHz HFRCO
—
170
—
μA/MHz
Full RAM retention and RTCC
running from LFXO
—
3.47
—
μA
4 kB RAM retention and RTCC
running from LFRCO
—
3.35
—
μA
Current consumption in EM3 IEM3
Stop mode
Full RAM retention and CRYOTIMER running from ULFRCO
—
2.92
—
μA
Current consumption in
EM4H Hibernate mode
128 byte RAM retention, RTCC
running from LFXO
—
1.13
—
μA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.67
—
μA
128 byte RAM retention, no RTCC
—
0.66
—
μA
no RAM retention, no RTCC
—
0.04
—
μA
Current consumption in EM0 IACTIVE
Active mode with radio disabled, All peripherals disabled
Current consumption in EM1 IEM1
Sleep mode with radio disabled. All peripherals disabled
Current consumption in EM2 IEM2
Deep Sleep mode.
Current consumption in
EM4S Shutoff mode
IEM4
IEM4S
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Preliminary Rev. 0.9 | 19
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.5.3 Current Consumption 3.3 V using DC-DC Converter
Unless otherwise indicated VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD= 1.8 V DC-DC output. See Figure 5.2
EFR32FG1 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 48.
Table 4.7. Current Consumption 3.3V with DC/DC
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash.
—
87
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
63
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
72
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
78
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
79
—
μA/MHz
38.4 MHz crystal
—
39
—
μA/MHz
38 MHz HFRCO
—
23
—
μA/MHz
26 MHz HFRCO
—
25
—
μA/MHz
1 MHz HFRCO
—
142
—
μA/MHz
Full RAM retention and RTCC
running from LFXO
—
1.4
—
μA
4 kB RAM retention and RTCC
running from LFRCO
—
1.4
—
μA
Current consumption in EM3 IEM3
Stop mode
Full RAM retention and CRYOTIMER running from ULFRCO
—
1.1
—
μA
Current consumption in
EM4H Hibernate mode
128 byte RAM retention, RTCC
running from LFXO
—
0.9
—
μA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.6
—
μA
128 byte RAM retention, no RTCC
—
0.6
—
μA
no RAM retention, no RTCC
—
0.03
—
μA
Current consumption in EM0 IACTIVE
Active mode with radio disabled. All peripherals disabled, DCDC in LowNoise
mode
Current consumption in EM1 IEM1
Sleep mode with radio disabled. All peripherals disabled, DCDC in LowPower
mode.
Current consumption in EM2 IEM2
Deep Sleep mode.
Current consumption in
EM4S Shutoff mode
IEM4
IEM4S
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Preliminary Rev. 0.9 | 20
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.5.4 Current Consumption Using Radio
Unless otherwise indicated VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. See Figure 5.2 EFR32FG1 Typical
Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 48 or Figure 5.3 EFR32FG1 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDD) on page 49.
Table 4.8. Current Consumption Using Radio 3.3 V with DC-DC
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Current consumption in receive mode, active packet
reception (MCU in EM1 @
38.4 MHz, peripheral clocks
disabled)
IRX
1 Mbit/s, 2GFSK, F = 2.4 GHz,
Radio clock prescaled by 4
—
8.7
—
mA
Current consumption in
transmit mode (MCU in EM1
@ 38.4 MHz, peripheral
clocks disabled)
ITX
CW, 0 dBm, F = 2.4 GHz, Radio
clock prescaled by 3
—
8.8
—
mA
CW, 3 dBm, F = 2.4 GHz
—
17.6
—
mA
CW, 8 dBm, F = 2.4 GHz
—
26.1
—
mA
CW, 10.5 dBm, F = 2.4 GHz
—
34.1
—
mA
CW, 16.5 dBm, F = 2.4 GHz,
PAVDD connected directly to external 3.3V supply
—
88
—
mA
CW, 19.5 dBm, F = 2.4 GHz,
PAVDD connected directly to external 3.3V supply
—
133
—
mA
—
51
—
nA
Min
Typ
Max
Unit
RFSENSE current consump- IRFSENSE
tion
4.1.6 Wake up times
Table 4.9. Wake up times
Parameter
Symbol
Test Condition
Wake up from EM2 Deep
Sleep
tEM2_WU
Code execution from flash
—
10.7
—
μs
Code execution from RAM
—
3
—
μs
Wakeup time from EM1
Sleep
tEM1_WU
Executing from flash
—
3
—
AHB
Clocks
Executing from RAM
—
3
—
AHB
Clocks
Executing from flash
—
10.7
—
μs
Executing from RAM
—
3
—
μs
Executing from flash
—
60
—
μs
—
290
—
μs
Wake up from EM3 Stop
tEM3_WU
Wake up from EM4H Hibernate 1
tEM4H_WU
Wake up from EM4S Shutoff1
tEM4S_WU
Note:
1. Time from wakeup request until first instruction is executed. Wakeup results in device reset.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 21
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.7 Brown Out Detector
Table 4.10. Brown Out Detector
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
DVDDBOD threshold
VDVDDBOD
DVDD rising
—
—
TBD
V
DVDD falling
TBD
—
—
V
DVDD BOD hysteresis
VDVDDBOD_HYST
—
24
—
mV
DVDD response time
tDVDDBOD_DELAY Supply drops at 0.1V/μs rate
—
2.4
—
μs
AVDD BOD threshold
VAVDDBOD
AVDD rising
—
—
1.85
V
AVDD falling
TBD
—
—
V
AVDD BOD hysteresis
VAVDDBOD_HYST
—
21
—
mV
AVDD response time
tAVDDBOD_DELAY Supply drops at 0.1V/μs rate
—
2.4
—
μs
EM4 BOD threshold
VEM4DBOD
AVDD rising
—
—
TBD
V
AVDD falling
TBD
—
—
V
—
46
—
mV
—
300
—
μs
EM4 BOD hysteresis
VEM4BOD_HYST
EM4 response time
tEM4BOD_DELAY
Supply drops at 0.1V/μs rate
4.1.8 Frequency Synthesizer Characteristics
Table 4.11. Frequency Synthesizer Characteristics
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
RF Synthesizer Frequency
range
FRANGE_2400
2.4 GHz frequency range
2400
—
2483.5
MHz
LO tuning frequency resolution with 38.4 MHz crystal
FRES_2400
2400 - 2483.5 MHz
—
—
73
Hz
Maximum frequency deviation with 38.4 MHz crystal
ΔFMAX_2400
—
—
1677
kHz
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 22
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.9 2.4 GHz RF Transceiver Characteristics
4.1.9.1 RF Transmitter General Characteristics for the 2.4 GHz Band
Unless otherwise indicated T=25C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is
filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.45 GHz. Test circuit according to Figure 5.2 EFR32FG1
Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 48 and Figure 5.4 Typical 2.4 GHz RF
impedance-matching network circuits on page 49.
Table 4.12. RF Transmitter General Characteristics for 2.4 GHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Maximum TX power1
POUTMAX
19.5 dBm-rated part numbers.
PAVDD connected directly to external 3.3V supply
—
19.5
—
dBm
16.5 dBm-rated part numbers.
PAVDD connected directly to external 3.3V supply
—
16.5
—
dBm
-30
—
dBm
Minimum active TX Power
POUTMIN
CW
Output power step size
POUTSTEP
-5 dBm< Output power < 0 dBm
—
1
—
dB
0 dBm < output power <
POUTMAX
—
0.5
—
dB
1.85 V < VVREGVDD < 3.3 V without DC-DC converter, operation at
higher than 10.5 dBm.
—
4.5
—
dB
1.85 V < VVREGVDD < 3.3 V using
DC-DC converter
—
2.1
—
dB
From -40 to +85 °C, PAVDD connected to DCDC output
—
1.4
—
dB
From -40 to +85 °C, PAVDD connected to external supply
—
1.4
—
dB
Over RF tuning frequency range
—
0.5
—
dB
2400
—
2483.5
MHz
Output power variation vs
supply at POUTMAX
Output power variation vs
temperature at POUTMAX
POUTVAR_V
POUTVAR_T
Output power variation vs RF POUTVAR_F
frequency at POUTMAX
RF tuning frequency range
FRANGE
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of 2. Ordering Information
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 23
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.9.2 RF Receiver General Characteristics for the 2.4 GHz Band
Unless otherwise indicated T=25C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is
filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according to Figure 5.2 EFR32FG1
Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 48 and Figure 5.4 Typical 2.4 GHz RF
impedance-matching network circuits on page 49.
Table 4.13. RF Receiver General Characteristics for 2.4 GHz Band
Parameter
Symbol
RF tuning frequency range
FRANGE
Receive mode maximum
spurious emission
SPURRX
Level above which
RFSENSE will trigger
RFSENSETRIG
Level below which
RFSENSE will not trigger
RFSENSETHRES
1% PER Sensitivity
SENS2GFSK
0.1% BER Sensitivity
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Min
Typ
Max
Unit
2400
—
2483.5
MHz
30 MHz to 1 GHz
—
-57
—
dBm
1 GHz to 12 GHz
—
-47
—
dBm
CW at 2.45 GHz
—
-24
—
dBm
—
-50
—
dBm
2 Mbps 2GFSK signal
—
-90.5
—
dBm
250 kbps 2GFSK signal
—
-99.2
—
dBm
Preliminary Rev. 0.9 | 24
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.9.3 RF Transmitter Characteristics for 1Mbps 2GFSK in the 2.4 GHz Band
Unless otherwise indicated T=25C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is
filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.44 GHz. Test circuit according to Figure 5.2 EFR32FG1
Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 48 and Figure 5.4 Typical 2.4 GHz RF
impedance-matching network circuits on page 49.
Table 4.14. RF Transmitter Characteristics for 1Mbps 2GFSK in the 2.4GHz Band
Parameter
Symbol
Transmit 6dB bandwidth
TXBW
Power spectral density limit
PSDLIMIT
Min
Typ
Max
Unit
—
740
—
kHz
Per FCC part 15.247
—
-6.5
—
dBm/
3kHz
Per ETSI 300.328 at 10 dBm/1
MHz
—
10
—
dBm
Occupied channel bandwidth OCPETSI328
per ETSI EN300.328
99% BW at highest and lowest
channels in band
—
1.1
—
MHz
Emissions of harmonics outof-band, per FCC part
15.247
2nd,3rd, 5, 6, 8, 9,10 harmonics;
continuous transmission of modulated carrier
—
-47.3
—
dBm
Spurious emissions out-ofSPUROOB_FCC
band, per FCC part 15.247,
excluding harmonics captured in SPURHARM,FCC. Restricted Bands
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier1
—
-47
—
dBm
Spurious emissions out-ofband, per FCC part 15.247,
excluding harmonics captured in SPURHARM,FCC.
Non Restricted Bands
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier
—
-26
—
dBc
[2400-BW to 2400] MHz, [2483.5
to 2483.5+BW] MHz
—
-16
—
dBm
[2400-2BW to 2400-BW] MHz,
[2483.5+BW to 2483.5+2BW]
MHz per ETSI 300.328
—
-26
—
dBm
47-74 MHz,87.5-108 MHz,
174-230 MHz, 470-862 MHz
—
-60
—
dBm
25-1000 MHz
—
-42
—
dBm
1-12 GHz
—
-36
—
dBm
Spurious emissions out-ofband; per ETSI 300.328
SPURHRM_FCC
SPURETSI328
Spurious emissions per ETSI SPURETSI440
EN300.440
Test Condition
Note:
1. For 2480 Mhz, a maximum duty cycle of 20% is used to achieve this value.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 25
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.9.4 RF Receiver Characteristics for 1Mbps 2GFSK in the 2.4 GHz Band
Unless otherwise indicated T=25C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is
filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according to Figure 5.2 EFR32FG1
Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 48 and Figure 5.4 Typical 2.4 GHz RF
impedance-matching network circuits on page 49.
Table 4.15. RF Receiver Characteristics for 1Mbps 2GFSK in the 2.4GHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max usable receiver input
level, 0.1% BER
SAT
Signal is reference signal1. Packet
length is 20 bytes.
—
10
—
dBm
Sensitivity, 0.1% BER
SENS
Signal is reference signal1. Using
DC-DC converter
—
-94
—
dBm
Signal to co-channel interfer- C/ICC
er, 0.1% BER
Desired signal 3 dB above reference sensitivity
—
8.3
—
dB
N+1 adjacent channel (1
C/I1+
MHz) selectivity, 0.1% BER,
with allowable exceptions.
Desired is reference signal at
-67 dBm
Interferer is reference signal at +1
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-3
—
dB
N-1 adjacent channel (1
C/I1MHz) selectivity, 0.1% BER,
with allowable exceptions.
Desired is reference signal at
-67 dBm
Interferer is reference signal at -1
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-0.5
—
dB
Alternate (2 MHz) selectivity, C/I2
0.1% BER, with allowable
exceptions. Desired is reference signal at -67 dBm
Interferer is reference signal at ± 2
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-43
—
dB
Alternate (3 MHz) selectivity, C/I3
0.1% BER, with allowable
exceptions. Desired is reference signal at -67 dBm
Interferer is reference signal at ±3
MHz offset. Desired frequency
2404 MHz ≤ Fc ≤ 2480 MHz
—
-46.7
—
dB
Selectivity to image frequen- C/IIM
cy, 0.1% BER. Desired is reference signal at -67 dBm
Interferer is reference signal at image frequency with 1 MHz precision
—
-38.7
—
dB
Selectivity to image frequency +1 MHz, 0.1% BER. Desired is reference signal at
-67 dBm
Interferer is reference signal at image frequency +1 MHz with 1
MHz precision
—
-48.2
—
dB
Interferer frequency 30 MHz ≤ f ≤
2000 MHz
—
-27
—
dBm
Interferer frequency 2003 MHz ≤ f
≤ 2399 MHz
—
-32
—
dBm
Interferer frequency 2484 MHz ≤ f
≤ 2997 MHz
—
-32
—
dBm
Interferer frequency 3 GHz ≤ f ≤
12.75 GHz
—
-27
—
dBm
C/IIM+1
Blocking, 0.1% BER, Desired BLOCKOOB
is reference signal at -67
dBm. Interferer is CW in
OOB range.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 26
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
Parameter
Min
Typ
Max
Unit
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
4
—
—
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
—
—
-101
dBm
—
—
0.5
dB
RSSI resolution
Symbol
RSSIRES
Test Condition
Over RSSIMIN to RSSIMAX
Note:
1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired data = PRBS9;
interferer data = PRBS15; frequency accuracy better than 1 ppm
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 27
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.9.5 RF Transmitter Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band
Unless otherwise indicated T=25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is
filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Test circuit according to Figure 5.2 EFR32FG1
Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 48 and Figure 5.4 Typical 2.4 GHz RF
impedance-matching network circuits on page 49
Table 4.16. RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4GHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Error vector magnitude (off- EVM
set EVM), per 802.15.4-2011
Average across frequency. Signal
is DSSS-OQPSK reference packet1
—
6.1
—
% rms
Power spectral density limit
Relative, at carrier ±3.5 MHz
—
-26
—
dBc
Absolute, at carrier ±3.5 MHz2
—
-36
—
dBm
Per FCC part 15.247
—
-3.8
—
dBm/
3kHz
Output power level which meets
10dBm/MHz ETSI 300.328 specification
—
12
—
dBm
Occupied channel bandwidth OCPETSI328
per ETSI EN300.328
99% BW at highest and lowest
channels in band
—
2.25
—
MHz
Emissions of harmonics outof-band, per FCC part
15.247
SPURHRM_FCC
2nd,3rd, 5, 6,8,9,10 harmonics;
continuous transmission of modulated carrier
—
-49.7
—
dBm
Spurious emissions out-ofband, per FCC part 15.247,
excluding harmonics. Restricted Bands
SPUROOB_FCC
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier3
—
-47
—
dBm
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier
—
-35.4
—
dBc
[2400-BW to 2400], [2483.5 to
2483.5+BW];
—
-36.6
—
dBm
[2400-2BW to 2400-BW],
[2483.5+BW to 2483.5+2BW]; per
ETSI 300.328
—
-41.7
—
dBm
47-74 MHz,87.5-108 MHz,
174-230 MHz, 470-862 MHz
—
-60
—
dBm
25-1000 MHz,
—
-42
—
dBm
1G-24G
—
-36
—
dBm
PSDLIMIT
Spurious emissions out-ofband, per FCC part 15.247,
excluding harmonics, Non
Restricted Bands
Spurious emissions out-ofband; per ETSI 300.3284
SPURETSI328
Spurious emissions per ETSI SPURETSI440
EN300.4404
Note:
1. Reference packet is defined as 20 octet PSDU, modulated according to 802.15.4-2011 DSSS-OQPSK in the 2.4GHz band, with
pseudo-random packet data content
2. For 2415 Mhz, a maximum duty cycle of 50% is used to achieve this value.
3. For 2480 Mhz, a maximum duty cycle of 20% is used to achieve this value.
4. Specified at maximum power output level of 10 dBm
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 28
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.9.6 RF Receiver Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band
Unless otherwise indicated T=25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is
filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.445 GHz. Test circuit according to Figure 5.2 EFR32FG1
Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 48 and Figure 5.4 Typical 2.4 GHz RF
impedance-matching network circuits on page 49
Table 4.17. RF Receiver Characteristics for 801.15.4 DSSS-OQPSK in the 2.4 GHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max usable receiver input
level, 1% PER
SAT
Signal is reference signal1. Packet
length is 20 octets.
—
10
—
dBm
Sensitivity, 1% PER
SENS
Signal is reference signal. Packet
length is 20 octets. Using DC-DC
converter.
—
-101
—
dBm
Signal is reference signal. Packet
length is 20 octets. Without DCDC converter.
—
-101
—
dBm
Co-channel interferer rejection, 1% PER
CCR
Desired signal 10 dB above sensitivity limit
—
-2.6
—
dB
High-side adjacent channel
rejection, 1% PER. Desired
is reference signal at 3dB
above reference sensitivity
level2
ACR+1
Interferer is reference signal at +1
channel-spacing.
—
33.75
—
dB
Interferer is filtered reference signal3 at +1 channel-spacing.
—
52.2
—
dB
Interferer is CW at +1 channelspacing.4
—
58.6
—
dB
Interferer is reference signal at -1
channel-spacing.
—
35
—
dB
Interferer is filtered reference signal3 at -1 channel-spacing.
—
54.7
—
dB
Interferer is CW at -1 channelspacing.
—
60.1
—
dB
Interferer is reference signal at ±2
channel-spacing
—
45.9
—
dB
Interferer is filtered reference signal3 at ±2 channel-spacing
—
56.8
—
dB
Interferer is CW at ±2 channelspacing
—
65.5
—
dB
Image rejection , 1% PER,
IR
Desired is reference signal at
3dB above reference sensitivity level2
Interferer is CW in image band4
—
49.3
—
dB
Blocking rejection of all other BLOCK
channels. 1% PER, Desired
is reference signal at 3dB
above reference sensitivity
level2. Interferer is reference
signal.
Interferer frequency < Desired frequency - 3 channel-spacing
—
57.2
—
dB
Interferer frequency > Desired frequency + 3 channel-spacing
—
57.9
—
dB
Blocking rejection of 802.11g BLOCK80211G
signal centered at +12MHz
or -13MHz
Desired is reference signal at 6dB
above reference sensitivity level2
—
51.6
—
dB
Low-side adjacent channel
rejection, 1% PER. Desired
is reference signal at 3dB
above reference sensitivity
level2
Alternate channel rejection,
1% PER. Desired is reference signal at 3dB above
reference sensitivity level2
ACR-1
ACR2
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 29
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
5
—
—
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
—
—
-98
dBm
—
0.25
—
dB
—
0.5
—
dB
RSSI resolution
RSSIRES
RSSI linearity as defined by
802.15.4-2003
RSSILIN
Test Condition
over RSSIMIN to RSSIMAX
Note:
1. Reference signal is defined as O-QPSK DSSS per 802.15.4, Frequency range = 2400-2483.5 MHz, Symbol rate = 62.5 ksymbols/s
2. Reference sensitivity level is -85 dBm
3. Filter is characterized as a symmetric bandpass centered on the adjacent channel having a 3dB bandwidth of 4.6 MHz and stopband rejection better than 26 dB beyond 3.15 MHz from the adjacent carrier.
4. Due to low-IF frequency, there is some overlap of adjacent channel and image channel bands. Adjacent channel CW blocker
tests place the Interferer center frequency at the Desired frequency ±5 MHz on the channel raster, whereas the image rejection
test places the CW interferer near the image frequency of the Desired signal carrier, regardless of the channel raster.
4.1.10 Modem Features
Table 4.18. Modem Features
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Receive Bandwidth
RXBandwidth
Configurable range with 38.4 MHz
crystal
0.1
—
2530
kHz
IF Frequency
IFFreq
Configurable range with 38.4 MHz
crystal. Selected steps available.
150
—
1371
kHz
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 30
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.11 Oscillators
4.1.11.1 LFXO
Table 4.19. LFXO
Parameter
Symbol
Crystal frequency
Test Condition
Min
Typ
Max
Unit
fLFXO
—
32.768
—
kHz
Supported crystal equivalent
series resistance (ESR)
ESRLFXO
—
—
70
kΩ
Supported range of crystal
load capacitance 1
CLFXO_CL
6
—
18
pF
On-chip tuning cap range 2
CLFXO_T
8
—
40
pF
On-chip tuning cap step size
SSLFXO
—
0.25
—
pF
Current consumption after
startup 3
ILFXO
ESR = 30 kΩ, CL=12.5 pF, GAIN4
= 3, AGC4 = 1
—
273
—
nA
Start- up time
tLFXO
ESR=30 kΩ, CL=12.5 pF, GAIN4
=2
—
308
—
ms
On each of LFXTAL_N and
LFXTAL_P pins
Note:
1. Total load capacitance as seen by the crystal
2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register
4. In CMU_LFXOCTRL register
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 31
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.11.2 HFXO
Table 4.20. HFXO
Parameter
Symbol
Crystal Frequency
fHFXO
Supported crystal equivalent
series resistance (ESR)
ESRHFXO
Supported range of crystal
load capacitance 1
CHFXO_CL
On-chip tuning cap range 2
CHFXO_T
On-chip tuning capacitance
step
SSHFXO
Startup time
tHFXO
Frequency Tolerance for the
crystal
FTHFXO
Test Condition
Min
Typ
Max
Unit
38
38.4
40
MHz
—
—
60
Ω
6
—
12
pF
9
20
25
pF
—
0.04
—
pF
38.4 MHz: ESR=50 Ω, CL = 10
pF, BOOST3 = 2
—
300
—
μs
38.4 MHz, ESR = 50 Ω, CL = 10
pF
-40
—
40
ppm
Crystal frequency 38.4 MHz
On each of HFXTAL_N and
HFXTAL_P pins
Note:
1. Total load capacitance as seen by the crystal
2. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
3. In CMU_HFXOCTRL register
4.1.11.3 LFRCO
Table 4.21. LFRCO
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Oscillation frequency
fLFRCO
ENVREF = 1 in
CMU_LFRCOCTRL
TBD
32.768
TBD
kHz
ENVREF = 0 in
CMU_LFRCOCTRL
TBD
32.768
TBD
kHz
—
500
—
μs
ENVREF = 1 in
CMU_LFRCOCTRL
—
342
—
nA
ENVREF = 0 in
CMU_LFRCOCTRL
—
494
—
nA
Startup time
tLFRCO
Current consumption 1
ILFRCO
Note:
1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 32
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.11.4 HFRCO and AUXHFRCO
Table 4.22. HFRCO and AUXHFRCO
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Oscillation frequency
fHFRCO
38 MHz frequency band
TBD
38
TBD
MHz
32 MHz frequency band
TBD
32
TBD
MHz
26 MHz frequency band
TBD
26
TBD
MHz
19 MHz frequency band
TBD
19
TBD
MHz
16 MHz frequency band
TBD
16
TBD
MHz
13 MHz frequency band
TBD
13
TBD
MHz
7 MHz frequency band
TBD
7
TBD
MHz
4 MHz frequency band
TBD
4
TBD
MHz
2 MHz frequency band
TBD
2
TBD
MHz
1 MHz frequency band
TBD
1
TBD
MHz
fHFRCO ≥ 19 MHz
—
300
—
ns
4 < fHFRCO < 19 MHz
—
1
—
μs
fHFRCO ≤ 4 MHz
—
2.5
—
μs
fHFRCO = 38 MHz
—
43
—
μA
fHFRCO = 32 MHz
—
37
—
μA
fHFRCO = 26 MHz
—
31
—
μA
fHFRCO = 19 MHz
—
25
TBD
μA
fHFRCO = 16 MHz
—
22
—
μA
fHFRCO = 13 MHz
—
19
—
μA
fHFRCO = 7 MHz
—
12
—
μA
fHFRCO = 4 MHz
—
10
—
μA
fHFRCO = 2 MHz
—
8
—
μA
fHFRCO = 1 MHz
—
7
—
μA
fHFRCO = 38 MHz
—
161
—
μA
fHFRCO = 32 MHz
—
134
—
μA
fHFRCO = 26 MHz
—
116
—
μA
fHFRCO = 19 MHz
—
101
TBD
μA
fHFRCO = 16 MHz
—
88
—
μA
fHFRCO = 13 MHz
—
81
—
μA
fHFRCO = 7 MHz
—
69
—
μA
fHFRCO = 4 MHz
—
23
—
μA
fHFRCO = 2 MHz
—
23
—
μA
fHFRCO = 1 MHz
—
23
—
μA
Start-up time
Current consumption on
DVDD
Current consumption on
AVDD 1
tHFRCO
IHFRCODIG
IHFRCOANA
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 33
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Step size
SSHFRCO
Period Jitter
Min
Typ
Max
Unit
Coarse (% of period)
—
0.8
—
%
Fine (% of period)
—
0.1
—
%
—
0.2
—
% RMS
Min
Typ
Max
Unit
TBD
1
TBD
kHz
Min
Typ
Max
Unit
10000
—
—
cycles
10
—
—
years
PJHFRCO
Note:
1. Current consumption on DVDD instead if ANASW=1 in EMU_PWRCTRL register
4.1.11.5 ULFRCO
Table 4.23. ULFRCO
Parameter
Symbol
Oscillation frequency
fULFRCO
Test Condition
4.1.12 Flash Memory Characteristics
Table 4.24. Flash Memory Characteristics1
Parameter
Symbol
Flash erase cycles before
failure
ECFLASH
Flash data retention
RETFLASH
Word (32-bit) programming
time
tW_PROG
20
26
40
μs
Page erase time
tPERASE
20
27
40
ms
Mass erase time
tMERASE
20
27
40
ms
Device erase time2
tDERASE
—
60
TBD
ms
Page erase current3
IERASE
—
—
3
mA
—
—
5
mA
—
—
3
mA
Mass or Device erase current3
Write current3
IWRITE
Test Condition
TAMB<85°C
Note:
1. Flash data retention information is published in the Quarterly Quality and Reliability Report.
2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock
Word (ULW)
3. Measured at 25°C
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 34
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.13 GPIO
Table 4.25. GPIO
Parameter
Symbol
Input low voltage
Test Condition
Min
Typ
Max
Unit
VIOIL
—
—
IOVDD*0.3
V
Input high voltage
VIOIH
IOVDD*0.7
—
—
V
Output high voltage relative
to IOVDD
VIOOH
IOVDD*0.8
—
—
V
IOVDD*0.6
—
—
V
IOVDD*0.8
—
—
V
IOVDD*0.6
—
—
V
—
—
IOVDD*0.2
V
—
—
IOVDD*0.4
V
—
—
IOVDD*0.2
V
—
—
IOVDD*0.4
V
Sourcing 3 mA, VDD ≥ 3 V,
DRIVESTRENGTH1 = WEAK
Sourcing 1.2 mA, VDD ≥ 1.62 V,
DRIVESTRENGTH1 = WEAK
Sourcing 20 mA, VDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sourcing 8 mA, VDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
Output low voltage relative to VIOOL
IOVDD
Sinking 3 mA, VDD ≥ 3 V,
DRIVESTRENGTH1 = WEAK
Sinking 1.2 mA, VDD ≥ 1.62 V,
DRIVESTRENGTH1 = WEAK
Sinking 20 mA, VDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sinking 8 mA, VDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
Input leakage current
IIOLEAK
GPIO ≤ IOVDD
—
0.1
TBD
nA
Input leakage current on
5VTOL pads above IOVDD
I5VTOLLEAK
IOVDD < GPIO ≤ IOVDD + 2 V
—
3.3
15
μA
I/O pin pull-up resistor
RPU
TBD
43
TBD
kΩ
I/O pin pull-down resistor
RPD
TBD
43
TBD
kΩ
TBD
25
TBD
ns
—
1.8
—
ns
—
4.5
—
ns
Pulse width of pulses retIOGLITCH
moved by the glitch suppression filter
Output fall time, From 70%
to 30% of VIO
tIOOF
CL = 50 pF,
DRIVESTRENGTH1 = STRONG,
SLEWRATE1 = 0x6
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 35
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Output rise time, From 30%
to 70% of VIO
tIOOR
CL = 50 pF,
Min
Typ
Max
Unit
—
2.2
—
ns
—
7.4
—
ns
Min
Typ
Max
Unit
DRIVESTRENGTH1 = STRONG,
SLEWRATE = 0x61
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
Note:
1. In GPIO_Pn_CTRL register
4.1.14 VMON
Table 4.26. VMON
Parameter
Symbol
Test Condition
VMON Supply Current
IVMON
In EM0 or EM1, 1 supply monitored
—
5.8
—
μA
In EM0 or EM1, 4 supplies monitored
—
11.8
—
μA
In EM2, EM3 or EM4, 1 supply
monitored
—
62
—
nA
In EM2, EM3 or EM4, 4 supplies
monitored
—
99
—
nA
In EM0 or EM1
—
2
—
μA
In EM2, EM3 or EM4
—
2
—
nA
TBD
—
TBD
V
Coarse
—
200
—
mV
Fine
—
20
—
mV
Supply drops at 1V/μs rate
—
460
—
ns
—
26
—
mV
VMON Loading of Monitored ISENSE
Supply
Threshold range
VVMON_RANGE
Threshold step size
NVMON_STESP
Response time
tVMON_RES
Hysteresis
VVMON_HYST
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 36
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.15 ADC
Table 4.27. ADC
Parameter
Symbol
Resolution
VRESOLUTION
Input voltage range
VADCIN
Test Condition
Single ended
Differential
Input range of external refer- VADCREFIN_P
ence voltage, single ended
and differential
Min
Typ
Max
Unit
6
—
12
Bits
0
—
2*VREF
V
-VREF
—
VREF
V
1
—
VAVDD
V
Power supply rejection1
PSRRADC
At DC
—
80
—
dB
Analog input common mode
rejection ratio
CMRRADC
At DC
—
80
—
dB
Current on DVDD, using internal reference buffer. Continous operation. WARMUPMODE2 = KEEPADCWARM
IADCDIG_CONTI-
1 Msps / 16 MHz ADCCLK,
—
40
—
μA
NOUS
BIASPROG3 = 0
250 ksps / 4 MHz ADCCLK, BIASPROG3 = 6
—
15
—
μA
62.5 ksps / 1 MHz ADCCLK,
—
9
—
μA
—
40
—
μA
—
5
—
μA
—
12
—
μA
—
6
—
μA
—
286
—
μA
250 ksps / 4 MHz ADCCLK, BIASPROG3 = 6
—
155
—
μA
62.5 ksps / 1 MHz ADCCLK,
—
102
—
μA
—
35
—
μA
—
5
—
μA
BIASPROG3 = 15
Current on DVDD, using in- IADCDIG_NORMAL 35 ksps / 16 MHz ADCCLK,
ternal reference buffer. DutyBIASPROG3 = 0
cycled operation. WARMUPMODE2 = NORMAL
5 ksps / 16 MHz ADCCLK
BIASPROG3 = 0
Current on DVDD, using in- IADCDIG_STANDternal reference buffer. Duty- BY
cycled operation. AWARMUPMODE2 = KEEPINSTANDBY or KEEPINSLOWACC
Current on AVDD4, using internal reference buffer. Continous operation. WARMUPMODE2 = KEEPADCWARM
125 ksps / 16 MHz ADCCLK,
BIASPROG3 = 0
35 ksps / 16 MHz ADCCLK,
BIASPROG3 = 0
IADCANA_CONTI-
1 Msps / 16 MHz ADCCLK,
NOUS
BIASPROG3 = 0
BIASPROG3 = 15
Current on AVDD4 , using in- IADCANA_NORMAL 35 ksps / 16 MHz ADCCLK,
ternal reference buffer. DutyBIASPROG3 = 0
cycled operation. WARMUPMODE2 = NORMAL
5 ksps / 16 MHz ADCCLK,
BIASPROG3 = 0
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 37
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
Parameter
Symbol
Current on AVDD4, using in- IADCANA_STANDternal reference buffer. Duty- BY
cycled operation. WARMUPMODE2 = KEEPINSTANDBY
or KEEPINSLOWACC
Test Condition
125 ksps / 16 MHz ADCCLK,
Min
Typ
Max
Unit
—
110
—
μA
—
80
—
μA
BIASPROG3 = 0
35 ksps / 16 MHz ADCCLK,
BIASPROG3 = 0
ADC Clock Frequency
fADCCLK
—
—
16
MHz
Throughput rate
fADCRATE
—
—
1
Msps
Conversion time5
tADCCONV
6 bit
—
7
—
cycles
8 bit
—
9
—
cycles
12 bit
—
13
—
cycles
WARMUPMODE2 = NORMAL
—
—
5
μs
WARMUPMODE2 = KEEPINSTANDBY or KEEPINSLOWACC
—
—
1
μs
Internal reference, 2.5 V full-scale,
differential (-1.25, 1.25)
TBD
67
—
dB
vrefp_in = 1.25 V direct mode with
2.5 V full-scale, differential
—
68
—
dB
Startup time of reference
generator and ADC core in
NORMAL mode
tADCSTART
From standby mode
SNDR at 1Msps and fin =
10kHz
SNDRADC
Spurious-Free Dynamic
Range (SFDR)
SFDRADC
1 MSamples/s, 10 kHz full-scale
sine wave
—
75
—
dB
Input referred ADC noise,
rms
VREF_NOISE
Including quantization noise and
distortion
—
380
—
μV
Offset Error
VADCOFFSETERR
TBD
1
TBD
LSB
Gain error in ADC
VADC_GAIN
Using internal reference
—
-0.2
TBD
%
Using external reference
—
-1
—
%
Differential non-linearity
(DNL)
DNLADC
12 bit resolution
-1
—
TBD
LSB
Integral non-linearity (INL),
End point method
INLADC
12 bit resolution
TBD
—
TBD
LSB
Temperature Sensor Slope
VTS_SLOPE
—
-1.84
—
mV/°C
Note:
1. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL
2. In ADCn_CNTL register
3. In ADCn_BIASPROG register
4. Current consumption on DVDD instead if ANASW=1 in EMU_PWRCTRL register
5. Derived from ADCCLK
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 38
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.16 IDAC
Table 4.28. IDAC
Parameter
Symbol
Number of Ranges
NIDAC_RANGES
Output Current
IIDAC_OUT
Min
Typ
Max
Unit
—
4
—
-
RANGSEL1 = RANGE0
0.05
—
1.6
μA
RANGSEL1 = RANGE1
1.6
—
4.7
μA
RANGSEL1 = RANGE2
0.5
—
16
μA
RANGSEL1 = RANGE3
2
—
64
μA
—
32
—
RANGSEL1 = RANGE0
—
50
—
nA
RANGSEL1 = RANGE1
—
100
—
nA
RANGSEL1 = RANGE2
—
500
—
nA
RANGSEL1 = RANGE3
—
2
—
μA
EM0 or EM1, AVDD=3.3 V, T = 25
°C
TBD
—
TBD
%
EM0 or EM1
TBD
—
TBD
%
EM2 or EM3
TBD
—
TBD
%
Output within 1% of steady state
value
—
5
—
μs
Settling time, (output settled tIDAC_SETTLE
within 1% of steady state value)
Range setting is changed
—
5
—
μs
Step value is changed
—
1
—
μs
Current consumption in EM0 IIDAC
or EM1 2
Source mode, excluding output
current
—
8.9
—
μA
Sink mode, excluding output current
—
12
—
μA
RANGESEL1=0, output voltage =
min(VIOVDD, VAVDD2-100 mv)
—
0.16
—
%
RANGESEL1=1, output voltage =
min(VIOVDD, VAVDD2-100 mV)
—
0.08
—
%
RANGESEL1=2, output voltage =
min(VIOVDD, VAVDD2-150 mV)
—
0.03
—
%
RANGESEL1=3, output voltage =
min(VIOVDD, VAVDD2-250 mV)
—
0.03
—
%
Linear steps within each
range
NIDAC_STEPS
Step size
SSIDAC
Total Accuracy, STEPSEL1 = ACCIDAC
0x10
Start up time
tIDAC_SU
Output voltage compliance in ICOMP_SRC
source mode, source current
change relative to current
sourced at 0 V
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Preliminary Rev. 0.9 | 39
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
Parameter
Symbol
Output voltage compliance in ICOMP_SINK
sink mode, sink current
change relative to current
sunk at IOVDD
Test Condition
Min
Typ
Max
Unit
RANGESEL1=0, output voltage =
100 mV
—
0.82
—
%
RANGESEL1=1, output voltage =
100 mV
—
0.65
—
%
RANGESEL1=2, output voltage =
150 mV
—
0.4
—
%
RANGESEL1=3, output voltage =
250 mV
—
0.25
—
%
Note:
1. In IDAC_CURPROG register
2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and
PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1).
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 40
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.17 Analog Comparator (ACMP)
Table 4.29. ACMP
Parameter
Symbol
Test Condition
Input voltage range
VACMPIN
Active current not including
voltage reference
IACMP
Current consumption of inter- IACMPREF
nal voltage reference,
Hysteresis
Comparator delay
VACMPHYST
tACMPDELAY
Min
Typ
Max
Unit
CMPVDD =
ACMPn_CTRL_PWRSEL 1
0
—
CMPVDD
V
BIASPROG2 = 1, FULLBIAS2 = 0
—
50
—
nA
BIASPROG2 = 0x10, FULLBIAS2
=0
—
306
—
nA
BIASPROG2 = 0x20, FULLBIAS2
=1
—
74
TBD
μA
VLP selected as input using 2.5 V
Reference / 4 (0.625 V)
—
50
—
nA
VLP selected as input using VDD
—
20
—
nA
VBDIV selected as input using
1.25 V reference / 1
—
4.1
—
μA
VADIV selected as input using
VDD/1
—
2.4
—
μA
HYSTSEL3 = HYST0
—
0
TBD
mV
HYSTSEL3 = HYST1
—
12
—
mV
HYSTSEL3 = HYST2
—
22
—
mV
HYSTSEL3 = HYST3
—
30
—
mV
HYSTSEL3 = HYST4
—
36
—
mV
HYSTSEL3 = HYST5
—
41
—
mV
HYSTSEL3 = HYST6
—
47
—
mV
HYSTSEL3 = HYST7
—
52
—
mV
BIASPROG2 = 1, FULLBIAS2 = 0
—
30
—
μs
BIASPROG2 = 0x10, FULLBIAS2
=04
—
3.7
—
μs
BIASPROG2 = 0x20, FULLBIAS2
=14
—
35
—
ns
—
—
TBD
mV
4
Offset voltage
VACMPOFFSET
BIASPROG2 =0x20, FULLBIAS2
=14
Reference Voltage
VACMPREF
Internal 1.25 V reference
TBD
1.25
TBD
V
Internal 2.5 V reference
TBD
2.5
TBD
V
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 41
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Capacitive Sense Internal
Resistance
RCSRES
CSRESSEL5 = 0
—
inf
—
kΩ
CSRESSEL5 = 1
—
15
—
kΩ
CSRESSEL5 = 2
—
27
—
kΩ
CSRESSEL5 = 3
—
39
—
kΩ
CSRESSEL5 = 4
—
51
—
kΩ
CSRESSEL5 = 5
—
102
—
kΩ
CSRESSEL5 = 6
—
164
—
kΩ
CSRESSEL5 = 7
—
239
—
kΩ
Note:
1. CMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD
2. In ACMPn_CTRL register
3. In ACMPn_HYSTERESIS register
4. ± 100 mV differential
5. In ACMPn_INPUTSEL register
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given as:
IACMPTOTAL = IACMP + IACMPREF
IACMPREF is zero if an external voltage reference is used.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 42
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.18 I2C
I2C Standard-mode (Sm)
Table 4.30. I2C Standard-mode (Sm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
100
kHz
SCL clock low time
tLOW
4.7
—
—
μs
SCL clock high time
tHIGH
4
—
—
μs
SDA set-up time
tSU,DAT
250
—
—
ns
SDA hold time3
tHD,DAT
100
—
3450
ns
Repeated START condition
set-up time
tSU,STA
4.7
—
—
μs
(Repeated) START condition tHD,STA
hold time
4
—
—
μs
STOP condition set-up time
tSU,STO
4
—
—
μs
Bus free time between a
STOP and START condition
tBUF
4.7
—
—
μs
Note:
1. For CLHR set to 0 in the I2Cn_CTRL register
2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW)
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 43
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
I2C Fast-mode (Fm)
Table 4.31. I2C Fast-mode (Fm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
400
kHz
SCL clock low time
tLOW
1.3
—
—
μs
SCL clock high time
tHIGH
0.6
—
—
μs
SDA set-up time
tSU,DAT
100
—
—
ns
SDA hold time3
tHD,DAT
100
—
900
ns
Repeated START condition
set-up time
tSU,STA
0.6
—
—
μs
(Repeated) START condition tHD,STA
hold time
0.6
—
—
μs
STOP condition set-up time
tSU,STO
0.6
—
—
μs
Bus free time between a
STOP and START condition
tBUF
1.3
—
—
μs
Note:
1. For CLHR set to 1 in the I2Cn_CTRL register
2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW)
I2C Fast-mode Plus (Fm+)
Table 4.32. I2C Fast-mode Plus (Fm+)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
1000
kHz
SCL clock low time
tLOW
0.5
—
—
μs
SCL clock high time
tHIGH
0.26
—
—
μs
SDA set-up time
tSU,DAT
50
—
—
ns
SDA hold time
tHD,DAT
100
—
—
ns
Repeated START condition
set-up time
tSU,STA
0.26
—
—
μs
(Repeated) START condition tHD,STA
hold time
0.26
—
—
μs
STOP condition set-up time
tSU,STO
0.26
—
—
μs
Bus free time between a
STOP and START condition
tBUF
0.5
—
—
μs
Note:
1. For CLHR set to 0 or 1 in the I2Cn_CTRL register
2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 44
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.1.19 USART SPI
SPI Master Timing
Table 4.33. SPI Master Timing
Parameter
Symbol
SCLK period 1 2
tSCLK
CS to MOSI 1 2
Test Condition
Min
Typ
Max
Unit
2*
tHFPERCLK
—
—
ns
tCS_MO
0
—
8
ns
SCLK to MOSI 1 2
tSCLK_MO
3
—
20
ns
MISO setup time 1 2
tSU_MI
IOVDD = 1.98 V
56
—
—
ns
IOVDD = 3.0 V
37
—
—
ns
6
—
—
ns
tH_MI
MISO hold time 1 2
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD)
CS
tCS_MO
tSCKL_MO
SCLK
CLKPOL = 0
tSCLK
SCLK
CLKPOL = 1
MOSI
tSU_MI
tH_MI
MISO
Figure 4.1. SPI Master Timing Diagram
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 45
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
SPI Slave Timing
Table 4.34. SPI Slave Timing
Parameter
Symbol
SCKL period 1 2
Test Condition
Min
Typ
Max
Unit
tSCLK_sl
2*
tHFPERCLK
—
—
ns
SCLK high period1 2
tSCLK_hi
3*
tHFPERCLK
—
—
ns
SCLK low period 1 2
tSCLK_lo
3*
tHFPERCLK
—
—
ns
CS active to MISO 1 2
tCS_ACT_MI
4
—
50
ns
CS disable to MISO 1 2
tCS_DIS_MI
4
—
50
ns
MOSI setup time 1 2
tSU_MO
4
—
—
ns
MOSI hold time 1 2
tH_MO
3+2*
tHFPERCLK
—
—
ns
SCLK to MISO 1 2
tSCLK_MI
16 +
tHFPERCLK
—
66 + 2 *
tHFPERCLK
ns
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD)
CS
tCS_ACT_MI
tCS_DIS_MI
SCLK
CLKPOL = 0
SCLK
CLKPOL = 1
tSCLK_HI
tSU_MO
tSCLK_LO
tSCLK
tH_MO
MOSI
tSCLK_MI
MISO
Figure 4.2. SPI Slave Timing Diagram
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 46
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Electrical Specifications
4.2 Typical Performance Curves
Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 1.0 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 8 MHz
Efficiency VS Load Current, LN mode
Efficiency VS Load current, LP mode
90
90
80
80
Eff,%
100
Eff,%
100
70
60
70
60
50
40
0
10
1
10
10
Load,mA
LP
LP
LP
LP
50
Heavy Drive
Medium Drive
Light Drive
40
-3
10
2
-2
10
-1
10
Load,mA
0
10
_
_
_
_
CMP
CMP
CMP
CMP
_
_
_
_
BIAS
BIAS
BIAS
BIAS
3
2
1
0
1
10
Relative output droop VS Load current, LP mode
Ron VS supply voltage in bypass mode
10
2
SW _ PFET _ EN 0
SW _ PFET _ EN 1
5
Relative output droop,mV
0
Ron,Ohm
1.5
-5
-10
-15
1
-20
-25
0.5
2
2.5
VDD,V
3
3.5
4
-30
-3
10
LN (CCM) and LP mode transition (load: 5mA)
DVDD
60mV/div
offset:1.8V
LP _ CMP _ BIAS 3
LP _ CMP _ BIAS 2
LP _ CMP _ BIAS 1
LP _ CMP _ BIAS 0
10
-2
-1
10
Load,mA
10
0
1
10
Load Step Response in LN (CCM) mode (Heavy Drive)
DVDD
50mV/div
offset:1.8V
100mA
VSW
ILOAD
2V/div
offset:1.8V
1mA
100μs/div
10μs/div
Figure 4.3. DC-DC Converter Typical Performance Characteristics
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 47
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Typical Connection Diagrams
5. Typical Connection Diagrams
5.1 Power
Typical power supply connections for direct supply, without using the internal DC-DC converter, are shown in the following figure.
VDD
C0
C6
C7
C8
DVDD
AVDD
RFVDD
C1
VREGSW
C5
VREGVDD
C4
DECOUPLE
C3
IOVDD
C2
C9
C10
C9
PAVDD
X0
HFXTAL_N
LFXTAL_P
HFXTAL_P
LFXTAL_N
X1
Figure 5.1. EFR32FG1 Typical Application Circuit: Direct Supply Configuration without DC-DC converter
Typical power supply circuits using the internal DC-DC converter are shown below. The MCU operates from the DC-DC converter supply. For low RF transmit power applications less than 13dBm, the RF PA may be supplied by the DC-DC converter. For OPNs supporting high power RF transmission, the RF PA must be directly supplied by VDD for RF transmit power greater than 13 dBm.
VDD
C0
C1
RFVDD
C7
C8
L0
C9
VREGSW
C6
VREGVDD
FB1
C5
DVDD
C4
DECOUPLE
C3
IOVDD
C2
AVDD
FB2
C10
C11
C9
X0
HFXTAL_N
LFXTAL_P
HFXTAL_P
LFXTAL_N
PAVDD
X1
Figure 5.2. EFR32FG1 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC)
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 48
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Typical Connection Diagrams
VDD
C0
C1
C7
C8
L0
C9
VREGSW
C6
VREGVDD
FB1
C5
DVDD
C4
DECOUPLE
C3
IOVDD
C2
AVDD
RFVDD
C10
C11
C9
PAVDD
X0
HFXTAL_N
LFXTAL_P
HFXTAL_P
LFXTAL_N
X1
Figure 5.3. EFR32FG1 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDD)
5.2 RF Matching Networks
Typical RF matching network circuit diagrams are shown in Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on
page 49 for applications in the 2.4GHz band. Application-specific component values can be found in the EFR32 Reference Manual.
For low RF transmit power applications less than 13dBm, the two-element match is recommended. For OPNs supporting high power
RF transmission, the four-element match is recommended for high RF transmit power (> 13dBm).
4-Element Match for 2.4GHz Band
2-Element Match for 2.4GHz Band
PAVDD
PAVDD
PAVDD
2G4RF_IOP
2G4RF_ION
PAVDD
L0
50Ω
C0
L0
L1
50Ω
2G4RF_IOP
2G4RF_ION
C0
C1
Figure 5.4. Typical 2.4 GHz RF impedance-matching network circuits
5.3 Other Connections
Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware Design Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes).
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 49
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
6. Pin Definitions
6.1 EFR32FG1 QFN48 2.4 GHz Definition
Figure 6.1. EFR32FG1 QFN48 2.4 GHz Pinout
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 50
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
Table 6.1. Device Pinout
QFN48 Pin# and
Name
Pin
#
Pin Name
0
VSS
1
2
3
PF0
PF1
PF2
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
TIM0_CC0 #24
TIM0_CC1 #23
TIM0_CC2 #22
TIM0_CDTI0 #21
TIM0_CDTI1 #20
TIM0_CDTI2 #19
TIM1_CC0 #24
TIM1_CC1 #23
TIM1_CC2 #22
TIM1_CC3 #21 LETIM0_OUT0 #24
LETIM0_OUT1 #23
PCNT0_S0IN #24
PCNT0_S1IN #23
US0_TX #24
US0_RX #23
US0_CLK #22
US0_CS #21
US0_CTS #20
US0_RTS #19
US1_TX #24
US1_RX #23
US1_CLK #22
US1_CS #21
US1_CTS #20
US1_RTS #19
LEU0_TX #24
LEU0_RX #23
I2C0_SDA #24
I2C0_SCL #23
FRC_DCLK #24
FRC_DOUT #23
FRC_DFRAME #22
MODEM_DCLK #24
MODEM_DIN #23
MODEM_DOUT #22
MODEM_ANT0 #21
MODEM_ANT1 #20
PRS_CH0 #0
PRS_CH1 #7
PRS_CH2 #6
PRS_CH3 #5
ACMP0_O #24
ACMP1_O #24
DBG_SWCLKTCK
#0
TIM0_CC0 #25
TIM0_CC1 #24
TIM0_CC2 #23
TIM0_CDTI0 #22
TIM0_CDTI1 #21
TIM0_CDTI2 #20
TIM1_CC0 #25
TIM1_CC1 #24
TIM1_CC2 #23
TIM1_CC3 #22 LETIM0_OUT0 #25
LETIM0_OUT1 #24
PCNT0_S0IN #25
PCNT0_S1IN #24
US0_TX #25
US0_RX #24
US0_CLK #23
US0_CS #22
US0_CTS #21
US0_RTS #20
US1_TX #25
US1_RX #24
US1_CLK #23
US1_CS #22
US1_CTS #21
US1_RTS #20
LEU0_TX #25
LEU0_RX #24
I2C0_SDA #25
I2C0_SCL #24
FRC_DCLK #25
FRC_DOUT #24
FRC_DFRAME #23
MODEM_DCLK #25
MODEM_DIN #24
MODEM_DOUT #23
MODEM_ANT0 #22
MODEM_ANT1 #21
PRS_CH0 #1
PRS_CH1 #0
PRS_CH2 #7
PRS_CH3 #6
ACMP0_O #25
ACMP1_O #25
DBG_SWDIOTMS
#0
TIM0_CC0 #26
TIM0_CC1 #25
TIM0_CC2 #24
TIM0_CDTI0 #23
TIM0_CDTI1 #22
TIM0_CDTI2 #21
TIM1_CC0 #26
TIM1_CC1 #25
TIM1_CC2 #24
TIM1_CC3 #23 LETIM0_OUT0 #26
LETIM0_OUT1 #25
PCNT0_S0IN #26
PCNT0_S1IN #25
US0_TX #26
US0_RX #25
US0_CLK #24
US0_CS #23
US0_CTS #22
US0_RTS #21
US1_TX #26
US1_RX #25
US1_CLK #24
US1_CS #23
US1_CTS #22
US1_RTS #21
LEU0_TX #26
LEU0_RX #25
I2C0_SDA #26
I2C0_SCL #25
FRC_DCLK #26
FRC_DOUT #25
FRC_DFRAME #24
MODEM_DCLK #26
MODEM_DIN #25
MODEM_DOUT #24
MODEM_ANT0 #23
MODEM_ANT1 #22
CMU_CLK0 #6
PRS_CH0 #2
PRS_CH1 #1
PRS_CH2 #0
PRS_CH3 #7
ACMP0_O #26
ACMP1_O #26
DBG_TDO #0
DBG_SWO #0
GPIO_EM4WU0
Ground
BUSAX [ADC0:
APORT1XCH16
ACMP0:
APORT1XCH16
ACMP1:
APORT1XCH16]
BUSBY [ADC0:
APORT2YCH16
ACMP0:
APORT2YCH16
ACMP1:
APORT2YCH16]
BUSAY [ADC0:
APORT1YCH17
ACMP0:
APORT1YCH17
ACMP1:
APORT1YCH17]
BUSBX [ADC0:
APORT2XCH17
ACMP0:
APORT2XCH17
ACMP1:
APORT2XCH17]
BUSAX [ADC0:
APORT1XCH18
ACMP0:
APORT1XCH18
ACMP1:
APORT1XCH18]
BUSBY [ADC0:
APORT2YCH18
ACMP0:
APORT2YCH18
ACMP1:
APORT2YCH18]
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 51
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
QFN48 Pin# and
Name
Pin
#
4
5
6
Pin Name
PF3
PF4
PF5
Pin Alternate Functionality / Description
Analog
BUSAY [ADC0:
APORT1YCH19
ACMP0:
APORT1YCH19
ACMP1:
APORT1YCH19]
BUSBX [ADC0:
APORT2XCH19
ACMP0:
APORT2XCH19
ACMP1:
APORT2XCH19]
BUSAX [ADC0:
APORT1XCH20
ACMP0:
APORT1XCH20
ACMP1:
APORT1XCH20]
BUSBY [ADC0:
APORT2YCH20
ACMP0:
APORT2YCH20
ACMP1:
APORT2YCH20]
BUSAY [ADC0:
APORT1YCH21
ACMP0:
APORT1YCH21
ACMP1:
APORT1YCH21]
BUSBX [ADC0:
APORT2XCH21
ACMP0:
APORT2XCH21
ACMP1:
APORT2XCH21]
silabs.com | Smart. Connected. Energy-friendly.
Timers
Communication
Radio
Other
TIM0_CC0 #27
TIM0_CC1 #26
TIM0_CC2 #25
TIM0_CDTI0 #24
TIM0_CDTI1 #23
TIM0_CDTI2 #22
TIM1_CC0 #27
TIM1_CC1 #26
TIM1_CC2 #25
TIM1_CC3 #24 LETIM0_OUT0 #27
LETIM0_OUT1 #26
PCNT0_S0IN #27
PCNT0_S1IN #26
US0_TX #27
US0_RX #26
US0_CLK #25
US0_CS #24
US0_CTS #23
US0_RTS #22
US1_TX #27
US1_RX #26
US1_CLK #25
US1_CS #24
US1_CTS #23
US1_RTS #22
LEU0_TX #27
LEU0_RX #26
I2C0_SDA #27
I2C0_SCL #26
FRC_DCLK #27
FRC_DOUT #26
FRC_DFRAME #25
MODEM_DCLK #27
MODEM_DIN #26
MODEM_DOUT #25
MODEM_ANT0 #24
MODEM_ANT1 #23
CMU_CLK1 #6
PRS_CH0 #3
PRS_CH1 #2
PRS_CH2 #1
PRS_CH3 #0
ACMP0_O #27
ACMP1_O #27
DBG_TDI #0
TIM0_CC0 #28
TIM0_CC1 #27
TIM0_CC2 #26
TIM0_CDTI0 #25
TIM0_CDTI1 #24
TIM0_CDTI2 #23
TIM1_CC0 #28
TIM1_CC1 #27
TIM1_CC2 #26
TIM1_CC3 #25 LETIM0_OUT0 #28
LETIM0_OUT1 #27
PCNT0_S0IN #28
PCNT0_S1IN #27
US0_TX #28
US0_RX #27
US0_CLK #26
US0_CS #25
US0_CTS #24
US0_RTS #23
US1_TX #28
US1_RX #27
US1_CLK #26
US1_CS #25
US1_CTS #24
US1_RTS #23
LEU0_TX #28
LEU0_RX #27
I2C0_SDA #28
I2C0_SCL #27
FRC_DCLK #28
FRC_DOUT #27
FRC_DFRAME #26
MODEM_DCLK #28
MODEM_DIN #27
MODEM_DOUT #26
MODEM_ANT0 #25
MODEM_ANT1 #24
PRS_CH0 #4
PRS_CH1 #3
PRS_CH2 #2
PRS_CH3 #1
ACMP0_O #28
ACMP1_O #28
TIM0_CC0 #29
TIM0_CC1 #28
TIM0_CC2 #27
TIM0_CDTI0 #26
TIM0_CDTI1 #25
TIM0_CDTI2 #24
TIM1_CC0 #29
TIM1_CC1 #28
TIM1_CC2 #27
TIM1_CC3 #26 LETIM0_OUT0 #29
LETIM0_OUT1 #28
PCNT0_S0IN #29
PCNT0_S1IN #28
US0_TX #29
US0_RX #28
US0_CLK #27
US0_CS #26
US0_CTS #25
US0_RTS #24
US1_TX #29
US1_RX #28
US1_CLK #27
US1_CS #26
US1_CTS #25
US1_RTS #24
LEU0_TX #29
LEU0_RX #28
I2C0_SDA #29
I2C0_SCL #28
FRC_DCLK #29
FRC_DOUT #28
FRC_DFRAME #27
MODEM_DCLK #29
MODEM_DIN #28
MODEM_DOUT #27
MODEM_ANT0 #26
MODEM_ANT1 #25
PRS_CH0 #5
PRS_CH1 #4
PRS_CH2 #3
PRS_CH3 #2
ACMP0_O #29
ACMP1_O #29
Preliminary Rev. 0.9 | 52
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
QFN48 Pin# and
Name
Pin
#
7
Pin Name
PF6
Pin Alternate Functionality / Description
Analog
BUSAX [ADC0:
APORT1XCH22
ACMP0:
APORT1XCH22
ACMP1:
APORT1XCH22]
BUSBY [ADC0:
APORT2YCH22
ACMP0:
APORT2YCH22
ACMP1:
APORT2YCH22]
BUSAY [ADC0:
APORT1YCH23
ACMP0:
APORT1YCH23
ACMP1:
APORT1YCH23]
Timers
Communication
Radio
Other
TIM0_CC0 #30
TIM0_CC1 #29
TIM0_CC2 #28
TIM0_CDTI0 #27
TIM0_CDTI1 #26
TIM0_CDTI2 #25
TIM1_CC0 #30
TIM1_CC1 #29
TIM1_CC2 #28
TIM1_CC3 #27 LETIM0_OUT0 #30
LETIM0_OUT1 #29
PCNT0_S0IN #30
PCNT0_S1IN #29
US0_TX #30
US0_RX #29
US0_CLK #28
US0_CS #27
US0_CTS #26
US0_RTS #25
US1_TX #30
US1_RX #29
US1_CLK #28
US1_CS #27
US1_CTS #26
US1_RTS #25
LEU0_TX #30
LEU0_RX #29
I2C0_SDA #30
I2C0_SCL #29
FRC_DCLK #30
FRC_DOUT #29
FRC_DFRAME #28
MODEM_DCLK #30
MODEM_DIN #29
MODEM_DOUT #28
MODEM_ANT0 #27
MODEM_ANT1 #26
CMU_CLK1 #7
PRS_CH0 #6
PRS_CH1 #5
PRS_CH2 #4
PRS_CH3 #3
ACMP0_O #30
ACMP1_O #30
TIM0_CC0 #31
TIM0_CC1 #30
TIM0_CC2 #29
TIM0_CDTI0 #28
TIM0_CDTI1 #27
TIM0_CDTI2 #26
TIM1_CC0 #31
TIM1_CC1 #30
TIM1_CC2 #29
TIM1_CC3 #28 LETIM0_OUT0 #31
LETIM0_OUT1 #30
PCNT0_S0IN #31
PCNT0_S1IN #30
US0_TX #31
US0_RX #30
US0_CLK #29
US0_CS #28
US0_CTS #27
US0_RTS #26
US1_TX #31
US1_RX #30
US1_CLK #29
US1_CS #28
US1_CTS #27
US1_RTS #26
LEU0_TX #31
LEU0_RX #30
I2C0_SDA #31
I2C0_SCL #30
FRC_DCLK #31
FRC_DOUT #30
FRC_DFRAME #29
MODEM_DCLK #31
MODEM_DIN #30
MODEM_DOUT #29
MODEM_ANT0 #28
MODEM_ANT1 #27
CMU_CLK0 #7
PRS_CH0 #7
PRS_CH1 #6
PRS_CH2 #5
PRS_CH3 #4
ACMP0_O #31
ACMP1_O #31
GPIO_EM4WU1
8
PF7
9
RFVDD
10
HFXTAL_N
High Frequency Crystal input pin.
11
HFXTAL_P
High Frequency Crystal output pin.
12
RESETn
13
NC
14
RFVSS
Radio Ground
15
PAVSS
Power Amplifier (PA) voltage regulator VSS
16
2G4RF_ION
2.4 GHz Differential RF input/output, negative path.
17
2G4RF_IOP
2.4 GHz Differential RF input/output, positive path.
18
PAVDD
Power Amplifier (PA) voltage regulator VDD input
BUSBX [ADC0:
APORT2XCH23
ACMP0:
APORT2XCH23
ACMP1:
APORT2XCH23]
Radio power supply
Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low
during reset, and let the internal pull-up ensure that reset is released.
No Connect.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 53
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
QFN48 Pin# and
Name
Pin
#
19
Pin Alternate Functionality / Description
Pin Name
Analog
Timers
Communication
Radio
Other
PD10
BUSCX [ADC0:
APORT3XCH2
ACMP0:
APORT3XCH2
ACMP1:
APORT3XCH2
IDAC0:
APORT1XCH2]
TIM0_CC0 #18
TIM0_CC1 #17
TIM0_CC2 #16
TIM0_CDTI0 #15
TIM0_CDTI1 #14
TIM0_CDTI2 #13
TIM1_CC0 #18
TIM1_CC1 #17
TIM1_CC2 #16
TIM1_CC3 #15 LETIM0_OUT0 #18
LETIM0_OUT1 #17
PCNT0_S0IN #18
PCNT0_S1IN #17
US0_TX #18
US0_RX #17
US0_CLK #16
US0_CS #15
US0_CTS #14
US0_RTS #13
US1_TX #18
US1_RX #17
US1_CLK #16
US1_CS #15
US1_CTS #14
US1_RTS #13
LEU0_TX #18
LEU0_RX #17
I2C0_SDA #18
I2C0_SCL #17
FRC_DCLK #18
FRC_DOUT #17
FRC_DFRAME #16
MODEM_DCLK #18
MODEM_DIN #17
MODEM_DOUT #16
MODEM_ANT0 #15
MODEM_ANT1 #14
CMU_CLK1 #4
PRS_CH3 #9
PRS_CH4 #1
PRS_CH5 #0
PRS_CH6 #12
ACMP0_O #18
ACMP1_O #18
TIM0_CC0 #19
TIM0_CC1 #18
TIM0_CC2 #17
TIM0_CDTI0 #16
TIM0_CDTI1 #15
TIM0_CDTI2 #14
TIM1_CC0 #19
TIM1_CC1 #18
TIM1_CC2 #17
TIM1_CC3 #16 LETIM0_OUT0 #19
LETIM0_OUT1 #18
PCNT0_S0IN #19
PCNT0_S1IN #18
US0_TX #19
US0_RX #18
US0_CLK #17
US0_CS #16
US0_CTS #15
US0_RTS #14
US1_TX #19
US1_RX #18
US1_CLK #17
US1_CS #16
US1_CTS #15
US1_RTS #14
LEU0_TX #19
LEU0_RX #18
I2C0_SDA #19
I2C0_SCL #18
FRC_DCLK #19
FRC_DOUT #18
FRC_DFRAME #17
MODEM_DCLK #19
MODEM_DIN #18
MODEM_DOUT #17
MODEM_ANT0 #16
MODEM_ANT1 #15
PRS_CH3 #10
PRS_CH4 #2
PRS_CH5 #1
PRS_CH6 #13
ACMP0_O #19
ACMP1_O #19
TIM0_CC0 #20
TIM0_CC1 #19
TIM0_CC2 #18
TIM0_CDTI0 #17
TIM0_CDTI1 #16
TIM0_CDTI2 #15
TIM1_CC0 #20
TIM1_CC1 #19
TIM1_CC2 #18
TIM1_CC3 #17 LETIM0_OUT0 #20
LETIM0_OUT1 #19
PCNT0_S0IN #20
PCNT0_S1IN #19
US0_TX #20
US0_RX #19
US0_CLK #18
US0_CS #17
US0_CTS #16
US0_RTS #15
US1_TX #20
US1_RX #19
US1_CLK #18
US1_CS #17
US1_CTS #16
US1_RTS #15
LEU0_TX #20
LEU0_RX #19
I2C0_SDA #20
I2C0_SCL #19
FRC_DCLK #20
FRC_DOUT #19
FRC_DFRAME #18
MODEM_DCLK #20
MODEM_DIN #19
MODEM_DOUT #18
MODEM_ANT0 #17
MODEM_ANT1 #16
PRS_CH3 #11
PRS_CH4 #3
PRS_CH5 #2
PRS_CH6 #14
ACMP0_O #20
ACMP1_O #20
BUSDY [ADC0:
APORT4YCH2
ACMP0:
APORT4YCH2
ACMP1:
APORT4YCH2]
20
PD11
BUSCY [ADC0:
APORT3YCH3
ACMP0:
APORT3YCH3
ACMP1:
APORT3YCH3
IDAC0:
APORT1YCH3]
BUSDX [ADC0:
APORT4XCH3
ACMP0:
APORT4XCH3
ACMP1:
APORT4XCH3]
21
PD12
BUSCX [ADC0:
APORT3XCH4
ACMP0:
APORT3XCH4
ACMP1:
APORT3XCH4
IDAC0:
APORT1XCH4]
BUSDY [ADC0:
APORT4YCH4
ACMP0:
APORT4YCH4
ACMP1:
APORT4YCH4]
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 54
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
QFN48 Pin# and
Name
Pin
#
22
Pin Alternate Functionality / Description
Pin Name
Analog
Timers
Communication
Radio
Other
PD13
BUSCY [ADC0:
APORT3YCH5
ACMP0:
APORT3YCH5
ACMP1:
APORT3YCH5
IDAC0:
APORT1YCH5]
TIM0_CC0 #21
TIM0_CC1 #20
TIM0_CC2 #19
TIM0_CDTI0 #18
TIM0_CDTI1 #17
TIM0_CDTI2 #16
TIM1_CC0 #21
TIM1_CC1 #20
TIM1_CC2 #19
TIM1_CC3 #18 LETIM0_OUT0 #21
LETIM0_OUT1 #20
PCNT0_S0IN #21
PCNT0_S1IN #20
US0_TX #21
US0_RX #20
US0_CLK #19
US0_CS #18
US0_CTS #17
US0_RTS #16
US1_TX #21
US1_RX #20
US1_CLK #19
US1_CS #18
US1_CTS #17
US1_RTS #16
LEU0_TX #21
LEU0_RX #20
I2C0_SDA #21
I2C0_SCL #20
FRC_DCLK #21
FRC_DOUT #20
FRC_DFRAME #19
MODEM_DCLK #21
MODEM_DIN #20
MODEM_DOUT #19
MODEM_ANT0 #18
MODEM_ANT1 #17
PRS_CH3 #12
PRS_CH4 #4
PRS_CH5 #3
PRS_CH6 #15
ACMP0_O #21
ACMP1_O #21
TIM0_CC0 #22
TIM0_CC1 #21
TIM0_CC2 #20
TIM0_CDTI0 #19
TIM0_CDTI1 #18
TIM0_CDTI2 #17
TIM1_CC0 #22
TIM1_CC1 #21
TIM1_CC2 #20
TIM1_CC3 #19 LETIM0_OUT0 #22
LETIM0_OUT1 #21
PCNT0_S0IN #22
PCNT0_S1IN #21
US0_TX #22
US0_RX #21
US0_CLK #20
US0_CS #19
US0_CTS #18
US0_RTS #17
US1_TX #22
US1_RX #21
US1_CLK #20
US1_CS #19
US1_CTS #18
US1_RTS #17
LEU0_TX #22
LEU0_RX #21
I2C0_SDA #22
I2C0_SCL #21
FRC_DCLK #22
FRC_DOUT #21
FRC_DFRAME #20
MODEM_DCLK #22
MODEM_DIN #21
MODEM_DOUT #20
MODEM_ANT0 #19
MODEM_ANT1 #18
CMU_CLK0 #5
PRS_CH3 #13
PRS_CH4 #5
PRS_CH5 #4
PRS_CH6 #16
ACMP0_O #22
ACMP1_O #22
GPIO_EM4WU4
TIM0_CC0 #23
TIM0_CC1 #22
TIM0_CC2 #21
TIM0_CDTI0 #20
TIM0_CDTI1 #19
TIM0_CDTI2 #18
TIM1_CC0 #23
TIM1_CC1 #22
TIM1_CC2 #21
TIM1_CC3 #20 LETIM0_OUT0 #23
LETIM0_OUT1 #22
PCNT0_S0IN #23
PCNT0_S1IN #22
US0_TX #23
US0_RX #22
US0_CLK #21
US0_CS #20
US0_CTS #19
US0_RTS #18
US1_TX #23
US1_RX #22
US1_CLK #21
US1_CS #20
US1_CTS #19
US1_RTS #18
LEU0_TX #23
LEU0_RX #22
I2C0_SDA #23
I2C0_SCL #22
FRC_DCLK #23
FRC_DOUT #22
FRC_DFRAME #21
MODEM_DCLK #23
MODEM_DIN #22
MODEM_DOUT #21
MODEM_ANT0 #20
MODEM_ANT1 #19
CMU_CLK1 #5
PRS_CH3 #14
PRS_CH4 #6
PRS_CH5 #5
PRS_CH6 #17
ACMP0_O #23
ACMP1_O #23
DBG_SWO #2
BUSDX [ADC0:
APORT4XCH5
ACMP0:
APORT4XCH5
ACMP1:
APORT4XCH5]
23
PD14
BUSCX [ADC0:
APORT3XCH6
ACMP0:
APORT3XCH6
ACMP1:
APORT3XCH6
IDAC0:
APORT1XCH6]
BUSDY [ADC0:
APORT4YCH6
ACMP0:
APORT4YCH6
ACMP1:
APORT4YCH6]
24
PD15
BUSCY [ADC0:
APORT3YCH7
ACMP0:
APORT3YCH7
ACMP1:
APORT3YCH7
IDAC0:
APORT1YCH7]
BUSDX [ADC0:
APORT4XCH7
ACMP0:
APORT4XCH7
ACMP1:
APORT4XCH7]
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 55
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
QFN48 Pin# and
Name
Pin
#
Pin Name
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
TIM0_CC0 #0
TIM0_CC1 #31
TIM0_CC2 #30
TIM0_CDTI0 #29
TIM0_CDTI1 #28
TIM0_CDTI2 #27
TIM1_CC0 #0
TIM1_CC1 #31
TIM1_CC2 #30
TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31
PCNT0_S0IN #0
PCNT0_S1IN #31
US0_TX #0
US0_RX #31
US0_CLK #30
US0_CS #29
US0_CTS #28
US0_RTS #27
US1_TX #0
US1_RX #31
US1_CLK #30
US1_CS #29
US1_CTS #28
US1_RTS #27
LEU0_TX #0
LEU0_RX #31
I2C0_SDA #0
I2C0_SCL #31
FRC_DCLK #0
FRC_DOUT #31
FRC_DFRAME #30
MODEM_DCLK #0
MODEM_DIN #31
MODEM_DOUT #30
MODEM_ANT0 #29
MODEM_ANT1 #28
CMU_CLK1 #0
PRS_CH6 #0
PRS_CH7 #10
PRS_CH8 #9
PRS_CH9 #8
ACMP0_O #0
ACMP1_O #0
TIM0_CC0 #1
TIM0_CC1 #0
TIM0_CC2 #31
TIM0_CDTI0 #30
TIM0_CDTI1 #29
TIM0_CDTI2 #28
TIM1_CC0 #1
TIM1_CC1 #0
TIM1_CC2 #31
TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0
PCNT0_S0IN #1
PCNT0_S1IN #0
US0_TX #1
US0_RX #0
US0_CLK #31
US0_CS #30
US0_CTS #29
US0_RTS #28
US1_TX #1
US1_RX #0
US1_CLK #31
US1_CS #30
US1_CTS #29
US1_RTS #28
LEU0_TX #1
LEU0_RX #0
I2C0_SDA #1
I2C0_SCL #0
FRC_DCLK #1
FRC_DOUT #0
FRC_DFRAME #31
MODEM_DCLK #1
MODEM_DIN #0
MODEM_DOUT #31
MODEM_ANT0 #30
MODEM_ANT1 #29
CMU_CLK0 #0
PRS_CH6 #1
PRS_CH7 #0
PRS_CH8 #10
PRS_CH9 #9
ACMP0_O #1
ACMP1_O #1
TIM0_CC0 #2
TIM0_CC1 #1
TIM0_CC2 #0
TIM0_CDTI0 #31
TIM0_CDTI1 #30
TIM0_CDTI2 #29
TIM1_CC0 #2
TIM1_CC1 #1
TIM1_CC2 #0
TIM1_CC3 #31 LETIM0_OUT0 #2 LETIM0_OUT1 #1
PCNT0_S0IN #2
PCNT0_S1IN #1
US0_TX #2
US0_RX #1
US0_CLK #0
US0_CS #31
US0_CTS #30
US0_RTS #29
US1_TX #2
US1_RX #1
US1_CLK #0
US1_CS #31
US1_CTS #30
US1_RTS #29
LEU0_TX #2
LEU0_RX #1
I2C0_SDA #2
I2C0_SCL #1
FRC_DCLK #2
FRC_DOUT #1
FRC_DFRAME #0
MODEM_DCLK #2
MODEM_DIN #1
MODEM_DOUT #0
MODEM_ANT0 #31
MODEM_ANT1 #30
PRS_CH6 #2
PRS_CH7 #1
PRS_CH8 #0
PRS_CH9 #10
ACMP0_O #2
ACMP1_O #2
ADC0_EXTN
25
PA0
BUSCX [ADC0:
APORT3XCH8
ACMP0:
APORT3XCH8
ACMP1:
APORT3XCH8
IDAC0:
APORT1XCH8]
BUSDY [ADC0:
APORT4YCH8
ACMP0:
APORT4YCH8
ACMP1:
APORT4YCH8]
ADC0_EXTP
26
PA1
BUSCY [ADC0:
APORT3YCH9
ACMP0:
APORT3YCH9
ACMP1:
APORT3YCH9
IDAC0:
APORT1YCH9]
BUSDX [ADC0:
APORT4XCH9
ACMP0:
APORT4XCH9
ACMP1:
APORT4XCH9]
27
PA2
BUSCX [ADC0:
APORT3XCH10
ACMP0:
APORT3XCH10
ACMP1:
APORT3XCH10
IDAC0:
APORT1XCH10]
BUSDY [ADC0:
APORT4YCH10
ACMP0:
APORT4YCH10
ACMP1:
APORT4YCH10]
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 56
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
QFN48 Pin# and
Name
Pin
#
28
Pin Alternate Functionality / Description
Pin Name
Analog
Timers
Communication
Radio
Other
PA3
BUSCY [ADC0:
APORT3YCH11
ACMP0:
APORT3YCH11
ACMP1:
APORT3YCH11
IDAC0:
APORT1YCH11]
TIM0_CC0 #3
TIM0_CC1 #2
TIM0_CC2 #1
TIM0_CDTI0 #0
TIM0_CDTI1 #31
TIM0_CDTI2 #30
TIM1_CC0 #3
TIM1_CC1 #2
TIM1_CC2 #1
TIM1_CC3 #0 LETIM0_OUT0 #3 LETIM0_OUT1 #2
PCNT0_S0IN #3
PCNT0_S1IN #2
US0_TX #3
US0_RX #2
US0_CLK #1
US0_CS #0
US0_CTS #31
US0_RTS #30
US1_TX #3
US1_RX #2
US1_CLK #1
US1_CS #0
US1_CTS #31
US1_RTS #30
LEU0_TX #3
LEU0_RX #2
I2C0_SDA #3
I2C0_SCL #2
FRC_DCLK #3
FRC_DOUT #2
FRC_DFRAME #1
MODEM_DCLK #3
MODEM_DIN #2
MODEM_DOUT #1
MODEM_ANT0 #0
MODEM_ANT1 #31
PRS_CH6 #3
PRS_CH7 #2
PRS_CH8 #1
PRS_CH9 #0
ACMP0_O #3
ACMP1_O #3
GPIO_EM4WU8
TIM0_CC0 #4
TIM0_CC1 #3
TIM0_CC2 #2
TIM0_CDTI0 #1
TIM0_CDTI1 #0
TIM0_CDTI2 #31
TIM1_CC0 #4
TIM1_CC1 #3
TIM1_CC2 #2
TIM1_CC3 #1 LETIM0_OUT0 #4 LETIM0_OUT1 #3
PCNT0_S0IN #4
PCNT0_S1IN #3
US0_TX #4
US0_RX #3
US0_CLK #2
US0_CS #1
US0_CTS #0
US0_RTS #31
US1_TX #4
US1_RX #3
US1_CLK #2
US1_CS #1
US1_CTS #0
US1_RTS #31
LEU0_TX #4
LEU0_RX #3
I2C0_SDA #4
I2C0_SCL #3
FRC_DCLK #4
FRC_DOUT #3
FRC_DFRAME #2
MODEM_DCLK #4
MODEM_DIN #3
MODEM_DOUT #2
MODEM_ANT0 #1
MODEM_ANT1 #0
PRS_CH6 #4
PRS_CH7 #3
PRS_CH8 #2
PRS_CH9 #1
ACMP0_O #4
ACMP1_O #4
TIM0_CC0 #5
TIM0_CC1 #4
TIM0_CC2 #3
TIM0_CDTI0 #2
TIM0_CDTI1 #1
TIM0_CDTI2 #0
TIM1_CC0 #5
TIM1_CC1 #4
TIM1_CC2 #3
TIM1_CC3 #2 LETIM0_OUT0 #5 LETIM0_OUT1 #4
PCNT0_S0IN #5
PCNT0_S1IN #4
US0_TX #5
US0_RX #4
US0_CLK #3
US0_CS #2
US0_CTS #1
US0_RTS #0
US1_TX #5
US1_RX #4
US1_CLK #3
US1_CS #2
US1_CTS #1
US1_RTS #0
LEU0_TX #5
LEU0_RX #4
I2C0_SDA #5
I2C0_SCL #4
FRC_DCLK #5
FRC_DOUT #4
FRC_DFRAME #3
MODEM_DCLK #5
MODEM_DIN #4
MODEM_DOUT #3
MODEM_ANT0 #2
MODEM_ANT1 #1
PRS_CH6 #5
PRS_CH7 #4
PRS_CH8 #3
PRS_CH9 #2
ACMP0_O #5
ACMP1_O #5
BUSDX [ADC0:
APORT4XCH11
ACMP0:
APORT4XCH11
ACMP1:
APORT4XCH11]
29
PA4
BUSCX [ADC0:
APORT3XCH12
ACMP0:
APORT3XCH12
ACMP1:
APORT3XCH12
IDAC0:
APORT1XCH12]
BUSDY [ADC0:
APORT4YCH12
ACMP0:
APORT4YCH12
ACMP1:
APORT4YCH12]
30
PA5
BUSCY [ADC0:
APORT3YCH13
ACMP0:
APORT3YCH13
ACMP1:
APORT3YCH13
IDAC0:
APORT1YCH13]
BUSDX [ADC0:
APORT4XCH13
ACMP0:
APORT4XCH13
ACMP1:
APORT4XCH13]
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 57
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
QFN48 Pin# and
Name
Pin
#
31
Pin Alternate Functionality / Description
Pin Name
Analog
Timers
Communication
Radio
Other
PB11
BUSCY [ADC0:
APORT3YCH27
ACMP0:
APORT3YCH27
ACMP1:
APORT3YCH27
IDAC0:
APORT1YCH27]
TIM0_CC0 #6
TIM0_CC1 #5
TIM0_CC2 #4
TIM0_CDTI0 #3
TIM0_CDTI1 #2
TIM0_CDTI2 #1
TIM1_CC0 #6
TIM1_CC1 #5
TIM1_CC2 #4
TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5
PCNT0_S0IN #6
PCNT0_S1IN #5
US0_TX #6
US0_RX #5
US0_CLK #4
US0_CS #3
US0_CTS #2
US0_RTS #1
US1_TX #6
US1_RX #5
US1_CLK #4
US1_CS #3
US1_CTS #2
US1_RTS #1
LEU0_TX #6
LEU0_RX #5
I2C0_SDA #6
I2C0_SCL #5
FRC_DCLK #6
FRC_DOUT #5
FRC_DFRAME #4
MODEM_DCLK #6
MODEM_DIN #5
MODEM_DOUT #4
MODEM_ANT0 #3
MODEM_ANT1 #2
PRS_CH6 #6
PRS_CH7 #5
PRS_CH8 #4
PRS_CH9 #3
ACMP0_O #6
ACMP1_O #6
TIM0_CC0 #7
TIM0_CC1 #6
TIM0_CC2 #5
TIM0_CDTI0 #4
TIM0_CDTI1 #3
TIM0_CDTI2 #2
TIM1_CC0 #7
TIM1_CC1 #6
TIM1_CC2 #5
TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6
PCNT0_S0IN #7
PCNT0_S1IN #6
US0_TX #7
US0_RX #6
US0_CLK #5
US0_CS #4
US0_CTS #3
US0_RTS #2
US1_TX #7
US1_RX #6
US1_CLK #5
US1_CS #4
US1_CTS #3
US1_RTS #2
LEU0_TX #7
LEU0_RX #6
I2C0_SDA #7
I2C0_SCL #6
FRC_DCLK #7
FRC_DOUT #6
FRC_DFRAME #5
MODEM_DCLK #7
MODEM_DIN #6
MODEM_DOUT #5
MODEM_ANT0 #4
MODEM_ANT1 #3
PRS_CH6 #7
PRS_CH7 #6
PRS_CH8 #5
PRS_CH9 #4
ACMP0_O #7
ACMP1_O #7
TIM0_CC0 #8
TIM0_CC1 #7
TIM0_CC2 #6
TIM0_CDTI0 #5
TIM0_CDTI1 #4
TIM0_CDTI2 #3
TIM1_CC0 #8
TIM1_CC1 #7
TIM1_CC2 #6
TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7
PCNT0_S0IN #8
PCNT0_S1IN #7
US0_TX #8
US0_RX #7
US0_CLK #6
US0_CS #5
US0_CTS #4
US0_RTS #3
US1_TX #8
US1_RX #7
US1_CLK #6
US1_CS #5
US1_CTS #4
US1_RTS #3
LEU0_TX #8
LEU0_RX #7
I2C0_SDA #8
I2C0_SCL #7
FRC_DCLK #8
FRC_DOUT #7
FRC_DFRAME #6
MODEM_DCLK #8
MODEM_DIN #7
MODEM_DOUT #6
MODEM_ANT0 #5
MODEM_ANT1 #4
PRS_CH6 #8
PRS_CH7 #7
PRS_CH8 #6
PRS_CH9 #5
ACMP0_O #8
ACMP1_O #8
DBG_SWO #1
GPIO_EM4WU9
BUSDX [ADC0:
APORT4XCH27
ACMP0:
APORT4XCH27
ACMP1:
APORT4XCH27]
32
PB12
BUSCX [ADC0:
APORT3XCH28
ACMP0:
APORT3XCH28
ACMP1:
APORT3XCH28
IDAC0:
APORT1XCH28]
BUSDY [ADC0:
APORT4YCH28
ACMP0:
APORT4YCH28
ACMP1:
APORT4YCH28]
33
PB13
BUSCY [ADC0:
APORT3YCH29
ACMP0:
APORT3YCH29
ACMP1:
APORT3YCH29
IDAC0:
APORT1YCH29]
BUSDX [ADC0:
APORT4XCH29
ACMP0:
APORT4XCH29
ACMP1:
APORT4XCH29]
34
AVDD
Analog power supply.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 58
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
QFN48 Pin# and
Name
Pin
#
Pin Name
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
TIM0_CC0 #9
TIM0_CC1 #8
TIM0_CC2 #7
TIM0_CDTI0 #6
TIM0_CDTI1 #5
TIM0_CDTI2 #4
TIM1_CC0 #9
TIM1_CC1 #8
TIM1_CC2 #7
TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8
PCNT0_S0IN #9
PCNT0_S1IN #8
US0_TX #9
US0_RX #8
US0_CLK #7
US0_CS #6
US0_CTS #5
US0_RTS #4
US1_TX #9
US1_RX #8
US1_CLK #7
US1_CS #6
US1_CTS #5
US1_RTS #4
LEU0_TX #9
LEU0_RX #8
I2C0_SDA #9
I2C0_SCL #8
FRC_DCLK #9
FRC_DOUT #8
FRC_DFRAME #7
MODEM_DCLK #9
MODEM_DIN #8
MODEM_DOUT #7
MODEM_ANT0 #6
MODEM_ANT1 #5
CMU_CLK1 #1
PRS_CH6 #9
PRS_CH7 #8
PRS_CH8 #7
PRS_CH9 #6
ACMP0_O #9
ACMP1_O #9
TIM0_CC0 #10
TIM0_CC1 #9
TIM0_CC2 #8
TIM0_CDTI0 #7
TIM0_CDTI1 #6
TIM0_CDTI2 #5
TIM1_CC0 #10
TIM1_CC1 #9
TIM1_CC2 #8
TIM1_CC3 #7 LETIM0_OUT0 #10
LETIM0_OUT1 #9
PCNT0_S0IN #10
PCNT0_S1IN #9
US0_TX #10
US0_RX #9
US0_CLK #8
US0_CS #7
US0_CTS #6
US0_RTS #5
US1_TX #10
US1_RX #9
US1_CLK #8
US1_CS #7
US1_CTS #6
US1_RTS #5
LEU0_TX #10
LEU0_RX #9
I2C0_SDA #10
I2C0_SCL #9
FRC_DCLK #10
FRC_DOUT #9
FRC_DFRAME #8
MODEM_DCLK #10
MODEM_DIN #9
MODEM_DOUT #8
MODEM_ANT0 #7
MODEM_ANT1 #6
CMU_CLK0 #1
PRS_CH6 #10
PRS_CH7 #9
PRS_CH8 #8
PRS_CH9 #7
ACMP0_O #10
ACMP1_O #10
LFXTAL_N
35
PB14
BUSCX [ADC0:
APORT3XCH30
ACMP0:
APORT3XCH30
ACMP1:
APORT3XCH30
IDAC0:
APORT1XCH30]
BUSDY [ADC0:
APORT4YCH30
ACMP0:
APORT4YCH30
ACMP1:
APORT4YCH30]
LFXTAL_P
36
PB15
BUSCY [ADC0:
APORT3YCH31
ACMP0:
APORT3YCH31
ACMP1:
APORT3YCH31
IDAC0:
APORT1YCH31]
BUSDX [ADC0:
APORT4XCH31
ACMP0:
APORT4XCH31
ACMP1:
APORT4XCH31]
37
VREGVSS
Voltage regulator VSS
38
VREGSW
DCDC regulator switching node
39
VREGVDD
Voltage regulator VDD input
40
DVDD
41
DECOUPLE
42
IOVDD
Digital power supply.
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this
pin.
Digital IO power supply.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 59
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
QFN48 Pin# and
Name
Pin
#
43
44
45
Pin Name
PC6
PC7
PC8
Pin Alternate Functionality / Description
Analog
BUSAX [ADC0:
APORT1XCH6
ACMP0:
APORT1XCH6
ACMP1:
APORT1XCH6]
BUSBY [ADC0:
APORT2YCH6
ACMP0:
APORT2YCH6
ACMP1:
APORT2YCH6]
BUSAY [ADC0:
APORT1YCH7
ACMP0:
APORT1YCH7
ACMP1:
APORT1YCH7]
BUSBX [ADC0:
APORT2XCH7
ACMP0:
APORT2XCH7
ACMP1:
APORT2XCH7]
BUSAX [ADC0:
APORT1XCH8
ACMP0:
APORT1XCH8
ACMP1:
APORT1XCH8]
BUSBY [ADC0:
APORT2YCH8
ACMP0:
APORT2YCH8
ACMP1:
APORT2YCH8]
silabs.com | Smart. Connected. Energy-friendly.
Timers
Communication
Radio
Other
TIM0_CC0 #11
TIM0_CC1 #10
TIM0_CC2 #9
TIM0_CDTI0 #8
TIM0_CDTI1 #7
TIM0_CDTI2 #6
TIM1_CC0 #11
TIM1_CC1 #10
TIM1_CC2 #9
TIM1_CC3 #8 LETIM0_OUT0 #11
LETIM0_OUT1 #10
PCNT0_S0IN #11
PCNT0_S1IN #10
US0_TX #11
US0_RX #10
US0_CLK #9
US0_CS #8
US0_CTS #7
US0_RTS #6
US1_TX #11
US1_RX #10
US1_CLK #9
US1_CS #8
US1_CTS #7
US1_RTS #6
LEU0_TX #11
LEU0_RX #10
I2C0_SDA #11
I2C0_SCL #10
FRC_DCLK #11
FRC_DOUT #10
FRC_DFRAME #9
MODEM_DCLK #11
MODEM_DIN #10
MODEM_DOUT #9
MODEM_ANT0 #8
MODEM_ANT1 #7
CMU_CLK0 #2
PRS_CH0 #8
PRS_CH9 #11
PRS_CH10 #0
PRS_CH11 #5
ACMP0_O #11
ACMP1_O #11
TIM0_CC0 #12
TIM0_CC1 #11
TIM0_CC2 #10
TIM0_CDTI0 #9
TIM0_CDTI1 #8
TIM0_CDTI2 #7
TIM1_CC0 #12
TIM1_CC1 #11
TIM1_CC2 #10
TIM1_CC3 #9 LETIM0_OUT0 #12
LETIM0_OUT1 #11
PCNT0_S0IN #12
PCNT0_S1IN #11
US0_TX #12
US0_RX #11
US0_CLK #10
US0_CS #9
US0_CTS #8
US0_RTS #7
US1_TX #12
US1_RX #11
US1_CLK #10
US1_CS #9
US1_CTS #8
US1_RTS #7
LEU0_TX #12
LEU0_RX #11
I2C0_SDA #12
I2C0_SCL #11
FRC_DCLK #12
FRC_DOUT #11
FRC_DFRAME #10
MODEM_DCLK #12
MODEM_DIN #11
MODEM_DOUT #10
MODEM_ANT0 #9
MODEM_ANT1 #8
CMU_CLK1 #2
PRS_CH0 #9
PRS_CH9 #12
PRS_CH10 #1
PRS_CH11 #0
ACMP0_O #12
ACMP1_O #12
TIM0_CC0 #13
TIM0_CC1 #12
TIM0_CC2 #11
TIM0_CDTI0 #10
TIM0_CDTI1 #9
TIM0_CDTI2 #8
TIM1_CC0 #13
TIM1_CC1 #12
TIM1_CC2 #11
TIM1_CC3 #10 LETIM0_OUT0 #13
LETIM0_OUT1 #12
PCNT0_S0IN #13
PCNT0_S1IN #12
US0_TX #13
US0_RX #12
US0_CLK #11
US0_CS #10
US0_CTS #9
US0_RTS #8
US1_TX #13
US1_RX #12
US1_CLK #11
US1_CS #10
US1_CTS #9
US1_RTS #8
LEU0_TX #13
LEU0_RX #12
I2C0_SDA #13
I2C0_SCL #12
FRC_DCLK #13
FRC_DOUT #12
FRC_DFRAME #11
MODEM_DCLK #13
MODEM_DIN #12
MODEM_DOUT #11
MODEM_ANT0 #10
MODEM_ANT1 #9
PRS_CH0 #10
PRS_CH9 #13
PRS_CH10 #2
PRS_CH11 #1
ACMP0_O #13
ACMP1_O #13
Preliminary Rev. 0.9 | 60
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
QFN48 Pin# and
Name
Pin
#
46
47
48
Pin Name
PC9
PC10
PC11
Pin Alternate Functionality / Description
Analog
BUSAY [ADC0:
APORT1YCH9
ACMP0:
APORT1YCH9
ACMP1:
APORT1YCH9]
BUSBX [ADC0:
APORT2XCH9
ACMP0:
APORT2XCH9
ACMP1:
APORT2XCH9]
BUSAX [ADC0:
APORT1XCH10
ACMP0:
APORT1XCH10
ACMP1:
APORT1XCH10]
BUSBY [ADC0:
APORT2YCH10
ACMP0:
APORT2YCH10
ACMP1:
APORT2YCH10]
BUSAY [ADC0:
APORT1YCH11
ACMP0:
APORT1YCH11
ACMP1:
APORT1YCH11]
BUSBX [ADC0:
APORT2XCH11
ACMP0:
APORT2XCH11
ACMP1:
APORT2XCH11]
silabs.com | Smart. Connected. Energy-friendly.
Timers
Communication
Radio
Other
TIM0_CC0 #14
TIM0_CC1 #13
TIM0_CC2 #12
TIM0_CDTI0 #11
TIM0_CDTI1 #10
TIM0_CDTI2 #9
TIM1_CC0 #14
TIM1_CC1 #13
TIM1_CC2 #12
TIM1_CC3 #11 LETIM0_OUT0 #14
LETIM0_OUT1 #13
PCNT0_S0IN #14
PCNT0_S1IN #13
US0_TX #14
US0_RX #13
US0_CLK #12
US0_CS #11
US0_CTS #10
US0_RTS #9
US1_TX #14
US1_RX #13
US1_CLK #12
US1_CS #11
US1_CTS #10
US1_RTS #9
LEU0_TX #14
LEU0_RX #13
I2C0_SDA #14
I2C0_SCL #13
FRC_DCLK #14
FRC_DOUT #13
FRC_DFRAME #12
MODEM_DCLK #14
MODEM_DIN #13
MODEM_DOUT #12
MODEM_ANT0 #11
MODEM_ANT1 #10
PRS_CH0 #11
PRS_CH9 #14
PRS_CH10 #3
PRS_CH11 #2
ACMP0_O #14
ACMP1_O #14
TIM0_CC0 #15
TIM0_CC1 #14
TIM0_CC2 #13
TIM0_CDTI0 #12
TIM0_CDTI1 #11
TIM0_CDTI2 #10
TIM1_CC0 #15
TIM1_CC1 #14
TIM1_CC2 #13
TIM1_CC3 #12 LETIM0_OUT0 #15
LETIM0_OUT1 #14
PCNT0_S0IN #15
PCNT0_S1IN #14
US0_TX #15
US0_RX #14
US0_CLK #13
US0_CS #12
US0_CTS #11
US0_RTS #10
US1_TX #15
US1_RX #14
US1_CLK #13
US1_CS #12
US1_CTS #11
US1_RTS #10
LEU0_TX #15
LEU0_RX #14
I2C0_SDA #15
I2C0_SCL #14
FRC_DCLK #15
FRC_DOUT #14
FRC_DFRAME #13
MODEM_DCLK #15
MODEM_DIN #14
MODEM_DOUT #13
MODEM_ANT0 #12
MODEM_ANT1 #11
CMU_CLK1 #3
PRS_CH0 #12
PRS_CH9 #15
PRS_CH10 #4
PRS_CH11 #3
ACMP0_O #15
ACMP1_O #15
GPIO_EM4WU12
TIM0_CC0 #16
TIM0_CC1 #15
TIM0_CC2 #14
TIM0_CDTI0 #13
TIM0_CDTI1 #12
TIM0_CDTI2 #11
TIM1_CC0 #16
TIM1_CC1 #15
TIM1_CC2 #14
TIM1_CC3 #13 LETIM0_OUT0 #16
LETIM0_OUT1 #15
PCNT0_S0IN #16
PCNT0_S1IN #15
US0_TX #16
US0_RX #15
US0_CLK #14
US0_CS #13
US0_CTS #12
US0_RTS #11
US1_TX #16
US1_RX #15
US1_CLK #14
US1_CS #13
US1_CTS #12
US1_RTS #11
LEU0_TX #16
LEU0_RX #15
I2C0_SDA #16
I2C0_SCL #15
FRC_DCLK #16
FRC_DOUT #15
FRC_DFRAME #14
MODEM_DCLK #16
MODEM_DIN #15
MODEM_DOUT #14
MODEM_ANT0 #13
MODEM_ANT1 #12
CMU_CLK0 #3
PRS_CH0 #13
PRS_CH9 #16
PRS_CH10 #5
PRS_CH11 #4
ACMP0_O #16
ACMP1_O #16
DBG_SWO #3
Preliminary Rev. 0.9 | 61
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
6.1.1 EFR32FG1 QFN48 2.4 GHz GPIO Overview
The GPIO pins are organized as 16-bit ports indicated by letters A through F, and the individual pins on each port are indicated by a
number from 15 down to 0.
Table 6.2. GPIO Pinout
Port
Pin
15
Pin
14
Pin
13
Pin
12
Pin
11
Pin
10
Port A
-
-
-
-
-
-
-
-
-
-
PA5
(5V)
PA4
(5V)
PA3
(5V)
PA2
(5V)
PA1
PA0
-
-
-
-
-
-
-
-
-
-
-
PC9
(5V)
PC8
(5V)
PC7
(5V)
PC6
(5V)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Port B
Port C
Port D
PB15 PB14
-
-
PB13 PB12 PB11
(5V) (5V) (5V)
-
-
PC11 PC10
(5V) (5V)
PD15 PD14 PD13 PD12 PD11 PD10
(5V) (5V) (5V) (5V) (5V) (5V)
Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0
Port E
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Port F
-
-
-
-
-
-
-
-
PF7
(5V)
PF6
(5V)
PF5
(5V)
PF4
(5V)
PF3
(5V)
PF2
(5V)
PF1
(5V)
PF0
(5V)
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 62
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
6.2 EFR32FG1 QFN32 2.4 GHz Definition
Figure 6.2. EFR32FG1 QFN32 2.4 GHz Pinout
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 63
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
Table 6.3. Device Pinout
QFN32 Pin# and
Name
Pin
#
Pin Name
0
VSS
1
2
3
PF0
PF1
PF2
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
TIM0_CC0 #24
TIM0_CC1 #23
TIM0_CC2 #22
TIM0_CDTI0 #21
TIM0_CDTI1 #20
TIM0_CDTI2 #19
TIM1_CC0 #24
TIM1_CC1 #23
TIM1_CC2 #22
TIM1_CC3 #21 LETIM0_OUT0 #24
LETIM0_OUT1 #23
PCNT0_S0IN #24
PCNT0_S1IN #23
US0_TX #24
US0_RX #23
US0_CLK #22
US0_CS #21
US0_CTS #20
US0_RTS #19
US1_TX #24
US1_RX #23
US1_CLK #22
US1_CS #21
US1_CTS #20
US1_RTS #19
LEU0_TX #24
LEU0_RX #23
I2C0_SDA #24
I2C0_SCL #23
FRC_DCLK #24
FRC_DOUT #23
FRC_DFRAME #22
MODEM_DCLK #24
MODEM_DIN #23
MODEM_DOUT #22
MODEM_ANT0 #21
MODEM_ANT1 #20
PRS_CH0 #0
PRS_CH1 #7
PRS_CH2 #6
PRS_CH3 #5
ACMP0_O #24
ACMP1_O #24
DBG_SWCLKTCK
#0
TIM0_CC0 #25
TIM0_CC1 #24
TIM0_CC2 #23
TIM0_CDTI0 #22
TIM0_CDTI1 #21
TIM0_CDTI2 #20
TIM1_CC0 #25
TIM1_CC1 #24
TIM1_CC2 #23
TIM1_CC3 #22 LETIM0_OUT0 #25
LETIM0_OUT1 #24
PCNT0_S0IN #25
PCNT0_S1IN #24
US0_TX #25
US0_RX #24
US0_CLK #23
US0_CS #22
US0_CTS #21
US0_RTS #20
US1_TX #25
US1_RX #24
US1_CLK #23
US1_CS #22
US1_CTS #21
US1_RTS #20
LEU0_TX #25
LEU0_RX #24
I2C0_SDA #25
I2C0_SCL #24
FRC_DCLK #25
FRC_DOUT #24
FRC_DFRAME #23
MODEM_DCLK #25
MODEM_DIN #24
MODEM_DOUT #23
MODEM_ANT0 #22
MODEM_ANT1 #21
PRS_CH0 #1
PRS_CH1 #0
PRS_CH2 #7
PRS_CH3 #6
ACMP0_O #25
ACMP1_O #25
DBG_SWDIOTMS
#0
TIM0_CC0 #26
TIM0_CC1 #25
TIM0_CC2 #24
TIM0_CDTI0 #23
TIM0_CDTI1 #22
TIM0_CDTI2 #21
TIM1_CC0 #26
TIM1_CC1 #25
TIM1_CC2 #24
TIM1_CC3 #23 LETIM0_OUT0 #26
LETIM0_OUT1 #25
PCNT0_S0IN #26
PCNT0_S1IN #25
US0_TX #26
US0_RX #25
US0_CLK #24
US0_CS #23
US0_CTS #22
US0_RTS #21
US1_TX #26
US1_RX #25
US1_CLK #24
US1_CS #23
US1_CTS #22
US1_RTS #21
LEU0_TX #26
LEU0_RX #25
I2C0_SDA #26
I2C0_SCL #25
FRC_DCLK #26
FRC_DOUT #25
FRC_DFRAME #24
MODEM_DCLK #26
MODEM_DIN #25
MODEM_DOUT #24
MODEM_ANT0 #23
MODEM_ANT1 #22
CMU_CLK0 #6
PRS_CH0 #2
PRS_CH1 #1
PRS_CH2 #0
PRS_CH3 #7
ACMP0_O #26
ACMP1_O #26
DBG_TDO #0
DBG_SWO #0
GPIO_EM4WU0
Ground
BUSAX [ADC0:
APORT1XCH16
ACMP0:
APORT1XCH16
ACMP1:
APORT1XCH16]
BUSBY [ADC0:
APORT2YCH16
ACMP0:
APORT2YCH16
ACMP1:
APORT2YCH16]
BUSAY [ADC0:
APORT1YCH17
ACMP0:
APORT1YCH17
ACMP1:
APORT1YCH17]
BUSBX [ADC0:
APORT2XCH17
ACMP0:
APORT2XCH17
ACMP1:
APORT2XCH17]
BUSAX [ADC0:
APORT1XCH18
ACMP0:
APORT1XCH18
ACMP1:
APORT1XCH18]
BUSBY [ADC0:
APORT2YCH18
ACMP0:
APORT2YCH18
ACMP1:
APORT2YCH18]
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 64
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
QFN32 Pin# and
Name
Pin
#
Pin Name
Pin Alternate Functionality / Description
Analog
BUSAY [ADC0:
APORT1YCH19
ACMP0:
APORT1YCH19
ACMP1:
APORT1YCH19]
Timers
Communication
Radio
Other
TIM0_CC0 #27
TIM0_CC1 #26
TIM0_CC2 #25
TIM0_CDTI0 #24
TIM0_CDTI1 #23
TIM0_CDTI2 #22
TIM1_CC0 #27
TIM1_CC1 #26
TIM1_CC2 #25
TIM1_CC3 #24 LETIM0_OUT0 #27
LETIM0_OUT1 #26
PCNT0_S0IN #27
PCNT0_S1IN #26
US0_TX #27
US0_RX #26
US0_CLK #25
US0_CS #24
US0_CTS #23
US0_RTS #22
US1_TX #27
US1_RX #26
US1_CLK #25
US1_CS #24
US1_CTS #23
US1_RTS #22
LEU0_TX #27
LEU0_RX #26
I2C0_SDA #27
I2C0_SCL #26
FRC_DCLK #27
FRC_DOUT #26
FRC_DFRAME #25
MODEM_DCLK #27
MODEM_DIN #26
MODEM_DOUT #25
MODEM_ANT0 #24
MODEM_ANT1 #23
CMU_CLK1 #6
PRS_CH0 #3
PRS_CH1 #2
PRS_CH2 #1
PRS_CH3 #0
ACMP0_O #27
ACMP1_O #27
DBG_TDI #0
4
PF3
5
RFVDD
6
HFXTAL_N
High Frequency Crystal input pin.
7
HFXTAL_P
High Frequency Crystal output pin.
8
RESETn
Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low
during reset, and let the internal pull-up ensure that reset is released.
9
RFVSS
Radio Ground
10
PAVSS
Power Amplifier (PA) voltage regulator VSS
11
2G4RF_ION
2.4 GHz Differential RF input/output, negative path.
12
2G4RF_IOP
2.4 GHz Differential RF input/output, positive path.
13
PAVDD
Power Amplifier (PA) voltage regulator VDD input
14
PD13
BUSBX [ADC0:
APORT2XCH19
ACMP0:
APORT2XCH19
ACMP1:
APORT2XCH19]
Radio power supply
BUSCY [ADC0:
APORT3YCH5
ACMP0:
APORT3YCH5
ACMP1:
APORT3YCH5
IDAC0:
APORT1YCH5]
BUSDX [ADC0:
APORT4XCH5
ACMP0:
APORT4XCH5
ACMP1:
APORT4XCH5]
silabs.com | Smart. Connected. Energy-friendly.
TIM0_CC0 #21
TIM0_CC1 #20
TIM0_CC2 #19
TIM0_CDTI0 #18
TIM0_CDTI1 #17
TIM0_CDTI2 #16
TIM1_CC0 #21
TIM1_CC1 #20
TIM1_CC2 #19
TIM1_CC3 #18 LETIM0_OUT0 #21
LETIM0_OUT1 #20
PCNT0_S0IN #21
PCNT0_S1IN #20
US0_TX #21
US0_RX #20
US0_CLK #19
US0_CS #18
US0_CTS #17
US0_RTS #16
US1_TX #21
US1_RX #20
US1_CLK #19
US1_CS #18
US1_CTS #17
US1_RTS #16
LEU0_TX #21
LEU0_RX #20
I2C0_SDA #21
I2C0_SCL #20
FRC_DCLK #21
FRC_DOUT #20
FRC_DFRAME #19
MODEM_DCLK #21
MODEM_DIN #20
MODEM_DOUT #19
MODEM_ANT0 #18
MODEM_ANT1 #17
PRS_CH3 #12
PRS_CH4 #4
PRS_CH5 #3
PRS_CH6 #15
ACMP0_O #21
ACMP1_O #21
Preliminary Rev. 0.9 | 65
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
QFN32 Pin# and
Name
Pin
#
15
Pin Alternate Functionality / Description
Pin Name
Analog
Timers
Communication
Radio
Other
PD14
BUSCX [ADC0:
APORT3XCH6
ACMP0:
APORT3XCH6
ACMP1:
APORT3XCH6
IDAC0:
APORT1XCH6]
TIM0_CC0 #22
TIM0_CC1 #21
TIM0_CC2 #20
TIM0_CDTI0 #19
TIM0_CDTI1 #18
TIM0_CDTI2 #17
TIM1_CC0 #22
TIM1_CC1 #21
TIM1_CC2 #20
TIM1_CC3 #19 LETIM0_OUT0 #22
LETIM0_OUT1 #21
PCNT0_S0IN #22
PCNT0_S1IN #21
US0_TX #22
US0_RX #21
US0_CLK #20
US0_CS #19
US0_CTS #18
US0_RTS #17
US1_TX #22
US1_RX #21
US1_CLK #20
US1_CS #19
US1_CTS #18
US1_RTS #17
LEU0_TX #22
LEU0_RX #21
I2C0_SDA #22
I2C0_SCL #21
FRC_DCLK #22
FRC_DOUT #21
FRC_DFRAME #20
MODEM_DCLK #22
MODEM_DIN #21
MODEM_DOUT #20
MODEM_ANT0 #19
MODEM_ANT1 #18
CMU_CLK0 #5
PRS_CH3 #13
PRS_CH4 #5
PRS_CH5 #4
PRS_CH6 #16
ACMP0_O #22
ACMP1_O #22
GPIO_EM4WU4
TIM0_CC0 #23
TIM0_CC1 #22
TIM0_CC2 #21
TIM0_CDTI0 #20
TIM0_CDTI1 #19
TIM0_CDTI2 #18
TIM1_CC0 #23
TIM1_CC1 #22
TIM1_CC2 #21
TIM1_CC3 #20 LETIM0_OUT0 #23
LETIM0_OUT1 #22
PCNT0_S0IN #23
PCNT0_S1IN #22
US0_TX #23
US0_RX #22
US0_CLK #21
US0_CS #20
US0_CTS #19
US0_RTS #18
US1_TX #23
US1_RX #22
US1_CLK #21
US1_CS #20
US1_CTS #19
US1_RTS #18
LEU0_TX #23
LEU0_RX #22
I2C0_SDA #23
I2C0_SCL #22
FRC_DCLK #23
FRC_DOUT #22
FRC_DFRAME #21
MODEM_DCLK #23
MODEM_DIN #22
MODEM_DOUT #21
MODEM_ANT0 #20
MODEM_ANT1 #19
CMU_CLK1 #5
PRS_CH3 #14
PRS_CH4 #6
PRS_CH5 #5
PRS_CH6 #17
ACMP0_O #23
ACMP1_O #23
DBG_SWO #2
TIM0_CC0 #0
TIM0_CC1 #31
TIM0_CC2 #30
TIM0_CDTI0 #29
TIM0_CDTI1 #28
TIM0_CDTI2 #27
TIM1_CC0 #0
TIM1_CC1 #31
TIM1_CC2 #30
TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31
PCNT0_S0IN #0
PCNT0_S1IN #31
US0_TX #0
US0_RX #31
US0_CLK #30
US0_CS #29
US0_CTS #28
US0_RTS #27
US1_TX #0
US1_RX #31
US1_CLK #30
US1_CS #29
US1_CTS #28
US1_RTS #27
LEU0_TX #0
LEU0_RX #31
I2C0_SDA #0
I2C0_SCL #31
FRC_DCLK #0
FRC_DOUT #31
FRC_DFRAME #30
MODEM_DCLK #0
MODEM_DIN #31
MODEM_DOUT #30
MODEM_ANT0 #29
MODEM_ANT1 #28
CMU_CLK1 #0
PRS_CH6 #0
PRS_CH7 #10
PRS_CH8 #9
PRS_CH9 #8
ACMP0_O #0
ACMP1_O #0
BUSDY [ADC0:
APORT4YCH6
ACMP0:
APORT4YCH6
ACMP1:
APORT4YCH6]
16
PD15
BUSCY [ADC0:
APORT3YCH7
ACMP0:
APORT3YCH7
ACMP1:
APORT3YCH7
IDAC0:
APORT1YCH7]
BUSDX [ADC0:
APORT4XCH7
ACMP0:
APORT4XCH7
ACMP1:
APORT4XCH7]
ADC0_EXTN
17
PA0
BUSCX [ADC0:
APORT3XCH8
ACMP0:
APORT3XCH8
ACMP1:
APORT3XCH8
IDAC0:
APORT1XCH8]
BUSDY [ADC0:
APORT4YCH8
ACMP0:
APORT4YCH8
ACMP1:
APORT4YCH8]
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 66
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
QFN32 Pin# and
Name
Pin
#
Pin Name
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
TIM0_CC0 #1
TIM0_CC1 #0
TIM0_CC2 #31
TIM0_CDTI0 #30
TIM0_CDTI1 #29
TIM0_CDTI2 #28
TIM1_CC0 #1
TIM1_CC1 #0
TIM1_CC2 #31
TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0
PCNT0_S0IN #1
PCNT0_S1IN #0
US0_TX #1
US0_RX #0
US0_CLK #31
US0_CS #30
US0_CTS #29
US0_RTS #28
US1_TX #1
US1_RX #0
US1_CLK #31
US1_CS #30
US1_CTS #29
US1_RTS #28
LEU0_TX #1
LEU0_RX #0
I2C0_SDA #1
I2C0_SCL #0
FRC_DCLK #1
FRC_DOUT #0
FRC_DFRAME #31
MODEM_DCLK #1
MODEM_DIN #0
MODEM_DOUT #31
MODEM_ANT0 #30
MODEM_ANT1 #29
CMU_CLK0 #0
PRS_CH6 #1
PRS_CH7 #0
PRS_CH8 #10
PRS_CH9 #9
ACMP0_O #1
ACMP1_O #1
TIM0_CC0 #6
TIM0_CC1 #5
TIM0_CC2 #4
TIM0_CDTI0 #3
TIM0_CDTI1 #2
TIM0_CDTI2 #1
TIM1_CC0 #6
TIM1_CC1 #5
TIM1_CC2 #4
TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5
PCNT0_S0IN #6
PCNT0_S1IN #5
US0_TX #6
US0_RX #5
US0_CLK #4
US0_CS #3
US0_CTS #2
US0_RTS #1
US1_TX #6
US1_RX #5
US1_CLK #4
US1_CS #3
US1_CTS #2
US1_RTS #1
LEU0_TX #6
LEU0_RX #5
I2C0_SDA #6
I2C0_SCL #5
FRC_DCLK #6
FRC_DOUT #5
FRC_DFRAME #4
MODEM_DCLK #6
MODEM_DIN #5
MODEM_DOUT #4
MODEM_ANT0 #3
MODEM_ANT1 #2
PRS_CH6 #6
PRS_CH7 #5
PRS_CH8 #4
PRS_CH9 #3
ACMP0_O #6
ACMP1_O #6
TIM0_CC0 #7
TIM0_CC1 #6
TIM0_CC2 #5
TIM0_CDTI0 #4
TIM0_CDTI1 #3
TIM0_CDTI2 #2
TIM1_CC0 #7
TIM1_CC1 #6
TIM1_CC2 #5
TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6
PCNT0_S0IN #7
PCNT0_S1IN #6
US0_TX #7
US0_RX #6
US0_CLK #5
US0_CS #4
US0_CTS #3
US0_RTS #2
US1_TX #7
US1_RX #6
US1_CLK #5
US1_CS #4
US1_CTS #3
US1_RTS #2
LEU0_TX #7
LEU0_RX #6
I2C0_SDA #7
I2C0_SCL #6
FRC_DCLK #7
FRC_DOUT #6
FRC_DFRAME #5
MODEM_DCLK #7
MODEM_DIN #6
MODEM_DOUT #5
MODEM_ANT0 #4
MODEM_ANT1 #3
PRS_CH6 #7
PRS_CH7 #6
PRS_CH8 #5
PRS_CH9 #4
ACMP0_O #7
ACMP1_O #7
ADC0_EXTP
18
PA1
BUSCY [ADC0:
APORT3YCH9
ACMP0:
APORT3YCH9
ACMP1:
APORT3YCH9
IDAC0:
APORT1YCH9]
BUSDX [ADC0:
APORT4XCH9
ACMP0:
APORT4XCH9
ACMP1:
APORT4XCH9]
19
PB11
BUSCY [ADC0:
APORT3YCH27
ACMP0:
APORT3YCH27
ACMP1:
APORT3YCH27
IDAC0:
APORT1YCH27]
BUSDX [ADC0:
APORT4XCH27
ACMP0:
APORT4XCH27
ACMP1:
APORT4XCH27]
20
PB12
BUSCX [ADC0:
APORT3XCH28
ACMP0:
APORT3XCH28
ACMP1:
APORT3XCH28
IDAC0:
APORT1XCH28]
BUSDY [ADC0:
APORT4YCH28
ACMP0:
APORT4YCH28
ACMP1:
APORT4YCH28]
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 67
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
QFN32 Pin# and
Name
Pin
#
21
Pin Alternate Functionality / Description
Pin Name
Analog
Timers
Communication
Radio
Other
PB13
BUSCY [ADC0:
APORT3YCH29
ACMP0:
APORT3YCH29
ACMP1:
APORT3YCH29
IDAC0:
APORT1YCH29]
TIM0_CC0 #8
TIM0_CC1 #7
TIM0_CC2 #6
TIM0_CDTI0 #5
TIM0_CDTI1 #4
TIM0_CDTI2 #3
TIM1_CC0 #8
TIM1_CC1 #7
TIM1_CC2 #6
TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7
PCNT0_S0IN #8
PCNT0_S1IN #7
US0_TX #8
US0_RX #7
US0_CLK #6
US0_CS #5
US0_CTS #4
US0_RTS #3
US1_TX #8
US1_RX #7
US1_CLK #6
US1_CS #5
US1_CTS #4
US1_RTS #3
LEU0_TX #8
LEU0_RX #7
I2C0_SDA #8
I2C0_SCL #7
FRC_DCLK #8
FRC_DOUT #7
FRC_DFRAME #6
MODEM_DCLK #8
MODEM_DIN #7
MODEM_DOUT #6
MODEM_ANT0 #5
MODEM_ANT1 #4
PRS_CH6 #8
PRS_CH7 #7
PRS_CH8 #6
PRS_CH9 #5
ACMP0_O #8
ACMP1_O #8
DBG_SWO #1
GPIO_EM4WU9
TIM0_CC0 #9
TIM0_CC1 #8
TIM0_CC2 #7
TIM0_CDTI0 #6
TIM0_CDTI1 #5
TIM0_CDTI2 #4
TIM1_CC0 #9
TIM1_CC1 #8
TIM1_CC2 #7
TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8
PCNT0_S0IN #9
PCNT0_S1IN #8
US0_TX #9
US0_RX #8
US0_CLK #7
US0_CS #6
US0_CTS #5
US0_RTS #4
US1_TX #9
US1_RX #8
US1_CLK #7
US1_CS #6
US1_CTS #5
US1_RTS #4
LEU0_TX #9
LEU0_RX #8
I2C0_SDA #9
I2C0_SCL #8
FRC_DCLK #9
FRC_DOUT #8
FRC_DFRAME #7
MODEM_DCLK #9
MODEM_DIN #8
MODEM_DOUT #7
MODEM_ANT0 #6
MODEM_ANT1 #5
CMU_CLK1 #1
PRS_CH6 #9
PRS_CH7 #8
PRS_CH8 #7
PRS_CH9 #6
ACMP0_O #9
ACMP1_O #9
TIM0_CC0 #10
TIM0_CC1 #9
TIM0_CC2 #8
TIM0_CDTI0 #7
TIM0_CDTI1 #6
TIM0_CDTI2 #5
TIM1_CC0 #10
TIM1_CC1 #9
TIM1_CC2 #8
TIM1_CC3 #7 LETIM0_OUT0 #10
LETIM0_OUT1 #9
PCNT0_S0IN #10
PCNT0_S1IN #9
US0_TX #10
US0_RX #9
US0_CLK #8
US0_CS #7
US0_CTS #6
US0_RTS #5
US1_TX #10
US1_RX #9
US1_CLK #8
US1_CS #7
US1_CTS #6
US1_RTS #5
LEU0_TX #10
LEU0_RX #9
I2C0_SDA #10
I2C0_SCL #9
FRC_DCLK #10
FRC_DOUT #9
FRC_DFRAME #8
MODEM_DCLK #10
MODEM_DIN #9
MODEM_DOUT #8
MODEM_ANT0 #7
MODEM_ANT1 #6
CMU_CLK0 #1
PRS_CH6 #10
PRS_CH7 #9
PRS_CH8 #8
PRS_CH9 #7
ACMP0_O #10
ACMP1_O #10
BUSDX [ADC0:
APORT4XCH29
ACMP0:
APORT4XCH29
ACMP1:
APORT4XCH29]
22
AVDD
Analog power supply.
LFXTAL_N
23
PB14
BUSCX [ADC0:
APORT3XCH30
ACMP0:
APORT3XCH30
ACMP1:
APORT3XCH30
IDAC0:
APORT1XCH30]
BUSDY [ADC0:
APORT4YCH30
ACMP0:
APORT4YCH30
ACMP1:
APORT4YCH30]
LFXTAL_P
24
PB15
BUSCY [ADC0:
APORT3YCH31
ACMP0:
APORT3YCH31
ACMP1:
APORT3YCH31
IDAC0:
APORT1YCH31]
BUSDX [ADC0:
APORT4XCH31
ACMP0:
APORT4XCH31
ACMP1:
APORT4XCH31]
25
VREGVSS
Voltage regulator VSS
26
VREGSW
DCDC regulator switching node
27
VREGVDD
Voltage regulator VDD input
28
DVDD
Digital power supply.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 68
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
QFN32 Pin# and
Name
Pin
#
Pin Name
29
DECOUPLE
30
IOVDD
31
32
PC10
PC11
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this
pin.
Digital IO power supply.
BUSAX [ADC0:
APORT1XCH10
ACMP0:
APORT1XCH10
ACMP1:
APORT1XCH10]
BUSBY [ADC0:
APORT2YCH10
ACMP0:
APORT2YCH10
ACMP1:
APORT2YCH10]
BUSAY [ADC0:
APORT1YCH11
ACMP0:
APORT1YCH11
ACMP1:
APORT1YCH11]
BUSBX [ADC0:
APORT2XCH11
ACMP0:
APORT2XCH11
ACMP1:
APORT2XCH11]
silabs.com | Smart. Connected. Energy-friendly.
TIM0_CC0 #15
TIM0_CC1 #14
TIM0_CC2 #13
TIM0_CDTI0 #12
TIM0_CDTI1 #11
TIM0_CDTI2 #10
TIM1_CC0 #15
TIM1_CC1 #14
TIM1_CC2 #13
TIM1_CC3 #12 LETIM0_OUT0 #15
LETIM0_OUT1 #14
PCNT0_S0IN #15
PCNT0_S1IN #14
US0_TX #15
US0_RX #14
US0_CLK #13
US0_CS #12
US0_CTS #11
US0_RTS #10
US1_TX #15
US1_RX #14
US1_CLK #13
US1_CS #12
US1_CTS #11
US1_RTS #10
LEU0_TX #15
LEU0_RX #14
I2C0_SDA #15
I2C0_SCL #14
FRC_DCLK #15
FRC_DOUT #14
FRC_DFRAME #13
MODEM_DCLK #15
MODEM_DIN #14
MODEM_DOUT #13
MODEM_ANT0 #12
MODEM_ANT1 #11
CMU_CLK1 #3
PRS_CH0 #12
PRS_CH9 #15
PRS_CH10 #4
PRS_CH11 #3
ACMP0_O #15
ACMP1_O #15
GPIO_EM4WU12
TIM0_CC0 #16
TIM0_CC1 #15
TIM0_CC2 #14
TIM0_CDTI0 #13
TIM0_CDTI1 #12
TIM0_CDTI2 #11
TIM1_CC0 #16
TIM1_CC1 #15
TIM1_CC2 #14
TIM1_CC3 #13 LETIM0_OUT0 #16
LETIM0_OUT1 #15
PCNT0_S0IN #16
PCNT0_S1IN #15
US0_TX #16
US0_RX #15
US0_CLK #14
US0_CS #13
US0_CTS #12
US0_RTS #11
US1_TX #16
US1_RX #15
US1_CLK #14
US1_CS #13
US1_CTS #12
US1_RTS #11
LEU0_TX #16
LEU0_RX #15
I2C0_SDA #16
I2C0_SCL #15
FRC_DCLK #16
FRC_DOUT #15
FRC_DFRAME #14
MODEM_DCLK #16
MODEM_DIN #15
MODEM_DOUT #14
MODEM_ANT0 #13
MODEM_ANT1 #12
CMU_CLK0 #3
PRS_CH0 #13
PRS_CH9 #16
PRS_CH10 #5
PRS_CH11 #4
ACMP0_O #16
ACMP1_O #16
DBG_SWO #3
Preliminary Rev. 0.9 | 69
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
6.2.1 EFR32FG1 QFN32 2.4 GHz GPIO Overview
The GPIO pins are organized as 16-bit ports indicated by letters A through F, and the individual pins on each port are indicated by a
number from 15 down to 0.
Table 6.4. GPIO Pinout
Port
Pin
15
Pin
14
Pin
13
Pin
12
Pin
11
Pin
10
Port A
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA1
PA0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Port B
Port C
Port D
PB15 PB14
-
-
PB13 PB12 PB11
(5V) (5V) (5V)
-
PD15 PD14 PD13
(5V) (5V) (5V)
-
PC11 PC10
(5V) (5V)
Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0
-
-
-
-
-
-
-
-
-
-
-
-
-
Port E
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Port F
-
-
-
-
-
-
-
-
-
-
-
-
PF3
(5V)
PF2
(5V)
PF1
(5V)
PF0
(5V)
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 70
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
6.3 Alternate Functionality Pinout
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout
is shown in the column corresponding to LOCATION 0.
Table 6.5. Alternate functionality overview
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
ACMP0_O
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Analog comparator
ACMP0, digital output.
ACMP1_O
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Analog comparator
ACMP1, digital output.
18: PD10
19: PD11
18: PD10
19: PD11
24 - 27
28 - 31
Description
0: PA0
Analog to digital
converter ADC0 external reference input negative pin
0: PA1
Analog to digital
converter ADC0 external reference input positive pin
ADC0_EXTN
ADC0_EXTP
CMU_CLK0
0: PA1
1: PB15
2: PC6
3: PC11
5: PD14
6: PF2
7: PF7
CMU_CLK1
0: PA0
1: PB14
2: PC7
3: PC10
4: PD10
5: PD15
6: PF3
7: PF6
0: PF0
DBG_SWCLKTCK
Clock Management
Unit, clock output
number 0.
Clock Management
Unit, clock output
number 1.
Debug-interface
Serial Wire clock
input and JTAG
Test Clock.
Note that this function is enabled to
the pin out of reset,
and has a built-in
pull down.
0: PF1
DBG_SWDIOTMS
silabs.com | Smart. Connected. Energy-friendly.
Debug-interface
Serial Wire data input / output and
JTAG Test Mode
Select.
Note that this function is enabled to
the pin out of reset,
and has a built-in
pull up.
Preliminary Rev. 0.9 | 71
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
Alternate
Functionality
DBG_SWO
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
Description
Debug-interface
Serial Wire viewer
Output.
0: PF2
1: PB13
2: PD15
3: PC11
Note that this function is not enabled
after reset, and
must be enabled by
software to be
used.
Debug-interface
JTAG Test Data In.
0: PF3
Note that this function is enabled to
pin out of reset,
and has a built-in
pull up.
DBG_TDI
Debug-interface
JTAG Test Data
Out.
0: PF2
DBG_TDO
Note that this function is enabled to
pin out of reset.
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
FRC_DCLK
0: PA0
1: PA1
2: PA2
3: PA3
FRC_DFRAME
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
FRC_DOUT
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
0: PF2
GPIO_EM4WU0
0: PF7
GPIO_EM4WU1
0: PD14
GPIO_EM4WU4
0: PA3
GPIO_EM4WU8
silabs.com | Smart. Connected. Energy-friendly.
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Frame Controller,
Data Sniffer Clock.
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
Frame Controller,
Data Sniffer Frame
active
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Frame Controller,
Data Sniffer Output.
Pin can be used to
wake the system
up from EM4
Pin can be used to
wake the system
up from EM4
Pin can be used to
wake the system
up from EM4
Pin can be used to
wake the system
up from EM4
Preliminary Rev. 0.9 | 72
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
0: PB13
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU9
0: PC10
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU12
I2C0_SCL
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
I2C0_SDA
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
LETIM0_OUT0
0: PA0
1: PA1
2: PA2
3: PA3
LETIM0_OUT1
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
LEU0_RX
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
LEU0_TX
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
I2C0 Serial Clock
Line input / output.
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
I2C0 Serial Data input / output.
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Low Energy Timer
LETIM0, output
channel 0.
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Low Energy Timer
LETIM0, output
channel 1.
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
LEUART0 Receive
input.
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
LEUART0 Transmit
output. Also used
as receive input in
half duplex communication.
17: PD10
18: PD11
19: PD12
18: PD10
19: PD11
16: PC11
18: PD10
19: PD11
Low Frequency
Crystal (typically
32.768 kHz) negative pin. Also used
as an optional external clock input
pin.
0: PB14
LFXTAL_N
0: PB15
Low Frequency
Crystal (typically
32.768 kHz) positive pin.
LFXTAL_P
MODEM_ANT0
MODEM_ANT1
Description
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
0: PA4
1: PA5
2: PB11
3: PB12
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
silabs.com | Smart. Connected. Energy-friendly.
15: PD10
14: PD10
15: PD11
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
MODEM antenna
control output 0,
used for antenna
diversity.
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
MODEM antenna
control output 1,
used for antenna
diversity.
Preliminary Rev. 0.9 | 73
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
MODEM_DCLK
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
MODEM data clock
out.
MODEM_DIN
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
MODEM data in.
MODEM_DOUT
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
MODEM data out.
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
PCNT0_S0IN
0: PA0
1: PA1
2: PA2
3: PA3
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Pulse Counter
PCNT0 input number 0.
PCNT0_S1IN
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Pulse Counter
PCNT0 input number 1.
PRS_CH0
0: PF0
1: PF1
2: PF2
3: PF3
4: PF4
5: PF5
6: PF6
7: PF7
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
PRS_CH1
0: PF1
1: PF2
2: PF3
3: PF4
4: PF5
5: PF6
6: PF7
7: PF0
Peripheral Reflex
System PRS, channel 1.
PRS_CH2
0: PF2
1: PF3
2: PF4
3: PF5
4: PF6
5: PF7
6: PF0
7: PF1
Peripheral Reflex
System PRS, channel 2.
PRS_CH3
0: PF3
1: PF4
2: PF5
3: PF6
4: PF7
5: PF0
6: PF1
7: PF2
PRS_CH4
1: PD10
2: PD11
3: PD12
9: PD10
10: PD11
11: PD12
28 - 31
Description
Peripheral Reflex
System PRS, channel 0.
12: PD13
13: PD14
14: PD15
Peripheral Reflex
System PRS, channel 3.
4: PD13
5: PD14
6: PD15
Peripheral Reflex
System PRS, channel 4.
PRS_CH5
0: PD10
1: PD11
2: PD12
3: PD13
4: PD14
5: PD15
PRS_CH6
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
PRS_CH7
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PA0
silabs.com | Smart. Connected. Energy-friendly.
24 - 27
Peripheral Reflex
System PRS, channel 5.
12: PD10
13: PD11
14: PD12
15: PD13
16: PD14
17: PD15
Peripheral Reflex
System PRS, channel 6.
Peripheral Reflex
System PRS, channel 7.
Preliminary Rev. 0.9 | 74
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
PRS_CH8
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PA0
10: PA1
PRS_CH9
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PA0
9: PA1
10: PA2
11: PC6
PRS_CH10
0: PC6
1: PC7
2: PC8
3: PC9
4: PC10
5: PC11
PRS_CH11
0: PC7
1: PC8
2: PC9
3: PC10
4: PC11
5: PC6
TIM0_CC0
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
TIM0_CC1
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
TIM0_CC2
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
TIM0_CDTI0
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
TIM0_CDTI1
0: PA4
1: PA5
2: PB11
3: PB12
16 - 19
20 - 23
24 - 27
28 - 31
Description
Peripheral Reflex
System PRS, channel 8.
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
Peripheral Reflex
System PRS, channel 9.
Peripheral Reflex
System PRS, channel 10.
Peripheral Reflex
System PRS, channel 11.
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Timer 0 Capture
Compare input /
output channel 0.
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Timer 0 Capture
Compare input /
output channel 1.
12: PC9
13: PC10
14: PC11
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
Timer 0 Capture
Compare input /
output channel 2.
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
Timer 0 Complimentary Dead Time
Insertion channel 0.
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
14: PD10
15: PD11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
Timer 0 Complimentary Dead Time
Insertion channel 1.
TIM0_CDTI2
0: PA5
1: PB11
2: PB12
3: PB13
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
13: PD10
14: PD11
15: PD12
16: PD13
17: PD14
18: PD15
19: PF0
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
25: PF6
26: PF7
27: PA0
28: PA1
29: PA2
30: PA3
31: PA4
Timer 0 Complimentary Dead Time
Insertion channel 2.
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
TIM1_CC0
0: PA0
1: PA1
2: PA2
3: PA3
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Timer 1 Capture
Compare input /
output channel 0.
TIM1_CC1
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Timer 1 Capture
Compare input /
output channel 1.
TIM1_CC2
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
Timer 1 Capture
Compare input /
output channel 2.
silabs.com | Smart. Connected. Energy-friendly.
15: PD10
16: PC11
Preliminary Rev. 0.9 | 75
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
Timer 1 Capture
Compare input /
output channel 3.
US0_CLK
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
USART0 clock input / output.
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
US0_CS
USART0 chip select input / output.
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
US0_CTS
0: PA4
1: PA5
2: PB11
3: PB12
14: PD10
15: PD11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
USART0 Clear To
Send hardware
flow control input.
US0_RTS
0: PA5
1: PB11
2: PB12
3: PB13
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
13: PD10
14: PD11
15: PD12
16: PD13
17: PD14
18: PD15
19: PF0
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
25: PF6
26: PF7
27: PA0
28: PA1
29: PA2
30: PA3
31: PA4
USART0 Request
To Send hardware
flow control output.
TIM1_CC3
US0_RX
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
15: PD10
15: PD10
12: PC8
13: PC9
14: PC10
15: PC11
17: PD10
18: PD11
19: PD12
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
US1_CLK
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
US1_CS
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
US1_CTS
0: PA4
1: PA5
2: PB11
3: PB12
US1_RTS
0: PA5
1: PB11
2: PB12
3: PB13
US0_TX
20: PD13
21: PD14
22: PD15
23: PF0
24 - 27
24: PF1
25: PF2
26: PF3
27: PF4
28 - 31
28: PF5
29: PF6
30: PF7
31: PA0
Description
USART0 Asynchronous Receive.
USART0 Synchronous mode Master
Input / Slave Output (MISO).
USART0 Asynchronous Transmit. Also used as receive
input in half duplex
communication.
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
12: PC9
13: PC10
14: PC11
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
USART1 clock input / output.
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
USART1 chip select input / output.
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
14: PD10
15: PD11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
USART1 Clear To
Send hardware
flow control input.
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
13: PD10
14: PD11
15: PD12
16: PD13
17: PD14
18: PD15
19: PF0
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
25: PF6
26: PF7
27: PA0
28: PA1
29: PA2
30: PA3
31: PA4
USART1 Request
To Send hardware
flow control output.
silabs.com | Smart. Connected. Energy-friendly.
15: PD10
USART0 Synchronous mode Master
Output / Slave Input (MOSI).
Preliminary Rev. 0.9 | 76
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
Alternate
Functionality
US1_RX
US1_TX
LOCATION
0-3
4-7
8 - 11
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
silabs.com | Smart. Connected. Energy-friendly.
8: PB13
9: PB14
10: PB15
11: PC6
12 - 15
12: PC8
13: PC9
14: PC10
15: PC11
12: PC7
13: PC8
14: PC9
15: PC10
16 - 19
20 - 23
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
16: PC11
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24 - 27
24: PF1
25: PF2
26: PF3
27: PF4
24: PF0
25: PF1
26: PF2
27: PF3
28 - 31
28: PF5
29: PF6
30: PF7
31: PA0
28: PF4
29: PF5
30: PF6
31: PF7
Description
USART1 Asynchronous Receive.
USART1 Synchronous mode Master
Input / Slave Output (MISO).
USART1 Asynchronous Transmit. Also used as receive
input in half duplex
communication.
USART1 Synchronous mode Master
Output / Slave Input (MOSI).
Preliminary Rev. 0.9 | 77
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
6.4 Analog Port (APORT)
The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs,
and DACs. The APORT consists of wires, switches, and control needed to configurably implement the routes. Please see the device
Reference Manual for a complete description.
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSAX
BUSBY
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
BUSBX
PD10
PD12
PD14
PA0
PA2
PA4
PB12
PB14
BUSCX
BUSDY
PD11
PD13
PD15
PA1
PA3
PA5
PB11
PB13
PB15
BUSCY
BUSDX
1X1Y2X2Y3X3Y4X4Y
ACMP0
1X1Y2X2Y3X3Y4X4Y
ACMP1
1X1Y2X2Y3X3Y4X4Y
ADC0
1X1Y
IDAC0
Figure 6.3. EFR32FG1 APORT
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 78
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
Table 6.6. APORT Client Map
Analog Module
ACMP0
ACMP0
ACMP0
ACMP0
Analog Module Channel
APORT1XCH6
Shared Bus
BUSAX
Pin
PC6
APORT1XCH8
PC8
APORT1XCH10
PC10
APORT1XCH16
PF0
APORT1XCH18
PF2
APORT1XCH20
PF4
APORT1XCH22
PF6
APORT1YCH7
BUSAY
PC7
APORT1YCH9
PC9
APORT1YCH11
PC11
APORT1YCH17
PF1
APORT1YCH19
PF3
APORT1YCH21
PF5
APORT1YCH23
PF7
APORT2XCH7
BUSBX
PC7
APORT2XCH9
PC9
APORT2XCH11
PC11
APORT2XCH17
PF1
APORT2XCH19
PF3
APORT2XCH21
PF5
APORT2XCH23
PF7
APORT2YCH6
BUSBY
PC6
APORT2YCH8
PC8
APORT2YCH10
PC10
APORT2YCH16
PF0
APORT2YCH18
PF2
APORT2YCH20
PF4
APORT2YCH22
PF6
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 79
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
Analog Module
ACMP0
ACMP0
ACMP0
ACMP0
Analog Module Channel
APORT3XCH2
Shared Bus
BUSCX
Pin
PD10
APORT3XCH4
PD12
APORT3XCH6
PD14
APORT3XCH8
PA0
APORT3XCH10
PA2
APORT3XCH12
PA4
APORT3XCH28
PB12
APORT3XCH30
PB14
APORT3YCH3
BUSCY
PD11
APORT3YCH5
PD13
APORT3YCH7
PD15
APORT3YCH9
PA1
APORT3YCH11
PA3
APORT3YCH13
PA5
APORT3YCH27
PB11
APORT3YCH29
PB13
APORT3YCH31
PB15
APORT4XCH3
BUSDX
PD11
APORT4XCH5
PD13
APORT4XCH7
PD15
APORT4XCH9
PA1
APORT4XCH11
PA3
APORT4XCH13
PA5
APORT4XCH27
PB11
APORT4XCH29
PB13
APORT4XCH31
PB15
APORT4YCH2
BUSDY
PD10
APORT4YCH4
PD12
APORT4YCH6
PD14
APORT4YCH8
PA0
APORT4YCH10
PA2
APORT4YCH12
PA4
APORT4YCH28
PB12
APORT4YCH30
PB14
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 80
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
Analog Module
ACMP1
ACMP1
ACMP1
ACMP1
ACMP1
Analog Module Channel
APORT1XCH6
Shared Bus
BUSAX
Pin
PC6
APORT1XCH8
PC8
APORT1XCH10
PC10
APORT1XCH16
PF0
APORT1XCH18
PF2
APORT1XCH20
PF4
APORT1XCH22
PF6
APORT1YCH7
BUSAY
PC7
APORT1YCH9
PC9
APORT1YCH11
PC11
APORT1YCH17
PF1
APORT1YCH19
PF3
APORT1YCH21
PF5
APORT1YCH23
PF7
APORT2XCH7
BUSBX
PC7
APORT2XCH9
PC9
APORT2XCH11
PC11
APORT2XCH17
PF1
APORT2XCH19
PF3
APORT2XCH21
PF5
APORT2XCH23
PF7
APORT2YCH6
BUSBY
PC6
APORT2YCH8
PC8
APORT2YCH10
PC10
APORT2YCH16
PF0
APORT2YCH18
PF2
APORT2YCH20
PF4
APORT2YCH22
PF6
APORT3XCH2
BUSCX
PD10
APORT3XCH4
PD12
APORT3XCH6
PD14
APORT3XCH8
PA0
APORT3XCH10
PA2
APORT3XCH12
PA4
APORT3XCH28
PB12
APORT3XCH30
PB14
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 81
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
Analog Module
ACMP1
ACMP1
ACMP1
ADC0
Analog Module Channel
APORT3YCH3
Shared Bus
BUSCY
Pin
PD11
APORT3YCH5
PD13
APORT3YCH7
PD15
APORT3YCH9
PA1
APORT3YCH11
PA3
APORT3YCH13
PA5
APORT3YCH27
PB11
APORT3YCH29
PB13
APORT3YCH31
PB15
APORT4XCH3
BUSDX
PD11
APORT4XCH5
PD13
APORT4XCH7
PD15
APORT4XCH9
PA1
APORT4XCH11
PA3
APORT4XCH13
PA5
APORT4XCH27
PB11
APORT4XCH29
PB13
APORT4XCH31
PB15
APORT4YCH2
BUSDY
PD10
APORT4YCH4
PD12
APORT4YCH6
PD14
APORT4YCH8
PA0
APORT4YCH10
PA2
APORT4YCH12
PA4
APORT4YCH28
PB12
APORT4YCH30
PB14
APORT1XCH6
BUSAX
PC6
APORT1XCH8
PC8
APORT1XCH10
PC10
APORT1XCH16
PF0
APORT1XCH18
PF2
APORT1XCH20
PF4
APORT1XCH22
PF6
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 82
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
Analog Module
ADC0
ADC0
ADC0
ADC0
Analog Module Channel
APORT1YCH7
Shared Bus
BUSAY
Pin
PC7
APORT1YCH9
PC9
APORT1YCH11
PC11
APORT1YCH17
PF1
APORT1YCH19
PF3
APORT1YCH21
PF5
APORT1YCH23
PF7
APORT2XCH7
BUSBX
PC7
APORT2XCH9
PC9
APORT2XCH11
PC11
APORT2XCH17
PF1
APORT2XCH19
PF3
APORT2XCH21
PF5
APORT2XCH23
PF7
APORT2YCH6
BUSBY
PC6
APORT2YCH8
PC8
APORT2YCH10
PC10
APORT2YCH16
PF0
APORT2YCH18
PF2
APORT2YCH20
PF4
APORT2YCH22
PF6
APORT3XCH2
BUSCX
PD10
APORT3XCH4
PD12
APORT3XCH6
PD14
APORT3XCH8
PA0
APORT3XCH10
PA2
APORT3XCH12
PA4
APORT3XCH28
PB12
APORT3XCH30
PB14
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 83
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
Analog Module
ADC0
ADC0
ADC0
IDAC0
Analog Module Channel
APORT3YCH3
Shared Bus
BUSCY
Pin
PD11
APORT3YCH5
PD13
APORT3YCH7
PD15
APORT3YCH9
PA1
APORT3YCH11
PA3
APORT3YCH13
PA5
APORT3YCH27
PB11
APORT3YCH29
PB13
APORT3YCH31
PB15
APORT4XCH3
BUSDX
PD11
APORT4XCH5
PD13
APORT4XCH7
PD15
APORT4XCH9
PA1
APORT4XCH11
PA3
APORT4XCH13
PA5
APORT4XCH27
PB11
APORT4XCH29
PB13
APORT4XCH31
PB15
APORT4YCH2
BUSDY
PD10
APORT4YCH4
PD12
APORT4YCH6
PD14
APORT4YCH8
PA0
APORT4YCH10
PA2
APORT4YCH12
PA4
APORT4YCH28
PB12
APORT4YCH30
PB14
APORT1XCH2
BUSCX
PD10
APORT1XCH4
PD12
APORT1XCH6
PD14
APORT1XCH8
PA0
APORT1XCH10
PA2
APORT1XCH12
PA4
APORT1XCH28
PB12
APORT1XCH30
PB14
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 84
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Pin Definitions
Analog Module
IDAC0
Analog Module Channel
APORT1YCH3
Shared Bus
BUSCY
Pin
PD11
APORT1YCH5
PD13
APORT1YCH7
PD15
APORT1YCH9
PA1
APORT1YCH11
PA3
APORT1YCH13
PA5
APORT1YCH27
PB11
APORT1YCH29
PB13
APORT1YCH31
PB15
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 85
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
QFN48 Package Specifications
7. QFN48 Package Specifications
7.1 QFN48 Package Dimensions
Figure 7.1. QFN48 Package Drawing
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 86
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
QFN48 Package Specifications
Table 7.1. QFN48 Package Dimensions
Dimension
Min
Typ
Max
A
0.80
0.85
0.90
A1
0.00
0.02
0.05
A3
0.20 REF
b
0.18
0.25
0.30
D
6.90
7.00
7.10
E
6.90
7.00
7.10
D2
4.60
4.70
4.80
E2
4.60
4.70
4.80
e
0.50 BSC
L
0.30
0.40
0.50
K
0.20
—
—
R
0.09
—
0.14
aaa
0.15
bbb
0.10
ccc
0.10
ddd
0.05
eee
0.08
fff
0.10
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 87
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
QFN48 Package Specifications
7.2 QFN48 PCB Land Pattern
Figure 7.2. QFN48 PCB Land Pattern Drawing
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 88
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
QFN48 Package Specifications
Table 7.2. QFN48 PCB Land Pattern Dimensions
Dimension
Typ
S1
6.01
S
6.01
L1
4.70
W1
4.70
e
0.50
W
0.26
L
0.86
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.
7. A 4x4 array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 89
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
QFN48 Package Specifications
7.3 QFN48 Package Marking
EFR32
PPPPPPPPP
YYWWTTTTTT #
Figure 7.3. QFN48 Package Marking
The package marking consists of:
• PPPPPPPPP – The part number designation.
1. Family Code (B | M | F)
2. G (Gecko)
3. Generation (1)
4. Feature Code (3 | 2 | 1)
5. TRX Code (3 = TXRX | 2= RX | 1 = TX)
6. Band (1 = Sub-GHz | 2 = 2.4 GHz | 3 = Dual-band)
7. Flash (G = 256K | F = 128K | E = 64K | D = 32K)
8. Temperature Grade (G = -40 to 85 | I = -40 to 125)
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• # – Bootloader revision number.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 90
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
QFN32 Package Specifications
8. QFN32 Package Specifications
8.1 QFN32 Package Dimensions
Figure 8.1. QFN32 Package Drawing
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 91
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
QFN32 Package Specifications
Table 8.1. QFN32 Package Dimensions
Dimension
Min
Typ
Max
A
0.80
0.85
0.90
A1
0.00
0.02
0.05
A3
0.20 REF
b
0.18
0.25
0.30
D/E
4.90
5.00
5.10
D2/E2
3.40
3.50
3.60
E
0.50 BSC
L
0.30
0.40
0.50
K
0.20
—
—
R
0.09
—
0.14
aaa
0.15
bbb
0.10
ccc
0.10
ddd
0.05
eee
0.08
fff
0.10
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 92
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
QFN32 Package Specifications
8.2 QFN32 PCB Land Pattern
Figure 8.2. QFN32 PCB Land Pattern Drawing
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 93
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
QFN32 Package Specifications
Table 8.2. QFN32 PCB Land Pattern Dimensions
Dimension
Typ
S1
4.01
S
4.01
L1
3.50
W1
3.50
e
0.50
W
0.26
L
0.86
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.
7. A 3x3 array of 0.85 mm square openings on a 1.00 mm pitch can be used for the center ground pad.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 94
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
QFN32 Package Specifications
8.3 QFN32 Package Marking
EFR32
PPPPPPPPP
YYWWTTTTTT
Figure 8.3. QFN32 Package Marking
The package marking consists of:
• PPPPPPPPP – The part number designation.
1. Family Code (B | M | F)
2. G (Gecko)
3. Generation (1)
4. Feature Code (3 | 2 | 1)
5. TRX Code (3 = TXRX | 2= RX | 1 = TX)
6. Band (1 = Sub-GHz | 2 = 2.4 GHz | 3 = Dual-band)
7. Flash (G = 256K | F = 128K | E = 64K | D = 32K)
8. Temperature Grade (G = -40 to 85 | I = -40 to 125)
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 95
EFR32FG1 Flex Gecko Proprietary Protocol SoCFamily Data Sheet
Revision History
9. Revision History
9.1 Revision 0.9
2016-01-12
• Updated electrical specifications with latest characterization data.
• Added thermal characteristics table.
• Updated OPN decoder figure to include extended family options.
9.2 Revision 0.81
2015-12-01
• Engineering samples note added to ordering information table.
9.3 Revision 0.8
2015-11-14
•
•
•
•
•
•
•
•
•
•
Initial external release.
Consolidated individual device datasheets into single-family document.
Re-formatted ordering information table and OPN decoder.
Updated block diagrams for front page and system overview.
Removed extraneous sections from DC-DC and wake-on-radio from system overview.
Updated table formatting for electrical specifications to tech pubs standards.
Updated electrcal specifications with latest available data.
Added I2C and USART SPI timing tables.
Moved DC-DC graph to typical performance curves.
Updated APORT tables and APORT references to correct nomenclature.
silabs.com | Smart. Connected. Energy-friendly.
Preliminary Rev. 0.9 | 96
Table of Contents
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1 Introduction.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 3
3.2 Radio. . . . . . . . . . . .
3.2.1 Antenna Interface . . . . . . .
3.2.2 Fractional-N Frequency Synthesizer.
3.2.3 Receiver Architecture. . . . . .
3.2.4 Transmitter Architecture . . . . .
3.2.5 Wake on Radio . . . . . . . .
3.2.6 RFSENSE . . . . . . . . .
3.2.7 Flexible Frame Handling. . . . .
3.2.8 Packet and State Trace . . . . .
3.2.9 Data Buffering . . . . . . . .
3.2.10 Radio Controller (RAC). . . . .
3.2.11 Random Number Generator . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3.3 Power . . . . . . . . . .
3.3.1 Energy Management Unit (EMU) .
3.3.2 DC-DC Converter . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 6
. 6
. 6
3.4 General Purpose Input/Output (GPIO).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 6
3.5 Clocking . . . . . . . . . .
3.5.1 Clock Management Unit (CMU) .
3.5.2 Internal and External Oscillators .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 6
. 6
. 6
3.6 Counters/Timers and PWM . . . . . . . .
3.6.1 Timer/Counter (TIMER) . . . . . . . . .
3.6.2 Real Time Counter and Calendar (RTCC) . . .
3.6.3 Low Energy Timer (LETIMER). . . . . . .
3.6.4 Ultra Low Power Wake-up Timer (CRYOTIMER)
3.6.5 Pulse Counter (PCNT) . . . . . . . . .
3.6.6 Watchdog Timer (WDOG) . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7
7
7
7
7
7
7
3.7 Communications and Other Digital Peripherals . . . . . . . . .
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
3.7.3 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . .
3.7.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7
7
8
8
8
3.8 Security Features. . . . . . . . . . . . . . .
3.8.1 GPCRC (General Purpose Cyclic Redundancy Check) .
3.8.2 Crypto Accelerator (CRYPTO). . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 8
. 8
. 8
3.9 Analog . . . . . . . . . . . . .
3.9.1 Analog Port (APORT) . . . . . . .
3.9.2 Analog Comparator (ACMP) . . . . .
3.9.3 Analog to Digital Converter (ADC) . . .
3.9.4 Digital to Analog Current Converter (IDAC)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Table of Contents
3
3
4
4
4
4
4
5
5
5
5
5
8
8
8
9
9
97
3.10 Reset Management Unit (RMU)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 9
3.11 Core and Memory . . . . . . . . . . .
3.11.1 Processor Core . . . . . . . . . . .
3.11.2 Memory System Controller (MSC) . . . . .
3.11.3 Linked Direct Memory Access Controller (LDMA)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3.12 Memory Map .
.
.
.
.
.
.
.
.
.
9
9
9
9
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
3.13 Configuration Summary .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . .
12
4.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .
4.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . .
4.1.2 Operating Conditions . . . . . . . . . . . . . . . . . . . . . .
4.1.2.1 General Operating Conditions . . . . . . . . . . . . . . . . . .
4.1.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . .
4.1.4 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . .
4.1.5 Current Consumption. . . . . . . . . . . . . . . . . . . . . .
4.1.5.1 Current Consumption 1.85 V without DC-DC Converter . . . . . . . . .
4.1.5.2 Current Consumption 3.3 V without DC-DC Converter . . . . . . . . . .
4.1.5.3 Current Consumption 3.3 V using DC-DC Converter . . . . . . . . . .
4.1.5.4 Current Consumption Using Radio . . . . . . . . . . . . . . . .
4.1.6 Wake up times . . . . . . . . . . . . . . . . . . . . . . . .
4.1.7 Brown Out Detector . . . . . . . . . . . . . . . . . . . . . .
4.1.8 Frequency Synthesizer Characteristics . . . . . . . . . . . . . . . .
4.1.9 2.4 GHz RF Transceiver Characteristics . . . . . . . . . . . . . . .
4.1.9.1 RF Transmitter General Characteristics for the 2.4 GHz Band . . . . . . .
4.1.9.2 RF Receiver General Characteristics for the 2.4 GHz Band . . . . . . . .
4.1.9.3 RF Transmitter Characteristics for 1Mbps 2GFSK in the 2.4 GHz Band . . . .
4.1.9.4 RF Receiver Characteristics for 1Mbps 2GFSK in the 2.4 GHz Band . . . . .
4.1.9.5 RF Transmitter Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band .
4.1.9.6 RF Receiver Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band. .
4.1.10 Modem Features . . . . . . . . . . . . . . . . . . . . . . .
4.1.11 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.11.1 LFXO . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.11.2 HFXO . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.11.3 LFRCO . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.11.4 HFRCO and AUXHFRCO . . . . . . . . . . . . . . . . . . .
4.1.11.5 ULFRCO . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.12 Flash Memory Characteristics . . . . . . . . . . . . . . . . . .
4.1.13 GPIO. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.14 VMON . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.15 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.16 IDAC . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.17 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . .
4.1.18 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.19 USART SPI . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.12
.13
.14
.14
.15
.16
.18
.18
.19
.20
.21
.21
.22
.22
.23
.23
.24
.25
.26
.28
.29
.30
.31
.31
.32
.32
.33
.34
.34
.35
.36
.37
.39
.41
.43
.45
4.2 Typical Performance Curves .
.
.
.
.
.47
5. Typical Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . .
48
5.1 Power
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.48
Table of Contents
98
5.2 RF Matching Networks .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.49
5.3 Other Connections .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.49
6. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50
.
6.1 EFR32FG1 QFN48 2.4 GHz Definition . . .
6.1.1 EFR32FG1 QFN48 2.4 GHz GPIO Overview .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.50
.62
6.2 EFR32FG1 QFN32 2.4 GHz Definition . . .
6.2.1 EFR32FG1 QFN32 2.4 GHz GPIO Overview .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.63
.70
6.3 Alternate Functionality Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.71
6.4 Analog Port (APORT) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.78
7. QFN48 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . .
86
.
.
7.1 QFN48 Package Dimensions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.86
7.2 QFN48 PCB Land Pattern .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.88
7.3 QFN48 Package Marking .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.90
8. QFN32 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . .
91
8.1 QFN32 Package Dimensions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.91
8.2 QFN32 PCB Land Pattern .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.93
8.3 QFN32 Package Marking .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.95
9. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
96
9.1 Revision 0.9
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.96
9.2 Revision 0.81 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.96
9.3 Revision 0.8
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.96
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
97
Table of Contents
99
.
Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!
IoT Portfolio
www.silabs.com/IoT
SW/HW
www.silabs.com/simplicity
Quality
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, Bluegiga, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®,
SiPHY®, Telegesis, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or
registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com
Similar pages