FUJITSU SEMICONDUCTOR DATA SHEET ASSP DS04-22415-1E Communication Control CMOS SCSI-II Protocol Controller (with single-ended driver/receiver) MB86604L ■ DESCRIPTION The Fujitsu MB86604L is a single-ended transmission type SCSI-II Protocol Controller (SPC) with a single-ended driver/receiver. The MB86604L facilitates interface control between small/medium host computer and peripheral devices (such as a hard disk and printer). The specifications conform to the SCSI-II Standard. The MB86604L supports high-speed synchronous transfer, the MPU/DMA independent system data bus, and user programmable command set to enable configuration of high-performance systems. It can also have the phase-to-phase sequence control function to reduce the program overhead of the host MPU. The MB86604L incorporate with a single-ended type SCSI driver/receiver which can drive 48 mA of large-current, and so, the device can be directly connected with the SCSI bus. The device can operate with +5 V single-power supply and in up to 40 MHz clock frequency. As for package, a 100-pin plastic small quad flat package is available. ■ FEATURES SCSI Bus Interface: • Conforming to the SCSI-II standard • Operatable as Initiator and target (Continued) ■ PACKAGE 100 pin, Plastic LQFP (FPT-100P-M05) MB86604L (Continued) • Two types of high-speed data transfer: – Synchronous data transfer (Max. 10 Mbytes/s, max. 32 offsets, 32-step transfer rate) – Asynchronous data transfer (Max. 5 Mbyte/s) • Transfer parameters (transfer mode, transfer rate, transfer offset) can be set for up to 7 connected devices. • Single-ended transmission type (Maximum cable length: 6 m): – On-chip single-ended driver/receiver which can drive 48 mA of "L" level output current – Directly connectable with the SCSI bus • On-chip three-state bidirectional I/O buffers for SCSI REQ and ACK pins (DB7-DB0, DBP, ATN, MSG, C/D, I/ O pins can be selected from either three-state or open-drain buffer by controlling the TEST pins input.) Transfer Operation: • Automatic response to selection/reselection (Preset receiving operation can perform at the selection/ reselection.): – Initiator: Automatically operates until message received without command issue. – Target: Automatically operates until command received without command issue. • Automatic receiving: – Initiator: Automatically receives information for new phase to which target transited without command issue. – Target: Automatically receives message from initiator when initiator generates attention condition. • On-chip 32-byte data register (FIFO) for data phase • On-chip two (send-only and receive-only) 32-byte data buffers for message, command, and status phases • On-chip 16-bit transfer block register and 24-bit transfer byte register enabling 1 Tbytes transfer (1 Tbytes: 16 Mbytes × 64 k blocks) • On-chip independent data transfer bus enabling the MPU operation during the data transfer • Parity through/generate can be specified. System Bus Interface: • 8-bit or 16-bit separate MPU and DMA buses • Directly connectable with a 80 series or 68 series MPU • Two types of transfer operation: – Program transfer – DMA transfer (Burst/Handshake) Command Set: • Supports sequential commands and programmable commands in addition to ordinary commands • Command queuing (Command can be continuously issued by putting tags to commands in command phase.) • On-chip 256-byte memory for command programming memory and command queuing buffer Others • Process: CMOS process • Supply Voltage: Single +5 V • Input System Clock: 20 MHz/30 MHz/40 MHz • Package: 100-pin plastic LQFP 2 MB86604L ■ PIN ASSIGNMENT (TOP VIEW) WR RD V DD V SS CLK RESET INT MODE DBP V SS DB 7 DB 6 DB 5 V DD V SS V SS DB 4 DB 3 DB 2 DB 1 V SS DB 0 TEST 1 TMOUT (OPEN) INDEX 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 I OWR I ORD V DD V SS DMA 0 LDMDP DMD 0 DMD 1 DMD 2 DMD 3 DMD 4 DMD 5 DMD 6 DMD 7 V SS DMD 8 DMD 9 DMD 10 DMD 11 DMD 12 DMD 13 DMD 14 DMD 15 UDMDP DMBHE 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 BHE UDP D 15 D 14 D 13 D 12 D 11 D 10 D9 D8 V SS D7 D6 D5 D4 D3 D2 D1 D0 LDP CS 1 V SS V DD CS 0 A4 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 A3 A2 A1 A0 ATN V SS BSY ACK RST V SS V SS V DD MSG SEL C/D REQ V SS I/O TEST2 (OPEN) TP V SS V DD DREQ DACK (FPT-100P-M05) 3 MB86604L ■ PIN DESCRIPTION 1. SCSI Interface Pin number Symbol Pin name I/O Function 60 REQ Request I/O Transfer request signal in the information transfer phases from target to initiator. The input signal to this pin is used for the timing control of data transfer sequence. This is a three-state I/O pin and an active low pin. 68 ACK Acknowledge I/O This pin is for the acknowledge signal from initiator to target for the REQ signal in the information transfer phases. The input signal to this pin is used for the timing control of data transfer sequence. This is a three-state I/O pin and an active low pin. 71 ATN Attention I/O This pin is for the attention signal that initiator requests target for the message transfer phase. This is an active-low pin. 63 MSG* Message I/O This pin is for the message signal that specifies type of information transferred on the data bus. This is an active-low pin and becomes “L” when message phase is specified. 61 C/D* Control/data I/O This pin is for the control/data signal that specifies type of information transferred on the data bus. This an active-low pin and becomes “L” level when command, status, or message phase is specified. 58 I/O* Input/output I/O This pin is for the input/output signal that specifies direction of information transferred on the data bus. This is an active-low pin. When this pin is “L” level, the information is transferred from target to initiator. When this pin is “H” level, the information is transferred from initiator to target. 69 BSY Busy I/O This pin is for the SCSI bus busy signal. In the arbitration phase, this is for the request signal for the use of bus acquisition. This is an active-low pin. 62 SEL Select I/O This pin is for the select signal used by initiator to select target during the selection phase and by target to reselect initiator during the reselection phase. This is an active-low pin. 67 RST Reset I/O This pin is for the reset signal used by any device on the bus. When the device is an input operation, the reset signal is input to this pin. When output operation, the reset signal is output from this pin. This is an active-low pin. Data bus 7 to data bus 0 I/O These pins are for the bidirectional 8-bit SCSI data bus and 1-bit odd parity line. 11, 12, 13, DB7 17, 18, 19, to DB0 20, 22 9 DBP Data bus parity * : Regarding the status of information transfer which is indicated by MSG, C/D, and I/O pins, See Table Phase Status. 4 MB86604L Phase name Transfer direction MSG C/D I/O Data-out phase H H H → Data-in phase H H L ← Command phase H L H → Status phase H L L ← Message-out phase L L H → Message-in phase L L L ← Initiator Target Note: The SCSI interface input/output pins can be connected to a single-end type SCSI bus. 2. MPU Interface Pin number Symbol* Pin name I/O Function 77 CS0 Chip select 0 I This is a chip select 0 pin used by MPU to select the SPC as an I/O device. This is an active-low pin. 80 CS1 Chip select 1 I This is a chip select 1 pin to select when MPU inputs/outputs the data on DMA bus through SPC. This is an active-low pin. I/O These pins are for the upper byte and parity bit of MPU data bus. When the CS0 input is valid, these pins serve as I/O ports for the SPC internal registers. When the CS1 input is valid, these pins serve as I/O ports for the DMA bus data. I/O These pins are for the lower byte and parity bit of the MPU data bus. When the CS0 input is valid, these pins serve as I/O ports for the SPC internal registers. When the CS1 input is valid, these pins serve as I/O ports for the DMA bus data. 98, 97, 96, D15 95, 94, 93, to 92, 91 D8 99 UDP 89, 88, 87, D7 86, 85, 84, to 83, 82 D0 81 LDP 76, 75, 74, A4 73, 72 to A0 Data 15 to data 8 Upper data parity Data 7 to data 0 Lower data parity Address 4 to address 0 I These are address input pins to select the SPC internal registers. 2 RD (R/W) Read (read/write) I In the 80-series mode, this is a read signal input pin (IORD or RD) that MPU reads the SPC. This read signal pin is an activelow. In the 68-series mode, this pin functions as the control signal input (R/W) to control the read/write operation to the SPC. In the read operation, this pin is an active-high. In the write operation, this pin is an active-low. 1 WR (LDS) Write (lower data strobe) I In the 80-series mode, this pin is a write signal input pin (IOWR or WR) that MPU writes to the SPC. This write signal input pin is active-low. In the 68-series mode, this pin function as the lower data strobe signal input (LDS) that MPU outputs when the lower byte of data bus is valid. The LDS pin is an active-low. (Continued) 5 MB86604L (Continued) Pin number Symbol* Pin name I/O Function 100 BHE (UDS) Bus high enable (strobe) I In the 80-series mode, this pin is used for input of the bus high enable signal (BHE) output from the MPU when the upper byte of the data bus is valid. The BHE pin is an active-low. In the 68series mode, this pin functions as the upper data strobe signal input pin (UDS) output from the MPU when the upper byte of the data bus is valid. The UDS pin is also an active-low. 7 INT (INT) Interrupt request O The INT and INT pins are the interrupt request signal output. The INT pins is used for the 80-series mode (an active-high pin), and the INT signal is used for the 68-series mode (an active-low pin). 8 MODE Mode I This input pin is used to select the type of the MPU and DMA buses. In the 80-series mode, a high level is input. In the 68series mode, a low level is input. * : The pin symbols in parenthesis are the ones when the MODE input is “L”. 3. DMA Interface Pin number Symbol* Pin name I/O Function 52 DREQ DMA request O This is an output pin of DMA transfer request signal to the DMA controller. The data transfer between the SPC and memory via the DMA bus is requested. This pin is an active-high. 51 DACK DMA acknowledge I This is a DMA acknowledge signal input pin output from the DMA controller that enables the DMA transfer. This pin is an active-low. When this pin is an active state, the DMA cycle (read/ write) is valid. DMA data 15 to DMA data 8 I/O These pins are the input/output pins of the upper byte and parity bit of the DMA data bus. When the signal input to the CS1 pin (pin 80) is valid, these pins are connected directly to the MPU data bus. I/O These pins are the input/output pins of the lower byte and parity bit of the DMA data bus. When the CS1 (pin 80) input is valid, these pins are connected directly to the MPU data bus. 48, 47, 46, DMD15 45, 44, 43, to 42, 41 DMD8 49 UDMDP 39, 38, 37, DMD7 36, 35, 34, to 33, 32 DMD0 Upper DMA data parity DMA data 7 to DMA data 0 31 LDMDP Lower DMA data parity 27 IORD (DMR/W) I/O read (DMA read/ write) I In the 80-series mode, this pin (IORD or RD) is used for the input pin to output the data from the SPC to the DMA bus. This is an active-low pin. In the 68-series mode, this pin functions as a control signal input pin (DMR/W) to input/output the data to the SPC by the DMA controller. In the output operation, this pin is on the high-state (active-high state). In the input operation, this pin is on the low-state (active-low state). 26 IOWR (DMLDS) I/O write (DMA lower data strobe) I In the 80-series mode, this (IOWR or WR) is used for the input pin to input the DMA bus data to the SPC. In the 68-series mode, this pin functions as a DMA lower data strobe input (DMLDS) that DMA controller outputs when the lower byte of the DMA bus data is valid. Both IOWR and DMLDS pins are an active-low. (Continued) 6 MB86604L (Continued) Pin number Symbol* Pin name 50 DMBHE (DMUDS) 30 55 I/O Function DMA bus high enable (DMA upper data strobe) I In the 80-series mode, this pin is for the DMA bus high enable signal input pin (DMBHE) output from the DMA controller when the upper byte of the DMA data bus is valid. This is an active-low pin. In the 68-series mode, this pin functions as the DMA upper data strobe signal input pin (DMUDS) output from the DMA controller when the upper byte of data bus is valid. The DMUDS pin is also an active-low. DMA0 DMA address 0 I In the 80-series mode, this pin is used for the DMA address 0 input pin output from the DMA controller. In the 68-series mode, a high level should be input to this pin. TP Transfer permission I This is a DMA transfer permission signal input pin. When this pin is in active-state, the SPC does the DMA transfer. In case that this pin becomes inactive during the DMA transfer, the DMA transfer is paused on the block boundary. This pin is an active high. * : The pin symbols in parenthesis are the ones when the MODE input is “L”. 4. Others Pin number Symbol* Pin name I/O Function 6 RESET Reset I System reset input pin. The input reset active pulse width must have 4 times of the clock cycle at least. This is an active-low pin. 5 CLK Clock I Clock signal input pin. 20 MHz, 30 MHz, or 40 MHz can be applied as the input clock frequency. 3, 14, 28 53, 64, 78 VDD Power supply — +5 V power supply pins. 4, 10, 15 16, 21, 29 40, 54, 59 65, 66, 70 79, 90 VSS Ground — Ground pins. 23 TEST1 TEST I This pin is used to select the type of I/O buffer on SCSI data bus pins. In case that DBP, DB7 – DB0 pins are used as an opendrain I/O, connect this pin to VSS. In case of three-state I/O, connect to VDD. 57 TEST2 TEST I This pin is used to select the type of I/O buffer on SCSI pins. In case that MSG, C/D, I/O, and ATN pins are used as an opendrain I/O, connect this pin to VSS. In case of three-state I/O, connect to VDD. 24 TMOUT TIMEOUT O This is a SCSI Timeout pin that indicates the SPC has been busy longer than the specified time. A high level is output on this pin if the SPC busy time exceeds the specified time. This pin can be used for the timeout counter. 25, 26 (OPEN) (Open) — These are open pins. Those pins are not connected with the device internally. Those pins must be left open. * : The pin symbols in parenthesis are the symbols when the MODE input is “L”. 7 MB86604L ■ BLOCK DIAGRAM TMOUT D15 to D8, UDP INT D7 to D0, LDP WR RD CS0 CS1 A4 to A0 BHE MODE MPU interface Internal processor MSG Registers DREQ DACK C/D DMBHE I/O ATN Timer BSY DMA0 Receive MCS buffer (32 bytes) REQ ACK DB7 to DB0 DBP 8 Phase controller Send MCS buffer (32 bytes) Transfer controller Command user program memory (256 bytes) Data register (32 bytes) DMA interface RST SCSI interface SEL DMD15 to DMD8 UDMDP DMD7 to DMD0 LDMDP IOWR IORD TP MB86604L ■ BLOCK DESCRIPTION 1. International Processor (Sequencer) Performs sequence control between the SCSI bus phases. Bus free phase Information transfer phase Information transfer phase: • • • • Arbitration phase Command phase Data phase Status phase Message phase Selection phase 2. Timer Manages the SCSI time standards. Also, conducts the following time managements. • Time until the REQ or ACK signal is asserted for asychronous transfer data • Time until selection or reselection is retried • REQ and ACK timeout time during transfers: Asychronous transfer case Target: After the REQ is asserted, the time until the initiator asserts the ACK Initiator: After the ACK is asserted, the time until the target negates the REQ Synchronous transfer case Target: After the REQ is sent, the time until an ACK signal which makes the offset 0 is received from the initiator • SPC Timeout Manages the SPC timeout indicating the SPC busy time longer than the specified time. 3. Phase Controller Controls the various phases executed by SCSI such as arbitration, selection/reselection, data in/out, command, status, and message in/out. 4. Transfer Controller Controls the information (data, command, status, message) transfer phases executed by SCSI. The following two types of transfer phases are used. Asychronous transfer: Controls interlock (response confirmation format) between the REQ and ACK signals. Synchronous transfer: Controls a maximum 32-byte offset value for the data in or data out phase. The following two modes exist for the data phase. Program transfer: Uses data register (address 00/01) via the MPU interface DMA transfer: Uses DREQ and DACK signals via the DMA interface. The transfer parameter setting values for synchronous transfer (Transfer mode, transfer rate, transfer offset) can be strobe for individual ID device and are automatically established when the data phase is initiated. The number of transfer bytes is defined as block length × number of blocks. 9 MB86604L 5. Register The main registers are listed. • Command register Command is specified by an 8-bit code. Specifies the program head address assigned to the user program memory for user program applications. • Chip status register Shows the chip's operating state, nexus counterpart ID, and data register state. • SCSI bus status register Shows the SCSI control signal state. • Interrupt status register Shows 8-bit code. • Command step register Shows 8-bit code indicating the command execution state. Error analysis can be performed by referring to the information in this register and the interrupt status register. • Group 6/7 command length setting register Sets the group 6/7 command length which is undefined by the SCSI standard. By setting the command length in this register, the SPC can determine the command length. 6. Receive-MCS Buffer A receive only, 32-byte data buffer which stores information received via SCSI (message, command, status) M: Message, C: Command, S: Status 7. Send-MCS Buffer A send only, 32-byte data buffer which stores information sent via SCSI (message, command, status) 8. Command User Program Memory Program memory used for establishing programmable commands (256 bytes). 9. Data Register FIFO-type data register which stores data in SCSI data phase (32 bytes). 10 MB86604L ■ ABSOLUTE MAXIMUM RATINGS (See WARNING) Parameter Symbol Rating Unit Min. Max. VDD VSS – 0.5 6.0 V Input voltage* VI VSS – 0.5 VDD + 0.5 V Output voltage* VO VSS – 0.5 VDD + 0.5 V Operating ambient temperature Top –25 +85 °C Storage temperature Tstg –40 +125 °C Power supply voltage* * : VSS = 0 V WARNING: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ■ RECOMMENDED OPERATING CONDITIONS Parameter Symbol VDD Power supply voltage *1 CLK “H” level input voltage *1 Except SCSI and CLK pins VIH SCSI pins “L” level input voltage *1 CLK Except CLK pin VIL Except SCSI pins “H” level output current *2 “L” level output current *2 SCSI pins Three-state Open-drain Except SCSI pins SCSI pins Operating ambient temperature IOH IOL Ta Value Unit Min. Typ. Max. 4.75 5.0 5.25 V 3.5 — — V 2.2 — — V 2.0 — — V — — 1.5 V — — 0.8 V — — –2.0 mA — — –8.0 mA — — — mA — — +3.2 mA — — +48 mA 0 — +70 °C *1: VSS = 0 V *2: SCSI pins are DB7 to DB0, DBP, BSY, SEL, RST, ATN, REQ, ACK, MSG, C/D, I/O Note: The recommended operating conditions are the values recommended to ensure correct logic operation of the LSI. The standard values of the electrical characteristics (DC and AC characteristics) are guaranteed within the range of the recommended operating conditions. 11 MB86604L ■ ELECTRICAL CHARACTERISTICS 1. DC Characteristics (VDD = +5 V±5%, VSS = 0 V, Ta = 0°C to +70°C) Parameter Condition Symbol CLK “H” level input voltage Except SCSI and CLK pins CLK Except CLK pin Input hysteresis of SCSI pins * 1 V 2.2 — V 2.0 — V — 1.5 V — 0.8 V 0.3 — V IOH = –2.0 mA 4.2 VDD V IOH = –8.0 mA 2.0 — V — — V IOL = +3.2 mA VSS 0.4 V IOL = +48.0 mA — 0.5 V VSS ≤ VI ≤ VDD –10 +10 µA VSS ≤ VI ≤ VDD, See Note below –10 +10 µA CLK input = 20 MHz SPC operating clock = 10 MHz 45 mA CLK input = 30 MHz SPC operating clock = 10 MHz 48 mA 55 mA 65 mA CLK input = 20 MHz SPC operating clock = 20 MHz 60 mA CLK input = 40 MHz SPC operating clock = 20 MHz 70 mA — VIL — VHW — VOH Except SCSI pins “L” level 1 output voltage * SCSI pins VOL Input leakage current Input/output leakage current Power supply current — ILI ILOZ IDD All output pins opened CLK input = 40 MHz SPC operating clock = 13.3 MHz CLK input = 30 MHz SPC operating clock = 15 MHz *1: SCSI pins are DB7 to DB0, DBP, BSY, SEL, RST, ATN, REQ, ACK, MSG, C/D, I/O Note: Leakage current in the above spec indicates the following currents. (1) Leakage current at the high-Z state on the three-state output pins. (2) Leakage current at the output high-Z state (input state) on the bidirectional bus pins. 12 Unit — VIH Except SCSI pins “H” level Three-state output voltage *1 SCSI pins Open-drain Min. Max. 3.5 SCSI pins “L” level input voltage Value — MB86604L 2. I/O Pin Capacitance (VDD = VI = 0 V, f = 1 MHz, Ta = +25°C) Parameter Symbol Input pin capacitance Output pin capacitance I/O pin capacitance Except SCSI pins Unit Min. Max. CIN — 6 pF COUT — 6 pF — 6 pF — 25 pF CI/O SCSI pins Value 3. Load Conditions for AC Characteristics (VDD = +5 V±5%, VSS = 0 V, Ta = 0°C to +70°C) Non-SCSI pins Measurement point CL Pin Symbol INT, DREQ 60 pF D15 to D8, UDP, D7 to D0, LDP DMD15 to DMD8, UDMDP 85 pF MB86604L Measurement pin DMD7 to DMD0, LDMDP CL CL: Load capacitance SCSI pins Measurement point V DD RL1 = 110 Ω MB86604L Load resistance R L1 Load capacitance Measurement pin R L2 RL2 = 165 Ω RL = 200 pF CL 13 MB86604L 4. AC Characteristics (1) System clock Value Parameter Symbol Unit Position* Min. Max. Clock cycle time (CLK) tCLK A 25.0 50.0 ns Clock “H” pulse width twCKH B 10.0 — ns Clock “L” pulse width twCKL C 10.0 — ns Clock rise time tCR D — 10.0 ns Clock fall time tCF E — 10.0 ns * : The position number indicates the position in the waveform. Note: In case that the internal clock frequency and the input clock frequency are the same (i.e. when using the divided-by-one mode), the clock pulse width (for “H” and “L”) must have at least 20 ns or longer. B t wCKH A t CLK t CF E D t CR 3.5 V CLK 1.5 V C t wCKL (2) System reset Value Parameter Symbol RESET “L” level pulse width twRSL t wRSL RESET 14 Unit Min. Max. 4 tCLK — ns MB86604L (3) MPU interface (80 series) • Register write timing Value Parameter Symbol Base signal Unit Position* Min. Max. Address (A4 to A0), BHE set up time WR “L” tsuA A 40 — ns Address (A4 to A0), hold time WR “H” thA B 20 — ns CS0 set up time WR “L” tsuCS0 C 20 — ns CS0 hold time WR “H” thCS0 D 10 — ns — twWRL E 70 — ns Data set up time WR “H” tsuD F 40 — ns Data hold time WR “H” thD G 10 — ns WR “L” level pulse width * : The position number indicates the position in the waveform. A4 to A0 BHE B t hA A t suA CS0 t suCS0 C D E t wWRL t hCS0 WR F t suD G t hD D15 to D8, UDP Data D7 to D0, LDP 15 MB86604L • Register read timing Value Parameter Symbol Unit Base signal Position* Min. Max. Address (A4 to A0), BHE set up time RD “L” tsuA A 40 — ns Address (A4 to A0), Hold time RD “H” thA B 20 — ns CS0 set up time RD “L” tsuCS0 C 20 — ns CS0 hold time RD “H” thCS0 D 10 — ns RD “L” level pulse width — twRDL E 70 — ns Data output defined time RD “L” tvD F — 70 ns Data output disable time RD “H” tDZ G 10 — ns for INT non-hold mode RD “L” tDL H — 50 ns for INT hold mode RD “H” tDL2 I — n tCLK + 50 ns INT signal clear time * : The position number indicates the position in the waveform. A4 to A0 BHE B t hA A t suA CS0 t suCS0 E t wRDL C D t hCS0 RD G t DZ F t vD D15 to D8, UDP Valid data D7 to D0, LDP t DL H INT t DL2* I INT *: t DL2 is determined by a rising edge of the strobe signal which reads the step code for the last interrupt source. Also, “n” indicates the division ratio. 16 MB86604L • Register write timing (for external access) Value Parameter Symbol Base signal Unit Position* Min. Max. Address (A0), BHE set up time WR “L” tsuAE A 40 — ns Address (A0), BHE hold time WR “H” thAE B 20 — ns CS1 set up time WR “L” tsuCS1 C 20 — ns CS1 hold time WR “H” thCS1 D 10 — ns DMA data bus output delay time WR “L” tvDMD E — 70 ns DMA data bus output undefined time WR “H” tWRDMD F 10 — ns — tDDMD G — 40 ns MPU data → DMA data bus output delay time * : The position number indicates the position in the waveform. A0 BHE A t suAE B t hAE CS1 WR C t vDMD D15 to D8, UDP D + * ) 6 5 4 " ! , 6 +, ! t suCS1 t hCS1 E F t WRDMD Data D7 to D0, LDP t DDMD G DMD15 to DMD8, UDMDP Valid data DMD7 to DMD0, LDMDP 17 MB86604L • Register read timing (for external access) Value Parameter Symbol Base signal Unit Position* Min. Max. Address (A0), BHE set up time RD “L” tsuAE A 40 — ns Address (A0), BHE hold time RD “H” thAE B 20 — ns CS1 set up time RD “L” tsuCS1 C 20 — ns CS1 hold time RD “H” thCS1 D 10 — ns MPU data bus output enable time RD “L” tZD E — 70 ns MPU data bus output disable time RD “H” tDZ F 10 — ns — tDMDD G — 40 ns DMA data → MPU data bus output delay time * : The position number indicates the position in the waveform. A0 BHE A t suAE B t hAE CS1 t suCS1 D C RD DMD15 to DMD8, UDMDP t hCS1 Data DMD7 to DMD0, LDMDP G t DMDD E t DZ D15 to D8, UDP F t ZD Valid data D7 to D0, LDP 18 MB86604L (4) MPU interface (68 series) • Register write timing Value Parameter Symbol Base signal Unit Position* Min. Max. Address (A4 to A0) set up time UDS/LDS “L” tsuA A 40 — ns Address (A4 to A0) hold time UDS/LDS “H” thA B 20 — ns CS0 set up time UDS/LDS “L” tsuCS0 C 20 — ns CS0 hold time UDS/LDS “H” thCS0 D 10 — ns R/W set up time UDS/LDS “L” tsuRW E 20 — ns R/W hold time UDS/LDS “H” thRW F 20 — ns — twDS G 70 — ns Data set up time UDS/LDS “H” tsuD H 40 — ns Data hold time UDS/LDS “H” thD I 10 — ns UDS/LDS “L” level pulse width * : The position number indicates the position in the waveform. A4 to A0 B t hA A t suA CS0 C D t suCS0 t hCS0 R/W E t suRW F t hRW G t wDS UDS/LDS H t suD I t hD D15 to D8, UDP Data D7 to D0, LDP 19 MB86604L • Register read timing Parameter Base signal Value Symbol Position* Min. Max. Address (A4 to A0) set up time UDS/LDS “L” tsuA A 40 — ns Address (A4 to A0) hold time UDS/LDS “H” thA B 20 — ns CS0 set up time UDS/LDS “L” tsuCS0 C 20 — ns CS0 hold time UDS/LDS “H” thCS0 D 10 — ns R/W set up time UDS/LDS “L” tsuRW E 20 — ns R/W hold time UDS/LDS “H” thRW F 20 — ns UDS/LDS “L” level pulse time — twDS G 70 — ns Data output confirmation time UDS/LDS “L” tvD H — 70 ns Data output disable time UDS/LDS “H” tDZ I 10 — ns for INT non-hold mode UDS/LDS “L” tDH J — 50 ns for INT hold mode UDS/LDS “H” tDH2 K — n tCLK + 50 ns INT signal clear time * : The position number indicates the position in the waveform. A4 to A0 B t hA A t suA CS0 C D t suCS0 t hCS0 R/W E t suRW F t hRW G t wDS UDS/LDS H t vD t DZ I D15 to D8, UDP Valid data D7 to D0, LDP t DH INT J K * t DH2 INT *: t DH2 is determined by a rising edge of the strobe signal which reads the step code for the last interrupt source. Also, “n” indicates the division ratio. 20 Unit MB86604L • Register write timing (for external access) Value Parameter Symbol Base signal Unit Position* Min. Max. Address (A0) set up time UDS/LDS “L” tsuAE A 40 — ns Address (A0) hold time UDS/LDS “H” thAE B 20 — ns CS1 set up time UDS/LDS “L” tsuCS1 C 20 — ns CS1 hold time UDS/LDS “H” thCS1 D 10 — ns R/W set up time UDS/LDS “L” tsuRW E 20 — ns R/W hold time UDS/LDS “H” thRW F 20 — ns DMA data bus output delay time UDS/LDS “L” tvDMD G — 70 ns DMA data bus output undefined time UDS/LDS “H” tDSDMD H 10 — ns — tDDMD I — 40 ns MPU data → DMA data bus output delay time * : The position number indicates the position in the waveform. A0 B t hAE A t suAE CS1 C D t suCS1 t hCS1 R/W E UDS/LDS + * ) ( ' 6 5 4 3 2 ! , + * 6 5 " ! , G D15 to D8, UDP F t hRW t suRW H t DSDMD t vDMD Data D7 to D0, LDP I t DDMD DMD15 to DMD8, UDMDP Valid data DMD7 to DMD0, LDMDP 21 MB86604L • Register read timing (for external access) Value Parameter Symbol Base signal Unit Position* Min. Max. Address (A0) set up time UDS/LDS “L” tsuAE A 40 — ns Address (A0) hold time UDS/LDS “H” thAE B 20 — ns CS1 set up time UDS/LDS “L” tsuCS1 C 20 — ns CS1 hold time UDS/LDS “H” thCS1 D 10 — ns R/W set up time UDS/LDS “L” tsuRW E 20 — ns R/W hold time UDS/LDS “H” thRW F 20 — ns Data output enable time UDS/LDS “L” tZD G — 70 ns Data output disable time UDS/LDS “H” tDZ H 10 — ns — tDMDD I — 40 ns DMA data → MPU data bus output delay time * : The position number indicates the position in the waveform. A0 A t suAE B t hAE CS1 C D t suCS1 t hCS1 R/W E UDS/LDS DMD7 to DMD0, LDMDP DMD15 to DMD8, UDMDP F t hRW t suRW +! * 6 5 A @ , 7 Data I t DMDD H t DZ G t ZD D15 to D8, UDP Valid data D7 to D0, LDP 22 MB86604L (5) DMA interface The DMA access timing described in this section is not applicable in the following cases. During SCSI input, when the data buffer is EMPTY or when one byte is stored During SCSI output, when the data buffer is FULL or when 31 bytes are stored When a parity error is detected (target) When an error which pauses the transfer occurs at the SCSI interface • 80 series handshake mode (a) Write timing Value Parameter Symbol Base signal Unit Position* Min. Max. DACK “L” assert time DREQ “H” tRQAK A 0 — ns DREQ “L” negate time DACK “L” tAKRQ B — 40 ns DREQ “H” assert time (8 bit) DACK “H” tAKRQ1 C — 50 ns DREQ “H” assert time (16 bit) DACK “H” tAKRQ2 C — 2 tCLK + 40 ns IOWR “L” assert time DACK “L” tAKWR D 0 — ns DMBHE, DMA0 set up time IOWR “L” tsuDA E 20 — ns DMBHE, DMA0 hold time IOWR “H” thDA F 20 — ns IOWR “L” level pulse width — twWRL G 40 — ns IOWR “L” tWRAK1 H 1 tCLK — ns IOWR “H” tWRAK2 I 0 — ns Input data set up time IOWR “H” tsuDMD J 30 — ns Input data hold time IOWR “H” thDMD K 5 — ns DACK “H” negate time * : The position number indicates the position in the waveform. 23 MB86604L DREQ t RQAK A B t AKRQ C DACK D t AKWR H t WRAK1 I t WRAK2 DMBHE DMA0 E t suDA F t hDA G t wWRL IOWR J t suDMD DMD15 to DMD0 Data UDMDP, LDMDP 24 K t hDMD t AKRQ1/2 MB86604L (b) Read timing Value Parameter Symbol Base signal Unit Position* Min. Max. DACK “L” assert time DREQ “H” tRQAK A 0 — ns DREQ “L” negate time DACK “L” tAKRQ B — 40 ns DREQ “H” assert time (8 bit) DACK “H” tAKRQ1 C — 50 ns DREQ “H” assert time (16 bit) DACK “H” tAKRQ2 C — 2 tCLK + 40 ns IORD “L” assert time DACK “L” tAKRD D 0 — ns DMBHE, DMA0 set up time IORD “L” tsuDA E 20 — ns DMBHE, DMA0 hold time IORD “H” thDA F 20 — ns IORD “L” level pulse width — twRDL G 40 — ns IORD “L” tRDAK1 H 1 tCLK — ns IORD “H” tRDAK2 I 0 — ns Data output defined time IORD “L” tvDMD J — 40 ns Data output hold time IORD “H” thDMD K 10 — ns DACK “H” negate time * : The position number indicates the position in the waveform. DREQ t RQAK A B t AKRQ C t AKRQ1/2 DACK H t RDAK1 D t AKRD I t RDAK2 DMBHE DMA0 E t suDA G t wRDL F t hDA IORD t vDMD J K t hDMD DMD15 to DMD0 Valid data UDMDP, LDMDP 25 MB86604L • 68 series handshake mode (a) Write timing Value Parameter Symbol Base signal Unit Position* Min. Max. DACK “L” assert time DREQ “H” tRQAK A 0 — ns DREQ “L” negate time DACK “L” tAKRQ B — 40 ns DREQ “H” assert time (8 bit) DACK “H” tAKRQ1 C — 50 ns DREQ “H” assert time (16 bit) DACK “H” tAKRQ2 C — 2 tCLK + 40 ns DMUDS/DMLDS “L” assert time DACK “L” tAKDS D 0 — ns DMR/W set up time DMUDS/DMLDS “L” tsuRW E 20 — ns DMR/W hold time DMUDS/DMLDS “H” thRW F 20 — ns — twDSL G 40 — ns DMUDS/DMLDS “L” tDSAK1 H 1 tCLK — ns DMUDS/DMLDS “H” tDSAK2 I 0 — ns Input data set up time DMUDS/DMLDS “H” tsuDMD J 30 — ns Input data hold time DMUDS/DMLDS “H” thDMD K 5 — ns DMUDS/DMLDS “L” level pulse width DACK “H” negate time * : The position number indicates the position in the waveform. DREQ A t RQAK B t AKRQ C DACK D t AKDS H t DSAK1 I t DSAK2 DMR/W E t suRW F t hRW G t wDSL DMUDS/DMLDS J t suDMD DMD15 to DMD0 Data UDMDP, LDMDP 26 K t hDMD t AKRQ1/2 MB86604L (b) Read timing Value Parameter Symbol Base signal Unit Position* Min. Max. DACK “L” assert time DREQ “H” tRQAK A 0 — ns DREQ “L” negate time DACK “L” tAKRQ B — 40 ns DREQ “H” assert time (8 bit) DACK “H” tAKRQ1 C — 50 ns DREQ “H” assert time (16 bit) DACK “H” tAKRQ2 C — 2 tCLK + 40 ns DMUDS/DMLDS “L” assert time DACK “L” tAKDS D 0 — ns DMR/W set up time DMUDS/DMLDS “L” tsuRW E 20 — ns DMR/W hold time DMUDS/DMLDS “H” thRW F 20 — ns — twDSL G 40 — ns DMUDS/DMLDS “L” tDSAK1 H 1 tCLK — ns DMUDS/DMLDS “H” tDSAK2 I 0 — ns Data output defined time DMUDS/DMLDS “L” tvDMD J — 40 ns Data output hold time DMUDS/DMLDS “H” thDMD K 10 — ns DMUDS/DMLDS “L” level pulse width DACK “H” negate time * : The position number indicates the position in the waveform. DREQ t RQAK A B t AKRQ C t AKRQ1/2 DACK H t DSAK1 D t AKDS I t DSAK2 DMR/W E t suRW G t wDSL F t hRW DMUDS/DMLDS t vDMD J K t hDMD DMD15 to DMD0 Valid data UDMDP, LDMDP 27 MB86604L • Burst mode (80 series/68 series common) (a) Data register access cycle time (8 bit) Value Parameter Symbol Base signal Unit Position* Min. Max. Data register access cycle time 1 — tDCY1 A tCLK — ns Data register access cycle time 2 — tDCY2 B 3 tCLK — ns Data register access cycle time 3 — tDCY3 C 4 tCLK — ns * : The position number indicates the position in the waveform. IOWR/IORD DMUDS/DMLDS A t DCY1 B t DCY2 C t DCY3 (b) Data register access cycle time (16 bit) Value Parameter Symbol Base signal Min. Max. Data register access cycle time 1 — tDCY1 A 4 tCLK — ns Data register access cycle time 2 — tDCY2 B 3 tCLK — ns * : The position number indicates the position in the waveform. IOWR/IORD DMUDS/DMLDS B t DCY2 A t DCY1 28 Unit Position* MB86604L • 80 series burst mode (a) Write timing Value Parameter Symbol Base signal Unit Position* Min. Max. DACK “L” assert time DREQ “H” tRQAK A 0 — ns DREQ “L” negate time IOWR “L” tWRRQ B — 55 ns — tRQLH C 0 — ns IOWR “L” assert time DACK “L” tAKWR D 0 — ns DMBHE, DMA0 set up time IOWR “L” tsuDA E 20 — ns DMBHE, DMA0 hold time IOWR “H” thDA F 20 — ns IOWR “L” level pulse width — twWRL G 40 — ns DACK “H” negate time IOWR “H” tWRAK H 0 — ns Input data set up time IOWR “H” tsuDMD I 30 — ns Input data hold time IOWR “H” thDMD J 5 — ns DREQ “L” → DREQ “H” return time * : The position number indicates the position in the waveform. DREQ t RQAK C B t WRRQ A t RQLH DACK D t AKWR H t WRAK DMBHE DMA0 E t suDA F t hDA G t wWRL IOWR I t suDMD J t hDMD DMD15 to DMD0 Data UDMDP, LDMDP 29 MB86604L (b) Read timing Value Parameter Symbol Base signal Unit Position* Min. Max. DACK “L” assert time DREQ “H” tRQAK A 0 — ns DREQ “L” negate time IORD “L” tRDRQ B — 55 ns — tRQLH C 0 — ns IORD “L” assert time DACK “L” tAKRD D 0 — ns DMBHE, DMA0 set up time IORD “L” tsuDA E 20 — ns DMBHE, DMA0 hold time IORD “H” thDA F 20 — ns IORD “L” level pulse width — twRDL G 40 — ns DACK “H” negate time IORD “H” tRDAK H 0 — ns Data output defined time IORD “L” tvDMD I — 40 ns Data output hold time IORD “H” thDMD J 10 — ns DREQ “L” → DREQ “H” return time * : The position number indicates the position in the waveform. DREQ t RQAK A C B t RDRQ t RQLH DACK D t AKRD H t RDAK DMBHE DMA0 E t suDA G t wRDL F t hDA IORD t vDMD J I DMD15 to DMD0 UDMDP, LDMDP 30 Valid data t hDMD MB86604L • 68 series burst mode (a) Write timing Value Parameter Symbol Base signal Unit Position* Min. Max. DACK “L” assert time DREQ “H” tRQAK A 0 — ns DREQ “L” negate time DMUDS/DMLDS “L” tDSRQ B — 55 ns — tRQLH C 0 — ns DACK “L” tAKDS D 0 — ns DMR/W set up time DMUDS/DMLDS “L” tsuRW E 20 — ns DMR/W hold time DMUDS/DMLDS “H” thRW F 20 — ns — twDSL G 40 — ns DACK “H” negate time DMUDS/DMLDS “H” tDSAK H 0 — ns Input data set up time DMUDS/DMLDS “H” tsuDMD I 30 — ns Input data hold time DMUDS/DMLDS “H” thDMD J 5 — ns DREQ “L” → DREQ “H” return time DMUDS/DMLDS “L” assert time DMUDS/DMLDS “L” level pulse width * : The position number indicates the position in the waveform. DREQ t RQAK B t DSRQ A C t RQLH DACK D t AKDS H t DSAK DMR/W E t suRW F t hRW G t wDSL DMUDS/DMLDS I t suDMD DMD15 to DMD0 UDMDP, LDMDP J t hDMD Data 31 MB86604L (b) Read timing Value Parameter Symbol Base signal Unit Position* Min. Max. DACK “L” assert time DREQ “H” tRQAK A 0 — ns DREQ “L” negate time DMUDS/DMLDS “L” tDSRQ B — 55 ns — tRQLH C 0 — ns DACK “L” tAKDS D 0 — ns DMR/W set up time DMUDS/DMLDS “L” tsuRW E 20 — ns DMR/W hold time DMUDS/DMLDS “H” thRW F 20 — ns — twDSL G 40 — ns DACK “H” negate time DMUDS/DMLDS “H” tDSAK H 0 — ns Data output defined time DMUDS/DMLDS “L” tvDMD I — 40 ns Data output hold time DMUDS/DMLDS “H” thDMD J 10 — ns DREQ “L” → DREQ “H” return time DMUDS/DMLDS “L” assert time DMUDS/DMLDS “L” level pulse width * : The position number indicates the position in the waveform. DREQ t RQAK A B t DSRQ C t RQLH DACK D t AKDS H t DSAK DMR/W F t hRW E t suRW G t wDSL DMUDS/DMLDS t vDMD I J DMD15 to DMD0 UDMDP, LDMDP 32 Valid data t hDMD MB86604L (6) SCSI interface (as initiator) • Asynchronous transfer mode (a) Input timing (target → initiator) Value Parameter Symbol Base signal Unit Position*1 Min. Max. REQ “H” negate time ACK “L” tAKRQH A 0 — ns ACK “H” negate time REQ “H” tRQAKH B — 60 ns REQ “L” assert time ACK “H” tAKRQL C 10 — ns Input data set up time REQ “L” tsuDB D 10 — ns Input data hold time REQ “L” thDB E 20 — ns ACK “L” assert time 1 REQ “L” tRQAK1 F — 40 ns ACK “L” assert time 2 *2 REQ “H” tRQAK2 G — 3 tCLK + 40 ns *1: The position number indicates the position in the waveform. *2: The REQ “H” → ACK “L” time (tRQAK2) is compared with (tRQAKH + tAKRQL + tRQAK1) and the longer value is chosen. Note: The input timing definition is not applied in the following cases. • When the data register is FULL in the data phase • When the final byte is being transferred G t RQAK2 REQ A t AKRQH B t RQAKH C t AKRQL F t RQAK1 ACK D t suDB E t hDB DB7 to DB0 DBP Data 33 MB86604L (b) Output timing (initiator → target) Value Parameter Symbol Base signal Unit Position*1 Min. Max. REQ “H” negate time ACK “L” tAKRQH A 0 — ns ACK “H” negate time REQ “H” tRQAKH B — 60 ns REQ “L” assert time ACK “H” tAKRQL C 10 — ns — tDBAK D S • tCLK – 10 — ns Output data hold time REQ “H” thDB E 2 tCLK — ns ACK “L” assert time REQ “L” tRQAK1 F — 40 ns Time from output data valid to ACK “L” assert *2 *1: The position number indicates the position in the waveform. *2: “S” value is based on the asychronous set up time setting register (address 17h). Note: The output timing definitions are not applied when the data register is EMPTY in the data phase. ( ' & % t RQAK2 * REQ t AKRQH A B t RQAKH C t AKRQL F t RQAK1 ACK E t hDB D t DBAK DB7 to DB0 Valid data D t DBAK Valid data DBP *: The REQ “H” → ACK “L” time (tRQAK2) is defined by either longer of (tRQAKH + tAKRQL + tRQAK1) or (thDB + tDBAK) (see the output timing waveform). 34 MB86604L • Synchronous transfer mode (a) REQ/ACK signal period Value Parameter Symbol Base signal Unit Position*1 Min. Max. ACK assert time *2 — tAKAP A A • tCLK – 12 — ns ACK negate time *2 — tAKNP B N • tCLK + 2 — ns REQ assert time — tRQAP C 20 — ns REQ negate time — tRQNP D 20 — ns REQ input cycle time 1 — tRQCY1 E 1 tCLK — ns REQ input cycle time 2 — tRQCY2 F 3 tCLK — ns *1: The position number indicates the position in the waveform. *2: “A” and “N” values are based on the transfer period register (address 0Dh) setting. A t AKAP B t AKNP ACK C t RQAP D t RQNP REQ E t RQCY1 F t RQCY2 35 MB86604L (b) Input timing (target → initiator) Value Parameter Symbol Base signal Unit Position* Min. Max. Input data set up time REQ “L” tsuDB A 5 — ns Input data hold time REQ “L” thDB B 15 — ns * : The position number indicates the position in the waveform. REQ A t suDB B t hDB t suDB A B t hDB DB7 to DB0 Data DBP Data (c) Input timing (target → initiator) Value Parameter Symbol Base signal Time from output data valid to ACK “L” assert *2 — Unit Position*1 Min. Max. A N • tCLK + 2 — tDBAK + * ) 6 5 4 ! , + * ) ( 6 5 4 3 ! , + * ) ( 6 5 4 3 % $ # " 0 / . ! , ACK “L” Output data hold time *2 thDB B A • tCLK – 12 *1: The position number indicates the position in the waveform. *2: “A” and “N” values are based on the transfer period register (address 0Dh) setting. ACK A t DBAK DB7 to DB0 DBP 36 ns B t hDB Valid data A t DBAK B t hDB Valid data — ns MB86604L (7) SCSI interface (as initiator) • Asynchronous transfer mode (a) Input timing (initiator → target) Value Parameter Symbol Base signal Unit Position*1 Min. Max. ACK “L” assert time REQ “L” tRQAKL A 0 — ns REQ “H” negate time ACK “L” tAKRQH B — 60 ns ACK “H” negate time REQ “H” tRQAKH C 0 — ns Input data set up time ACK “L” tsuDB D 10 — ns Input data hold time ACK “L” thDB E 20 — ns ACK “L” assert time 1 ACK “H” tAKRQ1 F — 40 ns ACK “L” assert time 2 *2 ACK “H” tALRQ2 G — 3 tCLK + 40 ns *1: The position number indicates the position in the waveform. *2: The REQ “L” → REQ “L” time (tAKRQ2) is compared with (tAKRQH + tRQAKH + tAKRQ1) and the longer value is chosen. Note: The input timing definition is not applied in the following cases. • When the data register is FULL in the data phase • When the final byte is being transferred G t AKRQ2 REQ A B t RQAKL t AKRQH C t RQAKH F t AKRQ1 ACK t suDB DB7 to DB0 D E t hDB Data DBP 37 MB86604L (b) Output timing (target → initiator) Value Parameter Symbol Base signal Unit Position*1 Min. Max. ACK “L” assert time REQ “L” tRQAKL A 0 — ns REQ “H” negate time ACK “L” tAKRQH B — 60 ns ACK “H” negate time REQ “H” tRQAKH C 0 — ns — tDBRQ D S • tCLK – 10 — ns Output data hold time ACK “L” thDB E 2 tCLK — ns REQ “L” assert time ACK “H” tAKRQ1 F — 40 ns Time from output data valid to REQ “L” assert *2 *1: The position number indicates the position in the waveform. *2: “S” value is based on the asychronous set up time setting register (address 17h). Note: The output timing definitions are not applied when the data register is EMPTY in the data phase. +! * ) ( 6 5 4 3 A @ ? > , 7 t AKRQ2 * REQ A t RQAKL B t AKRQH C t RQAKH F t AKRQ1 ACK E t hDB D t DBRQ DB7 to DB0 Valid data D t DBRQ Valid data DBP *: The ACK “L” → REQ “L” time (tAKRQ2) is defined by either longer of (tAKRQH + tRQAKH + tAKRQ1) or (thDB + tDBRQ). 38 MB86604L • Synchronous transfer mode (a) REQ/ACK signal period Value Parameter Symbol Unit Position*1 Min. Max. REQ assert time *2 tRQAP A A • tCLK – 12 — ns REQ negate time *2 tRQNP B N • tCLK + 2 — ns ACK assert time tAKAP C 20 — ns ACK negate time tAKNP D 20 — ns ACK input cycle time 1 tAKCY1 E 1 tCLK — ns ACK input cycle time 2 tAKCY2 F 3 tCLK — ns *1: The position number indicates the position in the waveform. *2: “A” and “N” values are based on the transfer period register (address 0Dh). See (8) for more setting values. A t RQAP B t RQNP REQ C t AKAP D t AKNP ACK E t AKCY1 F t AKCY2 39 MB86604L (b) Input timing (initiator → target) Value Parameter Symbol Base signal Unit Position* Min. Max. Input data set up time ACK “L” tsuDB A 5 — ns Input data hold time ACK “L” thDB B 15 — ns * : The position number indicates the position in the waveform. ACK t suDB A B t hDB t suDB B t hDB A DB7 to DB0 Data Data DBP (c) Output timing (target → initiator) Value Parameter Symbol Base signal Time from output data valid to REQ “L” assert *2 — Unit Position*1 Min. Max. A N • tCLK + 2 — tDBRQ ns ! + * ) ! + * ) ( " + * ) ( % $ # ! REQ “L” Output data hold time *2 thDB B A • tCLK – 12 — ns *1: The position number indicates the position in the waveform. *2: “A” and “N” values are based on the transfer period register (address 0Dh). See (8) for more setting values. REQ A t DBRQ DB7 to DB0 DBP 40 B t hDB Valid data A t DBRQ B t hDB Valid data MB86604L (8) A/N/S values in the SCSI interface timing specification • Transfer period register (address 0Dh) and A/N values Transfer period register Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 A N Transfer period register Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 A N 0 0 0 0 1 Prohibit Prohibit 1 0 0 0 1 9 8 0 0 0 1 0 1 1 1 0 0 1 0 9 9 0 0 0 1 1 2 1 1 0 0 1 1 10 9 0 0 1 0 0 2 2 1 0 1 0 0 10 10 0 0 1 0 1 3 2 1 0 1 0 1 11 10 0 0 1 1 0 3 3 1 0 1 1 0 11 11 0 0 1 1 1 4 3 1 0 1 1 1 12 11 0 1 0 0 0 4 4 1 1 0 0 0 12 12 0 1 0 0 1 5 4 1 1 0 0 1 13 12 0 1 0 1 0 5 5 1 1 0 1 0 13 13 0 1 0 1 1 6 5 1 1 0 1 1 14 13 0 1 1 0 0 6 6 1 1 1 0 0 14 14 0 1 1 0 1 7 6 1 1 1 0 1 15 14 0 1 1 1 0 7 7 1 1 1 1 0 15 15 0 1 1 1 1 8 7 1 1 1 1 1 16 15 1 0 0 0 0 8 8 0 0 0 0 0 16 16 Note: The A and N values set in the register are the assert period and the negate period respectively (unit is clock cycles) For the AC characteristics, A/N use numerals. • Asynchronous setup time register (address 17h) setting and the S value. Asynchronous setup time register S Bit 3 Bit 2 Bit 1 Bit 0 Asynchronous setup time register S Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 1 1 1 0 0 1 9 0 0 1 0 2 1 0 1 0 10 0 0 1 1 3 1 0 1 1 11 0 1 0 0 4 1 1 0 0 12 0 1 0 1 5 1 1 0 1 13 0 1 1 0 6 1 1 1 0 14 0 1 1 1 7 1 1 1 1 15 1 0 0 0 8 0 0 0 0 16 Note: The S (setup time) value established in the set up time register during asynchronous data transfers indicates the time from setting data in the data bus until the REQ/ACK signals are asserted. For the AC characteristics, S uses numerals. 41 MB86604L ■ LIST OF REGISTERS 1. BASIC Control Registers (for write) Address Hex. A4 A3 A2 A1 A0 00 01 02 03 04 05 06 07 08 09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0A 0 1 0 1 0 0B 0C 0D 0E 0F 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 Register name Output data register (first) Output data register (second) Direct control register (Reserved) SEL/RESEL ID register Command register Data block register (MSB) Data block register (LSB) Data byte register (MSB) Data byte register Data byte register (LSB) MC byte register Diagnostic control register Transfer mode register Transfer period register Transfer offset register Window address register Bit assignment Bit 5 Bit 4 Bit 3 Bit 2 DO5 DO4 DO3 DO2 DO13 DO12 DO11 DO10 0 DO4 0 0 0 0 0 0 0 0 0 SI2 CM5 CM4 CM3 CM2 BL13 BL12 BL11 BL10 BL5 BL4 BL3 BL2 BY21 BY20 BY19 BY18 BY13 BY12 BY11 BY10 Bit 7 DO7 DO15 DC7 0 SI7 CM7 BL15 BL7 BY23 BY15 Bit 6 DO6 DO14 0 0 0 CM6 BL14 BL6 BY22 BY14 Bit 1 DO1 DO9 0 0 SI1 CM1 BL9 BL1 BY17 BY9 Bit 0 DO0 DO8 0 0 SI0 CM0 BL8 BL0 BY16 BY8 BY7 BY6 BY5 BY4 BY3 BY2 BY1 BY0 DG7 TM7 0 0 WA7 DG6 0 0 0 WA6 DG5 0 0 0 0 0 0 TP4 TO4 0 DG3 0 TP3 TO3 WA3 DG2 0 TP2 TO2 WA2 DG1 0 TP1 TO1 WA1 DG0 0 TP0 TO0 WA0 Bit 6 DI6 DI14 SS6 NS6 IS6 CS6 BL14 BL6 BY22 BY14 Bit assignment Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 DI5 DI4 DI3 DI2 DI1 DI0 DI13 DI12 DI11 DI10 DI9 DI8 SS5 SS4 X SS2 SS1 SS0 NS5 X X NS2 NS1 NS0 IS5 IS4 IS3 IS2 IS1 IS0 CS5 CS4 CS3 CS2 CS1 CS0 BL13 BL12 BL11 BL10 BL9 BL8 BL5 BL4 BL3 BL2 BL1 BL0 BY21 BY20 BY19 BY18 BY17 BY16 BY13 BY12 BY11 BY10 BY9 BY8 BY6 BY5 BY4 BY3 BY2 BY1 BY0 SC6 X X X X SC5 X X X MB5 SC4 X TP4 TO4 BM4 SC3 X TP3 TO3 MB3 SC2 X TP2 TO2 MB2 SC1 X TP1 TO1 MB1 SC0 X TP0 TO0 MB0 2. BASIC Control Registers (for read) Address Bit 7 0 Input data register (first) DI7 1 Input data register (second) DI15 0 SPC status register SS7 1 Nexus status register NS7 0 Interrupt status register IS7 1 Command step register CS7 0 Data block register (MSB) BL15 1 Data block register (LSB) BL7 0 Data byte register (MSB) BY23 1 Data byte register BY15 Data byte register (LSB) 0 BY7 MC byte register 1 SCSI control signal status register SC7 0 Transfer mode register TM7 1 Transfer period register X 0 Transfer offset register X 1 Modified byte register X Hex. A4 A3 A2 A1 A0 00 01 02 03 04 05 06 07 08 09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0A 0 1 0 1 0B 0C 0D 0E 0F 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 Register name Note: X indicates data is undefined. (0 or 1). 42 MB86604L 3. Initial Setting Window (for read/write) Address Bit assignment Register name Hex. A4 A3 A2 A1 A0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 10 1 0 0 0 0 Clock conversion setting CC7 CC6 CC5 CC4 CC3 CC2 CC1 CC0 11 1 0 0 0 1 Self ID setting 12 1 0 0 1 0 Response mode setting 13 1 0 0 1 1 Selection/reselection mode setting SM7 SM6 SM5 SM4 SM3 SM2 SM1 SM0 14 1 0 1 0 0 Selection/reselection retry setting SR7 SR6 SR5 SR4 SR3 SR2 SR1 SR0 15 1 0 1 0 1 Selection/reselection timeout setting ST7 16 1 0 1 1 0 REQ/ACK timeout setting RT7 RT6 RT5 RT4 RT3 RT2 RT1 RT0 17 1 0 1 1 1 Asynchronous setup time setting 18 1 1 0 0 0 Parity error detection setting PE7 PE6 PE5 PE4 PE3 19 1 1 0 0 1 Interrupt enable setting IE7 1A 1 1 0 1 0 Group 6/7 command length setting GL7 GL6 GL5 GL4 GL3 GL2 GL1 GL0 1B 1 1 0 1 1 DMA system setting 1C 1 1 1 0 0 Automatic operation mode setting OM7 OM6 OM5 OM4 OM3 OM2 OM1 OM0 1D 1 1 1 0 1 SPC Timeout setting TO7 TO6 TO5 TO4 TO3 TO2 TO1 TO0 1F 1 1 1 1 1 Device revision indication RV7 RV6 RV5 RV4 RV3 RV2 RV1 RV0 0 0 0 0 AM7 AM6 AM5 AM4 0 0 ST6 0 0 0 ST5 0 IE5 ST4 0 IE4 DM5 MD4 0 OI2 0 0 ST3 AT3 IE3 0 ST2 AT2 0 IE2 0 OI1 OI0 AM1 AM0 ST1 AT1 ST0 AT0 PE1 PE0 IE1 0 IE0 0 4. MCS Buffer Window Address For write For read 0 SEND MCS buffer RECEIVE MCS buffer 0 1 SEND MCS buffer RECEIVE MCS buffer 0 1 0 SEND MCS buffer RECEIVE MCS buffer 0 0 1 1 SEND MCS buffer RECEIVE MCS buffer 1 0 1 0 0 SEND MCS buffer RECEIVE MCS buffer 15 1 0 1 0 1 SEND MCS buffer RECEIVE MCS buffer 16 1 0 1 1 0 SEND MCS buffer RECEIVE MCS buffer 17 1 0 1 1 1 SEND MCS buffer RECEIVE MCS buffer 18 1 1 0 0 0 SEND MCS buffer RECEIVE MCS buffer 19 1 1 0 0 1 SEND MCS buffer RECEIVE MCS buffer 1A 1 1 0 1 0 SEND MCS buffer RECEIVE MCS buffer 1B 1 1 0 1 1 SEND MCS buffer RECEIVE MCS buffer 1C 1 1 1 0 0 SEND MCS buffer RECEIVE MCS buffer 1D 1 1 1 0 1 SEND MCS buffer RECEIVE MCS buffer 1E 1 1 1 1 0 SEND MCS buffer RECEIVE MCS buffer 1F 1 1 1 1 1 SEND MCS buffer RECEIVE MCS buffer Hex. A4 A3 A2 A1 A0 10 1 0 0 0 11 1 0 0 12 1 0 13 1 14 43 MB86604L 5. User Program Memory Window Address 44 For write For read 0 User program memory User program memory 0 1 User program memory User program memory 0 1 0 User program memory User program memory 0 0 1 1 User program memory User program memory 1 0 1 0 0 User program memory User program memory 15 1 0 1 0 1 User program memory User program memory 16 1 0 1 1 0 User program memory User program memory 17 1 0 1 1 1 User program memory User program memory 18 1 1 0 0 0 User program memory User program memory 19 1 1 0 0 1 User program memory User program memory 1A 1 1 0 1 0 User program memory User program memory 1B 1 1 0 1 1 User program memory User program memory 1C 1 1 1 0 0 User program memory User program memory 1D 1 1 1 0 1 User program memory User program memory IE 1 1 1 1 0 User program memory User program memory 1F 1 1 1 1 1 User program memory User program memory Hex. A4 A3 A2 A1 A0 10 1 0 0 0 11 1 0 0 12 1 0 13 1 14 MB86604L ■ LIST OF COMMANDS SPC commands can be specified in the command register or the user program memory and divided into the following main groups. • Sequential commands Commands that perform a consecutive (including phase transitions) sequence operation. Can only be specified in the command register (1-byte). • Discrete commands Commands which perform operations from disassembled sequential commands. Can be specified in the command register (1-byte command) or the user program memory (1/2-byte command). • Special commands Can only be specified in the user program memory (1/2-byte command). 1. Initiator Commands (1) Sequential commands No Command code Operand (for program) Command name 1 00H 0 0 0 0 0 0 0 0 (not possible) Select & CMD 2 01H 0 0 0 0 0 0 0 1 (not possible) Select & 1-MSG & CMD 3 02H 0 0 0 0 0 0 1 0 (not possible) Select & N-Byte-MSG & CMD 4 03H 0 0 0 0 0 0 1 1 (not possible) Select & 1-MSG 5 04H 0 0 0 0 0 1 0 0 (not possible) Select & N-Byte-MSG 6 05H 0 0 0 0 0 1 0 1 (not possible) Send N-Byte-MSG 7 06H 0 0 0 0 0 1 1 0 (not possible) Send N-Byte-CMD 8 07H 0 0 0 0 0 1 1 1 (not possible) Receive N-Byte-MSG 45 MB86604L (2) Discrete commands No 46 Command code Operand (for program) Command name 9 08H 0 0 0 0 1 0 0 0 — Select 10 09H 0 0 0 0 1 0 0 1 — Select with ATN 11 0AH 0 0 0 0 1 0 1 0 — Set ATN 12 0BH 0 0 0 0 1 0 1 1 — Reset ATN 13 0CH 0 0 0 0 1 1 0 0 — Set ACK 14 0DH 0 0 0 0 1 1 0 1 — Reset ACK 15 10H 0 0 0 1 0 0 0 0 — Send Data from MPU 16 11H 0 0 0 1 0 0 0 1 — Send Data from DMA 17 12H 0 0 0 1 0 0 1 0 — Receive Data to MPU 18 13H 0 0 0 1 0 0 1 1 — Receive Data to DMA 19 14H 0 0 0 1 0 1 0 0 — Send DATA from MPU Padding 20 15H 0 0 0 1 0 1 0 1 — Send DATA from DMA Padding 21 16H 0 0 0 1 0 1 1 0 — Receive Data to MPU Padding 22 17H 0 0 0 1 0 1 1 1 — Receive Data to DMA Padding 23 18H 0 0 0 1 1 0 0 0 Address of MSG sent Send 1-MSG 24 19H 0 0 0 1 1 0 0 1 Address of MSG sent Send 1-MSG with ATN 25 1AH 0 0 0 1 1 0 1 0 SAVE address of MSG Receive MSG 26 1BH 0 0 0 1 1 0 1 1 Address of CMD sent Send CMD 27 1CH 0 0 0 1 1 1 0 0 SAVE address of STATUS Receive STATUS MB86604L 2. Target Commands (1) Sequential commands No Command code Operand (for program) Command name 1 20H 0 0 1 0 0 0 0 0 (not possible) Reselect & 1-MSG 2 21H 0 0 1 0 0 0 0 1 (not possible) Reselect & N-Byte-MSG 3 22H 0 0 1 0 0 0 1 0 (not possible) Reselect & 1-MSG & Terminate 4 23H 0 0 1 0 0 0 1 1 (not possible) Reselect & 1-MSG & Link-Terminate 5 24H 0 0 1 0 0 1 0 0 (not possible) Terminate 6 25H 0 0 1 0 0 1 0 1 (not possible) Link-Terminate 7 26H 0 0 1 0 0 1 1 0 (not possible) Disconnect-Sequence 8 27H 0 0 1 0 0 1 1 1 (not possible) Send N-Byte-MSG 9 28H 0 0 1 0 1 0 0 0 (not possible) Receive N-Byte-CMD 10 29H 0 0 1 0 1 0 0 1 (not possible) Receive N-Byte-MSG 11 2AH 0 0 1 0 1 0 1 0 (not possible) Reselect & N-Byte-MSG & Terminate 12 2BH 0 0 1 0 1 0 1 1 (not possible) Reselect & N-Byte-MSG & Link-Terminate 13 2CH 0 0 1 0 1 1 0 0 (not possible) Disconnect-Sequence 2 47 MB86604L (2) Discrete commands No Command code Operand (for program) Command name 14 30H 0 0 1 1 0 0 0 0 — Reselect 15 31H 0 0 1 1 0 0 0 1 — Set REQ 16 32H 0 0 1 1 0 0 1 0 — Reset REQ 17 33H 0 0 1 1 0 0 1 1 — Disconnect 18 34H 0 0 1 1 0 1 0 0 — Send Data from MPU 19 35H 0 0 1 1 0 1 0 1 — Send Data from DMA 20 36H 0 0 1 1 0 1 1 0 — Receive Data to MPU 21 37H 0 0 1 1 0 1 1 1 — Receive Data to DMA 22 38H 0 0 1 1 1 0 0 0 Address of MSG sent Send 1 MSG 23 39H 0 0 1 1 1 0 0 1 SAVE address of MSG Receive MSG 24 3AH 0 0 1 1 1 0 1 0 Send-status address Send Status 25 3BH 0 0 1 1 1 0 1 1 SAVE address of CDB Receive CMD 3. Common Commands No 48 Command code Operand (for program) Command name 1 40H 0 1 0 0 0 0 0 0 (not possible) SOFTWARE RESET 2 41H 0 1 0 0 0 0 0 1 (not possible) TRANSFER RESET 3 42H 0 1 0 0 0 0 1 0 (not possible) SCSI RESET 4 43H 0 1 0 0 0 0 1 1 (not possible) SET UP REG 5 44H 0 1 0 0 0 1 0 0 (not possible) INIT DIAG START 6 45H 0 1 0 0 0 1 0 1 (not possible) TARG DIAG START 7 46H 0 1 0 0 0 1 1 0 (not possible) DIAG END 8 47H 0 1 0 0 0 1 1 1 (not possible) COMMAND PAUSE 9 48H 0 1 0 0 1 0 0 0 (not possible) SET RST 10 49H 0 1 0 0 1 0 0 1 (not possible) RESET RST MB86604L 4. Programmable Commands The user program is stored in the user program memory and begins operation when the user program head address is written in the command register. Programmable commands are composed of discrete and special commands and have a command length of one (1) or two (2) bytes. • Command field assign Command type Discrete commands Special commands Command code (1st byte) Operand (2nd byte) Message, command, or status phases send command Memory address of the data to be sent. Message, command, or status phases receive command Memory address of received data being stored. Data phase receive/send command or do not perform transfer command — AND command Data for AND operation or memory address of data for AND operation. TEST AND command Data for AND operation or memory address of data for AND operation. COMPARE command Data for COMPARE operation or memory address of data for COMPARE operation. Conditional branch command Jump head address MOVE command Memory address to be moved. STOP command User status code NOP command — 49 MB86604L ■ SYSTEM CONFIGURATION EXAMPLE 1. 80-Series, Separate Bus Type MB86604L Oscillation circuit RESET circuit CLK RESET DB7 to 0 DBP MODE INT MPU TMOUT CS0 ACK CS1 Address decoder ATN A4 to A0 Address bus SCSI bus REQ D15 to D0 MSG C/D Data bus UDP LDP BHE I/O RD WR DMD15 to 0 UDMDP LDMDP DMA bus BSY DREQ SEL DACK DMBHE IORD RST IOWR DMA0 TP 50 DMA controller Address DATA buffer memory MB86604L 2. 80-Series, Common Bus Type MB86604L Oscillation circuit RESET circuit CLK RESET DB7 to 0 DBP MODE INT MPU TMOUT CS1 ACK CS0 Address decoder ATN A4 to A0 Address bus SCSI bus REQ D15 to D0 MSG C/D Data bus UDP LDP BHE I/O RD WR DMD15 to 0 UDMDP LDMDP DMA bus BSY DREQ SEL DACK DMBHE DMA controller IORD RST IOWR DMA0 TP 51 MB86604L 3. 68-Series, Separate Bus Type Oscillation circuit MB86604L RESET circuit CLK RESET DB7 to 0 DBP MODE INT MPU TMOUT A0 CS0 ACK CS1 Address decoder ATN A4 to A1 Address bus SCSI bus REQ D15 to D0 MSG C/D Data bus UDP LDP R/W I/O UDS LDS DMD15 to 0 UDMDP LDMDP DMA bus BSY DREQ SEL DACK DMR/W DMUDS RST DMLDS DMA0 TP 52 DMA controller Address DATA buffer memory MB86604L 4. 68-Series, Common Bus Type MB86604L Oscillation circuit RESET circuit CLK RESET DB7 to 0 DBP MODE INT MPU TMOUT A0 CS1 ACK CS0 Address decoder ATN A4 to A1 Address bus SCSI bus REQ D15 to D0 MSG C/D Data bus UDP LDP R/W I/O UDS LDS DMD15 to 0 UDMDP LDMDP DMA bus BSY DREQ SEL DACK DMR/W DMA controller DMUDS RST DMLDS DMA0 TP 53 MB86604L ■ ORDERING INFORMATION Part number MB86604LPFV 54 Package 100 pin Plastic LQFP (FPT-100P-M05) Remarks MB86604L ■ PACKAGE DIMENSION 100-pin Plastic LQFP (FPT-100P-M05) +0.20 16.00±0.20(.630±.008)SQ 75 1.50 −0.10 (MOUNTING HEIGHT) +.008 .059 −.004 51 14.00±0.10(.551±.004)SQ 76 50 12.00 (.472) REF 15.00 (.591) NOM Details of "A" part 0.15(.006) INDEX 100 0.15(.006) 26 0.15(.006)MAX LEAD No. "B" 25 1 0.40(.016)MAX "A" 0.50(.0197)TYP +0.08 0.18 −0.03 +.003 .007 −.001 +0.05 0.08(.003) M 0.127 −0.02 +.002 .005 −.001 Details of "B" part 0.10±0.10 (STAND OFF) (.004±.004) 0.10(.004) C 1995 FUJITSU LIMITED F100007S-2C-3 0.50±0.20(.020±.008) 0~10˚ Dimensions in mm (inches) 55 MB86604L FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3763 Fax: (044) 754-3329 North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045 Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122 Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 All Rights Reserved. Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given. The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies. The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu. Fujitsu reserves the right to change products or specifications without notice. No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu. The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support. F9702 FUJITSU LIMITED Printed in Japan 56