204pin DDR3 SDRAM SODIMM DDR3 SDRAM Unbuffered SODIMM Based on 2Gb M version HMT451S6MMP(R)8C ** Contents are subject to change without prior notice. Rev. 0.2 / Apr. 2009 1 HMT451S6MMP(R)8C Revision History Revision No. History Draft Date 0.1 Initial Release Oct. 2008 0.2 IDD Update Apr. 2009 Rev. 0.2 / Apr. 2009 Remark 2 HMT451S6MMP(R)8C Table of Contents 1. Description 1.1 Device Features and Ordering Information 1.1.1 Features 1.1.2 Ordering Information 1.2 Speed Grade & Key Parameters 1.3 Address Table 2. Pin Architecture 2.1 Pin Definition 2.2 Input/Output Functional Description 2.3 Pin Assignment 3. Functional Block Diagram 3.1 4GB, 512Mx64 Module(2Rank of x8) 4. Absolute Maximum Ratings 4.1 Absolute Maximum DC Ratings 4.2 Operating Temperature Range 5. AC & DC Operating Conditions 5.1 Recommended DC Operating Conditions 5.2 DC & AC Logic Input Levels 5.2.1 For Single-ended Signals 5.2.2 For Differential Signals 5.2.3 Differential Input Cross Point 5.3 Slew Rate Definition 5.3.1 For Ended Input Signals 5.3.2 For Differential Input Signals 5.4 DC & AC Output Buffer Levels 5.4.1 Single Ended DC & AC Output Levels 5.4.2 Differential DC & AC Output Levels 5.4.3 Single Ended Output Slew Rate 5.4.4 Differential Ended Output Slew Rate 5.5 Overshoot/Undershoot Specification 5.5.1 Address and Control Overshoot and Undershoot Specifications 5.5.2 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications 5.6 Input/Output Capacitance & AC Parametrics 5.7 IDD Specifications & Measurement Condtiions 6. Electrical Characteristics and AC Timing 6.1 Refresh Parameters by Device Density 6.2 DDR3 Standard speed bins and AC para 7. DIMM Outline Diagram 7.1 4GB, 512Mx64 Module(2Rank of x8) Rev. 0.2 / Apr. 2009 3 HMT451S6MMP(R)8C 1. Description This Hynix unbuffered Small Outline Dual In-Line Memory Module (SODIMM) series consists of 2Gb M version. DDR3 SDRAMs in Fine Ball Grid Array (FBGA) packages on a 204 pin glass-epoxy substrate. This DDR3 Unbuffered SODIMM series based on 2Gb M ver. provide a high performance 8 byte interface in 67.60mm width form factor of industry standard. It is suitable for easy interchange and addition. 1.1 Device Features & Ordering Information 1.1.1 Features • Programmable burst length 4/8 with both nibble sequential and interleave mode • VDD=VDDQ=1.5V • VDDSPD=3.0V to 3.6V • Fully differential clock inputs (CK, /CK) operation • Differential Data Strobe (DQS, /DQS) • On chip DLL align DQ, DQS and /DQS transition with CK transition • DM masks write data-in at the both rising and falling edges of the data strobe • All addresses and control inputs except data, data strobes and data masks latched on the rising edges of the clock • Programmable CAS latency 5, 6, 7, 8, 9, 10, and (11) supported • BL switch on the fly • 8 banks • 8K refresh cycles /64ms • DDR3 SDRAM Package: JEDEC standard 82ball FBGA(x4/x8) with support balls • Driver strength selected by EMRS • Dynamic On Die Termination supported • Asynchronous RESET pin supported • ZQ calibration supported • TDQS (Termination Data Strobe) supported (x8 only) • Programmable additive latency 0, CL-1 and CL-2 supported • Write Levelization supported • Programmable CAS Write latency (CWL) = 5, 6, 7, 8 • 8 bit pre-fetch • Auto Self Refresh supported 1.1.2 Ordering Information Density Organization # of DRAMs # of ranks Materials HMT451S6MMP8C-S6/G7* 4GB 512Mx64 16 2 Lead free HMT451S6MMR8C-S6/G7* 4GB 512Mx64 16 2 Halogen free Part Name *Information on temperature sensor can be found on the label: T0 indicates that the DIMM has temperature sensor. N0 indicates that the DIMM does not have temperature sensor. Rev. 0.2 / Apr. 2009 4 HMT451S6MMP(R)8C 1.2 Speed Grade & Key Parameters MT/S DDR3-800 DDR3-1066 Grade -S6 -G7 tCK (min) 2.5 1.875 ns CAS Latency 6 7 tCK tRCD (min) 15 13.125 ns tRP (min) 15 13.125 ns tRAS (min) 37.5 37.5 ns tRC (min) 52.5 50.625 ns CL-tRCD-tRP 6-6-6 7-7-7 tCK Unit 1.3 Address Table 4GB Organization 512M x 64 Refresh Method 8K/64ms Row Address A0-A14 Column Address A0-A9 Bank Address BA0-BA2 Page Size 1KB # of Rank 2 # of Device 16 Rev. 0.2 / Apr. 2009 5 HMT451S6MMP(R)8C 2. Pin Architecture 2.1 Pin Definition Pin Name Description Pin Name Description CK[1:0] Clock Inputs, positive line 2 DQ[63:0] Data Input/Output 64 CK[1:0] Clock Inputs, negative line 2 DM[7:0] Data Masks 8 CKE[1:0] Clock Enables 2 DQS[7:0] Data strobes 8 RAS Row Address Strobe 1 DQS[7:0] Data strobes complement 8 CAS Column Address Strobe 1 RESET Reset pin 1 WE Write Enable 1 TEST Logic Analyzer specific test pin (No 1 connect on SODIMM) S[1:0] Chip Selects 2 EVENT Address Inputs 14 Address Input/Autoprecharge A[9:0], A11, A[15:13] A10/AP Temperature event pin 1 VDD Core and I/O power 18 1 VSS Ground 52 Input/Output Reference 2 SPD and Temp sensor power 1 A12/BC Address Input/Burst Stop 1 VREFDQ BA[2:0] SDRAM Bank Address 3 VREFCA On-die termination control 2 VDDSPD ODT[1:0] SCL Serial Presence Detect (SPD) Clock 1 input Vtt Termination voltage 2 SDA SPD Data Input/Output 1 NC Reserved for future use 2 SPD address 2 SA[1:0] Rev. 0.2 / Apr. 2009 Total 204 6 HMT451S6MMP(R)8C 2.2 Input/Output Functional Description Symbol Type Polarity Function The system clock inputs. All address and command lines are sampled on the cross CK0/CK0 CK1/CK1 Input Cross point point of the rising edge of CK and falling edge of CK. A Delay Locked Loop (DLL) circuit is driven from the clock inputs and output timing for read operations is synchronized to the input clock. Activates the DDR3 SDRAM CK signal when high and deactivates the CK signal when CKE[1:0] Input Active High low. By deactivating the clocks, CKE low initiates the Power Down mode or the Self Refresh mode. Enables the associated DDR3 SDRAM command decoder when low and disables the S[1:0] Input Active Low command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. Rank 0 is selected by S0; Rank 1 is selected by S1. RAS, CAS, WE Input Active Low BA[2:0] Input - ODT[1:0] Input Active High When sampled at the cross point of the rising edge of CK and falling edge of CK, signals CAS, RAS, and WE define the operation to be executed by the SDRAM. Selects which DDR3 SDRAM internal bank of eight is activated. Asserts on-die termination for DQ, DM, DQS, and DQS signals if enabled via the DDR3 SDRAM mode register. During a Bank Activate command cycle, defines the row address when sampled at the cross point of the rising edge of CK and falling edge of CK. During a Read or Write command cycle, defines the column address when sampled at the cross point of the rising edge of CK and falling edge of CK. In addition to the column address, A[9:0], A10/AP, A11, A12/BC, A[15:13] AP is used to invoke autoprecharge operation at the end of the burst read or write Input - cycle. If AP is high, autoprecharge is selected and BA0-BAn defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a Precharge command cycle, AP is used in conjunction with BA0-BAn to control which bank(s) to precharge. If AP is high, all banks will be precharged regardless of the state of BA0BAn inputs. If AP is low, then BA0-BAn are used to define which bank to precharge. A12(BC) is sampled during READ and WRITE commands to determine if burst chop (on-thefly) will be performed (HIGH, no burst chop; LOW, burst chopped) DQ[63:0] In/Out - DM[7:0] Input Active High Data Input/Output pins. The data write masks, associated with one data byte. In Write mode, DM operates as a byte mask by allowing input data to be written if it is low but blocks the write operation if it is high. In Read mode, DM lines have no effect. The data strobes, associated with one data byte, sourced with data transfers. In DQS[7:0], DQS[7:0] Write mode, the data strobe is sourced by the controller and is centered in the data In/Out Cross Point window. In Read mode, the data strobe is sourced by the DDR3 SDRAMs and is sent at the leading edge of the data window. DQS signals are complements, and timing is relative to the crosspoint of respective DQS and DQS. Rev. 0.2 / Apr. 2009 7 HMT451S6MMP(R)8C Symbol Type VDD,VDDSPD, VSS, Supply Power supplies for core, I/O, Serial Presence Detect, Temp sensor, and ground for the module. Supply Reference voltage for SSTL15 inputs. VREFDQ, VREFCA Polarity Function This is a bidirectional pin used to transfer data into or out of the SPD EEPROM and SDA In/Out SCL Input This signal is used to clock data into and out of the SPD EEPROM and Temp sensor. SA[1:0] Input Address pins used to select the Serial Presence Detect and Temp sensor base address. TEST In/Out EVENT Wire OR Out Active Low RESET In Active Low Temp sensor. A resistor must be connected from the SDA bus line to VDDSPD on the system planar to act as a pull up. Rev. 0.2 / Apr. 2009 The TEST pin is reserved for bus analysis tools and is not connected on normal memory modules (SO-DIMMs). The EVENT pin is reserved for use to flag critical module temperature. A resistor may be connected from EVENT bus line to VDDSPD on the system planar to act as a pullup. This signal resets the DDR3 SDRAM 8 HMT451S6MMP(R)8C 2.3 Pin Assignment Pin # Front Side Pin # Back Side Pin # Front Side Pin # Back Side Pin # Front Side Pin # Back Side Pin # Front Sid Pin # Back Side 1 VREFDQ 2 VSS 53 DQ19 54 VSS 105 VDD 106 VDD 157 DQ42 158 DQ46 3 VSS 4 DQ4 55 VSS 56 DQ28 107 A10/AP 108 BA1 159 DQ43 160 DQ47 5 DQ0 6 DQ5 57 DQ24 58 DQ29 109 BA0 110 RAS 161 VSS 162 VSS 7 DQ1 8 VSS 59 DQ25 60 VSS 111 VDD 112 VDD 163 DQ48 164 DQ52 9 VSS 10 DQS0 61 VSS 62 DQS3 113 WE 114 S0 165 DQ49 166 DQ53 11 DM0 12 DQS0 63 DM3 64 DQS3 115 CAS 116 ODT0 167 VSS 168 VSS 13 VSS 14 VSS 65 VSS 66 VSS 117 VDD 118 VDD 169 DQS6 170 DM6 15 DQ2 16 DQ6 67 DQ26 68 DQ30 119 A132 120 ODT1 171 DQS6 172 VSS 17 DQ3 18 DQ7 69 DQ27 70 DQ31 121 S1 122 NC 173 VSS 174 DQ54 19 VSS 20 VSS 71 VSS 72 VSS 123 VDD 124 VDD 175 DQ50 176 DQ55 21 DQ8 22 DQ12 73 CKE0 74 CKE1 125 TEST 126 VREFCA 177 DQ51 178 VSS 23 DQ9 24 DQ13 75 VDD 76 VDD 127 VSS 128 VSS 179 VSS 180 DQ60 25 VSS 26 VSS 77 NC 78 A152 129 DQ32 130 DQ36 181 DQ56 182 DQ61 27 DQS1 28 DM1 79 BA2 80 A142 131 DQ33 132 DQ37 183 DQ57 184 VSS 29 DQS1 30 RESET 81 VDD 82 VDD 133 VSS 134 VSS 185 VSS 186 DQS7 31 VSS 32 VSS 83 A12/BC 84 A11 135 DQS4 136 DM4 187 DM7 188 DQS7 33 DQ10 34 DQ14 85 A9 86 A7 137 DQS4 138 VSS 189 VSS 190 VSS 35 DQ11 36 DQ15 87 VDD 88 VDD 139 VSS 140 DQ38 191 DQ58 192 DQ62 37 VSS 38 VSS 89 A8 90 A6 141 DQ34 142 DQ39 193 DQ59 194 DQ63 39 DQ16 40 DQ20 91 A5 92 A4 143 DQ35 144 VSS 195 VSS 196 VSS 41 DQ17 42 DQ21 93 VDD 94 VDD 145 VSS 146 DQ44 197 SA0 198 EVENT 43 VSS 44 VSS 95 A3 96 A2 147 DQ40 148 DQ45 199 VDDSPD 200 SDA 45 DQS2 46 DM2 97 A1 98 A0 149 DQ41 150 VSS 201 SA1 202 SCL 47 DQS2 48 VSS 99 VDD 100 VDD 151 VSS 152 DQS5 203 VTT 204 VTT 49 VSS 50 DQ22 101 CK0 102 CK1 153 DM5 154 DQS5 51 DQ18 52 DQ23 103 CK0 104 CK1 155 VSS 156 VSS NC = No Connect; RFU = Reserved Future Use 1. TEST (pin 125) is reserved for bus analysis probes and is NC on normal memory modules. 2. This address might be connected to NC balls of the DRAMs (depending on density); either way they will be connected to the termination resistor. Rev. 0.2 / Apr. 2009 9 HMT451S6MMP(R)8C 240ohm +/-1% (SPD) A[O:N]/BA[O:N] SPD/TS VREFCA VREFDQ D0–D15 VDD D0–D15 VSS D0–D7, SPD, TS CK0 D0–D3, D8-D11 CK1 D4–D7, D12-D15 CK0 D0–D3, D8-D11 D0–D15 CK1 CKE0 D4–D7, D12-D15 CKE1 D8–D15 D0–D7 S0 D0–D7 S1 D8–D15 D0–D7 ODT0 ODT1 V1 D8–D15 EVENT Temp Sensor RESET D0-D15 D4,D12 V2 D5,D13 V3 D6,D14 V4 D7,D15 D0,D8 NOTES V2 D1,D9 V3 D2,D10 V4 D3,D11 Vtt V1 ODT0/ODT1 CK CKE0/CKE1 CK D7,D15 (Stacked) WE Vtt VDDSPD 240ohm +/-1% A[O:N]/BA[O:N] ZQ ODT0/ODT1 CK CKE0/CKE1 CK WE CAS RAS DQS DQS DM DQ [0:7] A[O:N]/BA[O:N] ODT0/ODT1 CK CKE0/CKE1 CK CAS WE ZQ 240ohm +/-1% D6,D14 (Stacked) CS0/CS1 DQS7 DQS7 DM7 DQ [56:63] RAS CS DQS DQS DM DQ [0:7] CAS ODT0/ODT1 CK CKE0/CKE1 WE CK CAS D3,D11 (Stacked) DQS5 DQS5 DM5 DQ [40:47] ZQ 240ohm +/-1% D5,D13 (Stacked) RAS 240ohm +/-1% DQS DQS DM DQ [0:7] CS0/CS1 ZQ ODT0/ODT1 CK CKE0/CKE1 CK WE CAS RAS CS0/CS1 DQS DQS DM DQ [0:7] A[O:N]/BA[O:N] 240ohm +/-1% D2,D10 (Stacked) DQS3 DQS3 DM3 DQ [24:31] A[O:N]/BA[O:N] ZQ ODT0/ODT1 CK CKE0/CKE1 CK WE CAS DQS DQS DM DQ [0:7] CS0/CS1 DQS6 DQS6 DM6 DQ [48:55] RAS CS0/CS1 D1,D9 (Stacked) RAS DQS4 DQS4 DM4 DQ [32:39] ZQ 240ohm +/-1% A[O:N]/BA[O:N] DQS DQS DM DQ [0:7] SDA WP Vtt ODT0/ODT1 CK CKE0/CKE1 SCL A0 A1 A2 SCL SA0 SA1 Vtt DQS2 DQS2 DM2 DQ [16:23] SDA EVENT D4,D12 (Stacked) WE SCL A0 Temp Sensor (with SPD) A1 A2 EVENT SCL SA0 SA1 A[O:N]/BA[O:N] CK1 CK1 ZQ CK DQS DQS DM DQ [0:7] CAS DQS1 DQS1 DM1 DQ [8:15] RAS ODT0/ODT1 CK CKE0/CKE1 CK WE RAS CAS D0,D8 (Stacked) CS0/CS1 A[O:N]/BA[O:N] 240ohm +/-1% CS0/CS1 ZQ ODT0/ODT1 CK0 CKE0/CKE1 WE CK0 CAS DQS DQS DM DQ [0:7] The SPD may be integrated with the Temp Sensor or may be a separate component A[O:N]/BA[O:N] DQS0 DQS0 DM0 DQ [0:7] RAS S0/S1 3.1 4GB, 512Mx64 Module(2Rank of x8) Address and Control Lines 1. DQ wiring may differ from that shown however, DQ, DM, DQS, and DQS relationships are maintained as shown Vtt Rank 0 Rank 1 Vtt VDD Rev. 0.2 / Apr. 2009 VDD 10 HMT451S6MMP(R)8C 4. ABSOLUTE MAXIMUM RATINGS 4.1 Absolute Maximum DC Ratings Symbol Parameter VDD VDDQ VIN, VOUT TSTG Rating Units Notes Voltage on VDD pin relative to Vss - 0.4 V ~ 1.975 V V ,3 Voltage on VDDQ pin relative to Vss - 0.4 V ~ 1.975 V V ,3 Voltage on any pin relative to Vss - 0.4 V ~ 1.975 V V -55 to +100 ℃ ℃ Storage Temperature ,2 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must be not greater than 0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. 4.2 DRAM Component Operating Temperature Range Symbol TOPER Parameter Rating Units Notes Normal Temperature Range 0 to 85 ℃ ,2 Extended Temperature Range 85 to 95 ℃ 1,3 1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions 3. Some applications require operation of the DRAM in the Extended Temperature Range between 85°… and 95°… case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a) Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. (This double refresh requirement may not apply for some devices.) It is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range. Please refer to supplier data sheet and/ or the DIMM SPD for option avail ability. b) If Self-Refresh operation is required in the Extended Temperature Range, than it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0band MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b). Rev. 0.2 / Apr. 2009 11 HMT451S6MMP(R)8C 5. AC & DC Operating Conditions 5.1 Recommended DC Operating Conditions Symbol Parameter VDD VDDQ Rating Units Notes 1.575 V 1,2 1.575 V 1,2 Min. Typ. Max. Supply Voltage 1.425 1.500 Supply Voltage for Output 1.425 1.500 1. Under all conditions, VDDQ must be less than or equal to VDD. 2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together. 5.2 DC & AC Logic Input Levels 5.2.1 DC & AC Logic Input Levels for Single-Ended Signals DDR3-800, DDR3-1066 Symbol Parameter Unit Notes - V 1, 2 Vref - 0.100 V 1, 2 - V 1, 2 Vref - 0.175 V 1, 2 Min Max Vref + 0.100 VIH(DC) DC input logic high VIL(DC) DC input logic low VIH(AC) AC input logic high VIL(AC) AC input logic low VRefDQ (DC) Reference Voltage for DQ, DM inputs 0.49 * VDD 0.51 * VDD V 3, 4 VRefCA (DC) Reference Voltage for ADD, CMD inputs 0.49 * VDD 0.51 * VDD V 3, 4 VTT Termination voltage for DQ, DQS outputs VDDQ/2 - TBD VDDQ/2 + TBD V Vref + 0.175 1. For DQ and DM, Vref = VrefDQ. For input only pins except RESET#, Vref = VrefCA. 2. The “t.b.d.” entries might change based on overshoot and undershoot specification. 3. The ac peak noise on VRef may not allow VRef to deviate from VRef (DC) by more than +/-1% VDD (for reference: approx. +/- 15 mV). For reference: approx. VDD/2 +/- 15 mV. The dc-tolerance limits and ac-noise limits for the reference voltages VRefCA and VRefDQ are illustrated in figure 5.2.1. It shows a valid reference voltage VRef (t) as a function of time. (VRef stands for VRefCA and VRefDQ likewise).VRef(DC) is the linear average of VRef (t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements in Table 1. Furthermore VRef (t) may temporarily deviate from VRef (DC) by no more than +/- 1% VDD. Rev. 0.2 / Apr. 2009 12 HMT451S6MMP(R)8C voltage VDD VRef(t) VRef ac-noise VRef(DC)max VRef(DC) VDD/2 VRef(DC)min VSS time < Figure 5.2.1: Illustration of Vref (DC) tolerance and Vref AC-noise limits > The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VRef. "VRef " shall be understood as VRef (DC), as defined in Figure. This clarifies, that dc-variations of VRef affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VRef (DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VRef ac-noise. Timing and voltage effects due to ac-noise on VRef up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings. 5.2.2 DC & AC Logic Input Levels for Differential Signals Symbol Parameter VIHdiff Differential input logic high VILdiff Differential input logic low DDR3-800, DDR3-1066 Unit Notes - V 1 - 0.200 V 1 Min Max + 0.200 Note1: Refer to “Overshoot and Undershoot Specification section 6.5 on 26 page Rev. 0.2 / Apr. 2009 13 HMT451S6MMP(R)8C 5.2.3 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK# and DQS, DQS#) must meet the requirements in Table The differential input cross point voltage VIX is measured from the actual cross point of true and complement signal to the midlevel between of VDD and VSS. VDD CK#, DQS# VIX VDD/2 VIX VIX CK, DQS VSS < Figure 5.2.3: Vix Definition > DDR3-800, DDR3-1066 Symbol VIX Parameter Differential Input Cross Point Voltage relative to VDD/2 Unit Min Max - 150 + 150 Notes mV < Table 5.2.3: Cross point voltage for differential input signals (CK, DQS) > Rev. 0.2 / Apr. 2009 14 HMT451S6MMP(R)8C 5.3 Slew Rate Definitions 5.3.1 For Single Ended Input Signals - Input Slew Rate for Input Setup Time (tIS) and Data Setup Time (tDS) Setup (tIS and tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VRef and the first crossing of VIH (AC) min. Setup (tIS and tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VRef and the first crossing of VIL (AC) max. - Input Slew Rate for Input Hold Time (tIH) and Data Hold Time (tDH) Hold nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL (DC) max and the first crossing of VRef. Hold (tIH and tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH (DC) min and the first crossing of VRef. Measured Description Input slew rate for rising edge Min Max Vref VIH (AC) min Input slew rate for falling edge Vref VIL (AC) max Input slew rate for rising edge VIL (DC) max Vref Input slew rate for falling edge VIH (DC) min Vref Defined by Applicable for VIH (AC) min-Vref Delta TRS Vref-VIL (AC) max Setup (tIS, tDS) Delta TFS Vref-VIL (DC) max Delta TFH VIH (DC) min-Vref Hold (tIH, tDH) Delta TRH < Table 5.3.1: Single-Ended Input Slew Rate Definition > Part A: Set up Single Ended input Voltage(DQ,ADD, CMD) Delta TRS vIH(AC)min vIH(DC)min vRefDQ or vRefCA vIL(DC)max vIL(AC)max Delta TFS Rev. 0.2 / Apr. 2009 15 HMT451S6MMP(R)8C P a rt B : H o ld Single Ended input Voltage(DQ,ADD, CMD) D e lta T R H v IH (A C )m in v IH (D C )m in v R e fD Q o r v R e fC A v IL (D C )m a x v IL (A C )m a x D e lta T F H < Figure 5.3.1: Input Nominal Slew Rate Definition for Single-Ended Signals > 5.3.2 Differential Input Signals Input slew rate for differential signals (CK, CK# and DQS, DQS#) are defined and measured as shown in below Table and Figure . Description Differential input slew rate for rising edge (CK-CK and DQS-DQS) Differential input slew rate for falling edge (CK-CK and DQS-DQS) Measured Min Max VILdiffmax VIHdiffmin VIHdiffmin VILdiffmax Defined by VIHdiffmin-VILdiffmax DeltaTRdiff VIHdiffmin-VILdiffmax DeltaTFdiff Note: The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds. Rev. 0.2 / Apr. 2009 16 Differential Input Voltage (i.e. DQS-DQS; CK-CK) HMT451S6MMP(R)8C D e lta T R d iff vIH d iffm in 0 vILd iffm a x D e lta T F d iff < Figure 5.3.2: Differential Input Slew Rate Definition for DQS,DQS# and CK,CK# > 5.4 DC & AC Output Buffer Levels 5.4.1 Single Ended DC & AC Output Levels Below table shows the output levels used for measurements of single ended signals. Symbol VOH(DC) VOM(DC) VOL(DC) VOH(AC) VOL(AC) Parameter DC output high measurement level (for IV curve linearity) DC output mid measurement level (for IV curve linearity) DC output low measurement level (for IV curve linearity) AC output high measurement level (for output SR) DDR3-800, 1066 Unit 0.8 x VDDQ V 0.5 x VDDQ V 0.2 x VDDQ V VTT + 0.1 x VDDQ V Notes 1 AC output low measurement level VTT - 0.1 x VDDQ V 1 (for output SR) 1. The swing of ± 0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT = VDDQ / 2. Rev. 0.2 / Apr. 2009 17 HMT451S6MMP(R)8C 5.4.2 Differential DC & AC Output Levels Below table shows the output levels used for measurements of differential signals. Symbol VOHdiff (AC) Parameter AC differential output high measurement level (for output SR) DDR3-800, 1066 Unit Notes + 0.2 x VDDQ V 1 VOLdiff (AC) AC differential output low - 0.2 x VDDQ V 1 measurement level (for output SR) 1. The swing of °æ 0.2 x VDDQ is based on approximately 50% of the static differential output high or low swing with a driver impedance of 40ߟ and an effective test load of 25ߟ to VTT = VDDQ/2 at each of the differential output 5.4.3 Single Ended Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in below Table and Figure 5.4.3. Description Measured From To Single ended output slew rate for rising edge VOL(AC) VOH(AC) Single ended output slew rate for falling edge VOH(AC) VOL(AC) Defined by VOH(AC)-VOL(AC) DeltaTRse VOH(AC)-VOL(AC) DeltaTFse Note: Output slew rate is verified by design and characterisation, and may not be subject to production test. Single Ended Output Voltage(l.e.DQ) D e lt a T R s e vO H (A C ) V∏ vO L(A C ) D e lt a T F s e < Figure 5.4.3: Single Ended Output Slew Rate Definition > Rev. 0.2 / Apr. 2009 18 HMT451S6MMP(R)8C Parameter Symbol Single-ended Output Slew Rate SRQse DDR3-800 DDR3-1066 Min Max Min Max 2.5 5 2.5 5 Units V/ns *** Description: SR: Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) For Ron = RZQ/7 setting < Table 5.4.3: Output Slew Rate (single-ended) > 5.4.4 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff (AC) and VOHdiff (AC) for differential signals as shown in below Table and Figure 5.4.4 Description Measured Defined by From To Differential output slew rate for rising edge VOLdiff (AC) VOHdiff (AC) Differential output slew rate for falling edge VOHdiff (AC) VOLdiff (AC) VOHdiff (AC)-VOLdiff (AC) DeltaTRdiff VOHdiff (AC)-VOLdiff (AC) DeltaTFdiff Note: Output slew rate is verified by design and characterization, and may not be subject to production test.. Differential Output Voltage(i.e. DQS-DQS) D e lta T R d iff v O H d iff(A C ) O v O L d iff(A C ) D e lta T F d iff < Figure 5.4.4: Differential Output Slew Rate Definition > Rev. 0.2 / Apr. 2009 19 HMT451S6MMP(R)8C DDR3-800 Parameter Differential Output Slew Rate Symbol SRQdiff DDR3-1066 Min Max Min Max 5 10 5 10 Units V/ns ***Description: SR: Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) diff: Differential Signals For Ron = RZQ/7 setting < Table 5.4.4: Differential Output Slew Rate > 5.5 Overshoot and Undershoot Specifications 5.5.1 Address and Control Overshoot and Undershoot Specifications Description Maximum peak amplitude allowed for overshoot area (see Figure) Maximum peak amplitude allowed for undershoot area (see Figure) Maximum overshoot area above VDD (See Figure) Maximum undershoot area below VSS (See Figure) Specification DDR3-800 DDR3-1066 0.4V 0.4V 0.4V 0.4V 0.67 V-ns 0.5 V-ns 0.67 V-ns 0.5 V-ns < Table 5.5.1: AC Overshoot/Undershoot Specification for Address and Control Pins > < Figure 5.5.1: Address and Control Overshoot and Undershoot Definition > Maximum Amplitude Overshoot Area Volts (V) VDD VSS Undershoot Area Maximum Amplitude Time (ns) Rev. 0.2 / Apr. 2009 20 HMT451S6MMP(R)8C 5.5.2 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications Specification Description Maximum peak amplitude allowed for overshoot area (see Figure) Maximum peak amplitude allowed for undershoot area (see Figure) Maximum overshoot area above VDDQ (See Figure) Maximum undershoot area below VSSQ (See Figure) DDR3-800 DDR3-1066 0.4V 0.4V 0.4V 0.4V 0.25 V-ns 0.19 V-ns 0.25 V-ns 0.19 V-ns < Table 5.5.2: AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask > M a x im u m A m p litu d e O v e rsh o o t A re a V o lts (V ) VDDQ VSSQ U n d e rsh o o t A re a M a x im u m A m p litu d e T im e (n s) C lo c k , D a ta S tro b e a n d M a sk O v e rsh o o t a n d U n d e rsh o o t D e fin itio n < Figure 5.5.2: Clock, Data, Strobe and Mask Overshoot and Undershoot Definition > Rev. 0.2 / Apr. 2009 21 HMT451S6MMP(R)8C 5.6 Pin Capacitance Parameter Symbol Input/output capacitance (DQ, DM, DQS, DQS#, TDQS, TDQS#) DDR3-800 DDR3-1066 Units Notes Min Max Min Max CIO TBD TBD TBD TBD pF 1,2,3 Input capacitance, CK and CK# CCK TBD TBD TBD TBD pF 2,3,5 Input capacitance delta CK and CK# CDCK TBD TBD TBD TBD pF 2,3,4 CI TBD TBD TBD TBD pF 2,3,6 CDDQS TBD TBD TBD TBD pF 2,3,12 CDI_CTRL TBD TBD TBD TBD pF 2,3,7,8 Input capacitance delta CDI_ADD_ (All ADD/CMD input-only pins) CMD TBD TBD TBD TBD pF 2,3,9, 10 Input/output capacitance delta (DQ, DM, DQS, DQS#) TBD TBD TBD TBD pF 2,3,11 Input capacitance (All other input-only pins) Input capacitance delta, DQS and DQS# Input capacitance delta (All CTRL input-only pins) CDIO Notes: 1. TDQS/TDQS# are not necessarily input function but since TDQS is sharing DM pin and the parasitic characterization of TDQS/TDQS# should be close as much as possible, Cio & Cdio requirement is applied (recommend deleting note or changing to “Although the DM, TDQS and TDQS# pins have different functions, the loading matches DQ and DQS.”) 2. This parameter is not subject to production test. It is verified by design and characterization. Input capacitance is measured according to JEP147(“PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER(VNA)”) with VDD, VDDQ, VSS,VSSQ applied and all other pins floating (except the pin under test, CKE, RESET# and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off. 3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here 4. Absolute value of CCK-CCK#. 5. The minimum CCK will be equal to the minimum CI. 6. Input only pins include: ODT, CS, CKE, A0-A15, BA0-BA2, RAS#, CAS#, WE#. 7. CTRL pins defined as ODT, CS and CKE. 8. CDI_CTRL=CI(CNTL) - 0.5 * CI(CLK) + CI(CLK#)) 9. ADD pins defined as A0-A15, BA0-BA2 and CMD pins are defined as RAS#, CAS# and WE#. 10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK#)) 11. CDIO=CIO(DQ) - 0.5*(CIO(DQS)+CIO(DQS#)) 12. Absolute value of CIO(DQS) - CIO(DQS#) Rev. 0.2 / Apr. 2009 22 HMT451S6MMP(R)8C 5.7 IDD Specifications (TCASE: 0 to 95oC) 4GB, 512M x 64 SO-DIMM: HMT451S6MMP8C Symbol DDR3 800 DDR3 1066 Unit note IDD0 IDD1 IDD2N IDD2NT IDD2QNT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDDQ4R IDD4W IDD5B IDD6 IDD6ET IDD6TC IDD7 1152 1376 mA x8 1320 1536 mA x8 848 1072 mA x8 864 1104 mA x8 1232 1264 mA x8 208 208 mA x8 400 528 mA x8 832 1056 mA x8 912 1152 mA x8 512 672 mA x8 1680 2096 mA x8 920 1048 mA x8 1456 1856 mA x8 2488 2704 mA x8 192 192 mA x8 192 192 mA x8 192 192 mA x8 2560 2888 mA x8 Rev. 0.2 / Apr. 2009 23 HMT451S6MMP(R)8C 5.7 IDD Measurement Conditions In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 1. shows the setup and test load for IDD and IDDQ measurements. • IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and IDD7) are measured as time-averaged currents with all VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents. • IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ currents. Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one merged-power layer in Module PCB. For IDD and IDDQ measurements, the following definitions apply: • ”0” and “LOW” is defined as VIN <= VILAC(max). • ”1” and “HIGH” is defined as VIN >= VIHAC(max). • “FLOATING” is defined as inputs are VREF - VDD/2. • Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1 on Page 26. • Basic IDD and IDDQ Measurement Conditions are described in Table 2 on page 26. • Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 on page 30 through Table 10 on page 36. • IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting RON = RZQ/7 (34 Ohm in MR1); Qoff = 0B (Output Buffer enabled in MR1); RTT_Nom = RZQ/6 (40 Ohm in MR1); RTT_Wr = RZQ/2 (120 Ohm in MR2); TDQS Feature disabled in MR1 • Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started. • Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW} • Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH} Rev. 0.2 / Apr. 2009 24 HMT451S6MMP(R)8C IDDQ (optional) IDD VDD VDDQ RESET CK/CK DDR3 SDRAM CKE CS RAS, CAS, WE A, BA ODT ZQ VSS DQS, DQS DQ, DM, TDQS, TDQS RTT = 25 Ohm VDDQ/2 VSSQ Figure 1 - Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements [Note: DIMM level Output test load condition may be different from above] Application specific memory channel environment Channel IO Power Simulation IDDQ Test Load IDDQ Simulation IDDQ Simulation Correction Channel IO Power Number Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement Rev. 0.2 / Apr. 2009 25 HMT451S6MMP(R)8C Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns DDR3-800 DDR3-1066 5-5-5 7-7-7 tCK 2.5 1.875 ns CL 5 7 nCK nRCD 5 7 nCK nRC 20 27 nCK nRAS 15 20 nCK Symbol Unit 5 7 nCK x4/x8 16 20 nCK x16 20 27 nCK x4/x8 4 4 nCK x16 4 6 nCK nRFC -512Mb 36 48 nCK nRFC-1 Gb 44 59 nCK nRFC- 2 Gb 64 86 nCK nRFC- 4 Gb 120 160 nCK nRFC- 8 Gb 140 187 nCK nRP nFAW nRRD Table 2 -Basic IDD and IDDQ Measurement Conditions Symbol Description Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: High IDD0 between ACT and PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3 on page 30; Data IO: FLOATING; DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3 on page 30); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 3 on page 30 Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: IDD1 High between ACT, RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to Table 4 on page 31; DM: stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table 4 on page 31); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 4 page 31 Rev. 0.2 / Apr. 2009 26 HMT451S6MMP(R)8C Precharge Standby Current CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, IDD2N Address, Bank Address Inputs: partially toggling according to Table 5 on page 32; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 5 on page 32 Precharge Standby ODT Current CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, IDD2NT Address, Bank Address Inputs: partially toggling according to Table 6 on page 32; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: toggling according to Table 6 on page 32; Pattern Details: see Table 6 on page 32 IDDQ2NT Precharge Standby ODT IDDQ Current (optional Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current ) Precharge Power-Down Current Slow Exit CKE: Low; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, IDD2P0 Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exitc) Precharge Power-Down Current Fast Exit CKE: Low; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, IDD2P1 Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exitc) Precharge Quiet Standby Current IDD2Q CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 IDDQ4R Operating Burst Read IDDQ Current (optional Same definition like for IDD4R, however measuring IDDQ current instead of IDD current ) Rev. 0.2 / Apr. 2009 27 HMT451S6MMP(R)8C Active Standby Current CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, IDD3N Address, Bank Address Inputs: partially toggling according to Table 5 on page 32; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 5 on page 32 Active Power-Down Current IDD3P CKE: Low; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling according to Table 7 on page 33; Data IO: IDD4R seamless read data burst with different data between one burst and the next one according to Table 7 on page 33; DM: stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7 on page 33); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 7 on page 33 Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see Table 1 on page 26; BL: 8a); AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially toggling according to Table 8 on page 34; Data IO: IDD4W seamless read data burst with different data between one burst and the next one according to Table 8 on page 34; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8 on page 34); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at HIGH; Pattern Details: see Table 8 on page 34 Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: see Table 1 on page 26; BL: 8a); AL: 0; CS: High between IDD5B REF; Command, Address, Bank Address Inputs: partially toggling according to Table 9 on page 35; Data IO: FLOATING; DM: stable at 0; Bank Activity: REF command every nREF (see Table 9 on page 35); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 9 on page 35 Rev. 0.2 / Apr. 2009 28 HMT451S6MMP(R)8C Self-Refresh Current: Normal Temperature Range TCASE: 0 - 85 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale); IDD6 CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1 on page 26; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: FLOATING; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING Self-Refresh Current: Extended Temperature Range (optional)f) TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Extend- IDD6ET ede); CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1 on page 26; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: FLOATING; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING Auto Self-Refresh Current (optional)f) TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Enabledd);Self-Refresh Temperature Range (SRT): Normale); IDD6TC CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1 on page 26; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: FLOATING; DM: stable at 0; Bank Activity: Auto SelfRefresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1 on page 26; BL: 8a); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially tog- IDD7 gling according to Table 10 on page 36; Data IO: read data burst with different data between one burst and the next one according to Table 10 on page 36; DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,...7) with different addressing, wee Table 10 on page 36; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 10 on page 36 a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature range f) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device Rev. 0.2 / Apr. 2009 29 HMT451S6MMP(R)8C Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] Datab) 0 ACT 0 0 1 1 0 0 00 0 0 0 0 - 1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 - D, D 1 1 1 1 0 0 00 0 0 0 0 - 0 0 0 - 0 F 0 - 0 - 0 Cycle Number Sub-Loop CKE CK, CK Table 3 - IDD0 Measurement-Loop Patterna) 3,4 ... nRAS ... Static High toggling 1*nRC+0 ... 1*nRC+nRAS repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 repeat pattern 1...4 until nRC - 1, truncate if necessary ACT 0 0 1 1 0 00 00 0 repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 0 ... repeat pattern 1...4 until 2*nRC - 1, truncate if necessary 1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead F a) DM must be driven LOW all the time. DQS, DQS are FLOATING. b) DQ signals are FLOATING. Rev. 0.2 / Apr. 2009 30 HMT451S6MMP(R)8C 0 A[2:0] A[6:3] A[9:7] A[10] A[15:11] BA[2:0] ODT WE CAS RAS CS ACT 0 0 1 1 0 0 00 0 0 0 0 - 1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 - 3,4 D, D 1 1 1 1 0 0 00 0 0 0 0 - 0 0 0 0000000 0 0 0 0 - nRCD ... nRAS ... Static High Datab) 0 ... toggling Command Cycle Number Sub-Loop CKE CK, CK Table 4 - IDD1 Measurement-Loop Patterna) repeat pattern 1...4 until nRCD - 1, truncate if necessary RD 0 1 0 1 0 0 00 0 repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC+0 ACT 0 0 1 1 0 0 00 0 0 F 0 - 1*nRC+1,2 D, D 1 0 0 0 0 0 00 0 0 F 0 - D, D 1 1 1 1 0 0 00 0 0 F 0 - 1*nRC+3,4 ... 1*nRC+nRCD ... 1*nRC+nRAS repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary RD 0 1 0 1 0 0 00 0 0 F 0 0011001 1 repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 0 F ... repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary 1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead 0 - a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise FLOATING. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are FLOATING. Rev. 0.2 / Apr. 2009 31 HMT451S6MMP(R)8C 0 Static High A[2:0] A[6:3] A[9:7] A[10] A[15:11] BA[2:0] ODT WE CAS RAS CS Datab) 0 D 1 0 0 0 0 0 0 0 0 0 0 - 1 D 1 0 0 0 0 0 0 0 0 0 0 - 2 D 1 1 1 1 0 0 0 0 0 F 0 - D 1 1 1 1 0 0 0 0 0 F 0 - 3 toggling Command Cycle Number Sub-Loop CKE CK, CK Table 5 - IDD2N and IDD3N Measurement-Loop Patterna) 1 4-7 repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 8-11 repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 12-15 repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 16-19 repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 20-23 repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 24-17 repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 28-31 repeat Sub-Loop 0, use BA[2:0] = 7 instead a) DM must be driven LOW all the time. DQS, DQS are FLOATING. b) DQ signals are FLOATING. Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] Datab) 0 D 1 0 0 0 0 0 0 0 0 0 0 - 1 D 1 0 0 0 0 0 0 0 0 0 0 - 2 D 1 1 1 1 0 0 0 0 0 F 0 - 0 0000000 0 0 Cycle Number Sub-Loop CKE CK, CK Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Patterna) Static High toggling 3 D 1 1 1 1 0 0 0 1 4-7 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1 2 8-11 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2 3 12-15 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3 4 16-19 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4 5 20-23 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5 6 24-17 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6 7 28-31 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7 0 0 F a) DM must be driven LOW all the time. DQS, DQS are FLOATING. b) DQ signals are FLOATING. Rev. 0.2 / Apr. 2009 32 HMT451S6MMP(R)8C Static High toggling 1 CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 Command 0 Cycle Number Sub-Loop CKE CK, CK Table 7 - IDD4R and IDDQ24RMeasurement-Loop Patterna) Datab) RD 0 1 0 1 0 0 00 0 0 0 0 000000 00 D 1 0 0 0 0 0 00 0 0 0 0 - 2,3 D,D 1 1 1 1 0 0 00 0 0 0 0 - 4 RD 0 1 0 1 0 0 00 0 0 F 0 001100 11 5 D 1 0 0 0 0 0 00 0 0 F 0 - D,D 1 1 1 1 0 0 00 0 0 F 0 - 6,7 1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1 2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2 3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3 4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4 5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5 6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6 7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7 a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise FLOATING. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are FLOATING. Rev. 0.2 / Apr. 2009 33 HMT451S6MMP(R)8C Static High toggling 1 CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 Command 0 Cycle Number Sub-Loop CKE CK, CK Table 8 - IDD4W Measurement-Loop Patterna) Datab) WR 0 1 0 0 1 0 00 0 0 0 0 000000 00 D 1 0 0 0 1 0 00 0 0 0 0 - 2,3 D,D 1 1 1 1 1 0 00 0 0 0 0 - 4 WR 0 1 0 0 1 0 00 0 0 F 0 001100 11 5 D 1 0 0 0 1 0 00 0 0 F 0 - D,D 1 1 1 1 1 0 00 0 0 F 0 - 6,7 1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1 2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2 3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3 4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4 5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5 6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6 7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7 a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise FLOATING. b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are FLOATING. Rev. 0.2 / Apr. 2009 34 HMT451S6MMP(R)8C A[2:0] A[6:3] A[9:7] A[10] A[15:11] BA[2:0] ODT WE CAS RAS CS Command Cycle Number Sub-Loop CKE Datab) 0 0 REF 0 0 0 1 0 0 0 0 0 0 0 - 1 1.2 D, D 1 0 0 0 0 0 00 0 0 0 0 - 3,4 D, D 1 1 1 1 0 0 00 0 0 F 0 - Static High toggling CK, CK Table 9 - IDD5B Measurement-Loop Patterna) 2 5...8 repeat cycles 1...4, but BA[2:0] = 1 9...12 repeat cycles 1...4, but BA[2:0] = 2 13...16 repeat cycles 1...4, but BA[2:0] = 3 17...20 repeat cycles 1...4, but BA[2:0] = 4 21...24 repeat cycles 1...4, but BA[2:0] = 5 25...28 repeat cycles 1...4, but BA[2:0] = 6 29...32 repeat cycles 1...4, but BA[2:0] = 7 33...nRFC-1 repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary. a) DM must be driven LOW all the time. DQS, DQS are FLOATING. b) DQ signals are FLOATING. Rev. 0.2 / Apr. 2009 35 HMT451S6MMP(R)8C Table 10 - IDD7 Measurement-Loop Patterna) 0 1 2 3 4 Static High toggling 5 6 7 8 9 10 11 12 13 14 15 16 17 18 14 A[2:0] A[6:3] A[9:7] A[10] A[15:11] BA[2:0] ODT WE CAS RAS CS Command Cycle Number Sub-Loop CKE CK, CK ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9 Datab) 0 ACT 0 0 1 1 0 0 00 0 0 0 0 RDA 0 1 0 1 0 0 00 1 0 0 0 00000000 D 1 0 0 0 0 0 00 0 0 0 0 repeat above D Command until nRRD - 1 ACT 0 0 1 1 0 1 00 0 0 F 0 RDA 0 1 0 1 0 1 00 1 0 F 0 00110011 D 1 0 0 0 0 1 00 0 0 F 0 repeat above D Command until 2* nRRD - 1 repeat Sub-Loop 0, but BA[2:0] = 2 repeat Sub-Loop 1, but BA[2:0] = 3 D 1 0 0 0 0 3 00 0 0 F 0 4*nRRD ... Assert and repeat above D Command until nFAW - 1, if necessary nFAW repeat Sub-Loop 0, but BA[2:0] = 4 nFAW+nRRD repeat Sub-Loop 1, but BA[2:0] = 5 nFAW+2*nRRD repeat Sub-Loop 0, but BA[2:0] = 6 nFAW+3*nRRD repeat Sub-Loop 1, but BA[2:0] = 7 D 1 0 0 0 0 7 00 0 0 F 0 nFAW+4*nRRD ... Assert and repeat above D Command until 2* nFAW - 1, if necessary 2*nFAW+0 ACT 0 0 1 1 0 0 00 0 0 F 0 2*nFAW+1 RDA 0 1 0 1 0 0 00 1 0 F 0 00110011 D 1 0 0 0 0 0 00 0 0 F 0 2&nFAW+2 Repeat above D Command until 2* nFAW + nRRD - 1 2*nFAW+nRRD ACT 0 0 1 1 0 1 00 0 0 0 0 2*nFAW+nRRD+1 RDA 0 1 0 1 0 1 00 1 0 0 0 00000000 D 1 0 0 0 0 1 00 0 0 0 0 2&nFAW+nRRD+ 2 Repeat above D Command until 2* nFAW + 2* nRRD - 1 2*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 2 2*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 3 D 1 0 0 0 0 0 00 0 0 0 0 2*nFAW+4*nRRD Assert and repeat above D Command until 3* nFAW - 1, if necessary 3*nFAW repeat Sub-Loop 10, but BA[2:0] = 4 3*nFAW+nRRD repeat Sub-Loop 11, but BA[2:0] = 5 3*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 6 3*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 7 D 1 0 0 0 0 0 00 0 0 0 0 3*nFAW+4*nRRD Assert and repeat above D Command until 4* nFAW - 1, if necessary 1 2 ... nRRD nRRD+1 nRRD+2 ... 2*nRRD 3*nRRD a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise FLOATING. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are FLOATING. Rev. 0.2 / Apr. 2009 36 HMT451S6MMP(R)8C 6. Electrical Characteristics and AC Timing 6.1 Refresh Parameters by Device Density Parameter Symbol 512Mb 1Gb 2Gb 4Gb 8Gb Units tRFC 90 110 160 300 350 ns 0 ×C < TCASE < 85 ×C 7.8 7.8 7.8 7.8 7.8 us 85 ×C < TCASE < 95 ×C 3.9 3.9 3.9 3.9 3.9 us REF command to ACT or REF command time Average periodic refresh interval tREFI 6.2 DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin DDR3 800 Speed Bin DDR3-800E CL - nRCD - nRP Unit 6-6-6 Symbol min max Internal read command to first data tAA 15 20 ns ACT to internal read or write delay time tRCD 15 — ns PRE command period tRP 15 — ns ACT to ACT or REF command period tRC 52.5 — ns ACT to PRE command period tRAS 37.5 9 * tREFI ns Parameter CL = 5 CWL = 5 tCK(AVG) CL = 6 CWL = 5 tCK(AVG) Reserved 2.5 3.3 ns 1)2)3)4) ns 1)2)3) Supported CL Settings 6 nCK Supported CWL Settings 5 nCK Rev. 0.2 / Apr. 2009 Notes 37 HMT451S6MMP(R)8C DDR3 1066 Speed Bin DDR3-1066F CL - nRCD - nRP 7-7-7 Unit Parameter Symbol min max Internal read command to first data tAA 13.125 20 ns ACT to internal read or write delay time tRCD 13.125 — ns PRE command period tRP 13.125 — ns ACT to ACT or REF command period tRC 50.625 — ns ACT to PRE command period tRAS 37.5 9 * tREFI ns CL = 5 CL = 6 CL = 7 CL = 8 Note CWL = 5 tCK(AVG) Reserved ns 1)2)3)4)6) CWL = 6 tCK(AVG) Reserved ns 4) CWL = 5 tCK(AVG) ns 1)2)3)6) CWL = 6 tCK(AVG) Reserved ns 1)2)3)4) CWL = 5 tCK(AVG) Reserved ns 4) CWL = 6 tCK(AVG) ns 1)2)3)4) CWL = 5 tCK(AVG) ns 4) CWL = 6 tCK(AVG) ns 1)2)3) 2.5 3.3 1.875 < 2.5 Reserved 1.875 < 2.5 Supported CL Settings 6, 7, 8 nCK Supported CWL Settings 5, 6 nCK Rev. 0.2 / Apr. 2009 38 HMT451S6MMP(R)8C *Speed Bin Table Notes* Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V); Notes: 1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK (AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting. 2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK (AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK (AVG) [ns], rounding up to the next ‘Supported CL’. 3. tCK(AVG).MAX limits: Calculate tCK (AVG) = tAA.MAX / CLSELECTED and round the resulting tCK (AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CLSELECTED. 4. ‘Reserved’ settings are not allowed. User must program a different value. 5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier’s data sheet and SPD information if and how this setting is supported. 6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. Rev. 0.2 / Apr. 2009 39 HMT451S6MMP(R)8C 7. DIMM Outline Diagram 7.1 512Mx64 - HMT451S6MMP8C Front View Side 3.80mm max 67.60mm 2.0 30.0mm 4.00 ± 0.10 Detail-B pin 1 20.0mm Detail- A 6.00 SPD 1.00 ± 0.08 mm pin 203 21.00 2.15 2 X φ 1.80 ± 0.10 39.00 1.65 ± 0.10 3.00 Back View Detail of Contacts A Detail of Contacts B 2.55 0.3 ± 0.15 4.00 2.55 0.20 0.45 ± 0.10 0.3~1.0 0.60 1.00 ± 0.05 3.00 Rev. 0.2 / Apr. 2009 40