Freescale MCF5328 Microprocessor data sheet Datasheet

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: MCF5329DS
Rev. 4, 04/2008
MCF5329
MAPBGA–256
17mm x 17mm
MCF532x ColdFire®
Microprocessor Data Sheet
Features
• Version 3 ColdFire variable-length RISC processor core
• System debug support
• JTAG support for system level board testing
• On-chip memories
– 16-Kbyte unified write-back cache
– 32-Kbyte dual-ported SRAM on CPU internal bus,
accessible by core and non-core bus masters (e.g., DMA,
FEC, LCD controller, and USB host and OTG)
• Power management
• Liquid Crystal Display Controller (LCDC)
• Embedded Voice-over-IP (VoIP) system solution
• SDR/DDR SDRAM Controller
• Universal Serial Bus (USB) Host Controller
• Universal Serial Bus (USB) On-the-Go (OTG) controller
• Synchronous Serial Interface (SSI)
• Fast Ethernet Controller (FEC)
• Cryptography Hardware Accelerators
• FlexCAN Module
• Three Universal Asynchronous Receiver Transmitters
(UARTs)
• I2C Module
• Queued Serial Peripheral Interface (QSPI)
• Pulse Width Modulation (PWM) module
• Real Time Clock
• Four 32-bit DMA Timers
• Software Watchdog Timer
• Four Periodic Interrupt Timers (PITs)
• Phase Locked Loop (PLL)
• Interrupt Controllers (x2)
• DMA Controller
• FlexBus (External Interface)
• Chip Configuration Module (CCM)
• Reset Controller
• General Purpose I/O interface
© Freescale Semiconductor, Inc., 2008. All rights reserved.
MAPBGA–196
15mm x 15mm
Table of Contents
1
2
3
4
5
MCF532x Family Comparison . . . . . . . . . . . . . . . . . . . . . . . . .3
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Hardware Design Considerations . . . . . . . . . . . . . . . . . . . . . . .5
3.1 PLL Power Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
3.2 USB Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
3.3 Supply Voltage Sequencing and Separation Cautions . .5
3.3.1 Power Up Sequence . . . . . . . . . . . . . . . . . . . . . .5
3.3.2 Power Down Sequence . . . . . . . . . . . . . . . . . . . .6
Pin Assignments and Reset States . . . . . . . . . . . . . . . . . . . . .6
4.1 Signal Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
4.2 Pinout—256 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . .14
4.3 Pinout—196 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . .15
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
5.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
5.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .17
5.3 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
5.4 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . .18
5.5 Oscillator and PLL Electrical Characteristics . . . . . . . .19
5.6 External Interface Timing Characteristics . . . . . . . . . . .20
5.6.1 FlexBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.7 SDRAM Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
5.7.1 SDR SDRAM AC Timing Characteristics. . . . . .23
5.7.2 DDR SDRAM AC Timing Characteristics . . . . .
General Purpose I/O Timing . . . . . . . . . . . . . . . . . . . .
Reset and Configuration Override Timing . . . . . . . . . .
LCD Controller Timing Specifications . . . . . . . . . . . . .
USB On-The-Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ULPI Timing Specification . . . . . . . . . . . . . . . . . . . . . .
SSI Timing Specifications . . . . . . . . . . . . . . . . . . . . . .
I2C Input/Output Timing Specifications . . . . . . . . . . . .
Fast Ethernet AC Timing Specifications . . . . . . . . . . .
5.15.1 MII Receive Signal Timing . . . . . . . . . . . . . . . .
5.15.2 MII Transmit Signal Timing . . . . . . . . . . . . . . . .
5.15.3 MII Async Inputs Signal Timing . . . . . . . . . . . .
5.15.4 MII Serial Management Channel Timing . . . . .
5.16 32-Bit Timer Module Timing Specifications . . . . . . . . .
5.17 QSPI Electrical Specifications . . . . . . . . . . . . . . . . . . .
5.18 JTAG and Boundary Scan Timing . . . . . . . . . . . . . . . .
5.19 Debug AC Timing Specifications . . . . . . . . . . . . . . . . .
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1 Package Dimensions—256 MAPBGA . . . . . . . . . . . . .
7.2 Package Dimensions—196 MAPBGA . . . . . . . . . . . . .
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
6
7
8
25
28
29
30
33
33
33
35
37
37
37
38
38
39
39
40
42
42
46
46
47
48
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
2
Freescale Semiconductor
MCF532x Family Comparison
USB OTG
USB Host
M5
S4
M6
FlexBus
Chip
Selects
SDRAMC
S1
LCDC
M2
M1 S7
USB OTG
USB Host
LCDC
SDRAMC
QSPI
External
Interface
XBS
M4
(To/From PADI)
(To/From SRAM backdoor)
M0
S6
Cryptography
Modules
I 2C
UART
INTC0
RNGA
INTC1
FEC
MDHA
QSPI
UARTs
PWMs, EPORT,
Watchdog, PITs
PLL
RTC
XTAL
EXTAL32K
LCDC
EXTAL
CLKOUT
SSI
Reset
TRST
TCLK
TMS
TDI
TDO
16 KByte
Cache
(1024x32)x4
SDRAMC
FEC
CANRX
CANTX
SSI
CS[5:0]
TA
TS
BE/BWE[3:0]
PORTS
USB Host
XTAL32K
XCVR XCVR
V3 ColdFire CPU
USB OTG
RESET
RCON
RSTOUT
EMAC
BDM
DIV
PWM
DMA Timer
DREQn
DACKn
D[31:0]
A[23:0]
R/W
DMA
ULPI Interface
(To/From PADI)
I2C
FlexCAN
DMA Timers
(To/From PADI)
PADI — Pin Muxing
SDRAMC
SKHA
(To/From PADI)
32 KByte
SRAM
(4096x32)x2
JTAG
TAP
JTAG_EN
(To/From XBS backdoor)
Figure 1. MCF5329 Block Diagram
1
MCF532x Family Comparison
The following table compares the various device derivatives available within the MCF532x family.
Table 1. MCF532x Family Configurations
Module
ColdFire Version 3 Core with EMAC
(Enhanced Multiply-Accumulate Unit)
MCF5327
MCF5328
MCF53281
MCF5329
•
•
•
•
Core (System) Clock
up to 240 MHz
Peripheral and External Bus Clock
(Core clock ÷ 3)
up to 80 MHz
Performance (Dhrystone/2.1 MIPS)
up to 211
Unified Cache
16 Kbytes
Static RAM (SRAM)
32 Kbytes
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
3
Ordering Information
Table 1. MCF532x Family Configurations (continued)
Module
MCF5327
MCF5328
MCF53281
MCF5329
LCD Controller
•
•
•
•
SDR/DDR SDRAM Controller
•
•
•
•
USB 2.0 Host
•
•
•
•
USB 2.0 On-the-Go
•
•
•
•
—
•
•
•
•
•
•
•
Fast Ethernet Controller (FEC)
—
•
•
•
Cryptography Hardware Accelerators
—
—
—
•
Embedded Voice-over-IP System Solution
—
—
•
—
FlexCAN 2.0B communication module
—
—
•
•
UARTs
3
3
3
3
I2C
•
•
•
•
QSPI
•
•
•
•
PWM Module
•
•
•
•
Real Time Clock
•
•
•
•
32-bit DMA Timers
4
4
4
4
Watchdog Timer (WDT)
•
•
•
•
Periodic Interrupt Timers (PIT)
4
4
4
4
Edge Port Module (EPORT)
•
•
•
•
Interrupt Controllers (INTC)
2
2
2
2
16-channel Direct Memory Access (DMA)
•
•
•
•
FlexBus External Interface
•
•
•
•
General Purpose I/O Module (GPIO)
•
•
•
•
JTAG - IEEE® 1149.1 Test Access Port
•
•
•
•
196
MAPBGA
256
MAPBGA
256
MAPBGA
256
MAPBGA
UTMI+ Low Pin Interface (ULPI)
Synchronous Serial Interface (SSI)
Package
2
Ordering Information
Table 2. Orderable Part Numbers
Freescale Part
Number
Description
Package
Speed
Temperature
MCF5327CVM240
MCF5327 RISC Microprocessor
196 MAPBGA
240 MHz
–40° to +85° C
MCF5328CVM240
MCF5328 RISC Microprocessor
256 MAPBGA
240 MHz
–40° to +85° C
MCF53281CVM240
MCF53281 RISC Microprocessor
256 MAPBGA
240 MHz
–40° to +85° C
MCF5329CVM240
MCF5329 RISC Microprocessor
256 MAPBGA
240 MHz
–40° to +85° C
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
4
Freescale Semiconductor
Hardware Design Considerations
3
Hardware Design Considerations
3.1
PLL Power Filtering
To further enhance noise isolation, an external filter is strongly recommended for PLL analog VDD pins. The filter shown in
Figure 2 should be connected between the board VDD and the PLLVDD pins. The resistor and capacitors should be placed as
close to the dedicated PLLVDD pin as possible.
10 Ω
Board IVDD
PLL VDD Pin
10 µF
0.1 µF
GND
Figure 2. System PLL VDD Power Filter
3.2
USB Power Filtering
To minimize noise, external filters are required for each of the USB power pins. The filter shown in Figure 3 should be
connected between the board EVDD or IVDD and each of the USBVDD pins. The resistor and capacitors should be placed as
close to the dedicated USBVDD pin as possible.
0Ω
Board EVDD
USB VDD Pin
10 µF
0.1 µF
GND
Figure 3. USB VDD Power Filter
NOTE
In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel
with those shown.
3.3
Supply Voltage Sequencing and Separation Cautions
The relationship between SDVDD and EVDD is non-critical during power-up and power-down sequences. SDVDD (2.5V or
3.3V) and EVDD are specified relative to IVDD.
3.3.1
Power Up Sequence
If EVDD/SDVDD are powered up with IVDD at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected to
the EVDD/SDVDD to be in a high impedance state. There is no limit on how long after EVDD/SDVDD powers up before IVDD
must powered up. IVDD should not lead the EVDD, SDVDD, or PLLVDD by more than 0.4 V during power ramp-up or there is
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
5
Pin Assignments and Reset States
high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 500 us to avoid
turning on the internal ESD protection clamp diodes.
3.3.2
Power Down Sequence
If IVDD/PLLVDD are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state.
There is no limit on how long after IVDD and PLLVDD power down before EVDD or SDVDD must power down. IVDD should
not lag EVDD, SDVDD, or PLLVDD going low by more than 0.4 V during power down or there is undesired high current in the
ESD protection diodes. There are no requirements for the fall times of the power supplies.
The recommended power down sequence is as follows:
1.
2.
Drop IVDD/PLLVDD to 0 V.
Drop EVDD/SDVDD supplies.
4
Pin Assignments and Reset States
4.1
Signal Multiplexing
The following table lists all the MCF532x pins grouped by function. The Dir column is the direction for the primary function
of the pin only. Refer to Section 7, “Package Information,” for package diagrams. For a more detailed discussion of the
MCF532x signals, consult the MCF5329 Reference Manual (MCF5329RM).
NOTE
In this table and throughout this document, a single signal within a group is designated
without square brackets (i.e., A23), while designations for multiple signals within a group
use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed
numbers when these numbers are separated by a colon.
NOTE
The primary functionality of a pin is not necessarily its default functionality. Pins that are
muxed with GPIO default to their GPIO functionality.
Table 3. MCF5327/8/9 Signal Information and Muxing
Voltage
Domain
MCF53281
MCF5329
256
MAPBGA
Dir.1
MCF5328
256
MAPBGA
MCF5327
196
MAPBGA
RESET2
—
—
—
I
EVDD
J11
N15
N15
RSTOUT
—
—
—
O
EVDD
P14
P14
P14
Signal Name
GPIO
Alternate 1
Alternate 2
Reset
Clock
EXTAL
—
—
—
I
EVDD
L14
P16
P16
2
XTAL
—
—
—
O
EVDD
K14
N16
N16
EXTAL32K
—
—
—
I
EVDD
M11
P13
P13
XTAL32K
—
—
—
O
EVDD
N11
R13
R13
FB_CLK
—
—
—
O
SDVDD
L1
T2
T2
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
6
Freescale Semiconductor
Pin Assignments and Reset States
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
MCF53281
MCF5329
256
MAPBGA
RCON
—
—
—
I
EVDD
M7
M8
M8
DRAMSEL
—
—
—
I
EVDD
G11
H12
H12
Signal Name
GPIO
Alternate 1
Alternate 2
Dir.1
Voltage
Domain
MCF5328
256
MAPBGA
MCF5327
196
MAPBGA
Mode Selection
2
FlexBus
A[23:22]
—
FB_CS[5:4]
—
O
SDVDD
B11,C11
C13, D13
C13, D13
A[21:16]
—
—
—
O
SDVDD
B12, A12,
D11, C12,
B13, A13
E13, A14,
B14, C14,
A15, B15
E13, A14,
B14, C14,
A15, B15
A[15:14]
—
SD_BA[1:0]3
—
O
SDVDD
A14, B14
D14, B16
D14, B16
A[13:11]
—
SD_A[13:11]3
—
O
SDVDD
C13, C14,
D12
C15, C16,
D15
C15, C16,
D15
A10
—
—
—
O
SDVDD
D13
D16
D16
A[9:0]
—
SD_A[9:0]3
—
O
SDVDD
D14,
E11–14,
F11–F14,
G14
E14–E16,
F13–F16,
G16– G14
E14–E16,
F13–F16,
G16– G14
D[31:16]
—
SD_D[31:16]4
—
I/O
SDVDD
H3–H1,
J4–J1, K1,
L4, M2, M3,
N1, N2, P1,
P2, N3
M1–M4,
N1–N4, T3,
P4, R4, T4,
N5, P5, R5,
T5
M1–M4,
N1–N4, T3,
P4, R4, T4,
N5, P5, R5,
T5
D[15:1]
—
FB_D[31:17]4
—
I/O
SDVDD
F4–F1,
G5–G2, L5,
N4, P4, M5,
N5, P5, L6
J3–J1,
K4–K1, L2,
R6, N7, P7,
R7, T7, P8,
R8
J3–J1,
K4–K1, L2,
R6, N7, P7,
R7, T7, P8,
R8
D02
—
FB_D[16]4
—
I/O
SDVDD
M6
T8
T8
PBE[3:0]
SD_DQM[3:0]3
—
O
M4
L4, P6, L3,
N6
L4, P6, L3,
N6
BE/BWE[3:0]
SDVDD H4, P3, G1,
OE
PBUSCTL3
—
—
O
SDVDD
P6
R9
R9
TA2
PBUSCTL2
—
—
I
SDVDD
G13
G13
G13
R/W
PBUSCTL1
—
—
O
SDVDD
N6
N8
N8
TS
PBUSCTL0
DACK0
—
O
SDVDD
D2
H4
H4
O
SDVDD
—
B13, A13
B13, A13
O
SDVDD
A11, D10,
C10
A12, B12,
C12
A12, B12,
C12
O
SDVDD
B10
D12
D12
Chip Selects
FB_CS[5:4]
PCS[5:4]
FB_CS[3:1]
PCS[3:1]
FB_CS0
—
—
—
—
—
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
7
Pin Assignments and Reset States
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
MCF53281
MCF5329
256
MAPBGA
SD_A10
—
—
—
O
SDVDD
L2
P2
P2
SD_CKE
—
—
—
O
SDVDD
E1
H2
H2
SD_CLK
—
—
—
O
SDVDD
K3
R1
R1
SD_CLK
—
—
—
O
SDVDD
K2
R2
R2
SD_CS1
—
—
—
O
SDVDD
—
J4
J4
SD_CS0
—
—
—
O
SDVDD
E2
H1
H1
SD_DQS3
—
—
—
O
SDVDD
H5
L1
L1
SD_DQS2
—
—
—
O
SDVDD
K6
T6
T6
SD_SCAS
—
—
—
O
SDVDD
L3
P3
P3
SD_SRAS
—
—
—
O
SDVDD
M1
R3
R3
SD_SDR_DQS
—
—
—
O
SDVDD
K4
P1
P1
SD_WE
—
—
—
O
SDVDD
D1
H3
H3
Signal Name
GPIO
Alternate 1
Alternate 2
Dir.1
Voltage
Domain
MCF5328
256
MAPBGA
MCF5327
196
MAPBGA
SDRAM Controller
External Interrupts Port5
IRQ72
PIRQ72
—
—
I
EVDD
J13
J13
J13
IRQ62
PIRQ62
USBHOST_
VBUS_EN
—
I
EVDD
—
J14
J14
IRQ52
PIRQ52
USBHOST_
VBUS_OC
—
I
EVDD
—
J15
J15
IRQ42
PIRQ42
SSI_MCLK
—
I
EVDD
L13
J16
J16
IRQ32
PIRQ32
—
—
I
EVDD
M14
K14
K14
IRQ22
PIRQ22
USB_CLKIN
—
I
EVDD
M13
K15
K15
IRQ12
PIRQ12
DREQ12
SSI_CLKIN
I
EVDD
N13
K16
K16
FEC
FEC_MDC
PFECI2C3
I2C_SCL2
—
O
EVDD
—
C1
C1
FEC_MDIO
PFECI2C2
I2C_SDA2
—
I/O
EVDD
—
C2
C2
FEC_TXCLK
PFECH7
—
—
I
EVDD
—
A2
A2
FEC_TXEN
PFECH6
—
—
O
EVDD
—
B2
B2
FEC_TXD0
PFECH5
ULPI_DATA0
—
O
EVDD
—
E4
E4
FEC_COL
PFECH4
ULPI_CLK
—
I
EVDD
—
A8
A8
FEC_RXCLK
PFECH3
ULPI_NXT
—
I
EVDD
—
C8
C8
FEC_RXDV
PFECH2
ULPI_STP
—
I
EVDD
—
D8
D8
FEC_RXD0
PFECH1
ULPI_DATA4
—
I
EVDD
—
C6
C6
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
8
Freescale Semiconductor
Pin Assignments and Reset States
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
Signal Name
GPIO
Alternate 1
Alternate 2
Voltage
Domain
MCF53281
MCF5329
256
MAPBGA
Dir.1
MCF5328
256
MAPBGA
MCF5327
196
MAPBGA
FEC_CRS
PFECH0
ULPI_DIR
—
I
EVDD
—
B8
B8
FEC_TXD[3:1]
PFECL[7:5]
ULPI_DATA[3:1]
—
O
EVDD
—
D3–D1
D3–D1
FEC_TXER
PFECL4
—
—
O
EVDD
—
B1
B1
FEC_RXD[3:1]
PFECL[3:1]
ULPI_DATA[7:5]
—
I
EVDD
—
E7, A6, B6
E7, A6, B6
FEC_RXER
PFECL0
—
—
I
EVDD
—
D4
D4
LCD Controller
LCD_D17
PLCDDH1
CANTX
—
O
EVDD
—
—
C9
LCD_D16
PLCDDH0
CANRX
—
O
EVDD
—
—
D9
LCD_D17
PLCDDH1
—
—
O
EVDD
A6
C9
—
LCD_D16
PLCDDH0
—
—
O
EVDD
B6
D9
—
LCD_D15
PLCDDM7
—
—
O
EVDD
C6
A7
A7
LCD_D14
PLCDDM6
—
—
O
EVDD
D6
B7
B7
LCD_D13
PLCDDM5
—
—
O
EVDD
A5
C7
C7
LCD_D12
PLCDDM4
—
—
O
EVDD
B5
D7
D7
LCD_D[11:8]
PLCDDM[3:0]
—
—
O
EVDD
C5, D5, A4,
B4
D6, E6, A5,
B5
D6, E6, A5,
B5
LCD_D7
PLCDDL7
—
—
O
EVDD
C4
C5
C5
LCD_D6
PLCDDL6
—
—
O
EVDD
B3
D5
D5
LCD_D5
PLCDDL5
—
—
O
EVDD
A3
A4
A4
LCD_D4
PLCDDL4
—
—
O
EVDD
A2
A3
A3
LCD_D[3:0]
PLCDDL[3:0]
—
—
O
EVDD
D4, C3, D3,
B2
B4, C4, B3,
C3
B4, C4, B3,
C3
LCD_ACD/
LCD_OE
PLCDCTLH0
—
—
O
EVDD
D7
B9
B9
LCD_CLS
PLCDCTLL7
—
—
O
EVDD
C7
A9
A9
LCD_CONTRAST PLCDCTLL6
—
—
O
EVDD
B7
D10
D10
LCD_FLM/
LCD_VSYNC
PLCDCTLL5
—
—
O
EVDD
A7
C10
C10
LCD_LP/
LCD_HSYNC
PLCDCTLL4
—
—
O
EVDD
A8
B10
B10
LCD_LSCLK
PLCDCTLL3
—
—
O
EVDD
B8
A10
A10
LCD_PS
PLCDCTLL2
—
—
O
EVDD
C8
A11
A11
LCD_REV
PLCDCTLL1
—
—
O
EVDD
D8
B11
B11
LCD_SPL_SPR
PLCDCTLL0
—
—
O
EVDD
B9
C11
C11
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
9
Pin Assignments and Reset States
GPIO
Alternate 1
Alternate 2
Voltage
Domain
Signal Name
Dir.1
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
MCF5327
196
MAPBGA
MCF5328
256
MAPBGA
MCF53281
MCF5329
256
MAPBGA
USB Host & USB On-the-Go
USBOTG_M
—
—
—
I/O
USB
VDD
G12
L15
L15
USBOTG_P
—
—
—
I/O
USB
VDD
H13
L16
L16
USBHOST_M
—
—
—
I/O
USB
VDD
K13
M15
M15
USBHOST_P
—
—
—
I/O
USB
VDD
J12
M16
M16
FlexCAN (MCF53281 & MCF5329 only)
CANRX and CANTX do not have dedicated bond pads. Please refer to the following pins for muxing:
I2C_SDA, SSI_RXD, or LCD_D16 for CANRX and I2C_SCL, SSI_TXD, or LCD_D17 for CANTX.
PWM
PWM7
PPWM7
—
—
I/O
EVDD
—
H13
H13
PWM5
PPWM5
—
—
I/O
EVDD
—
H14
H14
PWM3
PPWM3
DT3OUT
DT3IN
I/O
EVDD
H14
H15
H15
PWM1
PPWM1
DT2OUT
DT2IN
I/O
EVDD
J14
H16
H16
SSI
SSI_MCLK
PSSI4
—
—
I/O
EVDD
—
G4
G4
SSI_BCLK
PSSI3
U2CTS
PWM7
I/O
EVDD
—
F4
F4
SSI_FS
PSSI2
U2RTS
PWM5
I/O
EVDD
—
G3
G3
SSI_RXD2
PSSI1
U2RXD
CANRX
I
EVDD
—
—
G2
SSI_TXD2
PSSI0
U2TXD
CANTX
O
EVDD
—
—
G1
2
SSI_RXD
PSSI1
U2RXD
—
I
EVDD
—
G2
—
SSI_TXD2
PSSI0
U2TXD
—
O
EVDD
—
G1
—
I2C
I2C_SCL2
PFECI2C1
CANTX
U2TXD
I/O
EVDD
—
—
F3
2
PFECI2C0
CANRX
U2RXD
I/O
EVDD
—
—
F2
I2C_SCL2
PFECI2C1
—
U2TXD
I/O
EVDD
E3
F3
—
I2C_SDA2
PFECI2C0
—
U2RXD
I/O
EVDD
E4
F2
—
I2C_SDA
DMA
DACK[1:0] and DREQ[1:0] do not have dedicated bond pads. Please refer to the following pins for muxing:
TS for DACK0, DT0IN for DREQ0, DT1IN for DACK1, and IRQ1 for DREQ1.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
10
Freescale Semiconductor
Pin Assignments and Reset States
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
Voltage
Domain
MCF53281
MCF5329
256
MAPBGA
Dir.1
MCF5328
256
MAPBGA
MCF5327
196
MAPBGA
QSPI_CS2
PQSPI5
U2RTS
—
O
EVDD
P10
T12
T12
QSPI_CS1
PQSPI4
PWM7
USBOTG_
PU_EN
O
EVDD
L11
T13
T13
QSPI_CS0
PQSPI3
PWM5
—
O
EVDD
—
P11
P11
—
O
EVDD
N10
R12
R12
Signal Name
GPIO
Alternate 1
Alternate 2
QSPI
2
QSPI_CLK
PQSPI2
I2C_SCL
QSPI_DIN
PQSPI1
U2CTS
—
I
EVDD
L10
N12
N12
QSPI_DOUT
PQSPI0
I2C_SDA
—
O
EVDD
M10
P12
P12
UARTs
U1CTS
PUARTL7
SSI_BCLK
—
I
EVDD
C9
D11
D11
U1RTS
PUARTL6
SSI_FS
—
O
EVDD
D9
E10
E10
U1TXD
PUARTL5
SSI_TXD2
—
O
EVDD
A9
E11
E11
U1RXD
PUARTL4
SSI_RXD2
—
I
EVDD
A10
E12
E12
U0CTS
PUARTL3
—
—
I
EVDD
P13
R15
R15
U0RTS
PUARTL2
—
—
O
EVDD
N12
T15
T15
U0TXD
PUARTL1
—
—
O
EVDD
P12
T14
T14
U0RXD
PUARTL0
—
—
I
EVDD
P11
R14
R14
Note: The UART2 signals are multiplexed on the QSPI, SSI, DMA Timers, and I2C pins.
DMA Timers
DT3IN
PTIMER3
DT3OUT
U2RXD
I
EVDD
C1
F1
F1
DT2IN
PTIMER2
DT2OUT
U2TXD
I
EVDD
B1
E1
E1
DT1IN
PTIMER1
DT1OUT
DACK1
I
EVDD
A1
E2
E2
DT0OUT
DREQ02
I
EVDD
C2
E3
E3
—
I
EVDD
L12
M13
M13
—
2
TRST
—
I
EVDD
N14
P15
P15
PSTCLK
—
TCLK2
—
O
EVDD
L7
T9
T9
BKPT
—
TMS2
—
I
EVDD
M12
R16
R16
DSI
—
TDI2
—
I
EVDD
K12
N14
N14
DSO
—
TDO
—
O
EVDD
N9
N11
N11
DDATA[3:0]
—
—
—
O
EVDD
DT0IN
PTIMER0
BDM/JTAG6
JTAG_EN7
DSCLK
—
—
N7, P7, L8, N9, P9, N10, N9, P9, N10,
M8
P10
P10
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
11
Pin Assignments and Reset States
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)
Signal Name
GPIO
Alternate 1
Alternate 2
Voltage
Domain
MCF53281
MCF5329
256
MAPBGA
Dir.1
MCF5328
256
MAPBGA
MCF5327
196
MAPBGA
PST[3:0]
—
—
—
O
EVDD
N8, P8, L9,
M9
R10, T10,
R11, T11
R10, T10,
R11, T11
Test
TEST7
—
—
—
I
EVDD
E10
A16
A16
PLL_TEST8
—
—
—
I
EVDD
—
N13
N13
E6, E7,
F5–F7, H9,
J8, J9, K8,
K9, K11
Power Supplies
1
2
3
4
5
6
7
8
EVDD
—
—
—
—
—
E8, F5–F8, E8, F5–F8,
G5, G6, H5, G5, G6, H5,
H6, J11,
H6, J11,
K11, K12,
K11, K12,
L9–L11, M9, L9–L11, M9,
M10
M10
IVDD
—
—
—
—
—
PLL_VDD
—
—
—
—
—
H10
SD_VDD
—
—
—
—
—
E8, E9,
F8–F10,
J5–J7, K7
USB_VDD
—
—
—
—
—
G10
L14
L14
VSS
—
—
—
—
—
G6–G9,
H6–H8, P9
G7–G10,
H7–H10,
J7–10,
K7–K10,
L12, L13
G7–G10,
H7–H10,
J7–10,
K7–K10,
L12, L13
PLL_VSS
—
—
—
—
—
H11
K13
K13
USB_VSS
—
—
—
—
—
H12
M14
M14
E5, K5, K10, E5, G12, M5, E5, G12, M5,
J10
M11, M12
M11, M12
J12
J12
E9, F9–F11, E9, F9–F11,
G11, H11,
G11, H11,
J5, J6, K5,
J5, J6, K5,
K6, L5–L8, K6, L5–L8,
M6, M7
M6, M7
Refers to pin’s primary function.
Pull-up enabled internally on this signal for this mode.
The SDRAM functions of these signals are not programmable by the user. They are dynamically switched by the processor
when accessing SDRAM memory space and are included here for completeness.
Primary functionality selected by asserting the DRAMSEL signal (SDR mode). Alternate functionality selected by negating
the DRAMSEL signal (DDR mode). The GPIO module is not responsible for assigning these pins.
GPIO functionality is determined by the edge port module. The GPIO module is only responsible for assigning the alternate
functions.
If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for
assigning these pins.
Pull-down enabled internally on this signal for this mode.
Must be left floating for proper operation of the PLL.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
12
Freescale Semiconductor
Pin Assignments and Reset States
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
13
Pin Assignments and Reset States
NOTE
4.2
Pinout—256 MAPBGA
Figure 4 shows a pinout of the MCF5328CVM240, MCF53281CVM240, and MCF5329CVM240 devices.
NOTE
The pin at location N13 (PLL_TEST) must be left floating or improper operation of the
PLL module occurs.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
FB_CS3 FB_CS4
A20
A17
TEST
A
FB_CS2 FB_CS5
A19
A16
A14
B
FB_CS1
A23
A18
A13
A12
C
U1CTS
FB_CS0
A22
A15
A11
A10
D
FEC_
LCD_
LCD_
LCD_
FEC_
LCD_
FEC_
LCD_
LCD_
LCD_
TXCLK
D4
D5
D9
RXD2
D15
COL
CLS
LSCLK
PS
FEC_
FEC_
LCD_
LCD_
LCD_
FEC_
LCD_
FEC_
LCD_
LCD_LP/
LCD_
TXER
TXEN
D1
D3
D8
RXD1
D14
CRS
ACD/OE
HSYNC
REV
FEC_
FEC_
LCD_
LCD_
LCD_
FEC_
LCD_
FEC_
LCD_
LCD_FLM/
LCD_
MDC
MDIO
D0
D2
D7
RXD0
D13
RXCLK
D17
VSYNC
SPL_SPR
FEC_
FEC_
FEC_
FEC_
LCD_
LCD_
LCD_
FEC_
LCD_
LCD_CON
TXD1
TXD2
TXD3
RXER
D6
D11
D12
RXDV
D16
TRAST
E
DT2IN
DT1IN
DT0IN
EVDD
SD_VDD
U1RTS
U1TXD
U1RXD
A21
A9
A8
A7
E
F
DT3IN
I2C_
I2C_
SSI_
SDA
SCL
BCLK
G
SSI_
TXD
H
SD_
CS0
SD_CKE
SD_WE
J
D13
D14
D15
K
D9
D10
D11
D12
D8
BE/
BWE1
BE/
BWE3
A
B
C
D
L
NC
SD_
DQS3
SSI_
RXD
SSI_FS
FEC_
TXD0
SSI_
MCLK
TS
LCD_
FEC_
D10
RXD3
EVDD
EVDD
EVDD
EVDD
SD_VDD
SD_VDD
SD_VDD
NC
A6
A5
A4
A3
F
EVDD
EVDD
VSS
VSS
VSS
VSS
SD_VDD
IVDD
TA
A0
A1
A2
G
EVDD
EVDD
VSS
VSS
VSS
VSS
SD_VDD
PWM7
PWM5
PWM3
PWM1
H
VSS
VSS
VSS
VSS
EVDD
IRQ7
IRQ6
IRQ5
IRQ4
J
VSS
VSS
VSS
VSS
EVDD
EVDD
PLL_
VSS
IRQ3
IRQ2
IRQ1
K
EVDD
EVDD
EVDD
VSS
USB_
USBOTG
USB
USB
VSS
_VDD
OTG_M
OTG_P
RCON
EVDD
EVDD
IVDD
IVDD
JTAG_
USBHOST
USB
USB
EN
_VSS
TDO/
QSPI_
PLL_
DSO
DIN
TEST
QSPI_
QSPI_
EXTAL
CS0
DOUT
32K
QSPI_
XTAL
CLK
32K
QSPI_
QSPI_
CS2
CS1
12
13
IVDD
SD_CS1 SD_VDD SD_VDD
SD_VDD SD_VDD
SD_VDD SD_VDD SD_VDD SD_VDD
M
D31
D30
D29
D28
IVDD
N
D27
D26
D25
D24
D19
BE/
BWE0
D6
R/W
DDATA3
DDATA1
SD_A10
SD_CAS
D22
D18
BE/
BWE2
D5
D2
DDATA2
DDATA0
R SD_CLK SD_CLK
SD_RAS
D21
D17
D7
D4
D1
OE
PST3
PST1
D3
D0
PST2
PST0
7
8
10
11
P
T
SD_DR
_DQS
NC
FB_CLK
D23
D20
D16
1
2
3
4
5
SD_VDD SD_VDD
SD_
DQS2
6
TCLK/
PSTCLK
9
DRAM
SEL
PLL_
VDD
HOST_M HOST_P
M
TDI/DSI
RESET
XTAL
N
RSTOUT
TRST/
DSCLK
EXTAL
P
U0RXD
U0CTS
TMS/
BKPT
R
U0TXD
U0RTS
NC
T
14
15
16
Figure 4. MCF5328CVM240, MCF53281CVM240, and MCF5329CVM240 Pinout Top View (256 MAPBGA)
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
14
L
Freescale Semiconductor
Electrical Characteristics
4.3
Pinout—196 MAPBGA
The pinout for the MCF5327CVM240 package is shown below.
A
B
C
D
E
F
G
H
J
K
L
M
N
P
1
2
3
4
5
6
DT1IN
LCD_
D4
LCD_
D5
LCD_
D9
LCD_
D13
LCD_
D17
LCD_FLM/ LCD_LP/
VSYNC
HSYNC
D2TIN
LCD_
D0
LCD_
D6
LCD_
D8
LCD_
D12
LCD_
D16
LCD_CON
TRAST
DT3IN
DT0IN
LCD_
D2
LCD_
D7
LCD_
D11
LCD_
D15
SD_WE
TS
LCD_
D1
LCD_
D3
LCD_
D10
SD_CKE SD_CS0
I2C_SCL I2C_SDA
7
8
9
10
11
12
13
14
U1TXD
U1RXD
FB_CS3
A20
A16
A15
LCD_
LSCLK
LCD_
SPL_SPR
FB_CS0
A23
A21
A17
A14
LCD_
CLS
LCD_
PS
U1CTS
FB_CS1
A22
A18
A13
A12
LCD_
D14
LCD_
ACD/OE
LCD_
REV
U1RTS
FB_CS2
A19
A11
A10
A9
IVDD
EVDD
EVDD
SD_VDD SD_VDD
TEST
A8
A7
A6
A5
SD_VDD SD_VDD
SD_VDD
A4
A3
A2
A1
D12
D13
D14
D15
EVDD
EVDD
EVDD
BE/
BWE1
D8
D9
D10
D11
VSS
VSS
VSS
VSS
USB
OTG_VDD
DRAM
SEL
USB
OTG_M
TA
A0
D29
D30
D31
BE/
BWE3
SD_
DQS3
VSS
VSS
VSS
EVDD
PLL_
VDD
PLL_
VSS
USBHOST
_VSS
USB
OTG_P
PWM3
D25
D26
D27
D28
SD_VDD
EVDD
EVDD
IVDD
RESET
USB
HOST_P
IRQ7
PWM1
D24
SD_CLK
SD_CLK
SD_DR_
DQS
IVDD
SD_
DQS2
SD_VDD
EVDD
EVDD
IVDD
EVDD
TDI/DSI
USB
HOST_M
XTAL
FB_CLK SD_A10
SD_CAS
D23
D7
D1
TCLK/
PSTCLK
DDATA1
PST1
QSPI_
DIN
QSPI_
CS1
JTAG_
EN
IRQ4
EXTAL
SD_VDD SD_VDD
A
B
C
D
E
F
G
H
J
K
L
M
SD_RAS
D22
D21
BE/
BWE0
D4
D0
RCON
DDATA0
PST0
QSPI_
DOUT
EXTAL
32K
TMS/
BKPT
IRQ2
IRQ3
D20
D19
D16
D6
D3
R/W
DDATA3
PST3
TDO/
DSO
QSPI_
CLK
XTAL
32K
U0RTS
IRQ1
TRST/
DSCLK
D18
D17
BE/
BWE2
D5
D2
OE
DDATA2
PST2
VSS
QSPI_
CS2
U0RXD
U0TXD
U0CTS
RSTOUT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
N
P
Figure 5. MCF5327CVM240 Pinout Top View (196 MAPBGA)
5
Electrical Characteristics
This document contains electrical specification tables and reference timing diagrams for the MCF5329 microcontroller unit.
This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing
specifications of MCF5329.
The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not
be fully tested or guaranteed at this early stage of the product life cycle. However, for production silicon, these specifications
will be met. Finalized specifications will be published after complete characterization and device qualifications have been
completed.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
15
Electrical Characteristics
NOTE
The parameters specified in this MCU document supersede any values found in the module
specifications.
5.1
Maximum Ratings
Table 4. Absolute Maximum Ratings1, 2
Rating
Symbol
Value
Unit
Core Supply Voltage
IVDD
– 0.5 to +2.0
V
CMOS Pad Supply Voltage
EVDD
– 0.3 to +4.0
V
DDR/Memory Pad Supply Voltage
SDVDD
– 0.3 to +4.0
V
PLL Supply Voltage
PLLVDD
– 0.3 to +2.0
V
VIN
– 0.3 to +3.6
V
ID
25
mA
TA
(TL - TH)
– 40 to +85
°C
Tstg
– 55 to +150
°C
Digital Input Voltage
3
Instantaneous Maximum Current
Single pin limit (applies to all pins) 3, 4, 5
Operating Temperature Range (Packaged)
Storage Temperature Range
1
2
3
4
5
Functional operating conditions are given in Section 5.4, “DC Electrical Specifications.”
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is
not guaranteed. Continued operation at these levels may affect device reliability or cause
permanent damage to the device.
This device contains circuitry protecting against damage due to high static voltage or electrical
fields; however, it is advised that normal precautions be taken to avoid application of any
voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of
operation is enhanced if unused inputs are tied to an appropriate logic voltage level (VSS or
EVDD).
Input must be current limited to the value specified. To determine the value of the required
current-limiting resistor, calculate resistance values for positive and negative clamp voltages,
and then use the larger of the two values.
All functional non-supply pins are internally clamped to VSS and EVDD.
Power supply must maintain regulation within operating EVDD range during instantaneous and
operating maximum current conditions. If positive injection current (Vin > EVDD) is greater than
IDD, the injection current may flow out of EVDD and could result in external power supply going
out of regulation. Ensure external EVDD load shunts current greater than maximum injection
current. This is the greatest risk when the MCU is not consuming power (ex; no clock). Power
supply must maintain regulation within operating EVDD range during instantaneous and
operating maximum current conditions.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
16
Freescale Semiconductor
Electrical Characteristics
5.2
Thermal Characteristics
Table 5. Thermal Characteristics
Characteristic
Symbol
256MBGA
196MBGA
Unit
Junction to ambient, natural convection
Four layer board
(2s2p)
θJMA
371,2
421,2
°C/W
Junction to ambient (@200 ft/min)
Four layer board
(2s2p)
θJMA
341,2
381,2
°C/W
Junction to board
—
θJB
273
323
°C/W
Junction to case
—
θJC
164
194
°C/W
Junction to top of package
—
Ψjt
41,5
51,5
°C/W
Maximum operating junction temperature
—
Tj
105
105
1
2
3
4
5
o
C
θJMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection.
Freescale recommends the use of θJmA and power dissipation specifications in the system design to prevent
device junction temperatures from exceeding the rated specification. System designers should be aware that
device junction temperatures can be significantly influenced by board layout and surrounding devices.
Conformance to the device junction temperature specification can be verified by physical measurement in the
customer’s system using the Ψjt parameter, the device power dissipation, and the method described in
EIA/JESD Standard 51-2.
Per JEDEC JESD51-6 with the board horizontal.
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8.
Board temperature is measured on the top surface of the board near the package.
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL
SPEC-883 Method 1012.1).
Thermal characterization parameter indicating the temperature difference between package top and the
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal
characterization parameter is written in conformance with Psi-JT.
The average chip-junction temperature (TJ) in °C can be obtained from:
T J = T A + ( P D × Θ JMA )
Eqn. 1
Where:
TA
QJMA
PD
PINT
PI/O
=
=
=
=
=
Ambient Temperature, °C
Package Thermal Resistance, Junction-to-Ambient, °C/W
PINT + PI/O
IDD × IVDD, Watts - Chip Internal Power
Power Dissipation on Input and Output Pins — User Determined
For most applications PI/O < PINT and can be ignored. An approximate relationship between PD and TJ (if PI/O is neglected) is:
K
P D = --------------------------------( T J + 273°C )
Eqn. 2
Solving equations 1 and 2 for K gives:
2
K = P D × ( T A × 273°C ) + Q JMA × P D
Eqn. 3
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
17
Electrical Characteristics
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring PD (at equilibrium)
for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving Equation 1 and Equation 2 iteratively
for any value of TA.
5.3
ESD Protection
Table 6. ESD Protection Characteristics1, 2
Characteristics
Symbol
Value
Units
ESD Target for Human Body Model
HBM
2000
V
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive
Grade Integrated Circuits.
2
A device is defined as a failure if after exposure to ESD pulses the device no longer meets
the device specification requirements. Complete DC parametric and functional testing is
performed per applicable device specification at room temperature followed by hot
temperature, unless specified otherwise in the device specification.
5.4
DC Electrical Specifications
Table 7. DC Electrical Specifications
Characteristic
Symbol
Min
Max
Unit
Core Supply Voltage
IVDD
1.4
1.6
V
PLL Supply Voltage
PLLVDD
1.4
1.6
V
EVDD
3.0
3.6
V
1.70
2.25
3.0
1.95
2.75
3.6
USBVDD
3.0
3.6
V
CMOS Input High Voltage
EVIH
2
EVDD + 0.3
V
CMOS Input Low Voltage
EVIL
VSS – 0.3
0.8
V
CMOS Output High Voltage
IOH = –5.0 mA
EVOH
EVDD – 0.4
—
V
CMOS Output Low Voltage
IOL = 5.0 mA
EVOL
—
0.4
V
SDRAM and FlexBus Input High Voltage
Mobile DDR/Bus Input High Voltage (nominal 1.8V)
DDR/Bus Pad Supply Voltage (nominal 2.5V)
SDR/Bus Pad Supply Voltage (nominal 3.3V)
SDVIH
1.35
1.7
2
SDVDD + 0.3
SDVDD + 0.3
SDVDD + 0.3
SDRAM and FlexBus Input Low Voltage
Mobile DDR/Bus Input High Voltage (nominal 1.8V)
DDR/Bus Pad Supply Voltage (nominal 2.5V)
SDR/Bus Pad Supply Voltage (nominal 3.3V)
SDVIL
VSS – 0.3
VSS – 0.3
VSS – 0.3
0.45
0.8
0.8
CMOS Pad Supply Voltage
SDRAM and FlexBus Supply Voltage
Mobile DDR/Bus Pad Supply Voltage (nominal 1.8V)
DDR/Bus Pad Supply Voltage (nominal 2.5V)
SDR/Bus Pad Supply Voltage (nominal 3.3V)
USB Supply Voltage
V
SDVDD
V
V
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
18
Freescale Semiconductor
Electrical Characteristics
Table 7. DC Electrical Specifications (continued)
Characteristic
Symbol
Min
Max
SDVDD – 0.35
2.1
2.4
—
—
—
—
—
—
0.3
0.3
0.5
Iin
−1.0
1.0
μA
Weak Internal Pull-Up Device Current, tested at VIL Max.1
IAPU
−10
−130
μA
Input Capacitance 2
All input-only pins
All input/output (three-state) pins
Cin
—
—
7
7
SDRAM and FlexBus Output High Voltage
Mobile DDR/Bus Input High Voltage (nominal 1.8V)
DDR/Bus Pad Supply Voltage (nominal 2.5V)
SDR/Bus Pad Supply Voltage (nominal 3.3V)
IOH = –5.0 mA for all modes
SDVOH
SDRAM and FlexBus Output Low Voltage
Mobile DDR/Bus Input High Voltage (nominal 1.8V)
DDR/Bus Pad Supply Voltage (nominal 2.5V)
SDR/Bus Pad Supply Voltage (nominal 3.3V)
IOL = 5.0 mA for all modes
SDVOL
Input Leakage Current
Vin = VDD or VSS, Input-only pins
1
Unit
V
V
pF
Refer to the signals section for pins having weak internal pull-up devices.
This parameter is characterized before qualification rather than 100% tested.
2
5.5
Oscillator and PLL Electrical Characteristics
Table 8. PLL Electrical Characteristics
Num
Characteristic
Symbol
Min.
Value
Max.
Value
Unit
fref_crystal
fref_ext
12
12
251
401
MHz
MHz
fsys
fsys/3
488 x 10−6
163 x 10−6
240
80
MHz
MHz
tcst
—
10
ms
1
PLL Reference Frequency Range
Crystal reference
External reference
2
Core frequency
CLKOUT Frequency2
3
Crystal Start-up Time3, 4
4
EXTAL Input High Voltage
Crystal Mode5
All other modes (External, Limp)
VIHEXT
VIHEXT
VXTAL + 0.4
EVDD/2 + 0.4
—
—
V
V
5
EXTAL Input Low Voltage
Crystal Mode5
All other modes (External, Limp)
VILEXT
VILEXT
—
—
VXTAL – 0.4
EVDD/2 – 0.4
V
V
7
PLL Lock Time 3, 6
tlpll
—
50000
CLKIN
tdc
40
60
%
IXTAL
1
3
mA
3
8
Duty Cycle of reference
9
XTAL Current
10
Total on-chip stray capacitance on XTAL
CS_XTAL
1.5
pF
11
Total on-chip stray capacitance on EXTAL
CS_EXTAL
1.5
pF
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
19
Electrical Characteristics
Table 8. PLL Electrical Characteristics (continued)
Num
12
Characteristic
Symbol
Min.
Value
Max.
Value
Unit
CL
See crystal
spec
Discrete load capacitance for XTAL
CL_XTAL
2*CL –
CS_XTAL –
CPCB_XTAL7
pF
Discrete load capacitance for EXTAL
CL_EXTAL
2*CL–CS_EXTAL –
CPCB_EXTAL7
pF
—
—
10
TBD
% fsys/3
% fsys/3
Crystal capacitive load
13
14
Cjitter
17
CLKOUT Period Jitter, 3, 4, 7, 8, 9 Measured at fSYS Max
Peak-to-peak Jitter (Clock edge to clock edge)
Long Term Jitter
18
Frequency Modulation Range Limit 3, 10, 11
(fsysMax must not be exceeded)
Cmod
0.8
2.2
%fsys/3
19
VCO Frequency. fvco = (fref * PFD)/4
fvco
350
540
MHz
1
The maximum allowable input clock frequency when booting with the PLL enabled is 24MHz. For higher input clock
frequencies the processor must boot in LIMP mode to avoid violating the maximum allowable CPU frequency.
2 All internal registers retain data at 0 Hz.
3 This parameter is guaranteed by characterization before qualification rather than 100% tested.
4 Proper PC board layout procedures must be followed to achieve specifications.
5 This parameter is guaranteed by design rather than 100% tested.
6 This specification is the PLL lock time only and does not include oscillator start-up time.
7 C
PCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively.
8 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f
sys.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal.
Noise injected into the PLL circuitry via PLL VDD, EVDD, and VSS and variation in crystal oscillator frequency increase
the Cjitter percentage for a given interval.
9 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod.
10 Modulation percentage applies over an interval of 10 μs, or equivalently the modulation rate is 100 KHz.
11 Modulation range determined by hardware design.
5.6
External Interface Timing Characteristics
Table 9 lists processor bus input timings.
NOTE
All processor bus timings are synchronous; that is, input setup/hold and output delay with
respect to the rising edge of a reference clock. The reference clock is the FB_CLK output.
All other timing relationships can be derived from these values. Timings listed in Table 9
are shown in Figure 7 and Figure 8.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
20
Freescale Semiconductor
Electrical Characteristics
* The timings are also valid for inputs sampled on the negative clock edge.
1.5V
FB_CLK (80MHz)
TSETUP
THOLD
Input Setup And Hold
Invalid
1.5V Valid 1.5V
Invalid
trise
Input Rise Time
Vh = VIH
Vl = VIL
tfall
Input Fall Time
FB_CLK
Vh = VIH
Vl = VIL
B4
B5
Inputs
Figure 6. General Input Timing Requirements
5.6.1
FlexBus
A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up
to a maximum bus frequency of 80MHz. It can be directly connected to asynchronous or synchronous devices such as external
boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For
asynchronous devices a simple chip-select based interface can be used. The FlexBus interface has six general purpose
chip-selects (FB_CS[5:0]) which can be configured to be distributed between the FlexBus or SDRAM memory interfaces.
Chip-select, FB_CS0 can be dedicated to boot ROM access and can be programmed to be byte (8 bits), word (16 bits), or
longword (32 bits) wide. Control signal timing is compatible with common ROM/flash memories.
5.6.1.1
FlexBus AC Timing Characteristics
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the system clock.
Table 9. FlexBus AC Timing Specifications
Num
Characteristic
Symbol
Min
Max
Unit
—
Frequency of Operation
fsys/3
—
80
Mhz
FB1
Clock Period (FB_CLK)
tFBCK (tcyc)
12.5
—
ns
FB2
Address, Data, and Control Output Valid (A[23:0], D[31:0],
FB_CS[5:0], R/W, TS, BE/BWE[3:0] and OE)1
tFBCHDCV
—
7.0
ns
FB3
Address, Data, and Control Output Hold (A[23:0], D[31:0],
FB_CS[5:0], R/W, TS, BE/BWE[3:0], and OE)1, 2
tFBCHDCI
1
—
ns
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
21
Electrical Characteristics
Table 9. FlexBus AC Timing Specifications (continued)
Num
Characteristic
Symbol
Min
Max
Unit
FB4
Data Input Setup
tDVFBCH
3.5
—
ns
FB5
Data Input Hold
tDIFBCH
0
—
ns
FB6
Transfer Acknowledge (TA) Input Setup
tCVFBCH
4
—
ns
FB7
Transfer Acknowledge (TA) Input Hold
tCIFBCH
0
—
ns
1
Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.7.2, “DDR SDRAM AC
Timing Characteristics” for SD_CS[3:0] timing.
2
The FlexBus supports programming an extension of the address hold. Please consult the Reference Manual
for more information.
NOTE
The processor drives the data lines during the first clock cycle of the transfer
with the full 32-bit address. This may be ignored by standard connected
devices using non-multiplexed address and data buses. However, some
applications may find this feature beneficial.
The address and data busses are muxed between the FlexBus and SDRAM
controller. At the end of the read and write bus cycles the address signals are
indeterminate.
S0
S1
S2
S3
FB_CLK
FB1
FB3
ADDR[23:0]
FB_A[23:0]
FB_D[31:X]
FB2
FB5
ADDR[31:X]
DATA
FB4
FB_R/W
FB_TS
FB_CSn, FB_OE,
FB_BE/BWEn
FB6
FB7
FB_TA
Figure 7. FlexBus Read Timing
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
22
Freescale Semiconductor
Electrical Characteristics
S0
S1
S2
S3
FB_CLK
FB1
FB3
ADDR[23:0]
FB_A[23:0]
FB2
FB_D[31:X]
ADDR[31:X]
DATA
FB_R/W
FB_TS
FB_CSn, FB_BE/BWEn
FB_OE
FB6
FB7
FB_TA
Figure 8. FlexBus Write Timing
5.7
SDRAM Bus
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports standard SDRAM or
double data rate (DDR) SDRAM, but it does not support both at the same time.
5.7.1
SDR SDRAM AC Timing Characteristics
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the memory bus clock,
when operating in SDR mode on write cycles and relative to SD_DQS on read cycles. The device’s SDRAM controller is a
DDR controller that has an SDR mode. Because it is designed to support DDR, a DQS pulse must remain supplied to the device
for each data beat of an SDR read. The processor accomplishes this by asserting a signal named SD_SDR_DQS during read
cycles. Care must be taken during board design to adhere to the following guidelines and specs with regard to the
SD_SDR_DQS signal and its usage.
Table 10. SDR Timing Specifications
Symbol
•
Characteristic
Frequency of Operation1
Symbol
Min
Max
Unit
•
TBD
80
MHz
Clock Period
2
tSDCK
12.5
TBD
ns
SD3
Pulse Width
High3
tSDCKH
0.45
0.55
SD_CLK
SD4
Pulse Width Low4
tSDCKH
0.45
0.55
SD_CLK
SD5
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA,
SD_CS[1:0] - Output Valid
tSDCHACV
—
0.5 × SD_CLK
+ 1.0
ns
SD6
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA,
SD_CS[1:0] - Output Hold
tSDCHACI
2.0
—
ns
SD7
SD_SDR_DQS Output Valid5
tDQSOV
—
Self timed
ns
tDQVSDCH
0.25 ×
SD_CLK
0.40 × SD_CLK
ns
SD1
6
SD8
SD_DQS[3:0] input setup relative to SD_CLK
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
23
Electrical Characteristics
Table 10. SDR Timing Specifications (continued)
Symbol
Characteristic
Symbol
Min
Max
Unit
SD9
SD_DQS[3:2] input hold relative to SD_CLK7
tDQISDCH Does not apply. 0.5×SD_CLK fixed width.
SD10
Data (D[31:0]) Input Setup relative to SD_CLK (reference
only)8
tDVSDCH
0.25 ×
SD_CLK
—
ns
SD11
Data Input Hold relative to SD_CLK (reference only)
tDISDCH
1.0
—
ns
tSDCHDMV
—
0.75 × SD_CLK
+ 0.5
ns
tSDCHDMI
1.5
—
ns
SD12
SD13
1
2
3
4
5
6
7
8
Data (D[31:0]) and Data Mask(SD_DQM[3:0]) Output Valid
Data (D[31:0]) and Data Mask (SD_DQM[3:0]) Output Hold
The FlexBus and SDRAM clock operates at the same frequency of the internal bus clock. See the PLL chapter of the MCF5329
Reference Manual for more information on setting the SDRAM clock rate.
SD_CLK is one SDRAM clock in (ns).
Pulse width high plus pulse width low cannot exceed min and max clock period.
Pulse width high plus pulse width low cannot exceed min and max clock period.
SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation
from this guideline is expected. SD_DQS only pulses during a read cycle and one pulse occurs for each data beat.
SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle
variation from this guideline is expected. SDR_DQS only pulses during a read cycle and one pulse occurs for each data beat.
The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge
does not affect the memory controller.
Because a read cycle in SDR mode uses the DQS circuit within the device, it is most critical that the data valid window be
centered 1/4 clk after the rising edge of DQS. Ensuring that this happens results in successful SDR reads. The input setup
spec is provided as guidance.
SD2
SD1
SD_CLK
SD3
SD5
SD_CSn
SD_RAS
SD_CAS
SD_WE
A[23:0]
SD_BA[1:0]
CMD
SD4
ROW
COL
SD11
SDDM
SD12
D[31:0]
WD1
WD2
WD3
WD4
Figure 9. SDR Write Timing
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
24
Freescale Semiconductor
Electrical Characteristics
SD2
SD1
SD_CLK
SD5
SD_CSn,
SD_RAS,
SD_CAS,
SD_WE
SD3
CMD
3/4 MCLK
Reference
SD4
A[23:0],
SD_BA[1:0]
ROW
COL
tDQS
SDDM
SD6
SD_SDR_DQS
(Measured at Output Pin)
Board Delay
SD_DQS[3:2]
SD8
(Measured at Input Pin)
SD7
Board Delay
Delayed
SD_CLK
SD9
D[31:0]
from
Memories
WD1
NOTE: Data driven from memories relative
to delayed memory clock.
WD2
WD3
WD4
SD10
Figure 10. SDR Read Timing
5.7.2
DDR SDRAM AC Timing Characteristics
When using the SDRAM controller in DDR mode, the following timing numbers must be followed to properly latch or drive
data onto the memory bus. All timing numbers are relative to the four DQS byte lanes.
Table 11. DDR Timing Specifications
Num
•
Characteristic
Frequency of Operation
1
Symbol
Min
Max
Unit
tDDCK
TBD
80
Mhz
tDDSK
12.5
TBD
ns
DD2
Pulse Width High
2
tDDCKH
0.45
0.55
SD_CLK
DD3
Pulse Width Low3
tDDCKL
0.45
0.55
SD_CLK
DD4
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,
SD_CS[1:0] - Output Valid3
tSDCHACV
—
0.5 × SD_CLK
+ 1.0
ns
DD5
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,
SD_CS[1:0] - Output Hold
tSDCHACI
2.0
—
ns
DD6
Write Command to first DQS Latching Transition
tCMDVDQ
—
1.25
SD_CLK
DD7
Data and Data Mask Output Setup (DQ-->DQS) Relative
to DQS (DDR Write Mode)4, 5
tDQDMV
1.5
—
ns
DD1
Clock Period
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
25
Electrical Characteristics
Table 11. DDR Timing Specifications (continued)
Num
Characteristic
Symbol
Min
Max
Unit
DD8
Data and Data Mask Output Hold (DQS-->DQ) Relative to
DQS (DDR Write Mode)6
tDQDMI
1.0
—
ns
DD9
Input Data Skew Relative to DQS (Input Setup)7
tDVDQ
—
1
ns
tDIDQ
0.25 × SD_CLK
+ 0.5ns
—
ns
DD11 DQS falling edge from SDCLK rising (output hold time)
tDQLSDCH
0.5
—
ns
DD12 DQS input read preamble width
tDQRPRE
0.9
1.1
SD_CLK
DD13 DQS input read postamble width
tDQRPST
0.4
0.6
SD_CLK
DD14 DQS output write preamble width
tDQWPRE
0.25
DD15 DQS output write postamble width
tDQWPST
0.4
8
DD10
1
2
3
4
5
6
7
8
Input Data Hold Relative to DQS
SD_CLK
0.6
SD_CLK
SD_CLK is one SDRAM clock in (ns).
Pulse width high plus pulse width low cannot exceed min and max clock period.
Command output valid should be 1/2 the memory bus clock (SD_CLK) plus some minor adjustments for process, temperature,
and voltage variations.
This specification relates to the required input setup time of today’s DDR memories. The processor’s output setup should be
larger than the input setup of the DDR memories. If it is not larger, the input setup on the memory is in violation.
MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to
MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0].
The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are
valid for each subsequent DQS edge.
This specification relates to the required hold time of today’s DDR memories. MEM_DATA[31:24] is relative to MEM_DQS[3],
MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative
MEM_DQS[0].
Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line
becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other
factors).
Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line
becomes invalid.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
26
Freescale Semiconductor
Electrical Characteristics
DD1
DD2
SD_CLK
DD3
SD_CLK
DD5
SD_CSn,SD_WE,
SD_RAS, SD_CAS
CMD
DD6
DD4
A[13:0]
ROW
COL
DD7
DM3/DM2
DD8
SD_DQS3/SD_DQS2
DD7
D[31:24]/D[23:16]
WD1 WD2 WD3 WD4
DD8
Figure 11. DDR Write Timing
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
27
Electrical Characteristics
DD1
DD2
SD_CLK
DD3
SD_CLK
CL=2
DD5
SD_CSn,SD_WE,
SD_RAS, SD_CAS
CMD
CL=2.5
DD4
A[13:0]
ROW
COL
DD9
DQS Read
Preamble
CL = 2
SD_DQS3/SD_DQS2
DQS Read
Postamble
DD10
D[31:24]/D[23:16]
WD1 WD2 WD3 WD4
DQS Read
DQS Read
Preamble
Postamble
CL = 2.5
SD_DQS3/SD_DQS2
D[31:24]/D[23:16]
WD1 WD2 WD3 WD4
Figure 12. DDR Read Timing
5.8
General Purpose I/O Timing
Table 12. GPIO Timing1
1
Num
Characteristic
Symbol
Min
Max
Unit
G1
FB_CLK High to GPIO Output Valid
tCHPOV
—
10
ns
G2
FB_CLK High to GPIO Output Invalid
tCHPOI
1.5
—
ns
G3
GPIO Input Valid to FB_CLK High
tPVCH
9
—
ns
G4
FB_CLK High to GPIO Input Invalid
tCHPI
1.5
—
ns
GPIO pins include: IRQn, PWM, UART, FlexCAN, and Timer pins.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
28
Freescale Semiconductor
Electrical Characteristics
FB_CLK
G2
G1
GPIO Outputs
G3
G4
GPIO Inputs
Figure 13. GPIO Timing
5.9
Reset and Configuration Override Timing
Table 13. Reset and Configuration Override Timing
Num
1
Characteristic
Symbol
Min
Max
Unit
R1
RESET Input valid to FB_CLK High
tRVCH
9
—
ns
R2
FB_CLK High to RESET Input invalid
tCHRI
1.5
—
ns
tRIVT
5
—
tCYC
1
R3
RESET Input valid Time
R4
FB_CLK High to RSTOUT Valid
tCHROV
—
10
ns
R5
RSTOUT valid to Config. Overrides valid
tROVCV
0
—
ns
R6
Configuration Override Setup Time to RSTOUT invalid
tCOS
20
—
tCYC
R7
Configuration Override Hold Time after RSTOUT invalid
tCOH
0
—
ns
R8
RSTOUT invalid to Configuration Override High Impedance
tROICZ
—
1
tCYC
During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to
the system. Thus, RESET must be held a minimum of 100 ns.
FB_CLK
R1
R2
R3
RESET
R4
R4
RSTOUT
R8
R5
R6
R7
Configuration Overrides*:
(RCON, Override pins])
Figure 14. RESET and Configuration Override Timing
NOTE
Refer to the CCM chapter of the MCF5329 Reference Manual for more information.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
29
Electrical Characteristics
5.10
LCD Controller Timing Specifications
This sections lists the timing specifications for the LCD Controller.
Table 14. LCD_LSCLK Timing
Num
Parameter
Minimum
Maximum
Unit
T1
LCD_LSCLK Period
25
2000
ns
T2
Pixel data setup time
11
—
ns
T3
Pixel data up time
11
—
ns
Note: The pixel clock is equal to LCD_LSCLK / (PCD + 1). When it is in CSTN, TFT or monochrome mode with
bus width is set and LCD_LSCLK is equal to the pixel clock. When it is in monochrome with other bus
width settings, LCD_LSCLK is equal to the pixel clock divided by bus width. The polarity of LCD_LSCLK
and LCD_LD signals can also be programmed.
T1
LCD_LSCLK
LCD_LD[17:0]
T3
T2
Figure 15. LCD_LSCLK to LCD_LD[17:0] timing diagram
Non-display region
T3
T1
LCD_VSYNC
Display region
T4
T2
LCD_HSYNC
LCD_OE
LCD_LD[17:0]
Line Y
Line 1
T5
T6
XMAX
Line Y
T7
LCD_HSYNC
LCD_LSCLK
LCD_OE
LCD_LD[15:0]
(1,1)
(1,2)
(1,X)
Figure 16. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
30
Freescale Semiconductor
Electrical Characteristics
Table 15. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing
Number
Description
Minimum
Value
Unit
T5+T6+T7-1
(VWAIT1·T2)+T5+T6+T7-1
Ts
T1
End of LCD_OE to beginning of LCD_VSYNC
T2
LCD_HSYNC period
—
XMAX+T5+T6+T7
Ts
T3
LCD_VSYNC pulse width
T2
VWIDTH·T2
Ts
T4
End of LCD_VSYNC to beginning of LCD_OE
1
(VWAIT2·T2)+1
Ts
T5
LCD_HSYNC pulse width
1
HWIDTH+1
Ts
T6
End of LCD_HSYNC to beginning to LCD_OE
3
HWAIT2+3
Ts
T7
End of LCD_OE to beginning of LCD_HSYNC
1
HWAIT1+1
Ts
Note: Ts is the LCD_LSCLK period. LCD_VSYNC, LCD_HSYNC and LCD_OE can be programmed as active high or active
low. In Figure 16, all 3 signals are active low. LCD_LSCLK can be programmed to be deactivated during the
LCD_VSYNC pulse or the LCD_OE deasserted period. In Figure 16, LCD_LSCLK is always active.
Note: XMAX is defined in number of pixels in one line.
XMAX
LCD_LSCLK
LCD_LD
D1
D320
LCD_SPL_SPR
D2
D320
T1
T2
LCD_HSYNC
T3
T2
T4
LCD_CLS
T4
T5
T6
LCD_PS
T7
T7
LCD_REV
Figure 17. Sharp TFT Panel Timing
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
31
Electrical Characteristics
Table 16. Sharp TFT Panel Timing
Num
Description
Minimum
Value
Unit
T1
LCD_SPL/LCD_SPR pulse width
—
1
Ts
T2
End of LCD_LD of line to beginning of LCD_HSYNC
1
HWAIT1+1
Ts
T3
End of LCD_HSYNC to beginning of LCD_LD of line
4
HWAIT2 + 4
Ts
T4
LCD_CLS rise delay from end of LCD_LD of line
3
CLS_RISE_DELAY+1
Ts
T5
LCD_CLS pulse width
1
CLS_HI_WIDTH+1
Ts
T6
LCD_PS rise delay from LCD_CLS negation
0
PS_RISE_DELAY
Ts
T7
LCD_REV toggle delay from last LCD_LD of line
1
REV_TOGGLE_DELAY+1
Ts
Note: Falling of LCD_SPL/LCD_SPR aligns with first LCD_LD of line.
Note: Falling of LCD_PS aligns with rising edge of LCD_CLS.
Note: LCD_REV toggles in every LCD_HSYN period.
T1
T1
LCD_VSYNC
T3
T2
T4
XMAX
T2
LCD_HSYNC
LCD_LSCLK
Ts
LCD_LD[15:0]
Figure 18. Non-TFT Mode Panel Timing
Table 17. Non-TFT Mode Panel Timing
Num
Description
Minimum
Value
Unit
T1
LCD_HSYNC to LCD_VSYNC delay
2
HWAIT2 + 2
Tpix
T2
LCD_HSYNC pulse width
1
HWIDTH + 1
Tpix
T3
LCD_VSYNC to LCD_LSCLK
—
0 ≤ T3 ≤ Ts
—
T4
LCD_LSCLK to LCD_HSYNC
1
HWAIT1 + 1
Tpix
Note: Ts is the LCD_LSCLK period while Tpix is the pixel clock period. LCD_VSYNC, LCD_HSYNC and LCD_LSCLK
can be programmed as active high or active low. In Figure 18, all three signals are active high. When it is in CSTN
mode or monochrome mode with bus width = 1, T3 = Tpix = Ts. When it is in monochrome mode with bus width
= 2, 4 and 8, T3 = 1, 2 and 4 Tpix respectively.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
32
Freescale Semiconductor
Electrical Characteristics
5.11
USB On-The-Go
The MCF5329 device is compliant with industry standard USB 2.0 specification.
5.12
ULPI Timing Specification
Control and data timing requirements for the ULPI pins are given in Table 18. These timings apply in synchronous mode only.
All timings are measured with either a 60 MHz input clock from the USB_CLKIN pin. The USB_CLKIN needs to maintain a
50% duty cycle. Control signals and 8-bit data are always clocked on the rising edge.
The ULPI interface on the MCF5329 processor is compliant with the industry standard definition.
THD
TSD
THC
TDD
TSC
TDC
ULPI_CLK
ULPI_STP
(Input)
ULPI_DATA
(Input-8bit)
ULPI_DIR/ULPI_NXT
(Output)
ULPI_DATA
(Output-8bit)
Figure 19. ULPI Timing Diagram
Table 18. ULPI Interface Timing
5.13
Parameter
Symbol
Min
Max
Units
Setup time (control in, 8-bit data in)
TSC, TSD
—
3.0
ns
Hold time (control in, 8-bit data in)
THC, THD
−1.5
—
ns
Output delay (control out, 8-bit data out)
TDC, TDD
—
6.0
ns
SSI Timing Specifications
This section provides the AC timings for the SSI in master (clocks driven) and slave modes (clocks input). All timings are given
for non-inverted serial clock polarity (SSI_TCR[TSCKP] = 0, SSI_RCR[RSCKP] = 0) and a non-inverted frame sync
(SSI_TCR[TFSI] = 0, SSI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings
remain valid by inverting the clock signal (SSI_BCLK) and/or the frame sync (SSI_FS) shown in the figures below.
Table 19. SSI Timing – Master Modes1
Num
Description
2
S1
SSI_MCLK cycle time
S2
SSI_MCLK pulse width high / low
3
S3
SSI_BCLK cycle time
S4
SSI_BCLK pulse width
S5
SSI_BCLK to SSI_FS output valid
Symbol
Min
Max
Units
tMCLK
8 × tSYS
—
ns
45%
55%
tMCLK
8 × tSYS
—
ns
45%
55%
tBCLK
—
15
ns
tBCLK
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
33
Electrical Characteristics
Table 19. SSI Timing – Master Modes1 (continued)
Num
Description
Symbol
Min
Max
Units
S6
SSI_BCLK to SSI_FS output invalid
-2
—
ns
S7
SSI_BCLK to SSI_TXD valid
—
15
ns
S8
SSI_BCLK to SSI_TXD invalid / high impedence
-4
—
ns
S9
SSI_RXD / SSI_FS input setup before SSI_BCLK
15
—
ns
S10
SSI_RXD / SSI_FS input hold after SSI_BCLK
0
—
ns
1
All timings specified with a capactive load of 25pF.
SSI_MCLK can be generated from SSI_CLKIN or a divided version of the internal system clock
(SYSCLK).
3
SSI_BCLK can be derived from SSI_CLKIN or a divided version of SYSCLK. If the SYSCLK is used, the
minimum divider is 6. If the SSI_CLKIN input is used, the programmable dividers must be set to ensure
that SSI_BCLK does not exceed 4 x fSYS.
2
Table 20. SSI Timing – Slave Modes1
Num
1
Description
Symbol
Min
Max
Units
tBCLK
8 × tSYS
—
ns
45%
55%
tBCLK
S11
SSI_BCLK cycle time
S12
SSI_BCLK pulse width high/low
S13
SSI_FS input setup before SSI_BCLK
10
—
ns
S14
SSI_FS input hold after SSI_BCLK
3
—
ns
S15
SSI_BCLK to SSI_TXD/SSI_FS output valid
—
15
ns
S16
SSI_BCLK to SSI_TXD/SSI_FS output invalid/high
impedence
-2
—
ns
S17
SSI_RXD setup before SSI_BCLK
10
—
ns
S18
SSI_RXD hold after SSI_BCLK
3
—
ns
All timings specified with a capactive load of 25pF.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
34
Freescale Semiconductor
Electrical Characteristics
S1
S2
S2
SSI_MCLK
(Output)
S3
SSI_BCLK
(Output)
S4
S4
S5
S6
SSI_FS
(Output)
S9
S10
SSI_FS
(Input)
S7
S7
S8
S8
SSI_TXD
S9
S10
SSI_RXD
Figure 20. SSI Timing – Master Modes
S11
SSI_BCLK
(Input)
S12
S12
S15
S16
SSI_FS
(Output)
S13
S14
SSI_FS
(Input)
S15
S16
S16
S15
SSI_TXD
S17
S18
SSI_RXD
Figure 21. SSI Timing – Slave Modes
5.14
I2C Input/Output Timing Specifications
Table 21 lists specifications for the I2C input timing parameters shown in Figure 22.
Table 21. I2C Input Timing Specifications between SCL and SDA
Num
Characteristic
Min
Max
Units
I1
Start condition hold time
2
—
tcyc
I2
Clock low period
8
—
tcyc
I3
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)
—
1
ms
I4
Data hold time
0
—
ns
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
35
Electrical Characteristics
Table 21. I2C Input Timing Specifications between SCL and SDA (continued)
Num
Characteristic
Min
Max
Units
I5
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)
—
1
ms
I6
Clock high time
4
—
tcyc
I7
Data setup time
0
—
ns
I8
Start condition setup time (for repeated start condition only)
2
—
tcyc
I9
Stop condition setup time
2
—
tcyc
Table 22 lists specifications for the I2C output timing parameters shown in Figure 22.
Table 22. I2C Output Timing Specifications between SCL and SDA
Num
Characteristic
Min
Max
Units
I11
Start condition hold time
6
—
tcyc
I2 1
Clock low period
10
—
tcyc
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)
—
—
µs
I4 1
Data hold time
7
—
tcyc
I5 3
I3
2
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)
—
3
ns
I6
1
Clock high time
10
—
tcyc
I7
1
Data setup time
2
—
tcyc
I8
1
Start condition setup time (for repeated start condition only)
20
—
tcyc
Stop condition setup time
10
—
tcyc
I9 1
1
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum
frequency (IFDR = 0x20) results in minimum output timings as shown in Table 22. The I2C interface is
designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual
position is affected by the prescale and division values programmed into the IFDR; however, the numbers
given in Table 22 are minimum values.
2
Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive
low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and
pull-up resistor values.
3
Specified at a nominal 50-pF load.
Figure 22 shows timing for the values in Table 22 and Table 21.
I5
I6
I2
I2C_SCL
I1
I4
I7
I8
I3
I9
I2C_SDA
Figure 22. I2C Input/Output Timings
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
36
Freescale Semiconductor
Electrical Characteristics
5.15
Fast Ethernet AC Timing Specifications
MII signals use TTL signal levels compatible with devices operating at 5.0 V or 3.3 V.
5.15.1
MII Receive Signal Timing
The receiver functions correctly up to a FEC_RXCLK maximum frequency of 25 MHz +1%. The processor clock frequency
must exceed twice the FEC_RXCLK frequency.
Table 23 lists MII receive channel timings.
Table 23. MII Receive Signal Timing
Num
Characteristic
Min
Max
Unit
M1
FEC_RXD[3:0], FEC_RXDV, FEC_RXER to FEC_RXCLK setup
5
—
ns
M2
FEC_RXCLK to FEC_RXD[3:0], FEC_RXDV, FEC_RXER hold
5
—
ns
M3
FEC_RXCLK pulse width high
35%
65%
FEC_RXCLK period
M4
FEC_RXCLK pulse width low
35%
65%
FEC_RXCLK period
Figure 23 shows MII receive signal timings listed in Table 23.
M3
FEC_RXCLK (input)
M4
FEC_RXD[3:0] (inputs)
FEC_RXDV
FEC_RXER
M1
M2
Figure 23. MII Receive Signal Timing Diagram
5.15.2
MII Transmit Signal Timing
Table 24 lists MII transmit channel timings.
The transmitter functions correctly up to a FEC_TXCLK maximum frequency of 25 MHz +1%. The processor clock frequency
must exceed twice the FEC_TXCLK frequency.
Table 24. MII Transmit Signal Timing
Num
Characteristic
Min
Max
Unit
M5
FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER invalid
5
—
ns
M6
FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER valid
—
25
ns
M7
FEC_TXCLK pulse width high
35%
65%
FEC_TXCLK period
M8
FEC_TXCLK pulse width low
35%
65%
FEC_TXCLK period
Figure 24 shows MII transmit signal timings listed in Table 24.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
37
Electrical Characteristics
M7
FEC_TXCLK (input)
M5
M8
FEC_TXD[3:0] (outputs)
FEC_TXEN
FEC_TXER
M6
Figure 24. MII Transmit Signal Timing Diagram
5.15.3
MII Async Inputs Signal Timing
Table 25 lists MII asynchronous inputs signal timing.
Table 25. MII Async Inputs Signal Timing
Num
M9
Characteristic
FEC_CRS, FEC_COL minimum pulse width
Min
Max
Unit
1.5
—
FEC_TXCLK period
FEC_CRS
FEC_COL
M9
Figure 25. MII Async Inputs Timing Diagram
5.15.4
MII Serial Management Channel Timing
Table 26 lists MII serial management channel timings. The FEC functions correctly with a maximum MDC frequency of 2.5
MHz.
Table 26. MII Serial Management Channel Timing
Num
Characteristic
Min
Max
Unit
M10
FEC_MDC falling edge to FEC_MDIO output invalid (minimum
propagation delay)
0
—
ns
M11
FEC_MDC falling edge to FEC_MDIO output valid (max prop delay)
—
25
ns
M12
FEC_MDIO (input) to FEC_MDC rising edge setup
10
—
ns
M13
FEC_MDIO (input) to FEC_MDC rising edge hold
0
—
ns
M14
FEC_MDC pulse width high
40% 60% FEC_MDC period
M15
FEC_MDC pulse width low
40% 60% FEC_MDC period
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
38
Freescale Semiconductor
Electrical Characteristics
M14
M15
FEC_MDC (output)
M10
FEC_MDIO (output)
M11
FEC_MDIO (input)
M12
M13
Figure 26. MII Serial Management Channel Timing Diagram
5.16
32-Bit Timer Module Timing Specifications
Table 27 lists timer module AC timings.
Table 27. Timer Module AC Timing Specifications
Name
5.17
Characteristic
Min
Max
Unit
T1
DT0IN / DT1IN / DT2IN / DT3IN cycle time
3
—
tCYC
T2
DT0IN / DT1IN / DT2IN / DT3IN pulse width
1
—
tCYC
QSPI Electrical Specifications
Table 28 lists QSPI timings.
Table 28. QSPI Modules AC Timing Specifications
Name
Characteristic
Min
Max
Unit
QS1
QSPI_CS[3:0] to QSPI_CLK
1
510
tCYC
QS2
QSPI_CLK high to QSPI_DOUT valid.
—
10
ns
QS3
QSPI_CLK high to QSPI_DOUT invalid. (Output hold)
2
—
ns
QS4
QSPI_DIN to QSPI_CLK (Input setup)
9
—
ns
QS5
QSPI_DIN to QSPI_CLK (Input hold)
9
—
ns
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
39
Electrical Characteristics
QS1
QSPI_CS[3:0]
QSPI_CLK
QS2
QSPI_DOUT
QS3
QS4
QS5
QSPI_DIN
Figure 27. QSPI Timing
5.18
JTAG and Boundary Scan Timing
Table 29. JTAG and Boundary Scan Timing
Characteristics1
Num
1
Symbol
Min
Max
Unit
J1
TCLK Frequency of Operation
fJCYC
DC
1/4
fsys/3
J2
TCLK Cycle Period
tJCYC
4
—
tCYC
J3
TCLK Clock Pulse Width
tJCW
26
—
ns
J4
TCLK Rise and Fall Times
tJCRF
0
3
ns
J5
Boundary Scan Input Data Setup Time to TCLK Rise
tBSDST
4
—
ns
J6
Boundary Scan Input Data Hold Time after TCLK Rise
tBSDHT
26
—
ns
J7
TCLK Low to Boundary Scan Output Data Valid
tBSDV
0
33
ns
J8
TCLK Low to Boundary Scan Output High Z
tBSDZ
0
33
ns
J9
TMS, TDI Input Data Setup Time to TCLK Rise
tTAPBST
4
—
ns
J10
TMS, TDI Input Data Hold Time after TCLK Rise
tTAPBHT
10
—
ns
J11
TCLK Low to TDO Data Valid
tTDODV
0
26
ns
J12
TCLK Low to TDO High Z
tTDODZ
0
8
ns
J13
TRST Assert Time
tTRSTAT
100
—
ns
J14
TRST Setup Time (Negation) to TCLK High
tTRSTST
10
—
ns
JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
40
Freescale Semiconductor
Electrical Characteristics
J2
J3
J3
VIH
TCLK
(input)
VIL
J4
J4
Figure 28. Test Clock Input Timing
TCLK
VIL
VIH
J5
Data Inputs
J6
Input Data Valid
J7
Data Outputs
Output Data Valid
J8
Data Outputs
J7
Data Outputs
Output Data Valid
Figure 29. Boundary Scan (JTAG) Timing
TCLK
VIL
VIH
J9
TDI
TMS
J10
Input Data Valid
J11
TDO
Output Data Valid
J12
TDO
J11
TDO
Output Data Valid
Figure 30. Test Access Port Timing
TCLK
J14
TRST
J13
Figure 31. TRST Timing
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
41
Current Consumption
5.19
Debug AC Timing Specifications
Table 30 lists specifications for the debug AC timing parameters shown in Figure 32.
Table 30. Debug AC Timing Specification
Num
1
Characteristic
Min
Max
Units
D0
PSTCLK cycle time
2
2
tSYS = 1/fSYS
D1
PSTCLK rising to PSTDDATA valid
—
3.0
ns
D2
PSTCLK rising to PSTDDATA invalid
1.5
—
ns
D3
DSI-to-DSCLK setup
1
—
PSTCLK
D41
DSCLK-to-DSO hold
4
—
PSTCLK
D5
DSCLK cycle time
5
—
PSTCLK
D6
BKPT assertion time
1
—
PSTCLK
DSCLK and DSI are synchronized internally. D4 is measured from the synchronized
DSCLK input relative to the rising edge of PSTCLK.
D0
PSTCLK
D2
D1
PSTDDATA[7:0]
Figure 32. Real-Time Trace AC Timing
D5
DSCLK
D3
DSI
Current
Next
D4
DSO
Past
Current
Figure 33. BDM Serial Port AC Timing
6
Current Consumption
All current consumption data is lab data measured on a single device using an evaluation board. Table 31 shows the typical
power consumption in low-power modes. These current measurements are taken after executing a STOP instruction.
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
42
Freescale Semiconductor
Current Consumption
Table 31. Current Consumption in Low-Power Modes1,2
Mode
Stop Mode 3 (Stop 11)5
Stop Mode 2 (Stop 10)4
Stop Mode 1(Stop 01)4
Voltage
58 MHz
(Typ)3
64 MHz
(Typ)3
72 MHz
(Typ)3
80 MHz
(Typ)3
80 MHz
(Peak)4
3.3 V
3.9
3.92
4.0
4.0
4.0
1.5 V
1.04
1.04
1.04
1.04
1.08
3.3 V
4.69
4.72
4.8
4.8
4.8
1.5 V
2.69
2.69
2.70
2.70
2.75
3.3 V
4.72
4.73
4.81
4.81
4.81
1.5 V
15.28
16.44
17.85
19.91
20.42
3.3 V
21.65
21.68
24.33
26.13
26.16
1.5 V
15.47
16.63
18.06
20.12
20.67
3.3 V
22.49
22.52
25.21
27.03
39.8
1.5 V
26.79
28.85
30.81
34.47
97.4
3.3 V
33.61
33.61
42.3
50.5
62.6
1.5 V
56.3
60.7
65.4
73.4
132.3
Units
mA
Stop Mode 0 (Stop
00)4
Wait/Doze
Run
1
2
3
4
5
All values are measured with a 3.30V EVDD, 3.30V SDVDD and 1.5V IVDD power supplies. Tests performed at room
temperature with pins configured for high drive strength.
Refer to the Power Management chapter in the MCF532x Reference Manual for more information on low-power
modes.
All peripheral clocks except UART0, FlexBus, INTC0, reset controller, PLL, and edge port off before entering low
power mode. All code executed from flash.
All peripheral clocks on before entering low power mode. All code is executed from flash.
See the description of the low-power control register (LCPR) in the MCF532x Reference Manual for more
information on stop modes 0–3.
Power Consumption (mW)
450
400
350
Stop 0 - Flash
300
Stop 1 - Flash
250
Stop 2 - Flash
200
Stop 3 - Flash
150
Wait/Doze - Flash
100
Run - Flash
50
0
58
64
72
80
80(peak)
fsys/3 (MHz)
Figure 34. Current Consumption in Low-Power Modes
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
43
Current Consumption
Table 32. Typical Active Current Consumption Specifications1
fsys/3 Frequency
Voltage
Typical2 Active
(Flash)
Peak3
3.3V
7.73
7.74
1.5V
2.87
3.56
3.3V
8.57
8.60
1.5V
4.37
5.52
3.3V
40.10
49.3
1.5V
65.90
91.70
3.3V
44.40
54.0
1.5V
69.50
97.0
3.3V
53.6
63.7
1.5V
74.6
104.7
3.3V
63.0
73.7
1.5V
79.6
112.9
Unit
1.333 MHz
2.666 MHz
58 MHz
mA
64 MHz
72 MHz
80 MHz
1
All values are measured with a 3.30 V EVDD, 3.30 V SDVDD and 1.5 V IVDD power
supplies. Tests performed at room temperature with pins configured for high drive
strength.
2 CPU polling a status register. All peripheral clocks except UART0, FlexBus,
INTC0, reset controller, PLL, and edge port disabled.
3
Peak current measured while running a while(1) loop with all modules active.
Figure 35 shows the estimated maximum power consumption.
Estimated Power Consumption vs. Core Frequency
Power Consumption (mW)
300
250
200
150
100
50
0
0
40
80
120
160
Core Frequency (MHz)
200
240
Figure 35. Estimated Maximum Power Consumption
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
44
Freescale Semiconductor
Package Information
7
Package Information
This section contains drawings showing the pinout and the packaging and mechanical characteristics of the MCF532x devices.
NOTE
The mechanical drawings are the latest revisions at the time of publication of this
document. The most up-to-date mechanical drawings can be found at the product summary
page located at http://www.freescale.com/coldfire.
7.1
Package Dimensions—256 MAPBGA
Figure 36 shows MCF5328CVM240, MCF53281CVM240, and MCF5329CVM240 package dimensions.
X
D
Y
M
Laser mark for pin A1
identification in
this area
5
K
A
0.30 Z
A2
A1
Z
E
256X
4
0.15 Z
Detail K
Rotated 90° Clockwise
0.20
15X
e
S
15 13 11
16 14 12 10
15X
e
Metalized mark for
pin A1 identification
in this area
7654321
3.
4.
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
S
Notes:
1.
2.
M
Top View
5.
256X
b
3
0.25
M
Z X Y
0.10
M
Z
Bottom View
View M-M
Dimensions are in millimeters.
Interpret dimensions and tolerances
per ASME Y14.5M, 1994.
Dimension b is measured at the
maximum solder ball diameter, parallel
to datum plane Z.
Datum Z (seating plane) is defined by
the spherical crowns of the solder
balls.
Parallelism measurement shall exclude
any effect of mark on top surface of
package.
Dim
A
A1
A2
b
D
E
e
S
Millimeters
Min
Max
1.25
1.60
0.27
0.47
1.16 REF
0.40
0.60
17.00 BSC
17.00 BSC
1.00 BSC
0.50 BSC
Figure 36. 256 MAPBGA Package Outline
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
45
Package Information
7.2
Package Dimensions—196 MAPBGA
Figure 37 shows the MCF5327CVM240 package dimensions.
NOTES:
1. Dimensions are in millimeters.
2. Interpret dimensions and tolerances
per ASME Y14.5M, 1994.
3. Dimension B is measured at the
maximum solder ball diameter,
parallel to datum plane Z.
4. Datum Z (seating plane) is defined
by the spherical crowns of the solder
balls.
5. Parallelism measurement shall
exclude any effect of mark on top
surface of package.
D
X
Laser mark for pin 1
identification in
this area
Y
M
K
Millimeters
DIM Min Max
E
A
A1
A2
b
D
E
e
S
1.32 1.75
0.27 0.47
1.18 REF
0.35 0.65
15.00 BSC
15.00 BSC
1.00 BSC
0.50 BSC
M
Top View
0.20
13X
e
S
14 13 12 11 10
9
6
5
4
3
2
Metalized mark for
pin 1 identification
in this area
1
A
B
C
S
13X
e
D
5
E
0.30 Z
F
A
A2
G
H
J
K
L
M
A1
Z
0.15 Z
4
Detail K
Rotated 90 ° Clockwise
N
P
3
196X
b
0.30 Z X Y
0.10 Z
Bottom View
View M-M
Figure 37. 196 MAPBGA Package Dimensions (Case No. 1128A-01)
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
46
Freescale Semiconductor
Revision History
8
Revision History
Table 33. MCF5329DS Document Revision History
Rev. No.
0
Substantive Changes
Date of Release
• Initial release.
11/2005
0.1
• Added not to Section 7, “Package Information.”
• Added top view and bottom view where appropriate in mechanical
drawings and pinout figures.
• Figure 6: Corrected “FB_CLK (75MHz)” label to “FB_CLK (80MHz)”
3/2006
1
• Corrected MCF5327 196MAPBGA ball map locations in Table 5 for
the following signals: RCON, D1, D0, OE, R/W, SD_DQS2, PSTCLK,
DDATA[3:0], PST[3:0], EVDD, IVDD, and SD_VDD. Figure 5 was
correct.
• Updated thermal characteristic values in Table 5.
• Updated DC electricals values in Table 7.
• Updated Section 3.3, “Supply Voltage Sequencing and Separation
Cautions” and subsections.
• Updated and added Oscillator/PLL characteristics in Table 8.
• Table 9: Swapped min/max for FB1; Removed FB8 & FB9.
• Updated SDRAM write timing diagram, Figure 9.
• Table 11: Added values for frequency of operation and DD1.
• Reworded first paragraph in Section 5.12, “ULPI Timing
Specification.”
• Updated Figure 19.
• Replaced figure & table Section 5.13, “SSI Timing Specifications,”
with slave & master mode versions.
• Removed second sentence from Section 5.15.2, “MII Transmit Signal
Timing,” regarding no minimum frequency requirement for TXCLK.
• Removed third and fourth paragraphs from Section 5.15.2, “MII
Transmit Signal Timing,” as this feature is not supported on this
device.
• Updated figure & table Section 5.19, “Debug AC Timing
Specifications.”
• Renamed & moved previous version’s Section 5.5 “Power
Consumption” to Section 6, “Current Consumption.” Added additional
real-world data to this section as well.
7/2007
2
• Added MCF53281 device information throughout: features list, family
configuration table, ordering information table, signals description
table, and relevant package diagram titles
• Remove Footnote 1 from Table 11.
• Changed document type from Advance Information to Technical Data.
8/2007
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
47
Revision History
Table 33. MCF5329DS Document Revision History (continued)
Rev. No.
Substantive Changes
Date of Release
3
• Corrected MCF53281 in features list table. This device contains CAN,
but does not feature the cryptography accelerators.
• In pin-multiplexing table, moved MCF53281 label from the MCF5328
column to the MCF5329 column, because this device contains CAN
output signals.
10/2007
4
• Corrected pinouts in Table 5 for 196 MAPBGA device:
Changed D[15:1] entry from “F4–F1, G4–G2...” to “F4–F1, G5–G2...”
Changed DSO/TDO entry from “P9” to “N9”
• Corrected D0 spec in Table 30 from 1.5 x tsys to 2 x tsys for min and
max balues.
• Updated FlexBus read and write timing diagrams in Figure 7 and
Figure 8.
• Removed footnote 2 from the IRQ[7:1] alternate functions USBHOST
VBUS_EN, USBHOST VBUS_OC, SSI_MCLK, USB_CLKIN, and
SSI_CLKIN signals in Table 5.
• Updated pinouts for 196 MAPBGA device, MCF5327CVM240 in both
Figure 5 and Table 2.
The following locations are affected: G10–12, H12–14, J11–14,
K12–13, L12–13, M12–14, N13.
The following signals are affected: USBOTG_VDD, USBHOST_VSS,
USBOTG_M, USBOTG_P, USBHOST_M, USBHOST_P, DRAMSEL,
PWM3, PWM1, IRQ[7,4,3,2,1], RESET, TDI/DSI, JTAG_EN,
TMS/BKPT.
4/2008
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
48
Freescale Semiconductor
Revision History
THIS PAGE INTENTIONALLY BLANK
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 4
Freescale Semiconductor
49
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
[email protected]
Document Number: MCF5329DS
Rev. 4
04/2008
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.
For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008. All rights reserved.
Similar pages