HP HCPL-4562 High bandwidth, analog/video optocoupler Datasheet

H
High Bandwidth, Analog/Video
Optocouplers
Technical Data
HCPL-4562
HCNW4562
Features
Bandwidth[1]:
• Wide
17 MHz (HCPL-4562)
9 MHz (HCNW4562)
• High Voltage Gain[1]:
2.0 (HCPL-4562)
3.0 (HCNW4562)
• Low GV Temperature
Coefficient: -0.3%/ °C
• Highly Linear at Low Drive
Currents
• High-Speed AlGaAs Emitter
• Safety Approval
UL Recognized - 2500 V rms
for 1 minute (5000 V rms for
1 minute for HCPL4562#020 and HCNW4562)
per UL 1577
CSA Approved
VDE 0884 Approved
-VIORM = 1414 V peak for
HCNW4562
BSI Certified (HCNW4562)
• Available in 8-Pin DIP and
Widebody Packages
Applications
Description
• Video Isolation for the
Following Standards/
Formats: NTSC, PAL,
SECAM, S-VHS, ANALOG
RGB
• Low Drive Current Feedback
Element in Switching Power
Supplies, e.g., for ISDN
Networks
• A/D Converter Signal
Isolation
• Analog Signal Ground
Isolation
• High Voltage Insulation
The HCPL-4562 and HCNW4562
optocouplers provide wide bandwidth isolation for analog signals.
They are ideal for video isolation
when combined with their
application circuit (Figure 4).
High linearity and low phase shift
are achieved through an AlGaAs
LED combined with a high speed
detector. These single channel
optocouplers are available in
8-Pin DIP and Widebody package
configurations.
Functional Diagram
NC 1
8 VCC
ANODE 2
7 VB
CATHODE 3
6 VO
NC 4
5 GND
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to
prevent damage and/or degradation which may be induced by ESD.
5965-3579E
1-385
Selection Guide
Single Channel Packages
8-Pin DIP
(300 Mil)
Widebody
(400 Mil)
HCPL-4562
HCNW4562
Ordering Information
Specify Part Number followed by Option Number (if desired).
Example:
HCPL-4562#XXX
020 = UL 5000 V rms/1 Minute Option*
300 = Gull Wing Surface Mount Option†
500 = Tape and Reel Packaging Option
Option data sheets are available. Contact your Hewlett-Packard sales representative or authorized
distributor for information.
*For HCPL-4562 only.
†Gull wing surface mount option applies to through hole parts only.
Schematic
ICC
2
ANODE
VCC
+
VF
CATHODE
8
IF
IO
–
6
VO
3
5
IB
7
VB
1-386
GND
Package Outline Drawings
8-Pin DIP Package (HCPL-4562)
7.62 ± 0.25
(0.300 ± 0.010)
9.65 ± 0.25
(0.380 ± 0.010)
8
TYPE NUMBER
7
6
5
OPTION NUMBER*
6.35 ± 0.25
(0.250 ± 0.010)
DATE CODE
HP XXXXZ
YYWW RU
1
2
3
UL
RECOGNITION
4
1.78 (0.070) MAX.
1.19 (0.047) MAX.
+ 0.076
0.254 - 0.051
+ 0.003)
(0.010 - 0.002)
5° TYP.
4.70 (0.185) MAX.
0.51 (0.020) MIN.
2.92 (0.115) MIN.
DIMENSIONS IN MILLIMETERS AND (INCHES).
* MARKING CODE LETTER FOR OPTION NUMBERS.
"L" = OPTION 020
"V" = OPTION 060
OPTION NUMBERS 300 AND 500 NOT MARKED.
0.65 (0.025) MAX.
1.080 ± 0.320
(0.043 ± 0.013)
2.54 ± 0.25
(0.100 ± 0.010)
8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-4562)
PAD LOCATION (FOR REFERENCE ONLY)
9.65 ± 0.25
(0.380 ± 0.010)
8
7
6
1.016 (0.040)
1.194 (0.047)
5
4.826 TYP.
(0.190)
6.350 ± 0.25
(0.250 ± 0.010)
1
2
3
9.398 (0.370)
9.906 (0.390)
4
1.194 (0.047)
1.778 (0.070)
1.19
(0.047)
MAX.
1.780
(0.070)
MAX.
9.65 ± 0.25
(0.380 ± 0.010)
7.62 ± 0.25
(0.300 ± 0.010)
4.19 MAX.
(0.165)
1.080 ± 0.320
(0.043 ± 0.013)
0.635 ± 0.130
2.54
(0.025 ± 0.005)
(0.100)
BSC
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
0.381 (0.015)
0.635 (0.025)
0.635 ± 0.25
(0.025 ± 0.010)
+ 0.076
0.254 - 0.051
+ 0.003)
(0.010 - 0.002)
12° NOM.
1-387
8-Pin Widebody DIP Package (HCNW4562)
11.00 MAX.
(0.433)
11.15 ± 0.15
(0.442 ± 0.006)
8
7
6
9.00 ± 0.15
(0.354 ± 0.006)
5
TYPE NUMBER
HP
HCNWXXXX
DATE CODE
YYWW
1
2
3
4
10.16 (0.400)
TYP.
1.55
(0.061)
MAX.
7° TYP.
+ 0.076
0.254 - 0.0051
+ 0.003)
(0.010 - 0.002)
5.10 MAX.
(0.201)
3.10 (0.122)
3.90 (0.154)
0.51 (0.021) MIN.
2.54 (0.100)
TYP.
1.78 ± 0.15
(0.070 ± 0.006)
0.40 (0.016)
0.56 (0.022)
DIMENSIONS IN MILLIMETERS (INCHES).
8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW4562)
11.15 ± 0.15
(0.442 ± 0.006)
8
7
6
PAD LOCATION (FOR REFERENCE ONLY)
5
6.15
(0.242)TYP.
9.00 ± 0.15
(0.354 ± 0.006)
12.30 ± 0.30
(0.484 ± 0.012)
1
2
3
4
1.3
(0.051)
0.9
(0.035)
12.30 ± 0.30
(0.484 ± 0.012)
1.55
(0.061)
MAX.
11.00 MAX.
(0.433)
4.00 MAX.
(0.158)
1.78 ± 0.15
(0.070 ± 0.006)
2.54
(0.100)
BSC
0.75 ± 0.25
(0.030 ± 0.010)
1.00 ± 0.15
(0.039 ± 0.006)
+ 0.076
0.254 - 0.0051
+ 0.003)
(0.010 - 0.002)
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
1-388
7° NOM.
TEMPERATURE – °C
Solder Reflow Temperature Profile (Gull Wing Surface Mount Option Parts)
260
240
220
200
180
160
140
120
100
80
60
40
20
0
∆T = 145°C, 1°C/SEC
∆T = 115°C, 0.3°C/SEC
∆T = 100°C, 1.5°C/SEC
0
1
2
3
4
5
6
7
8
9
10
11
12
TIME – MINUTES
Note: Use of nonchlorine activated fluxes is highly recommended.
Regulatory Information
The devices contained in this data
sheet have been approved by the
following organizations:
UL
Recognized under UL 1577,
Component Recognition
Program, File E55361.
CSA
Approved under CSA Component
Acceptance Notice #5, File CA
88324.
VDE
Approved according to VDE
0884/06.92 (HCNW4562 only).
BSI
Certification according to
BS415:1994
(BS EN60065:1994);
BS EN60950:1992
(BS7002:1992) and
EN41003:1993 for Class II
applications (HCNW4562 only).
1-389
Insulation and Safety Related Specifications
Parameter
Minimum External
Air Gap (External
Clearance)
Minimum External
Tracking (External
Creepage)
Minimum Internal
Plastic Gap
(Internal Clearance)
Minimum Internal
Tracking (Internal
Creepage)
Tracking Resistance
(Comparative
Tracking Index)
Isolation Group
Symbol
L(101)
8-Pin DIP
(300 Mil)
Value
7.1
Widebody
(400 Mil)
Value
9.6
Units
mm
L(102)
7.4
10.0
mm
0.08
1.0
mm
NA
4.0
mm
200
200
Volts
IIIa
IIIa
CTI
Conditions
Measured from input terminals to
output terminals, shortest distance
through air.
Measured from input terminals to
output terminals, shortest distance
path along body.
Through insulation distance,
conductor to conductor, usually the
direct distance between the photoemitter and photodetector inside the
optocoupler cavity.
Measured from input terminals to
output terminals, along internal cavity.
DIN IEC 112/VDE 0303 Part 1
Material Group
(DIN VDE 0110, 1/89, Table 1)
Option 300 - surface mount classification is Class A in accordance with CECC 00802.
1-390
VDE 0884 Insulation Related Characteristics (HCNW4562 ONLY)
Description
Installation classification per DIN VDE 0110/1.89, Table 1
for rated mains voltage ≤ 600 V rms
for rated mains voltage ≤ 1000 V rms
Climatic Classification
Pollution Degree (DIN VDE 0110/1.89)
Maximum Working Insulation Voltage
Input to Output Test Voltage, Method b*
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec,
Partial Discharge < 5 pC
Input to Output Test Voltage, Method a*
VIORM x 1.5 = VPR, Type and sample test,
tm = 60 sec, Partial Discharge < 5 pC
Highest Allowable Overvoltage*
(Transient Overvoltage, tini = 10 sec)
Safety Limiting Values
(Maximum values allowed in the event of a failure,
also see Figure 17, Thermal Derating curve.)
Case Temperature
Input Current
Output Power
Insulation Resistance at TS, VIO = 500 V
Symbol
Characteristic
Units
VIORM
I-IV
I-III
55/85/21
2
1414
V peak
VPR
2652
V peak
VPR
2121
V peak
VIOTM
8000
V peak
TS
IS,INPUT
PS,OUTPUT
150
400
700
≥ 109
°C
mA
mW
Ω
RS
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section (VDE 0884), for a
detailed description.
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in
application.
1-391
Absolute Maximum Ratings
Parameter
Symbol
Device
Min.
Max.
Units
Storage Temperature
TS
-55
125
°C
Operating Temperature
TA
-40
85
°C
HCPL-4562
12
mA
HCNW4562
25
HCPL-4562
18.6
HCNW4562
40
IF(EFF)
HCPL-4562
12.9
mA rms
VR
HCPL-4562
1.8
V
HCNW4562
3
HCNW4562
40
mW
Average Forward Input Current
IF(avg)
Peak Forward Input Current
IF(PEAK)
Effective Input Current
Reverse LED Input Voltage (Pin 3-2)
Input Power Dissipation
PIN
Note
mA
Average Output Current (Pin 6)
IO(AVG)
8
mA
Peak Output Current (Pin 6)
IO(PEAK)
16
mA
Emitter-Base Reverse Voltage (Pin 5-7)
VEBR
5
V
Supply Voltage (Pin 8-5)
VCC
-0.3
30
V
Output Voltage (Pin 6-5)
VO
-0.3
20
V
Base Current (Pin 7)
IB
5
mA
Output Power Dissipation
PO
100
mW
Lead Solder Temperature
1.6 mm Below Seating Plane, 10 Seconds
up to Seating Plane, 10 Seconds
TLS
HCPL-4562
260
°C
HCNW4562
260
°C
Reflow Temperature Profile
TRP
Option
300
See Package Outline
Drawings Section
2
Recommended Operating Conditions
Parameter
Symbol
Device
Min.
Max.
Units
Operating Temperature
TA
HCPL-4562
-10
70
°C
Quiescent Input Current
IFQ
HCPL-4562
6
mA
HCNW4562
10
HCPL-4562
10
HCNW4562
17
Peak Input Current
1-392
IF(PEAK)
mA
Note
Electrical Specifications (DC)
TA = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFQ) unless
otherwise specified.
Parameter
Base Photo
Current
IPB
Temperature
Coefficient
Symbol
Device
IPB
Min. Typ.* Max. Units
13
HCPL-4562
∆IPB /
∆T
IPB
Nonlinearity
HCPL-4562
HCNW4562
31
19.2
65
µA
Test Conditions
IF = 10 mA
IF = 6 mA
VPB ≥ 5 V
Fig. Note
2, 6
-0.3
%/°C
2 mA < IF < 10 mA,
VPB ≥ 5 V
2
0.25
0.15
%
2 mA < IF < 10 mA
6 mA < IF < 14 mA
2, 6
V
IF = 5 mA
IF = 10 mA
V
IR = 10 µA
IR = 100 µA
Input Forward
Voltage
VF
HCPL-4562
HCNW4562
1.1
1.2
1.3
1.6
1.6
1.8
Input Reverse
Breakdown
Voltage
BVR
HCPL-4562
HCNW4562
1.8
3
5
Transistor
Current Gain
hFE
60
160
Current
Transfer Ratio
CTR
HCPL-4562
HCNW4562
45
52
%
VCE = 1.25 V,
VPB ≥ 5 V
8, 9
DC Output
Voltage
VOUT
HCPL-4562
HCNW4562
4.25
5.0
V
GV = 2, VCC = 9 V
4,
15
3
5
IC = 1 mA,
VCE = 1.25 V
4
1-393
Small Signal Characteristics (AC)
TA = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFO) unless
otherwise specified.
Parameter
Voltage Gain
Symbol
Device
GV
HCPL-4562
(0.1 MHz) HCNW4562
Min. Typ.* Max. Units
0.8
GV Temperature
Coefficient
∆GV/∆T
Base Photo
Current
Variation
∆iPB
(6 MHz)
HCPL-4562
HCNW4562
-3 dB Frequency
(iPB)
iPB
(-3 dB)
HCPL-4562
HCNW4562
6
-3 dB Frequency
(GV)
GV
(-3 dB)
HCPL-4562
HCNW4562
6
Gain Variation
∆GV
(6 MHz)
HCPL-4562
HCNW4562
HCPL-4562
Output Noise
Voltage
Isolation Mode
Rejection Ratio
1-394
1.1
0.36
7
17
9
MHz VIN = 1 VP-P,
fREF = 0.1 MHz
1, 11
7
± 0.9
HCPL-4562
±1
HCNW4562
± 0.6
HCPL-4562
HCNW4562
2.5
0.75
IMRR
950
HCPL-4562
HCNW4562
1, 11
3, 10,
12
122
119
3.0
-dB
6
MHz VIN = 1 VP-P,
fREF = 0.1 MHz
HCNW4562
3.0
1
15
13
± 1.0
VO(noise)
%/°C VIN = 1 VP-P,
fREF = 0.1 MHz
Note
3, 10,
12
HCPL-4562
THD
VIN = 1 VP-P
Fig.
VIN = 1 VP-P,
fREF = 0.1 MHz
∆GV
HCPL-4562
(10 MHz) HCNW4562
Differential
Phase at
f = 3.58 MHz
4.2
-0.3
1.1
0.54
0.8
1.5
1.15
2.27
Differential
Gain at
f = 3.58 MHz
Total Harmonic
Distortion
2.0
3.0
Test Conditions
-dB
-dB
%
TA = 25°C VIN = 1 VP-P,
1, 11
fREF = 0.1 MHz
TA = -10°C
TA = 70°C
VIN = 1 VP-P,
fREF = 0.1 MHz
IFac = 0.7 mA p-p,
IFdc = 3 to 9 mA
IFac = 1 mA p-p,
IFdc = 7 to 13 mA
3, 7
8
deg. IFac = 0.7 mA p-p,
IFdc = 3 to 9 mA
IFac = 1 mA p-p,
IFdc = 7 to 13 mA
3, 7
9
4
10
%
VIN = 1 VP-P,
f = 3.58 MHz, GV = 2
µV rms 10 Hz to 10 MHz
dB
f = 120 Hz, GV = 2
1
14
11
Package Characteristics
All Typicals at TA = 25°C
Parameter
Input-Output
Momentary
Withstand
Voltage*
Sym.
VISO
Device
HCPL-4562
HCNW4562
HCPL-4562
(Option 020)
Input-Output
Resistance
RI-O
HCPL-4562
HCNW4562
Min.
2500
5000
5000
1012
Typ.
Max.
1012
1013
Units
V rms
Test Conditions
RH ≤ 50%,
t = 1 min.,
TA = 25°C
Ω
VI-O = 500 Vdc
TA = 25°C
TA = 100°C
f = 1 MHz
1011
Input-Output
Capacitance
CI-O
HCPL-4562
HCNW4562
0.6
0.5
pF
Fig.
Note
5, 12
5, 13
5, 13
5
5
0.6
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output
continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if
applicable), your equipment level safety specification or HP Application Note 1074 entitled “Optocoupler Input-Output Endurance
Voltage,” publication number 5963-2203E.
Notes:
1. When used in the circuit of Figure 1
or Figure 4; GV = VOUT/VIN; IFQ =
6 mA (HCPL-4562), IFQ = 10 mA
(HCNW4562).
2. Derate linearly above 70°C free-air
temperature at a rate of 2.0 mW/°C
(HCPL-4562).
3. Maximum variation from the best fit
line of IPB vs. IF expressed as a
percentage of the peak-to-peak full
scale output.
4. CURRENT TRANSFER RATIO (CTR)
is defined as the ratio of output
collector current, IO, to the forward
LED input current, IF, times 100%.
5. Device considered a two-terminal
device: Pins 1, 2, 3, and 4 shorted
together and Pins 5, 6, 7, and 8
shorted together.
6. Flat-band, small-signal voltage gain.
7. The frequency at which the gain is
3 dB below the flat-band gain.
8. Differential gain is the change in the
small-signal gain of the optocoupler
at 3.58 MHz as the bias level is varied
over a given range.
9. Differential phase is the change in the
small-signal phase response of the
optocoupler at 3.58 MHz as the bias
level is varied over a given range.
10. TOTAL HARMONIC DISTORTION
(THD) is defined as the square root
of the sum of the square of each
harmonic distortion component. The
THD of the isolated video circuit is
measured using a 2.6 kΩ load in
series with the 50 Ω input impedance
of the spectrum analyzer.
11. ISOLATION MODE REJECTION
RATIO (IMRR), a measure of the
optocoupler’s ability to reject signals
or noise that may exist between input
and output terminals, is defined by
20 log10 [(VOUT/VIN)/(VOUT /VIM)],
where VIM is the isolation mode
voltage signal.
12. In accordance with UL 1577, each
optocoupler is proof tested by
applying an insulation test voltage
≥ 3000 V rms for 1 second (leakage
detection current limit, II-O ≤ 5 µA).
This test is performed before the
100% Production test shown in the
VDE 0884 Insulation Related
Characteristics Table, if applicable.
13. In accordance with UL 1577, each
optocoupler is proof tested by
applying an insulation test voltage
≥ 6000 V rms for 1 second (leakage
detection current limit, II-O ≤ 5 µA).
This test is performed before the
100% Production test shown in the
VDE 0884 Insulation Related
Characteristics Table, if applicable.
1-395
162 Ω (HCPL-4562)
90.9 Ω (HCNW4562)
Figure 1. Gain and Bandwidth Test Circuit.
162 Ω (HCPL-4562)
90.9 Ω (HCNW4562)
Figure 2. Base Photo Current Test
Circuit.
Figure 3. Base Photo Current Frequency Response Test Circuit.
Figure 4. Recommended Isolated Video Interface Circuit.
1-396
IF – INPUT FORWARD VOLTAGE – mA
HCNW4562
HCPL-4562
100
IF
+
VF
–
10
TA = 70 °C
1.0
TA = 25 °C
TA = -10 °C
0.1
0.01
1.0
1.1
1.2
1.3
1.4
1.5
VF – FORWARD VOLTAGE – V
Figure 5. Input Current vs. Forward Voltage.
IPB – BASE PHOTO CURRENT – µA
HCNW4562
HCPL-4562
80
70
60
50
40
TA = 25 °C
VPB > 5 V
30
20
10
0
0
2
4
6
8 10 12 14 16 18 20
IF – INPUT CURRENT – mA
Figure 6. Base Photo Current vs. Input Current.
HCPL-4562
HCNW4562
SMALL-SIGNAL GAIN
1
1
PHASE
0
0.98
0.96
NORMALIZED
IF = 6 mA
f = 3.58 MHz
TA = 25 °C
SEE FIG. 3
0.94
0.92
0
2
4
6
GAIN
-1
-2
-3
8 10 12 14 16 18 20
SMALL-SIGNAL PHASE – DEGREES
2
1.02
IF – INPUT CURRENT – mA
Figure 7. Small-Signal Response vs. Input Current.
1-397
NORMALIZED CURRENT TRANSFER RATIO
HCNW4562
HCPL-4562
1.04
1.02
1.00
0.98
NORMALIZED
TA = 25 °C
IF = 6.0 mA
VCE = 1.25 V
VPB > 5 V
0.96
0.94
0.92
0.90
0.88
0.86
-10
0
10
20
30
40
50
60
70
T – TEMPERATURE – °C
CTR – NORMALIZED CURRENT TRANSFER RATIO
Figure 8. Current Transfer Ratio vs. Temperature.
HCNW4562
HCPL-4562
1.10
1.00
VCE = 5.0 V
0.90
VCE = 1.25 V
0.80
NORMALIZED
TA = 25 °C
IF = 6 mA
VCE = 1.25 V
VPB > 5 V
0.70
0.60
0.50
0
2
4
VCE = 0.4 V
8 10 12 14 16 18 20
6
IF – INPUT CURRENT – mA
∆iPB – BASE PHOTO CURRENT VARIATION – dB
Figure 9. Current Transfer Ratio vs. Input Current.
HCNW4562
HCPL-4562
-0.9
-1.1
FREQUENCY = 6 MHz
-1.3
-1.5
-1.7
FREQUENCY = 10 MHz
-1.9
-2.1
TA = 25 °C
FREF = 0.1 MHz
-2.3
-2.5
-2.7
1
2
3
4
5
6
7
8
9 10 11 12
IFQ – QUIESCENT INPUT CURRENT – mA
Figure 10. Base Photo Current Variation vs. Bias Conditions.
1-398
HCPL-4562
NORMALIZED VOLTAGE GAIN – dB
3
HCNW4562
2
TA = -10 °C
1
0
TA = 25 °C
-1
TA = 70 °C
-2
-3
NORMALIZED
TA = 25 °C
f = 0.1 MHz
-4
-5
-6
-7
0.01 0.1
1.0
10 100 1000 10,000 100,000
f – FREQUENCY – KHz
NORMALIZED BASE PHOTO CURRENT – dB
Figure 11. Normalized Voltage Gain vs. Frequency.
HCPL-4562
0.5
HCNW4562
0
-0.5
-1.0
NORMALIZED
TA = 25 °C
f = 0.1 MHz
-1.5
-2.0
-2.5
-3.0
-3.5
-4.0
-4.5
0.01 0.1
1.0
10 100 1000 10,000 100,000
f – FREQUENCY – KHz
Figure 12. Normalized Base Photo Current vs. Frequency.
HCPL-4562
0
IPB PHASE
SEE FIGURE 3
-25
∅ – PHASE – DEGREES
HCNW4562
-50
-75
TA = 25 °C
-100
-125
VIDEO INTERFACE
CIRCUIT PHASE
SEE FIGURE 4
-150
-175
-200
-225
-250
0
2
4
6
8 10 12 14 16 18 20
f – FREQUENCY – MHz
Figure 13. Phase vs. Frequency.
1-399
IMRR – ISOLATION MODE REJECTION RATIO – dB
HCNW4562
HCPL-4562
150
TA = 25 °C
120
-20 dB/DECADE SLOPE
90
60
IMRR = 20 LOG10
30
0
0.01
0.1
1.0
Gv
vOUT/vIM
10
100 1000 10,000
f – FREQUENCY – KHz
Figure 14. Isolation Mode Rejection Ratio vs. Frequency.
VO – DC OUTPUT VOLTAGE – V
HCNW4562
HCPL-4562
6.0
5.5
5.0
4.5
4.0
3.5
3.0
50 100 150 200 250 300 350 400 450
hFE – TRANSISTOR CURRENT GAIN
VCC
IC
Q4
R9
= 2 mA
ADDITIONAL
BUFFER
STAGE
Q4
Q3
Q5
R11
R10
VOUT
R12
LOW
IMPEDANCE
LOAD
OUTPUT POWER – PS, INPUT CURRENT – IS
Figure 15. DC Output Voltage vs. Transistor Current Gain.
HCNW4562
1000
PS (mW)
900
IS (mA)
800
700
600
500
400
300
200
100
0
0
25
50
75
100 125 150 175
TS – CASE TEMPERATURE – °C
Figure 16. Output Buffer Stage for
Low Impedance Loads.
1-400
Figure 17. Thermal Derating Curve,
Dependence of Safety Limiting Value
with Case Temperature per VDE
0884.
Conversion from HCPL-4562 to
HCNW4562
Figure 15 shows the dependency of the DC output
voltage on hFEX.
In order to obtain similar circuit performance when
converting from the HCPL-4562 to the HCNW4562,
it is recommended to increase the Quiescent Input
Current, IFQ, from 6 mA to 10 mA. If the application
circuit in Figure 4 is used, then potentiometer R4
should be adjusted appropriately.
For 9 V < VCC < 12 V, select the value of R11 such
that
VO
4.25 V
ICQ4
≅ –––
≤ –––––– ≤ 9.0 mA
(8)
Q4
R11
470 Ω
Design Considerations of the
Application Circuit
The application circuit in Figure 4 incorporates
several features that help maximize the bandwidth
performance of the HCPL-4562/HCNW4562. Most
important of these features is peaked response of
the detector circuit that helps extend the frequency
range over which the voltage gain is relatively
constant. The number of gain stages, the overall
circuit topology, and the choice of DC bias points
are all consequences of the desire to maximize
bandwidth performance.
To use the circuit, first select R1 to set VE for the
desired LED quiescent current by:
V
GV VE R10
IFQ = ––E ≅ –––––––––––––
R4
(∂IPB/∂IF) R7R9
(1)
For a constant value VINp-p, the circuit topology
(adjusting the gain with R4) preserves linearity by
keeping the modulation factor (MF) dependent only
on VE.
iFp-p
≅ VIN /R4
p-p
(2)
iFp-p
iPBp-p
VINp-p
p-p
p-p
p-p
––––
≅ ––––– = –––––
IFQ
IPBQ
VE
(3)
Modulation i
VINp-p
F(p-p)
p-p
(p-p)
Factor (MF): ––––– = –––––
2 IFQ
2 VE
(4)
For a given GV, VE, and VCC, DC output voltage will
vary only with hFEX.
R9
VO = VCC – VBE – –––
[VBEX – (IPBQ – IBXQ) R7]
4
R10
(5)
Where:
GV VER10
IPBQ ≅ ––––––––
R7R9
(6)
and,
VCC – 2 VBE
IBXQ ≅ ––––––––––
R6 hFEX
(7)
The voltage gain of the second stage (Q3) is
approximately equal to:
R9
1
–––
* –––––––––––––––––––––––––
R10 1 + s R C
1
9
CQ 3 + –––––––––
2π R′11 fT44
(9)
Increasing R′11 (R′11 includes the parallel
combination of R11 and the load impedance) or
reducing R9 (keeping R9 /R10 ratio constant) will
improve the bandwidth.
If it is necessary to drive a low impedance load,
bandwidth may also be preserved by adding an
additional emitter following the buffer stage (Q5 in
Figure 16), in which case R11 can be increased to
set ICQ4 ≅ 2 mA.
Finally, adjust R4 to achieve the desired voltage
gain.
VOUT ∂IPB R7R9
GV ≅ –––– ≅ –––– ––––––
VIN
∂IF R4R10
(10)
∂IPB
where typically ––––
= 0.0032
∂IF
Definition:
GV = Voltage Gain
IFQ = Quiescent LED forward current
iFp-p = Peak-to-peak small signal LED forward
current
VINp-p = Peak-to-peak small signal input voltage
iPBp-p = Peak-to-peak small signal
base photo current
IPBQ = Quiescent base photo current
VBEX = Base-Emitter voltage of HCPL-4562/
HCNW4562 transistor
IBXQ = Quiescent base current of HCPL-4562/
HCNW4562 transistor
hFEX = Current Gain (IC/IB) of HCPL-4562/
HCNW4562 transistor
VE = Voltage across emitter degeneration
resistor R4
fT 4 = Unity gain frequency of Q5
CCQ = Effective capacitance from collector of Q3
3
to ground
1-401
Similar pages