EP7309 Data Sheet FEATURES High-Performance, Low-Power System on Chip Enhanced Digital Audio Interface ■ ARM720T Processor — ARM7TDMI CPU — 8 KB of four-way set-associative cache — MMU with 64-entry TLB — Thumb code support enabled ■ Ultra low power — 90 mW at 74 MHz typical — 30 mW at 18 MHz typical — 10 mW in the Idle State — <1 mW in the Standby State ■ Advanced audio decoder/decompression capability — Supports bit streams with adaptive bit rates — Allows for support of multiple audio decompression algorithms (MP3, WMA, AAC, ADPCM, Audible, etc.) OVERVIEW The Maverick™ EP7309 is designed for ultra-low-power applications such as digital music players, internet appliances, smart cellular phones or any hand-held device that features the added capability of digital audio decompression. The core-logic functionality of the device is built around an ARM720T processor with 8 KB of fourway set-associative unified cache and a write buffer. Incorporated into the ARM720T is an enhanced memory management unit (MMU) which allows for support of sophisticated operating systems like Microsoft® Windows® CE and Linux®. (cont.) (cont.) BLOCK DIAGRAM Serial Interface EPB Bus Power Management Clocks & Timers ICE-JTAG Interrupts, PWM & GPIO ARM720T ARM7TDMI CPU Core (2) UARTs w/ IrDA 8 KB Write Cache Buffer MMU Boot ROM Bus Bridge Keypad& Touch Screen I/F Internal Data Bus MaverickKeyTM SRAM & FLASH I/F On-chip SRAM 48 KB USER INTERFACE SERIAL PORTS Digital Audio Interface LCD Controller MEMORY AND STORAGE Copyright 2001 Cirrus Logic (All Rights Reserved) P.O. Box 17847, Austin, Texas 78760 (512) 445 7222 FAX: (512) 445 7581 http://www.cirrus.com June ’01 DS507PP1 1 EP7309 High-Performance, Low-Power System on Chip FEATURES (cont) ■ Dynamically programmable clock speeds of 18, 36, 49, and 74 MHz ■ 48 KB of on-chip SRAM ■ MaverickKey™ IDs — 32-bit unique ID can be used for SDMI compliance — 128-bit random ID ■ LCD controller — Interfaces directly to a single-scan panel monochrome STN LCD — Interfaces to a single-scan panel color STN LCD with minimal external glue logic ■ Full JTAG boundary scan and Embedded ICE support ■ Integrated Peripheral Interfaces — 8/32/16-bit SRAM/FLASH/ROM Interface — Digital Audio Interface providing glueless interface to low-power DACs, ADCs and CODECs — Two Synchronous Serial Interfaces (SSI1, SSI2) — CODEC Sound Interface — 8×8 Keypad Scanner — 27 General Purpose Input/Output pins — Dedicated LED flasher pin from the RTC ■ Internal Peripherals — Two 16550 compatible UARTs — IrDA Interface — Two PWM Interfaces — Real-time Clock — Two general purpose 16-bit timers — Interrupt Controller — Boot ROM ■ Package — 208-Pin LQFP — 256-Ball PBGA — 204-Ball TFBGA ■ The fully static EP7309 is optimized for low power dissipation and is fabricated on a 0.25 micron CMOS process OVERVIEW (cont.) The EP7309 is designed for ultra-low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of 2.5 V–3.3 V. The device has three basic power states: operating, idle and standby. MaverickKey unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism. The EP7309 integrates an interface to enable a direct connection to many low cost, low power, high quality audio converters. In particular, the DAI can directly interface with the Crystal‚ CS43L41/42/43 low-power audio DACs and the Crystal‚ CS53L32 low-power ADC. Some of these devices feature digital bass and treble boost, digital volume control and compressor-limiter functions. Simply by adding desired memory and peripherals to the highly integrated EP7309 completes a low-power system solution. All necessary interface logic is integrated onchip. Contacting Cirrus Logic Support For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at: http://www.cirrus.com/corporate/contacts Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product information describes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of any kind (express or implied). No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights of third parties. This document is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of this publication may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise) without the prior written consent of Cirrus Logic, Inc. Items from any Cirrus Logic website or disk may be printed for use by the user. However, no part of the printout or electronic files may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise) without the prior written consent of Cirrus Logic, Inc.Furthermore, no part of this publication may be used as a basis for manufacture or sale of any items without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing in this document may be trademarks or service marks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trademarks and service marks can be found at http://www.cirrus.com. 2 Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip Processor Core - ARM720T The EP7309 incorporates an ARM 32-bit RISC microcontroller that controls a wide range of on-chip peripherals. The processor utilizes a three-stage pipeline consisting of fetch, decode and execute stages. Key features include: • ARM (32-bit) and Thumb (16-bit compressed) instruction sets • Enhanced MMU for Microsoft Windows CE and other operating systems • 8 KB of 4-way set-associative cache. • Translation Look Aside Buffers with 64 Translated Entries Power Management The EP7309 is designed for ultra-low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of 2.5 V–3.3 V allowing the device to achieve a performance level equivalent to 60 MIPS. The device has three basic power states: • Operating — This state is the full performance state. All the clocks and peripheral logic are enabled. • Idle — This state is the same as the Operating State, except the CPU clock is halted while waiting for an event such as a key press. • Standby — This state is equivalent to the computer being switched off (no display), and the main oscillator shut down. An event such as a key press can wake-up the processor. Pin Mnemonic I/O Pin Description Digital Music Initiative) or any other authentication mechanism. Both a specific 32-bit ID as well as a 128-bit random ID is programmed into the EP7309 through the use of laser probing technology. These IDs can then be used to match secure copyrighted content with the ID of the target device the EP7309 is powering, and then deliver the copyrighted information over a secure connection. In addition, secure transactions can benefit by also matching device IDs to server IDs. MaverickKey IDs provide a level of hardware security required for today’s Internet appliances. Memory Interfaces The EP7309 is equiped with a ROM/SRAM/FLASHstyle interface that has programmable wait-state timings and includes burst-mode capability, with six chip selects decoding six 256 MB sections of addressable space. For maximum flexibility, each bank can be specified to be 8-, 16-, or 32-bits wide. This allows the use of 8-bit-wide boot ROM options to minimize overall system cost. The on-chip boot ROM can be used in product manufacturing to serially download system code into system FLASH memory. To further minimize system memory requirements and cost, the ARM Thumb instruction set is supported, providing for the use of high-speed 32-bit operations in 16-bit op-codes and yielding industryleading code density. Pin Mnemonic I/O Pin Description nCS[5:0] O Chip select out A[27:0] O Address output D[31:0] I/O Data I/O nMOE O ROM expansion OP enable I Battery ok input nMWE O ROM expansion write enable nEXTPWR I External power supply sense input HALFWORD O Halfword access select output nPWRFL I Power fail sense input WORD O Word access select output nBATCHG I Battery changed sense input WRITE O Transfer direction BATOK Table A. Power Management Pin Assignments Table B. Static Memory Interface Pin Assignments MaverickKey™ Unique ID Digital Audio Capability MaverickKey unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure The EP7309 uses its powerful 32-bit RISC processing engine to implement audio decompression algorithms in software. The nature of the on-board RISC processor, and the availability of efficient C-compilers and other software development tools, ensures that a wide range of audio decompression algorithms can easily be ported to and run on the EP7309 DS507PP1 Copyright 2001 Cirrus Logic (All Rights Reserved) 3 EP7309 High-Performance, Low-Power System on Chip Universal Asynchronous Receiver/Transmitters (UARTs) The EP7309 includes two 16550-type UARTs for RS-232 serial communications, both of which have two 16-byte FIFOs for receiving and transmitting data. The UARTs support bit rates up to 115.2 kbps. An IrDA SIR protocol encoder/decoder can be optionally switched into the RX/TX signals to/from UART 1 to enable these signals to drive an infrared communication interface directly. Pin Mnemonic I/O Pin Description TXD[1] O UART 1 transmit RXD[1] I UART 1 receive CTS I UART 1 clear to send DCD I UART 1 data carrier detect DSR I UART 1 data set ready TXD[2] O UART 2 transmit RXD[2] I UART 2 receive LEDDRV O Infrared LED drive output PHDIN I Photo diode input Table C. Universal Asynchronous Receiver/Transmitters Pin Assignments Digital Audio Interface (DAI) The EP7309 integrates an interface to enable a direct connection to many low cost, low power, high quality audio converters. In particular, the DAI can directly interface with the Crystal‚ CS43L41/42/43 low-power audio DACs and the Crystal‚ CS53L32 low-power ADC. Some of these devices feature digital bass and treble boost, digital volume control and compressor-limiter functions. Pin Mnemonic I/O Pin Description SCLK O Serial bit clock SDOUT O Serial data out SDIN I Serial data in LRCK O Sample clock MCLKIN I Master clock input MCLKOUT O Master clock output CODEC Interface The EP7309 includes an interface to telephony-type CODECs for easy integration into voice-over-IP and other voice communications systems. The CODEC interface is multiplexed to the same pins as the DAI and SSI2. Pin Mnemonic I/O Pin Description PCMCLK O Serial bit clock PCMOUT O Serial data out PCMIN I Serial data in PCMSYNC O Frame sync Table E. CODEC Interface Pin Assignments Note: See Table Q on page 7 for information on pin multiplexes. SSI2 Interface An additional SPI/Microwire1-compatible interface is available for both master and slave mode communications. The SSI2 unit shares the same pins as the DAI and CODEC interfaces through a multiplexer. • • • • Synchronous clock speeds of up to 512 kHz Separate 16 entry TX and RX half-word wide FIFOs Half empty/full interrupts for FIFOs Separate RX and TX frame sync signals for asymmetric traffic Pin Mnemonic I/O Pin Description SSICLK I/O Serial bit clock SSITXDA O Serial data out SSIRXDA I Serial data in SSITXFR I/O Transmit frame sync SSIRXFR I/O Receive frame sync Table F. SSI2 Interface Pin Assignments Note: See Table Q on page 7 for information on pin multiplexes. Table D. DAI Interface Pin Assignments Note: 4 See Table Q on page 7 for information on pin multiplexes. Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip Synchronous Serial Interface • ADC (SSI) Interface: Master mode only; SPI and Microwire1-compatible (128 kbps operation) • Selectable serial clock polarity Pin Mnemonic I/O Pin Description ADCLK O SSI1 ADC serial clock ADCIN I SSI1 ADC serial input ADCOUT O SSI1 ADC serial output nADCCS O SSI1 ADC chip select SMPCLK O SSI1 ADC sample clock • Column outputs can be individually set high with the remaining bits left at high-impedance • Column outputs can be driven all-low, all-high, or allhigh-impedance • Keyboard interrupt driven by OR'ing together all Port A bits • Keyboard interrupt can be used to wake up the system • 8×8 keyboard matrix usable with no external logic, extra keys can be added with minimal glue logic Pin Mnemonic O Keyboard scanner column drive Table I. Keypad Interface Pin Assignments Interrupt Controller A DMA address generator is provided that fetches video display data for the LCD controller from memory. The display frame buffer start address is programmable, allowing the LCD frame buffer to be in SDRAM, internal SRAM or external SRAM. • Interfaces directly to a single-scan panel monochrome STN LCD • Interfaces to a single-scan panel color STN LCD with minimal external glue logic • Panel width size is programmable from 32 to 1024 pixels in 16-pixel increments • Video frame buffer size programmable up to 128 KB • Bits per pixel of 1, 2, or 4 bits Pin Mnemonic Pin Description COL[7:0] Table G. Serial Interface Pin Assignments LCD Controller I/O I/O Pin Description When unexpected events arise during the execution of a program (i.e., interrupt or memory fault) an exception is usually generated. When these exceptions occur at the same time, a fixed priority system determines the order in which they are handled. The EP7309 interrupt controller has two interrupt types: interrupt request (IRQ) and fast interrupt request (FIQ). The interrupt controller has the ability to control interrupts from 22 different FIQ and IRQ sources. • Supports 22 interrupts from a variety of sources (such as UARTs, SSI1, and key matrix.) • Routes interrupt sources to the ARM720T’s IRQ or FIQ (Fast IRQ) inputs • Five dedicated off-chip interrupt lines operate as level sensitive interrupts . Pin Mnemonic I/O Pin Description CL1 O LCD line clock CL2 O LCD pixel clock out nEINT[2:1] I External interrupt DD[3:0] O LCD serial display data bus EINT[3] I External interrupt FRM O LCD frame synchronization pulse nEXTFIQ I External Fast Interrupt input M O LCD AC bias drive nMEDCHG/nBROM I Media change interrupt input Table J. Interrupt Controller Pin Assignments Table H. LCD Interface Pin Assignments Note: 64-Keypad Interface Matrix keyboards and keypads can be easily read by the EP7309. A dedicated 8-bit column driver output generates strobes for each keyboard column signal. The pins of Port A, when configured as inputs, can be selectively OR'ed together to provide a keyboard interrupt that is capable of waking the system from a STANDBY or IDLE state. DS507PP1 (Note) Pins are multiplexed. See Table R on page 7 for more information. Real-Time Clock The EP7309 contains a 32-bit Real Time Clock (RTC) that can be written to and read from in the same manner as the timer counters. It also contains a 32-bit output match register which can be programmed to generate an interrupt. Copyright 2001 Cirrus Logic (All Rights Reserved) 5 EP7309 High-Performance, Low-Power System on Chip • Driven byan external 32.768 kHz crystal oscillator Pin Mnemonic Pin Mnemonic Pin Description RTCIN Real-Time Clock Oscillator Input RTCOUT Real-Time Clock Oscillator Output VDDRTC Real-Time Clock Oscillator Power VSSRTC Real-Time Clock Oscillator Ground I/O PA[7:0] I GPIO port A PB[7:0] I GPIO port B I/O GPIO port D I/O GPIO port D I/O GPIO port D PE[1:0]/BOOTSEL[1:0] (Note) I GPIO port E PE[2]/CLKSEL I GPIO port E PD[0]/LEDFLSH (Note) PD[5:1] PD[7:6]/SDQM[1:0] Table K. Real-Time Clock Pin Assignments • Processor and Peripheral Clocks operate from a single 3.6864 MHz crystal or external 13 MHz clock • Programmable clock speeds allow the peripheral bus to run at 18 MHz when the processor is set to 18 MHz and at 36 MHz when the processor is set to 36, 49 or 74 MHz Pin Mnemonic Note: Main Oscillator Input MOSCOUT Main Oscillator Output VDDOSC Main Oscillator Power VSSOSC Main Oscillator Ground Table L. PLL and Clocking Pin Assignments • Provides two 96 kHz clock outputs with programmable duty ratio (from 1-in-16 to 15-in-16) that can be used to drive a positive or negative DC to DC converter I/O I/O I Pin Description PWM drive output PWM feedback input Table M. DC-to-DC Converter Interface Pin Assignments Timers • Internal (RTC) timer • Two internal 16-bit programmable hardware countdown timers Pin Mnemonic 6 I/O Pin Description TCLK I JTAG clock TDI I JTAG data input TDO O JTAG data output nTRST I JTAG async reset input TMS I JTAG mode select Table O. Hardware Debug Interface Pin Assignments LED Flasher A dedicated LED flasher module can be used to generate a low frequency signal on Port D pin 0 for the purpose of blinking an LED without CPU intervention. The LED flasher feature is ideal as a visual annunciator in battery powered applications, such as a voice mail indicator on a portable phone or an appointment reminder on a PDA. • • • • Software adjustable flash period and duty cycle Operates from 32 kHz RTC clock Will continue to flash in IDLE and STANDBY states 4 mA drive current Pin Mnemonic PD[0]/LEDFLSH General Purpose Input/Output (GPIO) • Three 8-bit and one 3-bit GPIO ports • Supports scanning keyboard matrix Pins are multiplexed. See Table R on page 7 for more information. • Full JTAG boundary scan and Embedded ICE support DC-to-DC converter interface (PWM) FB[1:0] (Note) Hardware debug Interface Pin Description MOSCIN DRIVE[1:0] (Note) Table N. General Purpose Input/Output Pin Assignments PLL and Clocking Pin Mnemonic Pin Description (Note) I/O O Pin Description LED flasher driver Table P. LED Flasher Pin Assignments Note: Pins are multiplexed. See Table R on page 7 for more information. Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip Internal Boot ROM The internal 128 byte Boot ROM facilitates download of saved code to the on-board SRAM/FLASH. Packaging The EP7309 is available in a 208-pin LQFP package, 256ball PBGA package or a 204-ball TFBGA package. Pin Multiplexing The following table shows the pin multiplexing of the DAI, SSI2 and the CODEC. The selection between SSI2 and the CODEC is controlled by the state of the SERSEL bit in SYSCON2. The choice between the SSI2, CODEC, and the DAI is controlled by the DAISEL bit in SYSCON3 (see the EP7309 User’s Manual for more information). Pin Mnemonic Pin Mnemonic I/O DAI SSI2 CODEC SSITXFR I/O LRCK SSITXFR PCMSYNC SSIRXFR I MCLKIN SSIRXFR p/u BUZ O MCLKOUT Table Q. DAI/SSI2/CODEC Pin Multiplexing The following table shows the pins that have been multiplexed in the EP7309. Signal Block Signal Block RUN System Configuration CLKEN System Configuration nMEDCHG Interrupt Controller nBROM Boot ROM select I/O DAI SSI2 CODEC PD[0] GPIO LEDFLSH LED Flasher SSICLK I/O SCLK SSICLK PCMCLK PE[1:0] GPIO BOOTSEL[1:0] System Configuration SSITXDA O SDOUT SSITXDA PCMOUT PE[2] GPIO CLKSEL SSIRXDA I SDIN SSIRXDA PCMIN System Configuration Table Q. DAI/SSI2/CODEC Pin Multiplexing DS507PP1 Table R. Pin Multiplexing Copyright 2001 Cirrus Logic (All Rights Reserved) 7 EP7309 High-Performance, Low-Power System on Chip System Design As shown in system block diagram, simply adding desired memory and peripherals to the highly integrated CRYSTAL MOSCIN CRYSTAL RTCIN EP7309 completes a low-power system solution. All necessary interface logic is integrated on-chip. DD[0-3] CL1 CL2 FRM M LCD COL[0-7] KEYBOARD PA[0-7] nCS[4] PB0 EXPCLK PB[0-7] PD[0-7] D[0-31] PC CARD CONTROLLER A[0-27] nMOE WRITE nCS[0] nCS[1] ×16 FLASH ×16 FLASH ×16 FLASH ×16 FLASH PE[0-2] EP7309 PC CARD SOCKET nPOR nPWRFL BATOK nEXTPWR nBATCHG RUN WAKEUP POWER SUPPLY UNIT AND COMPARATORS BATTERY DRIVE[0-1] DC-TO-DC CONVERTERS FB[0-1] SSICLK SSITXFR SSITXDA SSIRXDA SSIRXFR CODEC/SSI2/ DAI IR LED AND PHOTODIODE LEDDRV PHDIN CS[n] WORD EXTERNAL MEMORYMAPPED EXPANSION BUFFERS nCS[2] nCS[3] ADDITIONAL I/O BUFFERS AND LATCHES LEDFLSH RXD1/2 TXD1/2 DSR CTS DCD DC INPUT 2× RS-232 TRANSCEIVERS ADCCLK nADCCS ADCOUT ADCIN SMPCLK ADC DIGITIZER Figure 1. A Maximum EP7309 Based System Note: 8 A system can only use one of the following peripheral interfaces at any given time: SSI2,CODEC or DAI. Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings DC Core, PLL, and RTC Supply Voltage 2.9 V DC I/O Supply Voltage (Pad Ring) 3.6 V DC Pad Input Current ±10 mA/pin; ±100 mA cumulative Storage Temperature, No Power –40°C to +125°C Recommended Operating Conditions DC core, PLL, and RTC Supply Voltage 2.5 V ± 0.2 V DC I/O Supply Voltage (Pad Ring) 2.3 V - 3.6 V DC Input / Output Voltage O–I/O supply voltage Operating Temperature Extended -20°C to +70°C; Commercial 0°C to +70°C; Industrial -40°C to +85°C DC Characteristics All characteristics are specified at VDD = 2.5 V and VSS = 0 V over an operating temperature of 0°C to +70°C for all frequencies of operation. The current consumption figures relate to typical conditions at 2.5 V, 18.432 MHz operation with the PLL switched “on.” Symbol Parameter Min Typ Max Unit Conditions VIH CMOS input high voltage 0.65 × VDDIO VDDIO + 0.3 V VDDIO = 2.5 V VIL CMOS input low voltage -0.3 0.25 × VDDIO V VDDIO = 2.5 V VT+ Schmitt trigger positive going threshold 1.6 (Typ) 2.0 V VT- Schmitt trigger negative going threshold 0.8 1.2 (Typ) V Vhst Schmitt trigger hysteresis 0.1 0.4 V VIL to VIH V V V IOH = 0.1 mA IOH = 4 mA IOH = 12 mA Output drive 2a 0.3 0.5 0.5 V V V IOL = –0.1 mA IOL = –4 mA IOL = –12 mA Input leakage current 1.0 µA VIN = VDD or GND 25 100 µA VOUT = VDD or GND 8 10.0 pF CMOS output high voltagea VOH VDD – 0.2 2.5 2.5 Output drive 1a Output drive 2a CMOS output low voltagea VOL IIN IOZ CIN DS507PP1 Output drive 1a Bidirectional 3-state leakage currentb c Input capacitance Copyright 2001 Cirrus Logic (All Rights Reserved) 9 EP7309 High-Performance, Low-Power System on Chip Symbol Parameter Min Typ Max Unit COUT Output capacitance 8 10.0 pF CI/O Transceiver capacitance 8 10.0 pF Standby current consumption IDDstandby Core, Osc, RTC @2.5 V I/O @ 3.3 V IDDidle TBD TBD Idle current consumption Core, Osc, RTC @2.5 V I/O @ 2.5 V TBD TBD Operating current consumption IDDoperatin Core, Osc, RTC @2.5 V I/O @ 3.3 V VDDstandby Standby supply voltage TBD 4.2 µA Only 32 kHz oscillator running, Cache disabled, all other I/O static, VIH = VDD ± 0.1 V, VIL = GND ± 0.1 V mA Both oscillators running, CPU static, Cache disabled, LCD refresh active, VIH = VDD ± 0.1 V, VIL = GND ± 0.1 V At 13 MHz mA All system active, running typical program, cache disabled, and LCD inactive V Minimum standby voltage for state retention and RTC operation only a. See Table S on page 23. b. Assumes buffer has no pull-up or pull-down resistors. c. The leakage value given assumes that the pin is configured as an input pin but is not currently being driven. Note: 10 TBD TBD 300 Conditions 1) All power dissipation values can be derived from taking the particular IDD current and multiplying by 2.5 V. 2) The RTC of the EP7309 should be brought up at room temperature. This is required because the RTC OSC will NOT function properly if it is brought up at –40°C. Once operational, it will continue to operate down to –20°C extended and 0°C commercial. 3) A typical design will provide 3.3 V to the I/O supply (i.e., VDDIO), and 2.5 V to the remaining logic. This is to allow the I/O to be compatible with 3.3 V powered external logic. 4) Pull-up current = 50 µA typical at VDD = 3.3 V. Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip Timings Timing Diagram Conventions This data sheet contains one or more timing diagrams. The following key explains the components used in these diagrams. Any variations are clearly labelled when they occur. Therefore, no additional meaning should be attached unless specifically stated. Clock High to Low High/Low to High Bus Change Bus Valid Undefined/Invalid Valid Bus to Tristate Bus/Signal Omission Timing Conditions Unless specified otherwise, the following conditions are true for all timing measurements. All characteristics are specified at VDD = 2.3 - 2.7 V and VSS = 0 V over an operating temperature of 0°C to +70°C. Those characteristics marked with a # will be significantly different for 13 MHz mode because the EXPCLK is provided as an input rather than generated internally. These timings are estimated at present. The timing values are referenced to 1/2 VDD. DS507PP1 Copyright 2001 Cirrus Logic (All Rights Reserved) 11 EP7309 High-Performance, Low-Power System on Chip Static Memory Figure 2 through Figure 5 define the timings associated with all phases of the Static Memory. The following table contains the values for the timings of each of the Static Memory modes. Parameter Symbol Min Typ Max Unit EXPCLK rising edge to nCS assert delay time tCSd TBD 8 TBD ns EXPCLK falling edge to nCS deassert hold time tCSh TBD 4 TBD ns EXPCLK rising edge to A assert delay time tAd TBD 4 TBD ns EXPCLK falling edge to A deassert hold time tAh TBD 8 TBD ns EXPCLK rising edge to nMWE assert delay time tMWd TBD 4 TBD ns EXPCLK rising edge to nMWE deassert hold time tMWh TBD 4 TBD ns EXPCLK falling edge to nMOE assert delay time tMOEd TBD 4 TBD ns EXPCLK falling edge to nMOE deassert hold time tMOEh TBD 4 TBD ns EXPCLK falling edge to HALFWORD deassert delay time tHWd TBD 4 TBD ns EXPCLK falling edge to WORD assert delay time tWDd TBD 4 TBD ns EXPCLK rising edge to data valid delay time tDv TBD 20 TBD ns EXPCLK falling edge to data invalid delay time tDnv TBD 8 TBD ns Data setup to EXPCLK falling edge time tDs TBD - TBD ns EXPCLK falling edge to data hold time tDh TBD - TBD ns EXPCLK rising edge to WRITE assert delay time tWRd TBD 8 TBD ns EXPREADY setup to EXPCLK falling edge time tEXs TBD - TBD ns EXPCLK falling edge to EXPREADY hold time tEXh TBD - TBD ns 12 Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip Static Memory Single Read Cycle EXPCLK tCSd tCSh nCS tAd A nMWE tMOEd tMOEh nMOE tHWd HALF WORD tWDd WORD tDs tDh D tEXs tEXh EXPRDY tWRd WRITE Figure 2. Static Memory Single Read Cycle Timing Measurement Note: DS507PP1 1. The cycle time can be extended by integer multiples of the clock period (27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity. Copyright 2001 Cirrus Logic (All Rights Reserved) 13 EP7309 High-Performance, Low-Power System on Chip Static Memory Single Write Cycle EXPCLK tCSd tCSh nCS tAd A tMWd tMWh nMWE nMOE tHWd HALF WORD tWDd WORD tDv D tEXs tEXh EXPRDY WRITE Figure 3. Static Memory Single Write Cycle Timing Measurement Note: 14 1. The cycle time can be extended by integer multiples of the clock period (27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity. 2. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with valid timing under zero wait state conditions. Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip Static Memory Burst Read Cycle EXPCLK tCSd tCSh nCS tAd tAh tAh tAh A nMWE tMOEd tMOEh nMOE tHWd HALF WORD tWDd WORD tDs tDh tDs tDh tDs tDh tDs tDh D tEXs tEXh EXPRDY tWRd WRITE Figure 4. Static Memory Burst Read Cycle Timing Measurement Note: DS507PP1 1. Four cycles are shown in the above diagram (minimum wait states, 1-0-0-0). This is the maximum number of consecutive cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively. 2. The cycle time can be extended by integer multiples of the clock period (27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity. 3. Consecutive reads with sequential access enabled are identical except that the sequential access wait state field is used to determine the number of wait states, and no idle cycles are inserted between successive non-sequential ROM/expansion cycles. This improves performance so the SQAEN bit should always be set where possible. Copyright 2001 Cirrus Logic (All Rights Reserved) 15 EP7309 High-Performance, Low-Power System on Chip Static Memory Burst Write Cycle EXPCLK tCSd tCSh nCS tAh tAd tAh tAh A tMWd tMWd tMWd tMWh nMWE tMWd tMWh tMWh tMWh nMOE tHWd HALF WORD WORD tWDd tDv tDnv tDv tDnv tDv tDnv tDv D tEXs tEXh EXPRDY WRITE Figure 5. Static Memory Burst Write Cycle Timing Measurement Note: 16 1. Four cycles are shown in the above diagram (minimum wait states, 1-1-1-1). This is the maximum number of consecutive cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively. 2. The cycle time can be extended by integer multiples of the clock period (27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity. 3. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with valid timing under zero wait state conditions. Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip SSI1 Interface Parameter Symbol Min Max Unit ADCCLK falling edge to nADCCSS deassert delay time tCd TBD TBD ns ADCIN data setup to ADCCLK rising edge time tINs TBD TBD ns ADCIN data hold from ADCCLK rising edge time tINh TBD TBD ns ADCCLK falling edge to data valid delay time tOvd TBD TBD ns ADCCLK falling edge to data invalid delay time tOd TBD TBD ns ADC CLK tCd nADC CSS tINs tINh ADCIN tOvd tOd ADC OUT Figure 6. SSI1 Interface Timing Measurement DS507PP1 Copyright 2001 Cirrus Logic (All Rights Reserved) 17 EP7309 High-Performance, Low-Power System on Chip SSI2 Interface Parameter Symbol Min Max Unit SSICLK period (slave mode) tclk_per 0 512 ns SSICLK high time tclk_high 925 1025 ns SSICLK low time tclk_low 925 1025 ns SSICLK rise/fall time tclkrf 7 ns SSICLK rising edge to RX and/or TX frame sync high time tFRd 528 ns SSICLK rising edge to RX and/or TX frame sync low time tFRa 448 ns tFR_per 750 ns SSIRXDA setup to SSICLK falling edge time tRXs 30 ns SSIRXDA hold from SSICLK falling edge time tRXh 40 ns SSICLK rising edge to SSITXDA data valid delay time tTXd SSITXDA valid time tTXv SSIRXFR and/or SSITXFR period tclk_per 80 ns ns tclk_high tclk_low SSI CLK tclkrf tFRd tFRa tFR_per SSIRXFR/ SSITXFR tRXh tRXs SSI RXDA D7 D2 D1 D0 D7 D2 D1 D0 tTXd SSI TXDA tTXv Figure 7. SSI2 Interface Timing Measurement 18 Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip LCD Interface Parameter Symbol Min Max Unit tclk 200 6,950 ns LCD CL[2] low time tclk_low 80 3,475 ns LCD CL[2] high time tclk_high 80 3,475 ns CL[2] falling to CL[1] rising delay time tCL1d 0 25 ns CL[1] falling to CL[2] rising delay time tCL2d 80 3,475 ns LCD CL[1] high time tCL2h 80 3,475 ns CL[1] falling to FRM transition time tFRMd 300 10,425 ns CL[1] falling to M transition time tMd − 10 20 ns CL[2] rising to DD (display data) transition time tDDd − 10 20 ns tclk_low tclk_high CL[1] falling to CL[2] falling time tclk CL[2] tCL1d tCL2d tCL2h CL[1] tFRMd FRM tMd M tDDd DD [3:0] Figure 8. LCD Controller Timing Measurement DS507PP1 Copyright 2001 Cirrus Logic (All Rights Reserved) 19 EP7309 High-Performance, Low-Power System on Chip JTAG Parameter Symbol Min Max Units TCK clock period tclk_per 100 - ns TCK clock high time tclk_high 50 - ns TCK clock low time tclk_low 50 - ns JTAG port setup time tJPs 20 - ns JTAG port hold time tJPh 45 - ns JTAG port clock to output tJPco - 25 ns JTAG port high impedance to valid output tJPzx - 25 ns JTAG port valid output to high impedance tJPxz - 25 ns tclk_per tclk_high tclk_low TCK tJPs tJPh TMS TDI tJPzx tJPco tJPxz TDO Figure 9. JTAG Timing Measurement 20 Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip Packages 208-Pin LQFP Package Characteristics 208-Pin LQFP Package Specifications 29.60 (1.165) 30.40 (1.197) 27.80 (1.094) 28.20 (1.110) 0.17 (0.007) 0.27 (0.011) 27.80 (1.094) 28.20 (1.110) EP7309 29.60 (1.165) 30.40 (1.197) 208-Pin LQFP 0.50 (0.0197) BSC Pin 1 Indicator Pin 208 Pin 1 0.45 (0.018) 0.75 (0.030) 1.35 (0.053) 1.45 (0.057) 1.00 (0.039) BSC 0.09 (0.004) 0.20 (0.008) 0° MIN 7° MAX 1.40 (0.055) 1.60 (0.063) 0.05 (0.002) 0.15 (0.006) Figure 10. 208-Pin LQFP Package Outline Drawing Note: DS507PP1 1) Dimensions are in millimeters (inches), and controlling dimension is millimeter. 2) Drawing above does not reflect exact package pin count. 3) Before beginning any new design with this device, please contact Cirrus Logic for the latest package information. 4) For pin locations, please see Figure 11. For pin descriptions see the EP7309 User’s Manual. Copyright 2001 Cirrus Logic (All Rights Reserved) 21 EP7309 High-Performance, Low-Power System on Chip 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 nURESET nMEDCHG/nBROM nPOR BATOK nEXTPWR nBATCHG D[7] VSSIO A[7] D[8] A[8] D[9] A[9] D[10] A[10] D[11] VSSIO VDDIO A[11] D[12] A[12] D[13] A[13] D[14] A[14] D[15] A[15] D[16] A[16] D[17] A[17] nTRST VSSIO VDDIO D[18] A[18 D[19] A[19] D[20] A[20] VSSIO D[21] A[21] D[22] A[22] D[23] A[23] D[24] VSSIO VDDIO A[24] HALFWORD 208-Pin LQFP Pin Diagram N/C N/C N/C N/C VDDIO VSSIO N/C N/C EP7309 208-Pin LQFP (Top View) 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 D[25] A[25] D[26] A[26] D[27] A[27] VSSIO D[28] D[29] D[30] D[31] BUZ COL[0] COL[1] TCLK VDDIO COL[2] COL[3] COL[4] COL[5] COL[6] COL[7] FB[0] VSSIO FB[1] SMPCLK ADCOUT ADCCLK DRIVE[0] DRIVE[1] VDDIO VSSIO VDDCORE VSSCORE nADCCS ADCIN SSIRXFR SSIRXDA SSITXDA SSITXFR VSSIO SSICLK PD[0]/LEDFLSH PD[1] PD[2] PD[3] TMS VDDIO PD[4] PD[5] PD[6] PD[7] nCS[5] VDDIO VSSIO EXPCLK WORD WRITE RUN/CLKEN EXPRDY TXD[2] RXD[2] TDI VSSIO PB[7] PB[6] PB[5] PB[4] PB[3] PB[2] PB[1] PB[0] VDDIO TDO PA[7] PA[6] PA[5] PA[4] PA[3] PA[2] PA[1] PA[0] LEDDRV TXD[1] VSSIO PHDIN CTS RXD[1] DCD DSR nTEST[1] nTEST[0] EINT[3] nEINT[2] nEINT[1] nEXTFIQ PE[2]/CLKSEL PE[1]BOOTSEL[1] PE[0]BOOTSEL[0] VSSRTC RTCOUT RTCIN VDDRTC N/C nMWE nMOE VSSIO nCS[0] nCS[1] nCS[2] nCS[3] nCS[4] 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 VDDOSC MOSCIN MOSCOUT VSSOSC WAKEUP nPWRFL A[6] D[6] A[5] D[5] VDDIO VSSIO A[4] D[4] A[3] D[3] A[2] VSSIO D[2] A[1] D[1] A[0] D[0] VSSCORE VDDCORE VSSIO VDDIO CL[2] CL[1] FRM M DD[3] DD[2] VSSIO DD[1] DD[0] Figure 11. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram Note: 22 1. N/C should not be grounded but left as no connects. 2. Pin differences between the EP7212 and the EP7309 are bolded. Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip 208-Pin LQFP Numeric Pin Listing Table S. 208-Pin LQFP Numeric Pin Listing (Continued) Table S. 208-Pin LQFP Numeric Pin Listing Pin No. Signal Type 38 DSR I 39 nTEST[1] I With p/u* 40 nTEST[0] I With p/u* 41 EINT[3] I 42 nEINT[2] I 43 nEINT[1] I 44 nEXTFIQ I 45 PE[2]/CLKSEL I/O 1 Input 46 PE[1]/ BOOTSEL[1] I/O 1 Input 47 PE[0]/ BOOTSEL[0] I/O 1 Input 48 VSSRTC RTC Gnd Input 49 RTCOUT O 1 Input 50 RTCIN I I/O 1 Input 51 VDDRTC RTC power PB[4] I/O 1 Input 52 N/C 17 PB[3] I/O 1 Input 53 PD[7] I/O 1 Low 18 PB[2] I/O 1 Input 54 PD[6] I/O 1 Low 19 PB[1]/PRDY2 I/O 1 Input 55 PD[5] I/O 1 Low 20 PB[0]/PRDY1 I/O 1 Input 56 PD[4] I/O 1 Low 21 VDDIO Pad Pwr 57 VDDIO Pad Pwr 22 TDO O 1 Three state 58 TMS I with p/u* 23 PA[7] I/O 1 Input 59 PD[3] I/O 1 Low 24 PA[6] I/O 1 Input 60 PD[2] I/O 1 Low 25 PA[5] I/O 1 Input 61 PD[1] I/O 1 Low 26 PA[4] I/O 1 Input 62 PD[0]/LEDFLSH I/O 1 Low 27 PA[3] I/O 1 Input 63 SSICLK I/O 1 Input 28 PA[2] I/O 1 Input 64 VSSIO Pad Gnd 29 PA[1] I/O 1 Input 65 SSITXFR I/O 1 Low 30 PA[0] I/O 1 Input 66 SSITXDA O 1 Low 31 LEDDRV O 1 Low 67 SSIRXDA I 32 TXD[1] O 1 High 68 SSIRXFR I/O 33 VSSIO Pad Gnd 1 High 69 ADCIN I 34 PHDIN I 70 nADCCS O 35 CTS I 71 VSSCORE Core Gnd 36 RXD[1] I 72 VDDCORE Core Pwr 37 DCD I 73 VSSIO Pad Gnd Pin No. Signal Type Strength Reset State 1 nCS[5] O 1 High 2 VDDIO Pad Pwr 3 VSSIO Pad Gnd 4 EXPCLK I/O 1 5 WORD Out 1 Low 6 WRITE Out 1 Low 7 RUN/CLKEN O 1 Low 8 EXPRDY I 1 9 TXD[2] O 1 10 RXD[2] I 11 TDI I 12 VSSIO Pad Gnd 13 PB[7] I/O 1 14 PB[6] I/O 15 PB[5] 16 DS507PP1 High with p/u* Copyright 2001 Cirrus Logic (All Rights Reserved) Strength Reset State Input 1 High 23 EP7309 High-Performance, Low-Power System on Chip Table S. 208-Pin LQFP Numeric Pin Listing (Continued) Table S. 208-Pin LQFP Numeric Pin Listing (Continued) Pin No. Signal Type 74 VDDIO Pad Pwr 75 DRIVE[1] I/O Strength Reset State 2 High / Low 76 DRIVE[0] I/O 2 High / Low 77 ADCCLK O 1 Low 78 ADCOUT O 1 Low 79 SMPCLK O 1 Low 80 FB[1] I 81 VSSIO Pad Gnd 82 FB[0] I 83 COL[7] O 1 High 84 COL[6] O 1 High 85 COL[5] O 1 High 86 COL[4] O 1 High 87 COL[3] O 1 High 88 COL[2] O 1 High 89 VDDIO Pad Pwr 90 TCLK I 91 COL[1] O 1 High 92 COL[0] O 1 High 93 BUZ O 1 Low 94 D[31] I/O 1 Low 95 D[30] I/O 1 Low 96 D[29] I/O 1 Low 97 D[28] I/O 1 Low 98 VSSIO Pad Gnd 99 A[27] O 2 Low 100 D[27] I/O 1 Low 101 A[26] O 2 Low 102 D[26] I/O 1 Low 103 A[25] O 2 Low 104 D[25] I/O 1 Low 105 HALFWORD O 1 Low 106 A[24] O 1 Low 107 VDDIO Pad Pwr — 108 VSSIO Pad Gnd — 109 D[24] I/O 1 Low 110 A[23] O 1 Low 24 Pin No. Signal Type Strength Reset State 111 D[23] I/O 1 Low 112 A[22] O 1 Low 113 D[22] I/O 1 Low 114 A[21] O 1 Low 115 D[21] I/O 1 Low 116 VSSIO Pad Gnd 117 A[20] O 1 Low 118 D[20] I/O 1 Low 119 A[19] O 1 Low 120 D[19] I/O 1 Low 121 A[18] O 1 Low 122 D[18] I/O 1 Low 123 VDDIO Pad Pwr 124 VSSIO Pad Gnd 125 nTRST I 126 A[17] O 1 Low 127 D[17] I/O 1 Low 128 A[16] O 1 Low 129 D[16] I/O 1 Low 130 A[15] O 1 Low 131 D[15] I/O 1 Low 132 A[14] O 1 Low 133 D[14] I/O 1 Low 134 A[13] O 1 Low 135 D[13] I/O 1 Low 136 A[12] O 1 Low 137 D[12] I/O 1 Low 138 A[11] O 1 Low 139 VDDIO Pad Pwr 140 VSSIO Pad Gnd 141 D[11] I/O 1 Low 142 A[10] O 1 Low 143 D[10] I/O 1 Low 144 A[9] O 1 Low 145 D[9] I/O 1 Low 146 A[8] O 1 Low 147 D[8] I/O 1 Low 148 A[7] O 1 Low Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip Table S. 208-Pin LQFP Numeric Pin Listing (Continued) Table S. 208-Pin LQFP Numeric Pin Listing (Continued) Pin No. Signal Type Pin No. Signal Type Strength Reset State 149 VSSIO Pad Gnd 187 M O 1 Low 150 D[7] I/O 188 DD[3] I/O 1 Low 151 nBATCHG I 189 DD[2] I/O 1 Low 152 nEXTPWR I 190 VSSIO Pad Gnd 153 BATOK I 191 DD[1] I/O 1 Low 154 nPOR I 192 DD[0] I/O 1 Low 155 nMEDCHG/ nBROM I 193 N/C O 1 High 194 N/C O 1 High 156 nURESET I 195 N/C I/O 2 Low 157 VDDOSC Osc Pwr 196 N/C I/O 2 Low 158 MOSCIN Osc 197 VDDIO Pad Pwr 159 MOSCOUT Osc 198 VSSIO Pad Gnd 160 VSSOSC Osc Gnd 199 N/C I/O 2 Low 161 WAKEUP I 200 N/C I/O 2 Low 162 nPWRFL I 201 nMWE O 1 High 163 A[6] O 1 Low 202 nMOE O 1 High 164 D[6] I/O 1 Low 203 VSSIO Pad Gnd 165 A[5] Out 1 Low 204 nCS[0] O 1 High 166 D[5] I/O 1 Low 205 nCS[1] O 1 High 167 VDDIO Pad Pwr 206 nCS[2] O 1 High 168 VSSIO Pad Gnd 207 nCS[3] O 1 High 169 A[4] O 1 Low 208 nCS[4] O 1 High 170 D[4] I/O 1 Low 171 A[3] O 2 Low 172 D[3] I/O 1 Low 173 A[2] O 2 Low 174 VSSIO Pad Gnd 175 D[2] I/O 1 Low 176 A[1] O 2 Low 177 D[1] I/O 1 Low 178 A[0] O 2 Low 179 D[0] I/O 1 Low 180 VSS CORE Core Gnd 181 VDD CORE Core Pwr 182 VSSIO Pad Gnd 183 VDDIO Pad Pwr 184 CL[2] O 1 Low 185 CL[1] O 1 Low 186 FRM O 1 Low DS507PP1 Strength 1 Reset State Low Schmitt Schmitt Schmitt *With p/u’ means with internal pull-up on the pin. Copyright 2001 Cirrus Logic (All Rights Reserved) 25 EP7309 High-Performance, Low-Power System on Chip 204-Ball TFBGA Package Characteristics 204-Ball TFBGA Package Specifications TOP VIEW BOTTOM VIEW Ø0.08 M C Ø0.15 M C A B A1 CORNER A1 CORNER Ø0.25~0.35(204X) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V W Y 12.35 13±0.05 0.65 A B C D E F G H J K L M N P R T U V W Y A 0.65 12.35 13±0.05 0.20 C 0.15(4X) C 0.10 C 0.53±0.05 B Ball Pitch : SEATING PLANE Ball Diameter : 1.20 MAX. C 0.20~0.30 0.36 0.65 Substrate Thickness : 0.36 Mold Thickness : 0.3 0.53 Figure 12. 204-Ball TFBGA Package 26 Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip 204-Ball TFBGA Pinout (Top View) 1 2 3 A VDDR EXPCLK nCS3 B WORD VDDR C 4 5 6 7 8 9 10 11 12 13 14 15 nCS1 nMWE N/C N/C DD2 FRM CL1 GNDD D1 A2 D4 A5 nCS5 nCS2 nMOE N/C N/C DD1 M CL2 D0 A1 D3 A4 D6 RUN/ EXPRDY VDDR CLKEN nCS4 nCS0 N/C N/C DD0 DD3 VDDD A0 D2 A3 D5 A6 16 18 19 20 nPWRFL MOSCOUT GNDR GNDR GNDR WAKEUP MOSCIN GNDR GNDR nURESET B GNDR BATOK nPOR C GNDR nBATCHG A7 D nMEDCHG nEXTPWR /nBROM D9 E GNDO 17 VDDO A D PB7 RXD2 VDDR E PB4 TXD2 WRITE F PB3 PB6 TDI D7 A8 D10 F G PB1 PB2 PB5 D8 A9 D11 G H PA7 TDO PB0 A10 D12 A12 H J PA4 PA5 PA6 A11 D13 A13 J K PA1 PA2 VDDR D14 A14 D15 K L TXD1 LEDDRV PA3 VDDR D16 A16 L CTS PA0 A15 A17 nTEST1 PHDIN D17 D19 A18 N P EINT3 nEINT2 D18 A20 D20 P R nEXTFIQ PE2/ nTEST0 CLKSEL A19 D22 A21 R D21 D23 A22 T HALF WORD D24 A23 U M RXD1 N T DSR PE1/ BOOT SEL1 U GNDC PE0/ BOOT SEL0 DCD nEINT1 RTCOUT RTCIN V VDDC GNDR GNDR PD7 PD4 PD2 W GNDR GNDR GNDR PD6 TMS PD1 Y GNDR GNDR GNDR PD5 PD3 PD0/ LED SSITXDA ADCIN FLSH DS507PP1 SSICLK SSIRXDA nADCCS VDDR ADCCLK COL7 SSITXFR SSIRXFR GNDD1 DRIVE1 ADCOUT VDD1 DRIVE0 SMPLCK nTRST M COL4 TCLK BUZ D29 A26 VDDR VDDR A24 V FB0 COL5 COL2 COL0 D30 A27 D26 VDDR D25 W FB1 COL6 COL3 COL1 D31 D28 D27 A25 VDDR Y Copyright 2001 Cirrus Logic (All Rights Reserved) 27 EP7309 High-Performance, Low-Power System on Chip TFBGA Ball List Table T. 204-Ball TFBGA Ball List (Continued) Table T. 204-Ball TFBGA Ball List Die Pad 28 Bond Pad Package Ball Signal U2.1 1 B3 nCS5 U2.2 2 Y20 VDDR U2.3 3 B18 GNDR U2.4 4 A2 EXPCLK U2.5 5 B1 WORD U2.6 6 E3 WRITE U2.7 7 C1 RUN/CLKEN U2.8 8 C2 EXPRDY U2.9 9 E2 TXD2 U2.10 10 D2 RXD2 U2.11 11 F3 TDI U2.12 12 B18 GNDR U2.13 13 D1 PB7 U2.14 14 F2 PB6 U2.15 15 G3 PB5 U2.16 16 E1 PB4 U2.17 17 F1 PB3 U2.18 18 G2 PB2 U2.19 19 G1 PB1 U2.20 20 H3 PB0 U2.21 21 Y20 VDDR U2.22 22 H2 TDO U2.23 23 H1 PA7 U2.24 24 J3 PA6 U2.25 25 J2 PA5 U2.26 26 J1 PA4 U2.27 27 L3 PA3 U2.28 28 K2 PA2 U2.29 29 K1 PA1 U2.30 30 M3 PA0 U2.31 31 L2 LEDDRV U2.32 32 L1 TXD1 U2.33 33 B18 GNDR U2.34 34 N3 PHDIN U2.35 35 M2 CTS U2.36 36 M1 RXD1 U2.37 37 P3 DCD Die Pad Bond Pad Package Ball Signal U2.38 38 N1 DSR U2.39 39 N2 nTEST1 U2.40 40 R3 nTEST0 U2.41 41 P1 EINT3 U2.42 42 P2 nEINT2 U2.43 43 T3 nEINT1 U2.44 44 R1 nEXTFIQ U2.45 45 R2 PE2/CLKSEL U2.46 46 T1 PE1/BOOTSEL1 U2.47 47 T2 PE0/BOOTSEL0 U2.48 48 U1 GNDC U2.49 49 U2 RTCOUT U2.50 50 U3 RTCIN U2.51 51 V1 VDDC U2.53 52 V4 PD7 U2.54 53 W4 PD6 U2.55 54 Y4 PD5 U2.56 55 V5 PD4 U2.57 56 L18 VDDR U2.58 57 W5 TMS U2.59 58 Y5 PD3 U2.60 59 V6 PD2 U2.61 60 W6 PD1 U2.62 61 Y6 PD0/LEDFLSH U2.63 62 V7 SSICLK U2.64 63 D18 GNDR U2.65 64 W7 SSITXFR U2.66 65 Y7 SSITXDA U2.67 66 V8 SSIRXDA U2.68 67 W8 SSIRXFR U2.69 68 Y8 ADCIN U2.70 69 V9 nADCCS U2.71 70 W9 GNDD1 U2.72 71 Y9 VDD1 U2.73 72 W3 GNDR U2.74 73 V10 VDDR U2.75 74 L18 VDDR U2.76 75 W10 DRIVE1 Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip Table T. 204-Ball TFBGA Ball List (Continued) Die Pad Bond Pad Package Ball Table T. 204-Ball TFBGA Ball List (Continued) Signal Die Pad Bond Pad Package Ball Signal U2.77 76 Y10 DRIVE0 U2.116 115 T18 D21 U2.78 77 V11 ADCCLK U2.117 116 Y3 GNDR U2.79 78 W11 ADCOUT U2.118 117 P19 A20 U2.80 79 Y11 SMPLCK U2.119 118 P20 D20 U2.81 80 Y12 FB1 U2.120 119 R18 A19 U2.82 81 Y3 GNDR U2.121 120 N19 D19 U2.83 82 W12 FB0 U2.122 121 N20 A18 U2.84 83 V12 COL7 U2.123 122 P18 D18 U2.85 84 Y13 COL6 U2.124 123 A1 VDDR U2.86 85 W13 COL5 U2.125 124 Y3 GNDR U2.87 86 V13 COL4 U2.126 125 M20 nTRST U2.88 87 Y14 COL3 U2.127 126 M19 A17 U2.89 88 W14 COL2 U2.128 127 N18 D17 U2.90 89 A1 VDDR U2.129 128 L20 A16 U2.91 90 V14 TCLK U2.130 129 L19 D16 U2.92 91 Y15 COL1 U2.131 130 M18 A15 U2.93 92 W15 COL0 U2.132 131 K20 D15 U2.94 93 V15 BUZ U2.133 132 K19 A14 U2.95 94 Y16 D31 U2.134 133 K18 D14 U2.96 95 W16 D30 U2.135 134 J20 A13 U2.97 96 V16 D29 U2.136 135 J19 D13 U2.98 97 Y17 D28 U2.137 136 H20 A12 U2.99 98 Y3 GNDR U2.138 137 H19 D12 U2.100 99 W17 A27 U2.139 138 J18 A11 U2.101 100 Y18 D27 U2.140 139 K3 VDDR U2.102 101 V17 A26 U2.141 140 Y3 GNDR U2.103 102 W18 D26 U2.142 141 G20 D11 U2.104 103 Y19 A25 U2.143 142 H18 A10 U2.105 104 W20 D25 U2.144 143 F20 D10 U2.106 105 U18 HALFWORD U2.145 144 G19 A9 U2.107 106 V20 A24 U2.146 145 E20 D9 U2.108 107 A1 VDDR U2.147 146 F19 A8 U2.109 108 Y3 GNDR U2.148 147 G18 D8 U2.110 109 U19 D24 U2.149 148 D20 A7 U2.111 110 U20 A23 U2.150 149 Y3 GNDR U2.112 111 T19 D23 U2.151 150 F18 D7 U2.113 112 T20 A22 U2.152 151 D19 nBATCHG U2.114 113 R19 D22 U2.153 152 E19 nEXTPWR U2.115 114 R20 A21 U2.154 153 C19 BATOK DS507PP1 Copyright 2001 Cirrus Logic (All Rights Reserved) 29 EP7309 High-Performance, Low-Power System on Chip Table T. 204-Ball TFBGA Ball List (Continued) Die Pad 30 Bond Pad Package Ball Table T. 204-Ball TFBGA Ball List (Continued) Signal Die Pad Bond Pad Package Ball Signal U2.155 154 C20 nPOR U2.194 193 A7 N/C U2.156 155 E18 nMEDCHG/nBROM U2.195 194 B7 N/C U2.157 156 B20 nURESET U2.196 195 C7 N/C U2.158 157 C17 VDDO U2.197 196 A6 N/C U2.159 158 B17 MOSCIN U2.198 197 V18 VDDR U2.160 159 A17 MOSCOUT U2.199 198 B18 GNDR U2.161 160 C16 GNDO U2.200 199 B6 N/C U2.162 161 B16 WAKEUP U2.201 200 C6 N/C U2.163 162 A16 nPWRFL U2.202 201 A5 nMWE U2.164 163 C15 A6 U2.203 202 B5 nMOE U2.165 164 B15 D6 U2.204 203 B18 GNDR U2.166 165 A15 A5 U2.205 204 C5 nCS0 U2.167 166 C14 D5 U2.206 205 A4 nCS1 U2.168 167 A1 VDDR U2.207 206 B4 nCS2 U2.169 168 Y3 GNDR U2.208 207 A3 nCS3 U2.170 169 B14 A4 U2.209 208 C4 nCS4 U2.171 170 A14 D4 A1 VDDR U2.172 171 C13 A3 B2 VDDR U2.173 172 B13 D3 C3 VDDR U2.174 173 A13 A2 D3 VDDR U2.175 174 Y3 GNDR K3 VDDR U2.176 175 C12 D2 L18 VDDR U2.177 176 B12 A1 V18 VDDR U2.178 177 A12 D1 V19 VDDR U2.179 178 C11 A0 W19 VDDR U2.180 179 B11 D0 Y20 VDDR U2.181 180 A11 GNDD A18 GNDR U2.182 181 C10 VDDD A19 GNDR U2.183 182 Y3 GNDR A20 GNDR U2.184 183 Y20 VDDR B18 GNDR U2.185 184 B10 CL2 B19 GNDR U2.186 185 A10 CL1 C18 GNDR U2.187 186 A9 FRM D18 GNDR U2.188 187 B9 M V2 GNDR U2.189 188 C9 DD3 V3 GNDR U2.190 189 A8 DD2 W1 GNDR U2.191 190 Y3 GNDR W2 GNDR U2.192 191 B8 DD1 W3 GNDR U2.193 192 C8 DD0 Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip Table T. 204-Ball TFBGA Ball List (Continued) Die Pad Bond Pad Package Ball Signal Y1 GNDR Y2 GNDR Y3 GNDR 256-Ball PBGA Package Characteristics 256-Ball PBGA Package Specifications Figure 13. 256-Ball PBGA Package Note: DS507PP1 1) For pin locations see Table U. 2) Dimensions are in millimeters (inches), and controlling dimension is millimeter 3) Before beginning any new EP7309 design, contact Cirrus Logic for the latest package information. Copyright 2001 Cirrus Logic (All Rights Reserved) 31 EP7309 High-Performance, Low-Power System on Chip 0.85 (0.034) ±0.05 (.002) 17.00 (0.669) ±0.20 (.008) Pin 1 Corner D1 0.40 (0.016) ±0.05 (.002) 15.00 (0.590) ±0.20 (.008) 30° TYP Pin 1 Indicator 17.00 (0.669) ±0.20 (.008) E1 15.00 (0.590) ±0.20 (.008) 2 Layer 0.36 (0.014) ±0.09 (0.004) TOP VIEW SIDE VIEW D 17.00 (0.669) Pin 1 Corner 1.00 (0.040) 1.00 (0.040) REF E 16 15 14 13 12 11 10 9 8 7 6 5 1.00 (0.040) REF 32 1 A B C D E F G H J K L M N P R T 1.00 (0.040) 0.50 R 3 Places 4 3 2 17.00 (0.669) BOTTOM VIEW JEDEC #: MO-151 Ball Diameter: 0.50 mm ± 0.10 mm 17 ¥ 17 ¥ 1.61 mm body Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip 256-Ball PBGA Pinout (Top View)) 1 2 3 4 5 6 7 8 9 10 11 12 13 A VDDIO nCS[4] nCS[1] N/C N/C DD[1] M VDDIO D[0] D[2] A[3] VDDIO A[6] B nCS[5] VDDIO nCS[3] nMOE VDDIO N/C DD[2] CL[1] VDDCORE D[1] A[2] A[4] A[5] WAKEUP VDDIO nURESET B C VDDIO EXPCLK VSSIO VDDIO VSSIO VSSIO VSSIO VDDIO VSSIO VSSIO VSSIO VDDIO VSSIO VSSIO nPOR nEXTPWR C D WRITE EXPRDY VSSIO VDDIO nCS[2] nMWE N/C CL[2] VSSRTC D[4] nPWRFL MOSCIN VDDIO VSSIO D[7] D[8] D E RXD[2] PB[7] TDI WORD VSSIO nCS[0] N/C FRM A[0] D[5] VSSOSC VSSIO nMEDCHG/ nBROM VDDIO D[9] D[10] E F PB[5] PB[3] VSSIO TXD[2] RUN/ CLKEN VSSIO N/C DD[3] A[1] D[6] VSSRTC BATOK nBATCHG VSSIO D[11] VDDIO F G PB[1] VDDIO TDO PB[4] PB[6] VSSRTC VSSRTC DD[0] D[3] VSSRTC A[7] A[8] A[9] VSSIO D[12] D[13] G H PA[7] PA[5] VSSIO PA[4] PA[6] PB[0] PB[2] VSSRTC VSSRTC A[10] A[11] A[12] A[13] VSSIO D[14] D[15] H J PA[3] PA[1] VSSIO PA[2] PA[0] TXD[1] CTS VSSRTC VSSRTC A[17] A[16] A[15] A[14] nTRST D[16] D[17] J PHDIN VSSIO DCD nTEST[1] EINT[3] VSSRTC ADCIN COL[4] TCLK D[20] D[19] D[18] VSSIO VDDIO VDDIO K DSR VDDIO nEINT[1] PE[2]/ CLKSEL VSSRTC COL[6] D[31] VSSRTC A[22] A[21] VSSIO A[18] A[19] L nEINT[2] VDDIO PE[0]/ BOOTSEL[0] TMS VDDIO SSITXFR DRIVE[1] FB[0] COL[0] D[27] VSSIO A[23] VDDIO A[20] D[21] M VDDIO PD[5] PD[2] SSIRXDA ADCCLK SMPCLK COL[2] D[29] D[26] HALFWORD VSSIO D[22] D[23] N K LEDDRV L RXD[1] M nTEST[0] N nEXTFIQ PE[1]/ VSSIO BOOTSEL[1] P VSSRTC R PD[0]/ VSSRTC LEDFLSH 14 15 16 MOSCOUT VDDOSC VSSIO A RTCOUT VSSIO VSSIO VDDIO VSSIO VSSIO VDDIO VSSIO VDDIO VSSIO VSSIO VDDIO VSSIO D[24] VDDIO P VDDIO PD[4] PD[1] SSITXDA nADCCS VDDIO ADCOUT COL[7] COL[3] COL[1] D[30] A[27] A[25] VDDIO A[24] R PD[7] PD[6] PD[3] SSICLK FB[1] COL[5] VDDIO BUZ D[28] A[26] D[25] VSSIO T RTCIN T VDDRTC SSIRXFR VDDCORE DRIVE[0] 256-Ball PBGA Ball Listing The list is ordered by ball location. Table U. 256-Ball PBGA Ball Listing (Continued) Table U. 256-Ball PBGA Ball Listing Ball Location Name Type A1 VDDIO Pad power Ball Location Name Type Description A12 VDDIO Pad power A13 A[6] O System byte address A14 MOSCOUT O Main oscillator out A15 VDDOSC Oscillator power A16 VSSIO Description Digital I/O power, 3.3V Digital I/O power, 3.3V A2 nCS[4] O Chip select out A3 nCS[1] O Chip select out Oscillator power in, 2.5V A4 N/C O A5 N/C O A6 DD[1] O LCD serial display data B1 nCS[5] O A7 M O LCD AC bias drive B2 VDDIO Pad power A8 VDDIO Pad power Digital I/O power, 3.3V B3 nCS[3] O Chip select out A9 D[0] I/O Data I/O B4 nMOE O ROM, expansion OP enable A10 D[2] I/O Data I/O B5 VDDIO Pad power A11 A[3] O System byte address B6 N/C O DS507PP1 Copyright 2001 Cirrus Logic (All Rights Reserved) Pad ground I/O ground Chip select out I/O ground Digital I/O power, 3.3V 33 EP7309 High-Performance, Low-Power System on Chip Table U. 256-Ball PBGA Ball Listing (Continued) Ball Location Name Type B7 DD[2] O LCD serial display data E7 N/C O B8 CL[1] O LCD line clock E8 FRM O LCD frame synchronization pulse B9 VDDCORE B10 D[1] I/O Data I/O Core power Digital core power, 2.5V B11 A[2] O System byte address B12 A[4] O System byte address B13 A[5] O System byte address B14 WAKEUP I B15 VDDIO Pad power B16 nURESET I C1 VDDIO C2 C3 Ball Location Name Type Description E9 A[0] O System byte address E10 D[5] I/O Data I/O E11 VSSOSC Oscillator ground E12 VSSIO System wake up input E13 nMEDCHG/nBROM I Digital I/O power, 3.3V E14 VDDIO Pad power User reset input E15 D[9] I/O Data I/O Pad power Digital I/O power, 3.3V E16 D[10] I/O Data I/O EXPCLK I Expansion clock input F1 PB[5] I GPIO port B VSSIO Pad ground I/O ground F2 PB[3] I GPIO port B C4 VDDIO Pad power Digital I/O power, 3.3V F3 VSSIO C5 VSSIO Pad ground I/O ground F4 TXD[2] O UART 2 transmit data output C6 VSSIO Pad ground I/O ground F5 RUN/CLKEN O Run output / clock enable output C7 VSSIO Pad ground I/O ground F6 VSSIO C8 VDDIO Pad power Digital I/O power, 3.3V F7 N/C C9 VSSIO Pad ground I/O ground F8 DD[3] O LCD serial display data C10 VSSIO Pad ground I/O ground F9 A[1] O System byte address C11 VSSIO Pad ground I/O ground F10 D[6] I/O Data I/O C12 VDDIO Pad power Digital I/O power, 3.3V F11 VSSRTC C13 VSSIO Pad ground I/O ground F12 BATOK I Battery ok input C14 VSSIO Pad ground I/O ground F13 nBATCHG I Battery changed sense input VSSIO PLL ground Pad ground I/O ground Media change interrupt input / internal rom boot enable Digital I/O power, 3.3V Pad ground I/O ground Pad ground I/O ground O RTC ground Real time clock ground C15 nPOR I Power-on reset input F14 C16 nEXTPWR I External power supply sense input F15 D[11] I/O D1 WRITE O Transfer direction F16 VDDIO Pad power D2 EXPRDY I Expansion port ready input G1 PB[1]/PRDY[2] I D3 VSSIO Pad ground I/O ground D4 VDDIO Pad power Digital I/O power, 3.3V G2 VDDIO Pad power G3 TDO O G4 PB[4] I GPIO port B G5 PB[6] I GPIO port B G6 VSSRTC Core ground Real time clock ground G7 VSSRTC RTC ground Real time clock ground G8 DD[0] O LCD serial display data G9 D[3] I/O Data I/O G10 VSSRTC G11 A[7] O System byte address G12 A[8] O System byte address G13 A[9] O System byte address G14 VSSIO G15 D[12] I/O Data I/O G16 D[13] I/O Data I/O H1 PA[7] I GPIO port A H2 PA[5] I GPIO port A H3 VSSIO H4 PA[4] I GPIO port A H5 PA[6] I GPIO port A D5 nCS[2] O Chip select out D6 nMWE O ROM, expansion write enable D7 N/C D8 CL[2] D9 VSSRTC D10 D[4] D11 nPWRFL O O LCD pixel clock out Core ground Real time clock ground I/O I Data I/O Power fail sense input D12 MOSCIN I D13 VDDIO Pad power Digital I/O power, 3.3V D14 VSSIO Pad ground I/O ground D15 D[7] I/O Main oscillator input Data I/O D16 D[8] I/O E1 RXD[2] I UART 2 receive data input E2 PB[7] I GPIO port B E3 E4 34 Description Table U. 256-Ball PBGA Ball Listing (Continued) TDI WORD I O E5 VSSIO Pad ground E6 nCS[0] O Data I/O JTAG data input Word access select output I/O ground Chip select out Pad ground I/O ground Data I/O Digital I/O power, 3.3V GPIO port B / CL-PS6700 interface signal Digital I/O power, 3.3V JTAG data out RTC ground Real time clock ground Copyright 2001 Cirrus Logic (All Rights Reserved) Pad ground I/O ground Pad ground I/O ground DS507PP1 EP7309 High-Performance, Low-Power System on Chip Table U. 256-Ball PBGA Ball Listing (Continued) Ball Location Name Type H6 PB[0]/PRDY[1] I H7 PB[2] H8 VSSRTC H9 VSSRTC I Description GPIO port B / CL-PS6700 interface signal O System byte address A[11] O System byte address H12 A[12] O System byte address O VSSIO Pad ground H15 D[14] I/O Data I/O H16 D[15] I/O Data I/O PA[3] I GPIO port A J2 PA[1] I GPIO port A J3 VSSIO Pad ground J4 PA[2] I PA[0] I GPIO port A TXD[1] O UART 1 transmit data out J9 VSSRTC A[17] I O O System byte address O System byte address O I D[16] I/O Data I/O D[17] I/O Data I/O K1 LEDDRV O IR LED drivet K2 PHDIN I Photodiode input K3 VSSIO Pad ground K4 DCD I nTEST[1] I Test mode select input EINT[3] I External interrupt I COL[4] O Keyboard scanner column drive TCLK I JTAG clock K11 D[20] I/O Data I/O K12 D[19] I/O Data I/O I/O VSSIO Pad ground I/O ground K15 VDDIO Pad power Digital I/O power, 3.3V K16 VDDIO Pad power Digital I/O power, 3.3V L1 RXD[1] I UART 1 receive data input L2 DSR I UART 1 data set ready input L3 VDDIO Pad power Digital I/O power, 3.3V L4 nEINT[1] I External interrupt input DS507PP1 PE[2]/CLKSEL L12 A[22] O System byte address L13 A[21] O System byte address L14 VSSIO L15 A[18] O L16 A[19] O System byte address M1 nTEST[0] I Test mode select input M2 nEINT[2] I External interrupt input M3 VDDIO Pad power Digital I/O power, 3.3V M4 PE[0]/BOOTSEL[0] I GPIO port E / Boot mode select M5 TMS I JTAG mode select M6 VDDIO Pad power M7 SSITXFR I/O M8 DRIVE[1] I/O M9 FB[0] I M10 COL[0] O Keyboard scanner column drive M11 D[27] I/O Data I/O M12 VSSIO M13 A[23] O M14 VDDIO Pad power M15 A[20] O M16 D[21] I/O N1 nEXTFIQ I External fast interrupt input N2 PE[1]/BOOTSEL[1] I GPIO port E / boot mode select N3 VSSIO Pad ground I/O ground N4 VDDIO Pad power N5 PD[5] I/O GPIO port D N6 PD[2] I/O GPIO port D N7 SSIRXDA I/O DAI/CODEC/SSI2 serial data input RTC ground Real time clock ground Pad ground I/O ground System byte address Digital I/O power, 3.3V DAI/CODEC/SSI2 frame sync PWM drive output PWM feedback input Pad ground I/O ground System byte address Digital I/O power, 3.3V System byte address Data I/O Digital I/O power, 3.3V I N8 ADCCLK O SSI1 ADC serial clock N9 SMPCLK O SSI1 ADC sample clock N10 COL[2] O Keyboard scanner column drive N11 D[29] I/O Data I/O N12 D[26] I/O Data I/O N13 HALFWORD O Halfword access select output N14 VSSIO N15 D[22] Data I/O K14 L5 VSSRTC SSI1 ADC serial input K9 D[18] L11 RTC ground Real time clock ground K10 K13 Data I/O UART 1 data carrier detect K6 ADCIN I/O I/O ground K5 K8 Keyboard scanner column drive D[31] JTAG async reset input J16 VSSRTC O L10 Core ground Real time clock ground System byte address J15 K7 COL[6] System byte address A[15] nTRST VSSRTC L9 GPIO port D / LED blinker output RTC ground Real time clock ground A[16] J14 L8 I/O UART 1 clear to send input J12 A[14] RTC ground Real time clock ground RTC ground Real time clock ground J11 J13 PD[0]/LEDFLSH GPIO port A J6 J10 VSSRTC L7 I/O ground J5 CTS L6 I/O ground J1 VSSRTC Description System byte address H14 J8 Type RTC ground Real time clock ground A[10] J7 Name RTC ground Real time clock ground H11 A[13] Ball Location GPIO port B H10 H13 Table U. 256-Ball PBGA Ball Listing (Continued) Pad ground I/O ground I/O Data I/O I/O Data I/O N16 D[23] P1 VSSRTC P2 RTCOUT P3 VSSIO Pad ground I/O ground P4 VSSIO Pad ground I/O ground P5 VDDIO Pad power RTC ground Real time clock ground O Real time clock oscillator output Digital I/O power, 3.3V GPIO port E / clock input mode select Copyright 2001 Cirrus Logic (All Rights Reserved) 35 EP7309 High-Performance, Low-Power System on Chip Table U. 256-Ball PBGA Ball Listing (Continued) Ball Location Name Type P6 VSSIO Pad ground I/O ground P7 VSSIO Pad ground I/O ground P8 VDDIO Pad power Digital I/O power, 3.3V P9 VSSIO Pad ground I/O ground P10 VDDIO Pad power Digital I/O power, 3.3V P11 VSSIO Pad ground I/O ground P12 VSSIO Pad ground I/O ground P13 VDDIO Pad power Digital I/O power P14 VSSIO Pad ground I/O ground P15 D[24] I/O P16 VDDIO Pad power R1 RTCIN I/O R2 VDDIO Pad power R3 PD[4] I/O R4 PD[1] I/O GPIO port D R5 SSITXDA O DAI/CODEC/SSI2 serial data output R6 nADCCS O SSI1 ADC chip select R7 VDDIO Pad power Digital I/O power, 3.3V R8 ADCOUT O SSI1 ADC serial data output R9 COL[7] O Keyboard scanner column drive R10 COL[3] O Keyboard scanner column drive R11 COL[1] O Keyboard scanner column drive R12 D[30] I/O Data I/O R13 A[27] O System byte address System byte address 36 R14 A[25] O R15 VDDIO Pad power Description Data I/O Digital I/O power, 3.3V Real time clock oscillator input Digital I/O power, 3.3V GPIO port D Digital I/O power, 3.3V R16 A[24] O T1 VDDRTC RTC power System byte address T2 PD[7] I/O GPIO port D T3 PD[6] I/O GPIO port D T4 PD[3] I/O GPIO port D T5 SSICLK I/O DAI/CODEC/SSI2 serial clock – DAI/CODEC/SSI2 frame sync Real time clock power, 2.5V T6 SSIRXFR T7 VDDCORE T8 DRIVE[0] I/O T9 FB[1] I PWM feedback input T10 COL[5] O Keyboard scanner column drive T11 VDDIO Pad power Core power Core power, 2.5V PWM drive output Digital I/O power, 3.3V T12 BUZ O T13 D[28] I/O Buzzer drive output Data I/O T14 A[26] O System byte address T15 D[25] I/O Data I/O T16 VSSIO Pad ground I/O ground Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip JTAG Boundary Scan Signal Ordering Table V. JTAG Boundary Scan Signal Ordering DS507PP1 LQFP Pin No. TFBGA Ball PBGA Ball Signal Type Position 1 B3 B1 nCS[5] O 1 4 A2 C2 EXPCLK I/O 3 5 B1 E4 WORD O 6 6 E3 D1 WRITE O 8 7 C1 F5 RUN/CLKEN O 10 8 C2 D2 EXPRDY I 13 9 E2 F4 TXD2 O 14 10 D2 E1 RXD2 I 16 13 F3 E2 PB[7] I/O 17 14 D1 G5 PB[6] I/O 20 15 F2 F1 PB[5] I/O 23 16 G3 G4 PB[4] I/O 26 17 E1 F2 PB[3] I/O 29 18 F1 H7 PB[2] I/O 32 19 G2 G1 PB[1]/PRDY2 I/O 35 20 G1 H6 PB[0]/PRDY1 I/O 38 23 H3 H1 PA[7] I/O 41 24 H1 H5 PA[6] I/O 44 25 J3 H2 PA[5] I/O 47 26 J2 H4 PA[4] I/O 50 27 J1 J1 PA[3] I/O 53 28 L3 J4 PA[2] I/O 56 29 K2 J2 PA[1] I/O 59 30 K1 J5 PA[0] I/O 62 31 M3 K1 LEDDRV O 65 32 L2 J6 TXD1 O 67 34 L1 K2 PHDIN I 69 35 N3 J7 CTS I 70 36 M2 L1 RXD1 I 71 37 M1 K4 DCD I 72 38 P3 L2 DSR I 73 39 N1 K5 nTEST1 I 74 40 N2 M1 nTEST0 I 75 41 R3 K6 EINT3 I 76 42 P1 M2 nEINT2 I 77 43 P2 L4 nEINT1 I 78 Copyright 2001 Cirrus Logic (All Rights Reserved) 37 EP7309 High-Performance, Low-Power System on Chip Table V. JTAG Boundary Scan Signal Ordering (Continued) 38 LQFP Pin No. TFBGA Ball PBGA Ball Signal Type Position 44 T3 N1 nEXTFIQ I 79 45 R1 L5 PE[2]/CLKSEL I/O 80 46 R2 N2 PE[1]/BOOTSEL1 I/O 83 47 T1 M4 PE[0]/BOOTSEL0 I/O 86 53 T2 T2 PD[7] I/O 89 54 V4 T3 PD[6] I/O 92 55 W4 N5 PD[5] I/O 95 56 Y4 R3 PD[4] I/O 98 59 V5 T4 PD[3] I/O 101 60 W5 N6 PD[2] I/O 104 61 Y5 R4 PD[1] I/O 107 62 V6 L7 PD[0]/LEDFLSH O 110 68 W6 T6 SSIRXFR I/O 122 69 Y6 K8 ADCIN I 125 70 W8 R6 nADCCS O 126 75 Y8 M8 DRIVE1 I/O 128 76 V9 T8 DRIVE0 I/O 131 77 W10 N8 ADCCLK O 134 78 Y10 R8 ADCOUT O 136 79 V11 N9 SMPCLK O 138 80 W11 T9 FB1 I 140 82 Y11 M9 FB0 I 141 83 Y12 R9 COL7 O 142 84 W12 L9 COL6 O 144 85 V12 T10 COL5 O 146 86 Y13 K9 COL4 O 148 87 W13 R10 COL3 O 150 88 V13 N10 COL2 O 152 91 Y14 R11 COL1 O 154 92 W14 M10 COL0 O 156 93 A1 T12 BUZ O 158 94 V14 L10 D[31] I/O 160 95 Y15 R12 D[30] I/O 163 96 W15 N11 D[29] I/O 166 97 V15 T13 D[28] I/O 169 99 Y16 R13 A[27] Out 172 100 W16 M11 D[27] I/O 174 101 V16 T14 A[26] O 177 Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip Table V. JTAG Boundary Scan Signal Ordering (Continued) DS507PP1 LQFP Pin No. TFBGA Ball PBGA Ball Signal Type Position 102 Y17 N12 D[26] I/O 179 103 W17 R14 A[25] O 182 104 Y18 T15 D[25] I/O 184 105 V17 N13 HALFWORD O 187 106 W18 R16 A[24] O 189 109 Y19 P15 D[24] I/O 191 110 W20 M13 A[23] O 194 111 U18 N16 D[23] I/O 196 112 V20 L12 A[22] O 199 113 U19 N15 D[22] I/O 201 114 U20 L13 A[21] O 204 115 T19 M16 D[21] I/O 206 117 T20 M15 A[20] O 209 118 R19 K11 D[20] I/O 211 119 R20 L16 A[19] O 214 120 T18 K12 D[19] I/O 216 121 P19 L15 A[18] O 219 122 P20 K13 D[18] I/O 221 126 R18 J10 A[17] O 224 127 N19 J16 D[17] I/O 226 128 N20 J11 A[16] O 229 129 P18 J15 D[16] I/O 231 130 M19 J12 A[15] O 234 131 N18 H16 D[15] I/O 236 132 L20 J13 A[14] O 239 133 L19 H15 D[14] I/O 241 134 M18 H13 A[13] O 244 135 K20 G16 D[13] I/O 246 136 K19 H12 A[12] O 249 137 K18 G15 D[12] I/O 251 138 J20 H11 A[11] O 254 141 J19 F15 D[11] I/O 256 142 H20 H10 A[10] O 259 143 H19 E16 D[10] I/O 261 144 J18 G13 A[9] O 264 145 K3 E15 D[9] I/O 266 146 Y3 G12 A[8] O 269 147 G20 D16 D[8] I/O 271 Copyright 2001 Cirrus Logic (All Rights Reserved) 39 EP7309 High-Performance, Low-Power System on Chip Table V. JTAG Boundary Scan Signal Ordering (Continued) 40 LQFP Pin No. TFBGA Ball PBGA Ball Signal Type Position 148 H18 G11 A[7] O 274 150 F20 D15 D[7] I/O 276 151 G19 F13 nBATCHG I 279 152 E20 C16 nEXTPWR I 280 153 F19 F12 BATOK I 281 154 G18 C15 nPOR I 282 155 D20 E13 nMEDCHG/nBROM I 283 156 F18 B16 nURESET I 284 161 D19 B14 WAKEUP I 285 162 E19 D11 nPWRFL I 286 163 C19 A13 A[6] O 287 164 C20 F10 D[6] I/O 289 165 E18 B13 A[5] O 292 166 B20 E10 D[5] I/O 294 169 B16 B12 A[4] O 297 170 A16 D10 D[4] I/O 299 171 C15 A11 A[3] O 302 172 B15 G9 D[3] I/O 304 173 A15 B11 A[2] O 307 175 C14 A10 D[2] I/O 309 176 B14 F9 A[1] O 312 177 A14 B10 D[1] I/O 314 178 C13 E9 A[0] O 317 179 B13 A9 D[0] I/O 319 184 A13 D8 CL2 O 322 185 C12 B8 CL1 O 324 186 B12 E8 FRM O 326 187 A12 A7 M O 328 188 C11 F8 DD[3] I/O 330 189 B11 B7 DD[2] I/O 333 191 B10 A6 DD[1] I/O 336 192 A10 G8 DD[0] I/O 339 193 A9 B6 N/C O 342 194 B9 D7 N/C O 344 195 C9 A5 N/C I/O 346 196 A8 E7 N/C I/O 349 199 B8 F7 N/C I/O 352 200 C8 A4 N/C I/O 355 Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip Table V. JTAG Boundary Scan Signal Ordering (Continued) LQFP Pin No. TFBGA Ball PBGA Ball Signal Type Position 201 A7 D6 nMWE O 358 202 B7 B4 nMOE O 360 204 C7 E6 nCS[0] O 362 205 A6 A3 nCS[1] O 364 206 B6 D5 nCS[2] O 366 207 C6 B3 nCS[3] O 368 208 A5 A2 nCS[4] O 370 1) See EP7309 Users’ Manual for pin naming / functionality. 2) For each pad, the JTAG connection ordering is input, output, then enable as applicable. DS507PP1 Copyright 2001 Cirrus Logic (All Rights Reserved) 41 EP7309 High-Performance, Low-Power System on Chip CONVENTIONS Table W. Acronyms and Abbreviations (Continued) Acronym/ Abbreviation This section presents acronyms, abbreviations, units of measurement, and conventions used in this data sheet. Acronyms and Abbreviations Table W lists abbreviations and acronyms used in this data sheet. Table W. Acronyms and Abbreviations Acronym/ Abbreviation Definition TAP test access port TLB translation lookaside buffer UART universal asynchronous receiver Units of Measurement Table X. Unit of Measurement Definition Symbol Unit of Measure A/D analog-to-digital ADC analog-to-digital converter °C degree Celsius CODEC coder / decoder fs sample frequency D/A digital-to-analog Hz hertz (cycle per second) DMA direct-memory access kbps kilobits per second EPB embedded peripheral bus KB kilobyte (1,024 bytes) FCS frame check sequence kHz kilohertz FIFO first in / first out kΩ kilohm FIQ fast interrupt request Mbps megabits (1,048,576 bits) per second GPIO general purpose I/O MB megabyte (1,048,576 bytes) ICT in circuit test MBps megabytes per second IR infrared MHz megahertz (1,000 kilohertz) IRQ standard interrupt request µA microampere IrDA Infrared Data Association µF microfarad JTAG Joint Test Action Group µW microwatt LCD liquid crystal display µs microsecond (1,000 nanoseconds) LED light-emitting diode mA milliampere LQFP low profile quad flat pack mW milliwatt LSB least significant bit ms millisecond (1,000 microseconds) MIPS millions of instructions per second ns nanosecond MMU memory management unit V volt MSB most significant bit W watt PBGA plastic ball grid array PCB printed circuit board PDA personal digital assistant PLL phase locked loop p/u pull-up resistor RISC reduced instruction set computer RTC Real-Time Clock SIR slow (9600–115.2 kbps) infrared SRAM static random access memory SSI synchronous serial interface 42 Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 EP7309 High-Performance, Low-Power System on Chip General Conventions Pin Description Conventions Hexadecimal numbers are presented with all letters in uppercase and a lowercase “h” appended or with a 0x at the beginning. For example, 0x14 and 03CAh are hexadecimal numbers. Binary numbers are enclosed in single quotation marks when in text (for example, ‘11’ designates a binary number). Numbers not indicated by an “h”, 0x or quotation marks are decimal. Abbreviations used for signal directions are listed in Table Y. Registers are referred to by acronym, with bits listed in brackets separated by a colon (:) (for example, CODR[7:0]), and are described in the EP7309 User’s Manual. The use of “TBD” indicates values that are “to be determined,” “n/a” designates “not available,” and “n/c” indicates a pin that is a “no connect.” DS507PP1 Table Y. Pin Description Conventions Abbreviation Direction I Input O Output I/O Input or Output Copyright 2001 Cirrus Logic (All Rights Reserved) 43 EP7309 High-Performance, Low-Power System on Chip ORDERING INFORMATION The order number for the device is: EP7309 — CV — C Revision † Package Type: V = Low Profile Quad Flat Pack B = Plastic Ball Grid Array (17 mm x 17 mm) R = Reduced Ball Grid Array (13 mm x 13 mm) Part Number Product Line: Embedded Processor Note: 44 Temperature Range: C = Commercial E = Extended Operating Version I = Industrial Operating Version Contact Cirrus Logic for up-to-date information on revisions. Go to the Cirrus Logic Internet site at http://cirrus.com/corporate/contacts to find contact information for your local sales representative. Copyright 2001 Cirrus Logic (All Rights Reserved) DS507PP1 • Notes •