ON MC33284 High performance operational amplifier Datasheet

Order this document by MC33282/D
&
!%$ #$
!"#
The MC33282/284 series of high performance operational amplifiers are
quality fabricated with innovative bipolar and JFET design concepts. This
dual and quad amplifier series incorporates JFET inputs along with a
patented Zip–R–Trim element for input offset voltage reduction. These
devices exhibit low input offset voltage, low input bias current, high gain
bandwidth and high slew rate. Dual–doublet frequency compensation is
incorporated to produce high quality phase/gain performance. In addition,
the MC33282/284 series exhibit low input noise characteristics for JFET
input amplifiers. Its all NPN output stage exhibits no deadband crossover
distortion and a large output voltage swing. They also provide a low open
loop high frequency output impedance with symmetrical source and sink AC
frequency performance.
The MC33282/284 series are specified over –40° to +85°C and are
available in plastic DIP and SOIC surface mount packages.
• Low Input Offset Voltage: Trimmed to 200 µV
•
•
•
•
•
•
•
•
•
•
•
•
&
$ &$ !%$ !"$
HIGH PERFORMANCE
OPERATIONAL AMPLIFIERS
SEMICONDUCTOR
TECHNICAL DATA
DUAL
8
1
8
1
P SUFFIX
PLASTIC PACKAGE
CASE 626
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
PIN CONNECTIONS
Output 1 1
Low Input Bias Current: 30 pA
Low Input Offset Current: 6.0 pA
High Input Resistance: 1012 Ω
2
Inputs 1
Low Noise: 18 nV √ Hz @ 1.0 kHz
3
–
+
VEE 4
High Slew Rate: 15 V/µs
VCC
7
Output 2
1
2
High Gain Bandwidth Products: 35 MHz @ 100 kHz
8
–
6
+
5
Inputs 2
(Top View)
Power Bandwidth: 175 kHz
Unity Gain Stable: w/Capacitance Loads to 300 pF
Large Output Voltage Swing: +14.1 V/–14.6 V
QUAD
Low Total Harmonic Distortion: 0.003%
Power Supply Drain Current: 2.15 mA per Amplifier
14
1
Dual Supply Operation: ± 2.5 V to ±18 V (Max)
14
D SUFFIX
PLASTIC PACKAGE
CASE 751A
(SO–14)
1
P SUFFIX
PLASTIC PACKAGE
CASE 646
PIN CONNECTIONS
Output 1
14 Output 4
1
ORDERING INFORMATION
Op Amp
Function
Device
Operating
Temperature Range
2
Package
MC33282D
SOP–8
MC33282P
Plastic DIP
Dual
MC33284D
TA = –40°
40° to +85°C
85°C
SO–14
Quad
MC33284P
Zip–R–Trim is a registered trademark of Motorola Inc.
Inputs 1
3
–
1
+
–
+
4
5
6
Plastic DIP
Output 2
Inputs 4
12
11 VEE
VCC 4
Inputs 2
13
+
2
–
3
+
–
7
10
Inputs 3
9
8 Output 3
(Top View)
 Motorola, Inc. 1996
MOTOROLA ANALOG IC DEVICE DATA
Rev 0
1
MC33282 MC33284
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VS
+36
V
VIDR
(Note 1)
V
Input Voltage Range
VIR
(Note 1)
V
Output Short Circuit Duration (Note 2)
tSC
Indefinite
sec
Maximum Junction Temperature
TJ
+150
°C
Storage Temperature
Tstg
– 60 to +150
°C
Maximum Power Dissipation
PD
(Note 2)
mW
Supply Voltage (VCC to VEE)
Input Differential Voltage Range
NOTES: 1. Either or both input voltages should not exceed VCC or VEE.
2. Power dissipation must be considered to ensure maximum junction temperature
(TJ) is not exceeded (see Figure 2).
DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristics
Symbol
Figure
Input Offset Voltage (RS = 10 Ω, VCM = 0 V, VO = 0 V)
TA = +25°C
TA = –40° to +85°C
|VIO|
3
Average Temperature Coefficient of Input Offset Voltage
RS = 10 Ω, VCM = 0 V, VO = 0 V, TA = Tlow to Thigh
|∆VIO|/∆T
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = +25°C
TA = –40° to +85°C
IIB
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = +25°C
TA = –40° to +85°C
IIO
Max
6
Large Signal Voltage Gain (VO = ±10 V, RL = 2.0 kΩ)
TA = +25°C
TA = –40° to +85°C
AVOL
7
Output Voltage Swing (VID = ±1.0 V)
RL = 2.0 kΩ
RL = 2.0 kΩ
RL = 10 kΩ
RL = 10 kΩ
VO +
VO –
VO +
VO –
—
—
0.2
—
2.0
4.0
—
15
—
–200
–2.0
30
—
200
2.0
pA
nA
–100
–1.0
6.0
—
100
1.0
pA
nA
–11
—
–12
+14
—
+11
V
50
25
200
—
—
—
13.2
—
13.7
—
+13.7
–13.9
+14.1
–14.6
—
–13.2
—
–14.3
70
90
—
75
100
—
15
—
+21
–27
—
–15
—
—
2.15
—
2.75
3.0
mV
µV/°C
Common Mode Rejection (Vin = ±11 V)
CMR
11
Power Supply Rejection
VCC/VEE = +15 V/–15 V, +5.0 V/–15 V, +15 V/–5.0 V
PSR
12
Output Short Circuit Current (VID = 1.0 V, output to ground)
Source
Sink
ISC
V/mV
8, 9, 10
ID
Unit
4, 5
VICR
2
Typ
3
Common Mode Input Voltage Range
(∆VIO = 5.0 mV, VO = 0 V)
Power Supply Current (VO = 0 V, per amplifier)
TA = +25°C
TA = –40° to +85°C
Min
V
dB
dB
13, 14
mA
15
mA
MOTOROLA ANALOG IC DEVICE DATA
MC33282 MC33284
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Symbol
Figure
Min
Typ
Unit
SR
16, 28, 29
8.0
15
V/µs
Gain Bandwidth Product (f = 100 kHz)
GBW
17
20
35
MHz
AC Voltage Gain (RL = 2.0 kΩ, VO = 0 V, f = 20 kHz)
AVO
18, 21
—
1750
V/V
—
5.5
MHz
15
dB
Characteristics
Slew Rate (Vin = –10 V to +10 V, RL = 2.0 kΩ, CL = 100 pF, AV = +1.0)
Unity Gain Frequency (Open Loop)
fU
Gain Margin (RL = 2.0 kΩ, CL = 0 pF)
Am
19, 20
—
Phase Margin (RL = 2.0 kΩ, CL = 0 pF)
φm
19, 20
—
40
Degrees
Channel Separation (f = 20 Hz to 20 kHz)
CS
22
—
–120
dB
—
175
kHz
Power Bandwidth (VO = 20 Vpp, RL = 2.0 kΩ, THD ≤ 1.0%)
BWP
Distortion (RL = 2.0 kΩ, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0)
THD
23
—
0.003
%
Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz)
|ZO|
24
—
37
Ω
—
1012
Ω
—
5.0
pF
—
18
nV/ √ Hz
—
0.01
pA/ √ Hz
Differential Input Resistance (VCM = 0 V)
Rin
Differential Input Capacitance (VCM = 0 V)
Cin
Equivalent Input Noise Voltage (RS = 100 Ω, f = 1.0 kHz)
en
Equivalent Input Noise Current (f = 1.0 kHz)
in
25
Figure 1. Equivalent Circuit Schematic
(Each Amplifier)
VCC
D1
R2
R3
R6
R10
R13
Q15
Q8
D2
C1
Q17
C3
+
Q5
Vin
D3
J4
J3
Vin
Q11
J5
J2
C4
D4
R16
Q9
Q18
C5
J1
C6
A
B
C
Q7
D
R17
Q10
D5
Q13
VO
Q4
Q6
Q12
Q14
R5
Z1
Q1
Q2
R12
R4
Q3
R1
C2
R8
Q16
R15
R13
VEE
MOTOROLA ANALOG IC DEVICE DATA
3
MC33282 MC33284
PD (max), MAXIMUM POWER DISSIPATION (mW)
Figure 2. Maximum Power Dissipation
versus Temperature
Figure 3. Input Offset Voltage versus
Temperature for Typical Units
2400
VIO , INPUT OFFSET VOLTAGE (mV)
5.0
2000
MC33282P & MC33284P
1600
1200
MC33284D
800
MC33282D
400
0
–60 –40 –20
0
20
40
60
80
3.0
1.0
Unit 2
Unit 2
–1.0
Unit 3
–25
25
50
75
100
TA, AMBIENT TEMPERATURE (°C)
Figure 4. Input Bias Current
versus Temperature
Figure 5. Input Bias Current versus
Common Mode Voltage
125
600
IIB, INPUT BIAS CURRENT (pA)
300
250
200
VCC, VEE = ±2.5 V
150
100
50
0
–55
VCC, VEE = ±15 V
–25
0
25
50
75
100
500
400
300
200
100
0
–15
125
VCC = +15 V
VEE = –15 V
TA = 25°C
–12 –9.0 –6.0
TA, AMBIENT TEMPERATURE (°C)
VCC–1.5 V
VEE+1.5 V
VEE+1.0 V
VEE+0.5 V
VEE
–55
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
125
AVOL, OPEN LOOP VOLTAGE GAIN (dB)
VCC = +5.0 V to +18 V
VEE = –5.0 V to –18 V
∆VIO = 5.0 mV
VO = 0 V
VCC–1.0 V
0
3.0
6.0
9.0
12
15
Figure 7. Open Loop Voltage Gain
versus Temperature
VCC
VCC–0.5 V
–3.0
VCM, COMMON MODE VOLTAGE (V)
Figure 6. Input Common Mode Voltage
Range versus Temperature
VICR , INPUT COMMON MODE VOLTAGE RANGE (V)
0
TA, AMBIENT TEMPERATURE (°C)
350
4
Unit 1
–3.0
–5.0
–55
100 120 140 160 180
Unit 3
Unit 1
400
IIB, INPUT BIAS CURRENT (pA)
VCC = +15 V
VEE = –15 V
RS = 10 Ω
VCM = 0 V
150
140
130
VCC = +15 V
VEE = –15V
RL = 2.0 kΩ
f = 10 Hz
∆VO = 10 V to +10 V
120
110
100
–55
–25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (°C)
MOTOROLA ANALOG IC DEVICE DATA
MC33282 MC33284
Figure 8. Output Voltage Swing
versus Supply Voltage
Figure 9. Output Voltage
versus Frequency
40
30
27
VO, OUTPUT VOLTAGE (Vpp )
VO, OUTPUT VOLTAGE (Vpp )
36
TA = 25°C
32
28
24
RL = 10 k
20
RL = 2.0 k
16
12
8.0
24
21
18
15
12
9.0
6.0
3.0
4.0
0
0
2.0
4.0
6.0
8.0
10
12
14
16
18
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
AV = +1.0
THD = ≤ 1.0%
TA = 25°C
0
1.0 k
20
10 k
VCC
TA = –55°C
VCC = +15 V
RL to Gnd
VEE = –15 V
VCC–8.0 V
TA = 125°C
TA = +25°C
VCC–12 V
VEE+4.0 V
TA = 125°C
VEE+2.0 V
VEE
2.0
4.0
6.0
8.0
10
TA = –55°C
12
14
TA = +25°C
18
20
16
120
VCC = +15 V
VEE = –15 V
VCM = 0 V
∆VCM = ±1.5 V
100
80
60
–
ADM
+
∆VCM
40
20
0
10
CMR = 20Logǒ
100
1.0 k
PSR–
40
–
ADM
+
VEE
20
0
10
+PSR = 20Lo ǒ
g
100
∆VO
∆VO/ADM
MMNI
Ǔ
∆VCC
MMM
1.0 k
VCC = +15 V
VEE = –15 V
∆VCC = ±1.5 V
TA = 25°C
10 k
f, FREQUENCY (Hz)
MOTOROLA ANALOG IC DEVICE DATA
100 k
1.0 M
|ISC|, OUTPUT SHORT CIRCUIT CURRENT (mA)
+PSR, POWER SUPPLY REJECTION (dB)
PSR+
VCC
100 k
1.0 M
Figure 13. Output Short Circuit Source
Current versus Temperature
120
60
10 k
f, FREQUENCY (Hz)
Figure 12. Positive Power Supply
Rejection versus Frequency
80
∆VO
∆VCM
MVMNI
x Axmi
DM Ǔ
∆VO
MMM
IL, LOAD CURRENT (mA)
100
1.0 M
Figure 11. Common Mode Rejection
versus Frequency
CMR, COMMON MODE REJECTION (dB)
Vsat , OUTPUT SATURATION VOLTAGE (V)
Figure 10. Output Saturation Voltage
versus Load Current
VCC–4.0 V
100 k
f, FREQUENCY (Hz)
VCC, VEE SUPPLY VOLTAGE (V)
50
VID = ±1.0 V
RL < 100 Ω
45
40
35
30
VCC, VEE = ±15 V
25
20
15
10
VCC, VEE = ±2.5 V
5.0
0
–55
–25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (°C)
5
Figure 14. Output Short Circuit Sink
Current versus Temperature
3.0
ID , POWER SUPPLY CURRENT (mA)
VID = ±1.0 V
RL < 100 Ω
45
VCC, VEE = ±15 V
40
35
30
25
20
VCC, VEE = ±2.5 V
15
10
5.0
0
–55
–25
0
25
50
75
100
SR, SLEW RATE (V/µs)
VCC, VEE = ±2.5 V
1.0
0.5
0
–55
–25
0
Noninverting Amplifier
VCC = +15 V
VEE = –15 V
∆Vin = 20 V
CL = 100 pF
RL = 2.0 kΩ
6.0
4.0
2.0
100
0
25
50
75
100
50
40
30
20
10
0
–55
125
–25
0
80
2A
0
1B
2B
–20
1A) Phase VCC = 18 V, VEE = –18 V
–30 2A) Phase VCC = 1.5 V, VEE = –1.5 V
–40 1B) Gain VCC = 18 V, VEE = –18 V
2B) Gain VCC = 1.5 V, VEE = –1.5 V
–50
100 k
1.0 M
10 M
f, FREQUENCY (Hz)
140
160
180
200
220
240
A m, GAIN MARGIN (dB)
1A
10
100
125
16
–
+
Vin
VO
R2
40
30
12
Gain Margin
8.0
4.0
260
100 M
R1
Phase Margin
φ , PHASE (DEGREES)
20
75
50
20
100
120
30
50
Figure 19. Phase Margin and Gain Margin
versus Differential Source Resistance
TA = 25°C
CL = 0 pF
40
25
TA, AMBIENT TEMPERATURE (°C)
Figure 18. Gain and Phase
versus Frequency
50
125
VCC = +15 V
VEE = –15 V
f = 100 kHz
RL = 2 kΩ
CL = 0 pF
TA, AMBIENT TEMPERATURE (°C)
A V , VOLTAGE GAIN (dB)
75
Figure 17. Gain Bandwidth Product
versus Temperature
8.0
6
50
Figure 16. Slew Rate
versus Temperature
10
–10
25
TA, AMBIENT TEMPERATURE (°C)
Inverting Amplifier
–25
1.5
TA, AMBIENT TEMPERATURE (°C)
12
0
–55
2.0
125
16
14
VCC, VEE = ±15 V
2.5
0
10
20
VCC = +15 V
VEE = –15 V
RT = R1 + R2
VO = 0 V
TA = 25°C
10
φ m , PHASE MARGIN (DEGREES)
50
Figure 15. Power Supply Current
versus Supply Voltage
GBW, GAIN BANDWIDTH PRODUCT (MHz)
|ISC |, OUTPUT SHORT CIRCUIT CURRENT (mA)
MC33282 MC33284
0
100
1.0 k
10 k
RT, DIFFERENTIAL SOURCE RESISTANCE (Ω)
MOTOROLA ANALOG IC DEVICE DATA
MC33282 MC33284
Figure 21. Gain and Phase
versus Frequency
50
0
10
Gain Margin
8.0
20
6.0
30
Phase Margin
4.0
40
Vin +–
2.0 kΩ
2.0
VO
CL
VCC = +15 V
VEE = –15 V
VO = 0 V
0
10
50
100
50
500
30
140
1A
10
0
–10
–20
–30
Gain
THD, TOTAL HARMONIC DISTORTION (%)
Drive Channel
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
∆VOD = 20 Vpp
TA = 25°C
|zo |, OUTPUT IMPEDANCE ( Ω )
1.0
220
2B
240
10 M
1.0 M
VCC = +15 V
VEE = –15 V
VO = 2 Vpp
TA = 25°C
0.1
100 M
AV = +1000
AV = +100
0.01
AV = +10
AV = +1.0
0.001
1.0 k
10 k
100 k
1.0 M
10 k
100 k
Figure 25. Input Referred Noise Voltage
versus Frequency
AV = 10
AV = 100
AV = 1000
30
20
10
0
10 k
1.0 k
Figure 24. Output Impedance
versus Frequency
60
40
100
f, FREQUENCY (Hz)
VCC = +15 V
VEE = –15 V
VO = 0 V
TA = 25°C
50
10
f, FREQUENCY (Hz)
AV = 1.0
100 k
1.0 M
f, FREQUENCY (Hz)
MOTOROLA ANALOG IC DEVICE DATA
10 M
e n , INPUT REFERRED NOISE VOLTAGE (nV/√ Hz)
CS, CHANNEL SEPARATION (dB)
130
70
200
Figure 23. Total Harmonic Distortion
versus Frequency
140
80
180
1B
f, FREQUENCY (Hz)
150
100
90
160
2A
VCC = 15 V
VEE = –15 V
1A) Phase, VO = 10 V
2A) Phase, VO = –10 V
1B) Gain, VO = 10 V
2B) Gain, VO = –10 V
–40
–50
100 k
60
1.0 k
160
100
100
120
20
Figure 22. Channel Separation
versus Frequency
110
100
Phase
CL, OUTPUT LOAD CAPACITANCE (pF)
120
80
TA = 25°C
CL = 0 pF
40
A V , VOLTAGE GAIN (dB)
10
φ m , PHASE MARGIN (DEGREES)
A m, OPEN LOOP GAIN MARGIN (dB)
12
φ, PHASE (DEGREES)
Figure 20. Open Loop Gain and Phase
Margin versus Output Load Capacitance
50
Input Noise Voltage Test Circuit
40
30
+
–
200
200
VO
2.0k
20
10 VCC = +15 V
VEE = –15 V
TA = 25° C
0
10
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
7
MC33282 MC33284
Figure 26. Percent Overshoot versus
Load Capacitance
Figure 27. Noninverting
Amplifier Overshoot
80
70
VO, OUTPUT VOLTAGE (50 MV/DIV)
VCC = +15 V
VEE = –15 V
RL = 2.0 k
TA = 25° C
90
60
50
40
30
20
10
0
10
100
CL, LOAD CAPACITANCE (pF)
1.0 k
t, TIME (1.0 µS/DIV)
Figure 28. Noninverting
Amplifier Slew Rate
t, TIME (1.0 µS/DIV)
8
Figure 29. Inverting
Amplifier Slew Rate
VO, OUTPUT VOLTAGE (5.0 V/DIV)
VO, OUTPUT VOLTAGE (5.0 V/DIV)
PERCENT OVERSHOOT (%)
100
t, TIME (1.0 µS/DIV)
MOTOROLA ANALOG IC DEVICE DATA
MC33282 MC33284
OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
8
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
5
–B–
1
4
DIM
A
B
C
D
F
G
H
J
K
L
M
N
F
–A–
NOTE 2
L
C
J
–T–
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
–––
10_
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
–––
10_
0.030
0.040
N
SEATING
PLANE
D
M
K
G
H
0.13 (0.005)
M
T A
M
B
M
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
D
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
C
8
5
0.25
H
E
B
M
M
1
4
h
B
e
X 45 _
q
A
C
SEATING
PLANE
L
0.10
A1
B
0.25
M
C B
S
A
S
MOTOROLA ANALOG IC DEVICE DATA
DIM
A
A1
B
C
D
E
e
H
h
L
q
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.35
0.49
0.18
0.25
4.80
5.00
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
9
MC33282 MC33284
OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
14
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE
POSITION AT SEATING PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
4. ROUNDED CORNERS OPTIONAL.
8
B
1
7
A
F
DIM
A
B
C
D
F
G
H
J
K
L
M
N
L
C
J
N
H
G
SEATING
PLANE
D
K
M
D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
(SO–14)
ISSUE F
8
–B–
1
P 7 PL
0.25 (0.010)
7
G
M
F
–T–
10
D 14 PL
0.25 (0.010)
M
K
M
T B
S
M
R X 45 _
C
SEATING
PLANE
B
A
S
MILLIMETERS
MIN
MAX
18.16
19.56
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.62 BSC
0_
10_
0.39
1.01
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
–A–
14
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.300 BSC
0_
10_
0.015
0.039
J
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
8.55
8.75
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.337
0.344
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.228
0.244
0.010
0.019
MOTOROLA ANALOG IC DEVICE DATA
MC33282 MC33284
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
MOTOROLA ANALOG IC DEVICE DATA
11
MC33282 MC33284
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: [email protected] – TOUCHTONE 602–244–6609
INTERNET: http://Design–NET.com
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
12
◊
*MC33282/D*
MOTOROLA ANALOG IC DEVICE
DATA
MC33282/D
Similar pages