ON NB7L86MMNR2G 2.5v/3.3v 12 gb/s differential clock/data smartgate with cml output and internal termination Datasheet

NB7L86M
2.5V/3.3V 12 Gb/s Differential
Clock/Data SmartGate with
CML Output and Internal
Termination
The NB7L86M is a multi−function differential Logic Gate, which
can be configured as an AND/NAND, OR/NOR, XOR/XNOR, or 2:1
MUX. This device is part of the GigaComm family of high
performance Silicon Germanium products. The NB7L86M is an
ultra−low jitter multi−logic gate with a maximum data rate of 12 Gb/s
and input clock frequency of 8 GHz suitable for Data Communication
Systems, Telecom Systems, Fiber Channel, and GigE applications.
Differential inputs incorporate internal 50 W termination resistors
and accept LVNECL (Negative ECL), LVPECL (Positive ECL),
LVCMOS, LVTTL, CML, or LVDS. The differential 16 mA CML
output provides matching internal 50 W termination, and 400 mV
output swing when externally terminated 50 W to VCC.
The device is housed in a low profile 3x3 mm 16−pin QFN package.
Application notes, models, and support documentation are available
on www.onsemi.com.
http://onsemi.com
MARKING
DIAGRAM*
16
1
QFN−16
MN SUFFIX
CASE 485G
A
L
Y
W
G
Features
•
•
•
•
•
•
•
•
•
•
•
•
Maximum Input Clock Frequency up to 8 GHz
Maximum Input Data Rate up to 12 Gb/s Typical
< 0.5 ps of RMS Clock Jitter
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*For additional marking information, refer to
Application Note AND8002/D.
< 10 ps of Data Dependent Jitter
ORDERING INFORMATION
30 ps Typical Rise and Fall Times
90 ps Typical Propagation Delay
2 ps Typical Within Device Skew
Operating Range: VCC = 2.375 V to 3.465 V with VEE = 0 V
CML Output Level (400 mV Peak−to−Peak Output) Differential Output
50 W Internal Input and Output Termination Resistors
Functionally Compatible with Existing 2.5 V/3.3 V LVEL, LVEP, EP
and SG Devices
Pb−Free Packages are Available
VTD0
D0
NB7L
86M
ALYWG
G
See detailed ordering and shipping information in the package
dimensions section on page 11 of this data sheet.
50 W
D0
VTD0
VTD1
Q
50 W
Q
50 W
D1
D1
VTD1
50 W
50 W
50 W
SEL
VTSEL
SEL
Figure 1. Simplified Logic Diagram
© Semiconductor Components Industries, LLC, 2006
January, 2006 − Rev. 3
1
Publication Order Number:
NB7L86M/D
NB7L86M
D0 VTD0 Exposed Pad (EP)
VTD0 D0
16
VCC
1
SEL
2
15
14
13
12
VEE
11
Q
NB7L86M
SEL
3
10
Q
VTSEL
4
9
VCC
5
6
7
8
D1 VTD1
VTD1 D1
Figure 2. Pin Configuration (Top View)
Table 1. PIN DESCRIPTION
Pin
Name
I/O
Description
1, 9
VCC
Power Supply
2
SEL
LVPECL, CML, LVCMOS,
LVTTL, LVDS Input
Inverted differential select logic input.
3
SEL
LVPECL, CML, LVCMOS,
LVTTL, LVDS Input
Non−inverted differential select logic Input.
4
VTSEL
−
Common internal 50 W termination pin for SEL/SEL. See Table 6. (Note 1)
5
VTD1
−
Internal 50 W termination pin for D1. See Table 6. (Note 1)
6
D1
LVPECL, CML, LVCMOS,
LVTTL, LVDS Input
Non−inverted differential clock/data input D1. (Note 1)
7
D1
LVPECL, CML, LVCMOS,
LVTTL, LVDS Input
Inverted differential clock/data input D1. (Note 1)
8
VTD1
−
10
Q
CML Output
Non−inverted output with internal 50 W source termination resistor. (Note 2)
11
Q
CML Output
Inverted output with internal 50 W source termination resistor. (Note 2)
12
VEE
Power Supply
13
VTD0
−
14
D0
LVPECL, CML, LVCMOS,
LVTTL, LVDS Input
Non−inverted differential clock/data input D0. (Note 1)
15
D0
LVPECL, CML, LVCMOS,
LVTTL, LVDS Input
Non−inverted differential clock/data input D0. (Note 1)
16
VTD0
−
Internal 50 W termination pin for D0. (Note 1)
−
EP
−
Exposed Pad. Thermal pad on the package bottom must be attached to a
heatsinking conduit to improve heat transfer. It is recommended to connect the EP
to the lower potential (VEE).
Positive supply voltage. All VCC pins must be externally connected to power
supply to guarantee proper operation.
Internal 50 W termination pin for D1. See Table 6. (Note 1)
Negative supply voltage. All VEE pins must be externally connected to power
supply to guarantee proper operation.
Internal 50 W termination pin for D0. (Note 1)
1. In the differential configuration when the input termination pins (VTDx, VTDx, VTSEL) are connected to a common termination voltage or left
open, and if no signal is applied on Dx, Dx, SEL and SEL then the device will be susceptible to self−oscillation.
2. CML output require 50 W receiver termination resistor to VCC for proper operation.
http://onsemi.com
2
NB7L86M
50 W
VTD0
VT or
VBB
Table 2. AND/NAND TRUTH TABLE (Note 3)
∝
b
∝ AND b
D0
D1
SEL
Q
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
1
D0
D0
VCC
50 W
VTD0
Q
50 W
VTD1
Q
RD
D1
3. D0, D1, SEL are complementary of D0, D1, SEL unless
specified otherwise.
D1
VTD1
50 W
50 W
50 W
VEE
VCC
VTSEL
b
SEL
SEL
Figure 3. Configuration for AND/NAND Function
VTD0
50 W
D0
Table 3. OR/NOR TRUTH TABLE (Note 4)
D0
VTD0
VTD1
50 W
Q
50 W
Q
b
or b
D0
D1
SEL
Q
0
1
0
0
0
1
1
1
VCC
D1
1
1
0
1
VT or VBB
D1
1
1
1
1
VTD1
50 W
50 W
4. D0, D1, SEL are complementary of D0, D1, SEL unless
specified otherwise.
50 W
VTSEL
b
SEL
SEL
Figure 4. Configuration for OR/NOR Function
VTD0
50 W
D0
Table 4. XOR/XNOR TRUTH TABLE (Note 5)
D0
VTD0
VTD1
VTD1
50 W
Q
50 W
Q
50 W
b
XOR b
D0
D1
SEL
Q
0
1
0
0
D1
0
1
1
1
D1
1
0
0
1
1
0
1
0
50 W
50 W
5. D0, D1, SEL are complementary of D0, D1, SEL unless
specified otherwise.
VTSEL
SEL
b
SEL
Figure 5. Configuration for XOR/XNOR Function
http://onsemi.com
3
NB7L86M
VTD0
50 W
D0
D0
Table 5. 2:1 MUX TRUTH TABLE (Note 6)
VTD0
VTD1
50 W
Q
SEL
50 W
Q
1
D1
0
D0
D1
6. D0, D1, SEL are complementary of D0, D1, SEL
unless specified otherwise.
D1
VTD1
Q
50 W
50 W
SEL
50 W
VTSEL
SEL
Figure 6. Configuration for 2:1 MUX Function
Table 6. ATTRIBUTES
Characteristics
ESD Protection
Value
Human Body Model
Machine Model
Charged Device Model
Moisture Sensitivity (Note 7)
QFN−16
Flammability Rating
Oxygen Index: 28 to 34
> 1500 V
> 50 V
> 500 V
Pb Pkg
Pb−Free Pkg
Level 1
Level 1
UL 94 V−0 @ 0.125 in
Transistor Count
400
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
7. For additional Moisture Sensitivity information, refer to Application Note AND8003/D.
Table 7. MAXIMUM RATINGS
Symbol
Parameter
Condition 1
Condition 2
Rating
Units
3.6
V
3.6
V
2.8
|VCC − VEE|
V
V
VCC
Positive Power Supply
VEE = 0 V
VI
Input Voltage
VEE = 0 V
VINPP
Differential Input Voltage |D − D|
VCC − VEE ≥
VCC − VEE <
IIN
Input Current Through RT (50 W Resistor)
Continuous
Surge
25
50
mA
mA
Iout
Output Current
Continuous
Surge
25
50
mA
mA
TA
Operating Temperature Range
QFN−16
−40 to +85
°C
Tstg
Storage Temperature Range
−65 to +150
°C
qJA
Thermal Resistance (Junction−to−Ambient)
(Note 8)
0 lfpm
500 lfpm
QFN−16
QFN−16
42
36
°C/W
°C/W
qJC
Thermal Resistance (Junction−to−Case)
2S2P (Note 8)
QFN−16
3 to 4
°C/W
Tsol
Wave Solder
265
265
°C
VEE ≤ VI ≤ VCC
2.8 V
2.8 V
Pb
Pb−Free
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
8. JEDEC standard multilayer board − 2S2P (2 signal, 2 power).
http://onsemi.com
4
NB7L86M
Table 8. DC CHARACTERISTICS (VCC = 2.375 V to 3.465 V, VEE = 0 V, TA = −40°C to +85°C)
Characteristic
Symbol
Min
Typ
Max
Unit
38
50
mA
ICC
Power Supply Current (Inputs and Outputs Open)
VOH
Output HIGH Voltage (Notes 9 and 10)
VCC − 60
VCC − 30
VCC
mV
VOL
Output LOW Voltage (Notes 9 and 10)
VCC − 460
VCC − 400
VCC − 310
mV
1125
VCC − 75
mV
Differential Input Driven Single−Ended (see Figures 16 & 18)
Vth
Input Threshold Reference Voltage Range (Note 11)
VIH
Single−ended Input HIGH Voltage (Note 12)
Vth + 75
VCC
mV
VIL
Single−ended Input LOW Voltage (Note 12)
VEE
VCC − 150
mV
Differential Inputs Driven Differentially (see Figures 17 & 19)
VIHD
Differential Input HIGH Voltage
1200
VCC
mV
VILD
Differential Input LOW Voltage
VEE
VCC − 75
mV
VCMR
Input Common Mode Range (Differential Configuration)
1163
VCC – 38
mV
VID
Differential Input Voltage (VIHD − VILD)
75
2500
mV
IIH
Input HIGH Current
D0/D0/D1/D1
SEL/SEL
0
0
50
20
150
150
mA
IIL
Input LOW Current
D0/D0/D1/D1
SEL/SEL
−50
−50
50
20
100
100
mA
RTIN
Internal Input Termination Resistor
45
50
55
W
RTOUT
Internal Output Termination Resistor
45
50
55
W
RTemp Coef
Internal I/O Termination Resistor Temperature Coefficient
6.38
mW/°C
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board
with maintained airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range.
Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually
under normal operating conditions and not valid simultaneously.
9. CML outputs require 50 W receiver termination resistors to VCC for proper operation.
10. Input and output parameters vary 1:1 with VCC.
11. Vth is applied to the complementary input when operating in single−ended mode.
12. VCMR min varies 1:1 with VEE, VCMR max varies 1:1 with VCC.
http://onsemi.com
5
NB7L86M
Table 9. AC CHARACTERISTICS (VCC = 2.375 V to 3.465 V, VEE = 0 V; Note 13)
Symbol
Characteristic
Min
Typ
Min
Typ
Min
Typ
VOUTPP
Output Voltage Amplitude (@VINPPmin) fin ≤ 4 GHz
(See Figure 7)
fin ≤ 8 GHz
240
125
350
230
240
125
350
230
240
125
350
230
mV
fdata
Maximum Operating Data Rate
10.7
12
10.7
12
10.7
12
Gb/s
tPLH,
tPHL
Propagation Delay to
Output Differential @ 1 GHz
(See Figure 7)
70
110
90
135
120
180
70
110
90
135
120
180
70
110
90
135
120
180
ps
tSKEW
Duty Cycle Skew (Note 14)
Device−to−Device Skew (Note 15)
2.0
5.0
10
20
2.0
5.0
10
20
2.0
5.0
10
20
ps
tJITTER
RMS Random Clock Jitter (Note 16)
0.2
0.2
2.0
4.0
0.5
0.5
8.0
10
0.2
0.2
2.0
4.0
0.5
0.5
8.0
10
0.2
0.2
2.0
4.0
0.5
0.5
8.0
10
ps
400
2500
400
2500
400
2500
mV
35
60
35
60
35
60
ps
−40_C
Dx/Dx to Q/Q
SEL/SEL to Q/Q
Peak/Peak Data Dependent Jitter
(Note 17)
VINPP
Input Voltage Swing/Sensitivity
(Differential Configuration) (Note 18)
tr
tf
Output Rise/Fall Times @ 1 GHz
(20% − 80%)
fin = 4 GHz
fin =8 GHz
fdata = 5 Gb/s
fdata =10 Gb/s
75
Q, Q
25_C
Max
75
Unit
85_C
Max
75
Max
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board
with maintained airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range.
Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually
under normal operating conditions and not valid simultaneously.
13. Measured by forcing VINPP (TYP) from a 50% duty cycle clock source. All loading with an external RL = 50 W to VCC.
Input edge rates 40 ps (20% − 80%).
14. Duty cycle skew is measured between differential outputs using the deviations of the sum of Tpw− and Tpw+ @1 GHz.
15. Device to device skew is measured between outputs under identical transition @ 1 GHz.
16. Additive RMS jitter with 50% duty cycle clock signal.
17. Additive peak−to−peak data dependent jitter with input NRZ data (PRBS 2^23−1).
18. VINPP (MAX) cannot exceed VCC − VEE. Input voltage swing is a single−ended measurement operating in differential mode.
OUTPUT VOLTAGE AMPLITUDE (mV)
500
VCC − VEE = 3.3 V
400
VCC − VEE = 2.5 V
300
200
100
0
0
1
2
3
4
5
6
7
8
9
10
11
12
INPUT FREQUENCY (GHz)
Figure 7. Output Voltage Amplitude (VOUTPP) versus
Input Clock Frequency (fin) at Ambient Temperature (Typical)
http://onsemi.com
6
Voltage (45 mV/div)
Voltage (45 mV/div)
NB7L86M
DDJ = 1.2 ps*
DDJ = 1.2 ps*
Time (72 ps/div)
Time (72 ps/div)
Figure 8. Typical Output Waveform at 2.488 Gb/s
with PRBS 2^23−1 (Vinpp = 75 mV)
Figure 9. Typical Output Waveform at 2.488 Gb/s
with PRBS 2^23−1 (Vinpp = 400 mV)
Voltage (45 mV/div)
Voltage (45 mV/div)
*Input signal DDJ = 10 ps
DDJ = 2 ps**
DDJ = 2 ps**
Time (20 ps/div)
Time (20 ps/div)
Figure 10. Typical Output Waveform at 10 Gb/s
with PRBS 2^23−1 (Vinpp = 75 mV)
Figure 11. Typical Output Waveform at 10 Gb/s
with PRBS 2^23−1 (Vinpp = 400 mV)
Voltage (45 mV/div)
Voltage (45 mV/div)
**Input signal DDJ = 12 ps
DDJ = 4 ps***
DDJ = 4 ps***
Time (16 ps/div)
Time (16 ps/div)
Figure 12. Typical Output Waveform at 12 Gb/s
with PRBS 2^23−1 (Vinpp = 75 mV)
Figure 13. Typical Output Waveform at 12 Gb/s
with PRBS 2^23−1 (Vinpp = 400 mV)
***Input signal DDJ = 14 ps
http://onsemi.com
7
NB7L86M
D
VINPP = VIH(D) − VIL(D)
D
Q
VOUTPP = VOH(Q) − VOL(Q)
Q
tPHL
tPLH
Figure 14. AC Reference Measurement
VCC
50 W
50 W
Q
D
Z = 50 W
Driver
Device
Receiver
Device
Q
D
Z = 50 W
Figure 15. Typical Termination for Output Driver and Device Evaluation
(Refer to Application Note AND8020 − Termination of ECL Logic Devices)
D
D
D
D
Vth
Vth
Figure 16. Differential Input Driven
Single−Ended
VCC
Vthmax
Vth
VCC
VIHmax
VILmax
D
Vthmin
GND
Figure 17. Differential Inputs Driven
Differentially
VIHDmax
VCMmax
VIH
Vth
VIL
VCMR
D
D
VIHmin
VILmin
VCMmax
GND
Figure 18. Vth Diagram
VILDmax
VID = VIHD − VILD
VIHDtyp
VILDtyp
VIHDmin
VILDmin
Figure 19. VCMR Diagram
http://onsemi.com
8
NB7L86M
VCC
50 W
50 W
Q
Q
16 mA
VEE
Figure 20. CML Output Structure
Table 10. INTERFACING OPTIONS
INTERFACING OPTIONS
CONNECTIONS
CML
Connect VTD0, VTD0, VTD1, VTD1, VTSEL to VCC
LVDS
Connect VTD0, VTD0 together for D0 input. Connect VTD1, VTD1 together for D0 input.
Leave VTSEL open for SEL input.
AC−COUPLED
Bias VTD0, VTD0, VTSEL and VTD1, VTD1 Inputs within (VCMR) Common Mode Range
RSECL, LVPECL
Standard ECL Termination Techniques. See AND8020/D.
LVTTL, LVCMOS
An external voltage should be applied to the unused complementary differential input.
Nominal voltage 1.5 V for LVTTL and VCC/2 for LVCMOS inputs.
http://onsemi.com
9
NB7L86M
Examples interfaces are illustrated below in a 50 W
environment (Z = 50 W).
Application Information
All inputs can accept PECL, CML, and LVDS signal
levels. The input voltage can range from VCC to 1.2 V.
VCC
50 W
VCC
50 W
Q
D
Z
NB7L86M
VCC
VTD
Z
Q
VCC
D
50 W
NB7L86M
50 W
VTD
VEE
VEE
Figure 21. CML to CML Interface
VCC
VCC
50 W
PECL
Driver
VCC
VBIAS
50 W
RT
Recommended RT Values
3.3 V 150 W
VEE
2.5 V 80 W
VTD
D
RT
VBias
50 W
NB7L86M
Z
RT
5.0 V 290 W
D
Z
50 W
VTD
VEE
VEE
Figure 22. PECL to CML Receiver Interface
VCC
VCC
D
Z
VTD
LVDS
Driver
50 W
NB7L86M
Z
D
50 W
VTD
VEE
VEE
Figure 23. LVDS to CML Receiver Interface
http://onsemi.com
10
NB7L86M
ORDERING INFORMATION
Package
Shipping †
QFN−16
123 Units/Rail
NB7L86MMNG
QFN−16
(Pb−Free)
123 Units/Rail
NB7L86MMNR2
QFN−16
3000 Tape & Reel
QFN−16
(Pb−Free)
3000 Tape & Reel
Device
NB7L86MMN
NB7L86MMNR2G
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
11
NB7L86M
PACKAGE DIMENSIONS
16 PIN QFN
MN SUFFIX
CASE 485G−01
ISSUE B
ÇÇÇ
ÇÇÇ
ÇÇÇ
D
PIN 1
LOCATION
0.15 C
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
5. Lmax CONDITION CAN NOT VIOLATE 0.2 MM
MINIMUM SPACING BETWEEN LEAD TIP
AND FLAG
A
B
E
DIM
A
A1
A3
b
D
D2
E
E2
e
K
L
TOP VIEW
0.15 C
(A3)
0.10 C
A
16 X
0.08 C
SIDE VIEW
SEATING
PLANE
A1
C
D2
16X
L
5
NOTE 5
16X
e
0.575
0.022
4
9
1
12
E2
K
16
16X
SOLDERING FOOTPRINT*
3.25
0.128
0.30
0.012
EXPOSED PAD
1.50
0.059
3.25
0.128
e
13
b
0.10 C A B
0.05 C
EXPOSED PAD
8
MILLIMETERS
MIN
MAX
0.80
1.00
0.00
0.05
0.20 REF
0.18
0.30
3.00 BSC
1.65
1.85
3.00 BSC
1.65
1.85
0.50 BSC
0.20
−−−
0.30
0.50
BOTTOM VIEW
0.50
0.02
NOTE 3
0.30
0.012
SCALE 10:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
12
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
NB7L86M/D
Similar pages