Maxim MAX3395EETC+ ±15kv esd-protected, high-drive current, dual-/quad-/ octal-level translators with speed-up circuitry Datasheet

19-3884; Rev 2; 2/07
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
Features
♦ ±15kV ESD Protection on I/O VCC_ Lines
♦ Bidirectional Level Translation Without Direction
Pin
♦ I/O VL_ and I/O VCC_ 10mA Sink-/15mA SourceCurrent Capability
♦ Slew-Rate Enhancement Circuitry Supports
Larger Capacitive Loads or Larger External Pullup
Resistors
♦ 6Mbps Push-Pull/1Mbps Open-Drain Guaranteed
Data Rate
♦ Wide Supply-Voltage Range: Operation Down to
+1.2V on VL and +1.65V on VCC
♦ Low Supply Current in Tri-State Output Mode
(3µA typ)
♦ Low Quiescent Current
♦ Thermal-Shutdown Protection
♦ UCSP, TDFN, and TQFN Packages
PIN-PACKAGE
PKG CODE
MAX3394EETA+T
8 TDFN-EP**
MAX3394EEBL+T
9 UCSP
MAX3395EETC+
12 TQFN-EP**
T833-1
MAX3395EEBC+T
12 UCSP
B12-1
MAX3396EEBP+T*
20 UCSP
B20-1
B9-5
T1244-4
MAX3396EETP+*
20 TQFN-EP**
T2055-4
Note: All devices specified over the -40°C to +85°C operating
range.
+Denotes lead(Pb)-free/RoHS-compliant package.
*Future product—contact factory for availability.
**EP = Exposed paddle.
Selector Guide appears at end of data sheet.
8
GND
TOP VIEW
(LEADS ON BOTTOM)
I/O VL1
Pin Configurations
I/O VL2
High-Speed Bus Fan-Out Expansion
Cell Phones
PART
VL
Applications
Multivoltage Bidirectional Level Translation
SPI™, MICROWIRE™, and I2C Level Translation
Open-Drain Rise-Time Speed-Up
Ordering Information
7
6
5
*EP
Telecom, Networking, Servers, RAID/SAN
MAX3394E
SPI is a trademark of Motorola, Inc.
UCSP is a trademark of Maxim Integrated Products, Inc.
3
4
I/O VCC2
MICROWIRE is a trademark of National Semiconductor Corp.
2
I/O VCC1
VCC
1
EN
+
TDFN
*CONNECT EXPOSED PAD TO GROUND
Pin Configurations continued at end of data sheet.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
MAX3394E/MAX3395E/MAX3396E
General Description
The MAX3394E/MAX3395E/MAX3396E bidirectional
level translators provide level shifting required for data
transfer in a multivoltage system. Internal slew-rate
enhancement circuitry features 10mA current-sink and
15mA current-source drivers to isolate capacitive loads
from lower current drivers. In open-drain systems, slewrate enhancement enables fast data rates with larger
pullup resistors and increased bus load capacitance.
Externally applied voltages, VCC and VL, set the logichigh levels for the device. A logic-low signal on one I/O
side of the device appears as a logic-low signal on the
opposite I/O side, and vice-versa. Each I/O line is
pulled up to VCC or VL by an internal pullup resistor,
allowing the devices to be driven by either push-pull or
open-drain drivers.
The MAX3394E/MAX3395E/MAX3396E feature a tristate output mode, thermal-shutdown protection, and
±15kV Human Body Model (HBM) ESD protection on
the VCC side for greater protection in applications that
route signals externally.
The MAX3394E/MAX3395E/MAX3396E accept VCC voltages from +1.65V to +5.5V, and VL voltages from +1.2V
to VCC, making them ideal for data transfer between low
voltage ASIC/PLDs and higher voltage systems. The
MAX3394E/MAX3395E/MAX3396E operate at a guaranteed data rate of 6Mbps with push-pull drivers and
1Mbps with open-drain drivers.
The MAX3394E is a dual-level translator available in
9-bump UCSP™ and 8-pin 3mm x 3mm TDFN packages.
The MAX3395E is a quad-level translator available in 12bump UCSP, and 12-pin 4mm x 4mm TQFN packages.
The MAX3396E is an octal-level translator available in 20bump UCSP and 20-pin 5mm x 5mm TQFN packages.
The MAX3394E/MAX3395E/MAX3396E operate over the
extended -40°C to +85°C temperature range.
MAX3394E/MAX3395E/MAX3396E
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
ABSOLUTE MAXIMUM RATINGS
(All voltages referenced to GND.)
VCC ......................................................................... -0.3V to +6V
VL ............................................................................ -0.3V to +6V
I/O VCC_ ...................................................... -0.3V to VCC + 0.3V
I/O VL_ ........................................................... -0.3V to VL + 0.3V
EN ........................................................................... -0.3V to +6V
Short-Circuit Duration I/O VL_, I/O VCC_ to GND ..... Continuous
Maximum Continuous Current ........................................ ±50mA
Continuous Power Dissipation (TA = +70°C)
8-Pin TDFN (derate 18.2mW/°C above +70°C) ........ 1455mW
9-Bump UCSP (derate 4.7mW/°C above +70°C) ........ 379mW
12-Pin TQFN (derate 16.9mW/°C above +70°C) ........1349mW
12-Bump UCSP (derate 6.5mW/°C above +70°C) ..... 519mW
20-Pin TQFN (derate 20.8mW/°C above +70°C) ........1667mW
20-Bump UCSP (derate 10.0mW/°C above +70°C) .....800mW
Operating Temperature Range ......................... -40°C to +85°C
Storage Temperature Range ........................... -65°C to +150°C
Junction Temperature .....................................................+150°C
Bump Temperature (soldering) ...................................... +235°C
Lead Temperature (soldering, 10s) ............................... +300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VCC = +1.65V to +5.5V, VL = +1.2V to VCC; CIOVL ≤ 15pF, CIOVCC ≤ 15pF; TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
POWER SUPPLY
VL Supply Range
VCC Supply Range
Supply Current from VCC
Supply Current from VL
SYMBOL
CONDITIONS
VL
VCC
ICC
IL
I/O lines internally
pulled up
I/O lines internally
pulled up
MIN
TYP
MAX
UNITS
1.2
VCC
V
1.65
5.50
V
MAX3394E
150
MAX3395E
300
MAX3396E
600
MAX3394E
30
MAX3395E
30
MAX3396E
VCC Tri-State Supply Current
VL Tri-State Supply Current
µA
µA
30
ICC-3
EN = GND, TA = +25°C
3
6
µA
IL-3
EN = GND, TA = +25°C
0.7
2
µA
0.7 x
VL
V
LOGIC I/O
I/O VL_ Input-Voltage High
Threshold
VIHL
I/O VL_ Input-Voltage Low
Threshold
VILL
I/O VL_ Internal Pullup DC
Resistance
RL
EN = VCC or VL
I/O VL_ Source Current During
Low-to-High Transition
IIHL
VL = +1.2V
15
mA
I/O VL_ Sink Current During Highto-Low Transition
IILL
VCC = +1.65V
10
mA
2
0.3 x
VL
5
V
10
_______________________________________________________________________________________
20
kΩ
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
(VCC = +1.65V to +5.5V, VL = +1.2V to VCC; CIOVL ≤ 15pF, CIOVCC ≤ 15pF; TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
I/O VL_ Low-to-High Transition
Threshold
VL-TH
I/O VL_ Output-Voltage Low
VOLL
CONDITIONS
VCC = +3.3V, VL = +1.8V
MIN
TYP
0.3 x
VL
0.5 x
VL
I/O VL_ sink current = 5mA, VILC = 0V
I/O VL_ Tri-State Output Leakage
Current
UNITS
V
0.25
I/O VL_ sink current = 10mA, VILC ≤ 0.4V or
0.2 x VL
EN = GND, TA = +25°C
MAX
-1
VILC +
0.4V
V
+1
µA
0.7 x
VCC
V
I/O VCC_ Input-Voltage High
Threshold
VIHC
(Note 2)
I/O VCC_ Input-Voltage Low
Threshold
VILC
(Note 2)
I/O VCC_ Internal Pullup DC
Resistance
RCC
EN = VCC or VL
I/O VCC_ Source Current During
Low-to-High Transition
IIHCC
VCC = +1.65V
15
mA
I/O VCC_ Sink Current During
High-to-Low Transition
IILCC
VCC = +1.65V
10
mA
0.5 x
VCC
V
I/O VCC_ Low-to-High Transition
Threshold
VCC-TH
VCC = +3.3V, VL = +1.8V
0.3 x
VCC
5
0.3 x
VCC
V
10
I/O VCC_ sink current = 5mA, VILL = 0V
I/O VCC_ Output-Voltage Low
VOLC
I/O VCC_ Tri-State Output
Leakage Current
EN Input-Voltage High Threshold
VIHE
EN Input-Voltage Low Threshold
VILE
EN Pin Input Leakage Current
-1
VILL +
0.4V
V
+1
µA
0.7 x
VL
V
0.3 x
VL
TA = +25°C
kΩ
0.25
I/O VCC_ sink current = 10mA, VILL ≤ 0.4V
or 0.2 x VL
EN = GND, TA = +25°C
20
V
-1
+1
µA
ESD PROTECTION
I/O VCC_ ESD Protection
CVCC = 1µF, Human Body Model
±15
kV
_______________________________________________________________________________________
3
MAX3394E/MAX3395E/MAX3396E
ELECTRICAL CHARACTERISTICS (continued)
MAX3394E/MAX3395E/MAX3396E
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
TIMING CHARACTERISTICS
(VCC = +1.65V to +5.5V, VL = +1.2V to VCC; CIOVL ≤ 15pF, CIOVCC ≤ 15pF; TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
I/O VCC_ Rise Time
tRVCC
I/O VCC_ Fall Time
tFVCC
I/O VL_ Rise Time
tRVL
I/O VL_ Fall Time
tFVL
tI/OVL-VCC
Propagation Delay
tI/OVCC-VL
Propagation Delay After EN
Channel-to-Channel Skew
Maximum Data Rate
tEN
tSKEW
CONDITIONS
MIN
TYP
MAX
Push-pull driver, Figure 1
50
Open-drain driver, internal pullup, Figure 2
500
Push-pull driver, Figure 1
50
Open-drain driver, internal pullup, Figure 2
50
Push-pull driver, Figure 3
50
Open-drain driver, internal pullup, Figure 4
500
Push-pull driver, Figure 3
50
Open-drain driver, internal pullup, Figure 4
50
Push-pull driver, Figure 1
50
Open-drain driver, internal pullup, Figure 2
600
Push-pull driver, Figure 3
50
Open-drain driver, internal pullup, Figure 4
600
Push-pull or open-drain driver, Figure 5
5
Push-pull driver
5
Open-drain driver, internal pullup
100
Push-pull driver, Figures 1, 3
6
Open-drain driver, internal pullup,
Figures 2, 4
1
UNITS
ns
ns
ns
ns
ns
µs
ns
Mbps
Note 1: All units are 100% production tested at TA = +25°C. Limits over the operating temperature range are guaranteed by design
and not production tested.
Note 2: During a low-to-high transition, the threshold at which the I/O changes state is the lower of VILL and VILC since the two sides
are internally connected by an internal switch while the device is in the logic-low state.
4
_______________________________________________________________________________________
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
1.0
0.5
1.5
6Mbps PUSH-PULL
1.0
3.0
3.5
4.0
4.5
5.0
2.0
2.5
3.0
3.5
4.0
VCC SUPPLY VOLTAGE (V)
VL SUPPLY VOLTAGE (V)
VL SUPPLY CURRENT
vs. TEMPERATURE
VCC SUPPLY CURRENT
vs. LOAD CAPACITANCE
0.30
6Mbps PUSH-PULL
0.25
0.20
1Mbps OPEN-DRAIN
0.15
0.10
4.5
3.0
DRIVING I/O VL_
2.5
2.0
1.5
6Mbps PUSH-PULL
1.0
-15
10
35
0.7
0.6
0.5
0.4
0.3
1Mbps OPEN-DRAIN
0.1
6Mbps PUSH-PULL
0
0
10 20 30 40 50 60 70 80 90 100
10 20 30 40 50 60 70 80 90 100
OPEN-DRAIN FALL TIME
vs. LOAD CAPACITANCE
PUSH-PULL RISE TIME
vs. LOAD CAPACITANCE
100
30
20
25
RISE TIME (ns)
DRIVING I/O VCC_
150
25
FALL TIME (ns)
DRIVING I/O VL_
DRIVING I/O VCC_
MAX3394E–96E toc08
30
MAX3394E-96E toc07
300
MAX3394E–96E toc03
0.8
OPEN-DRAIN RISE TIME
vs. LOAD CAPACITANCE
350
85
DRIVING I/O VL_
0.9
LOAD CAPACITANCE (pF)
400
200
60
LOAD CAPACITANCE (pF)
450
250
35
1.0
0.2
0
85
10
TEMPERATURE (°C)
500
RISE TIME (ns)
60
-15
VL SUPPLY CURRENT
vs. LOAD CAPACITANCE
0
-40
0.3
TEMPERATURE (°C)
1Mbps OPEN-DRAIN
0
1Mbps OPEN-DRAIN
0.4
-40
0.5
0.05
0.5
5.0
MAX3394E-96E toc05
DRIVING I/O VL_
VCC SUPPLY CURRENT (mA)
0.35
0.6
0
1.5
5.5
VL SUPPLY CURRENT (mA)
2.5
MAX3394E–96E toc04
2.0
0.7
0.1
1Mbps OPEN-DRAIN
0
1.5
6Mbps PUSH-PULL
0.8
0.2
0.5
1Mbps OPEN-DRAIN
0
VL SUPPLY CURRENT (mA)
2.0
DRIVING I/O VL_
0.9
MAX3394E-96E toc06
1.5
2.5
1.0
15
DRIVING I/O VL_
20
15
DRIVING I/O VCC_
10
10
MAX3394E–96E toc09
6Mbps PUSH-PULL
VCC = +5.0V
DRIVING I/O VL_
VCC SUPPLY CURRENT (mA)
2.0
3.0
MAX3394E–96E toc02
VL = +1.2V
DRIVING I/O VL_
VL SUPPLY CURRENT (mA)
MAX3394E–96E toc01
VCC SUPPLY CURRENT (mA)
3.0
2.5
VCC SUPPLY CURRENT
vs. TEMPERATURE
VL SUPPLY CURRENT
vs. SUPPLY VOLTAGE
VCC SUPPLY CURRENT
vs. SUPPLY VOLTAGE
5
5
50
DRIVING I/O VL_
0
0
0
0
10 20 30 40 50 60 70 80 90 100
CAPACITIVE LOAD (pF)
0
10 20 30 40 50 60 70 80 90 100
LOAD CAPACITANCE (pF)
0
10 20 30 40 50 60 70 80 90 100
LOAD CAPACITANCE (pF)
_______________________________________________________________________________________
5
MAX3394E/MAX3395E/MAX3396E
Typical Operating Characteristics
(VCC = +2.5V, VL = +1.8V, CL = 15pF, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = +2.5V, VL = +1.8V, CL = 15pF, TA = +25°C, unless otherwise noted.)
8
6
4
DRIVING I/O VL_
25
tPDHL
20
15
10
2
5
0
0
10
8
6
tPDHL
tPDLH
2
10 20 30 40 50 60 70 80 90 100
0
PROPAGATION DELAY
vs. LOAD CAPACITANCE
PROPAGATION DELAY
vs. LOAD CAPACITANCE
(DRIVING I/O VL_, VCC = +2.5V, VL = +1.8V,
CL = 15pF, DATA RATE = 6Mbps)
tPDHL
30
25
20
15
10
DRIVING I/O VCC_ PUSH-PULL
SEE FIGURE 3
18
MAX3394E-96E toc15
MAX3394E-96E toc14
20
16
14
I/O VL_
1V/div
12
10
8
tPDHL
I/O VCC_
1V/div
6
4
tPDLH
5
2
0
0
0
10 20 30 40 50 60 70 80 90 100
0
40ns/div
10 20 30 40 50 60 70 80 90 100
LOAD CAPACITANCE (pF)
LOAD CAPACITANCE (pF)
(DRIVING I/O VL_, VCC = +5.0V, VL = +3.3V,
CL = 100pF, DATA RATE = 1Mbps)
(DRIVING I/O VL_, VCC = +5.0V, VL = +3.3V,
CL = 400pF, EXTERNAL 4.7kΩ
PULLUPS, DATA RATE = 1Mbps)
MAX3394E-96E toc16
200ns/div
6
10 20 30 40 50 60 70 80 90 100
LOAD CAPACITANCE (pF)
40
35
12
LOAD CAPACITANCE (pF)
DRIVING I/O VL_ PUSH-PULL
45
14
LOAD CAPACITANCE (pF)
PROPAGATION DELAY (ns)
50
16
0
0
10 20 30 40 50 60 70 80 90 100
DRIVING I/O VCC_ OPEN-DRAIN
18
4
tPDLH
0
20
MAX3394E-96E toc12
DRIVING I/O VL_ OPEN-DRAIN
PROPAGATION DELAY (ns)
DRIVING I/O VCC_
MAX3394E–96E toc13
FALL TIME (ns)
10
MAX3394E-96E toc11
12
30
PROPAGATIN DELAY (ns)
MAX3394E-96E toc10
14
PROPAGATION DELAY
vs. LOAD CAPACITANCE
PROPAGATION DELAY
vs. LOAD CAPACITANCE
PUSH-PULL FALL TIME
vs. LOAD CAPACITANCE
PROPAGATION DELAY (ns)
MAX3394E/MAX3395E/MAX3396E
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
MAX3394E-96E toc17
I/O VL_
2V/div
I/O VL_
2V/div
I/O VCC_
2V/div
I/O VCC_
2V/div
200ns/div
_______________________________________________________________________________________
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
PIN
MAX3394E
TDFN
1
UCSP
A1
MAX3395E
TQFN
11
UCSP
B1
MAX3396E
TQFN
14
4
NAME
FUNCTION
VCC
VCC Supply Voltage +1.65V ≤ VCC ≤ +5.5V. Bypass
VCC to GND with a 0.1µF ceramic capacitor and a
1µF or greater ceramic capacitor as close to the
device as possible.
EN
Enable Input. Drive EN logic high for normal
operation. Drive EN logic low to force all I/O lines to
a high-impedance state and disconnect internal
pullup resistors.
UCSP
D3
2
B1
6
B3
A4
3
A2
10
C1
18
C1
I/O VCC1
4
A3
9
C2
16
D1
I/O VCC2
5
B3
5
B4
13
D4
GND
6
C3
2
A2
20
A1
I/O VL2
I/O 2 Referred to VL
7
C2
1
A1
19
B1
I/O VL1
I/O 1 Referred to VL
8
C1
12
B2
3
A3
VL
—
—
3
A3
1
B2
I/O VL3
I/O 3 Referred to VL
—
—
4
A4
2
A2
I/O VL4
I/O 4 Referred to VL
—
—
7
C4
15
D2
I/O VCC4
I/O 4 Referred to VCC
—
—
8
C3
17
C2
I/O VCC3
I/O 3 Referred to VCC
—
—
—
—
12
C3
I/O VCC5
I/O 5 Referred to VCC
—
—
—
—
11
D5
I/O VCC6
I/O 6 Referred to VCC
—
—
—
—
10
C4
I/O VCC7
I/O 7 Referred to VCC
—
—
—
—
9
C5
I/O VCC8
—
—
—
—
5
B3
I/O VL5
I/O 5 Referred to VL
—
—
—
—
6
A5
I/O VL6
I/O 6 Referred to VL
—
—
—
—
7
B4
I/O VL7
I/O 7 Referred to VL
—
—
—
—
8
B5
I/O VL8
I/O 8 Referred to VL
EP
—
EP
—
EP
—
EP
Detailed Description
The MAX3394E/MAX3395E/MAX3396E bidirectional
level translators provide level shifting required for data
transfer in a multivoltage system. Internal slew-rate
enhancement circuitry features 10mA current-sink and
15mA current-source drivers to isolate capacitive loads
from lower current drivers. In open-drain systems, slewrate enhancement enables fast data rates with larger
I/O 1 Referred to VCC
I/O 2 Referred to VCC
Ground
Logic Supply Voltage +1.2V ≤ VL ≤ VCC. Bypass VL
to GND with a 0.1µF or greater ceramic capacitor
as close to the device as possible.
I/O 8 Referred to VCC
Exposed Pad. Connect exposed pad to GND.
pullup resistors and increased bus load capacitance.
Externally applied voltages, VCC and VL, set the logichigh levels for the device. A logic-low signal on one I/O
side of the device appears as a logic-low signal on the
opposite I/O side and vice-versa. Each I/O line is pulled
up to VCC or VL by an internal pullup resistor, allowing
the devices to be driven by either push-pull or opendrain drivers.
_______________________________________________________________________________________
7
MAX3394E/MAX3395E/MAX3396E
Pin Description
MAX3394E/MAX3395E/MAX3396E
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
VL
tRVCC
VCC
VL
90%
VCC
EN
VL
MAX3394E
MAX3395E
MAX3396E
tFVCC
90%
I/O VL
50%
VCC
50%
50%
50%
I/O VL_
I/O VCC_
I/O VCC
50Ω
10%
10%
CIOVCC
tI/OVL-VCC
tI/OVL-VCC
Figure 1. Push-Pull Driving I/O VL_ Test Circuit and Timing
VL
tRVCC
VCC
tFVCC
I/O VCC
VL
VL
EN
90%
VCC
MAX3394E
MAX3395E
MAX3396E
VGATE
50%
VCC
50%
50%
50%
I/O VL_
90%
I/O VCC_
10%
10%
VGATE
CIOVCC
tI/OVL-VCC
tI/OVL-VCC
Figure 2. Open-Drain Driving I/O VL_ Test Circuit and Timing
The MAX3394E/MAX3395E/MAX3396E feature a tristate output mode, thermal-shutdown protection, and
±15kV Human Body Model (HBM) ESD protection on
the VCC side for greater protection in applications that
route signals externally.
The MAX3394E/MAX3395E/MAX3396E accept VCC voltages from +1.65V to +5.5V, and VL voltages from +1.2V
to VCC, making them ideal for data transfer between lowvoltage ASIC/PLDs and higher voltage systems. The
MAX3394E/MAX3395E/MAX3396E operate at a guaran-
8
teed data rate of 6Mbps with push-pull drivers and
1Mbps with open-drain drivers.
Level Translation
The MAX3394E/MAX3395E/MAX3396E utilize a transmission gate architecture to provide bidirectional level
translation between I/O VL_ and I/O VCC_. The transmission gate architecture is comprised of a pass-FET,
gate-control logic, and slew-rate enhancement circuitry. When both I/O VL _ and I/O VCC_ are logic high, the
gate-control logic disables the pass-FET, providing
_______________________________________________________________________________________
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
VL
EN
I/O VCC
VCC
MAX3394E
MAX3395E
MAX3396E
VL
tFVL
tRVL
VCC
MAX3394E/MAX3395E/MAX3396E
VL
VCC
90%
50%
90%
50%
50%
50%
I/O VCC_
I/O VL_
50Ω
10%
10%
I/O VL
CIOVL
tI/OVCC-VL
tI/OVCC-VL
Figure 3. Push-Pull Driving I/O VCC_ Test Circuit and Timing
VL
tRVL
VCC
VL
VL
EN
tFVL
VCC
MAX3394E
MAX3395E
MAX3396E
I/O VL
50%
VCC
90%
90%
50%
50%
I/O VL_
I/O VCC_
CIOVL
50%
10%
VGATE
tI/OVCC-VL
10%
tI/OVCC-VL
Figure 4. Open-Drain Driving I/O VCC_ Test Circuit and Timing
capacitive isolation between I/O lines. When one or
both I/O lines are at a logic-low level, the gate-control
logic turns the pass-FET on. When the pass-FET is
active, I/O VL _ and I/O VCC_ are connected, allowing
the logic-low signal to be expressed simultaneously on
both I/O lines.
The MAX3394E/MAX3395E/MAX3396E have internal
10kΩ (typ) pullup resistors from I/O VL_ and I/O VCC_
to the respective supply voltages, allowing operation
with open-drain drivers. Internal slew-rate enhancement
circuitry accelerates logic-state transitions, maintaining
a fast data rate with a higher bus load capacitance.
Additionally, the 10mA current sink drivers permit the
use of smaller external pullup resistors.
Internal Slew-Rate Enhancement
Internal slew-rate enhancement circuitry accelerates
logic-state changes by turning on MOSFETs MP1 and
MP2 during low-to-high logic transitions, and MOSFETs
MN3 and MN4 during high-to-low logic transitions (see
the Functional Diagram). During logic-state changes,
speed-up MOSFETS are triggered by I/O line voltage
thresholds. MOSFETS MN3 and MN4 sink 10mA during
high-to-low logic transitions. MP1 and MP2 source 15mA
during low-to-high logic transitions. Slew-rate enhancement allows a fast data rate despite large capacitive bus
loads, and permits larger external pullup resistors.
_______________________________________________________________________________________
9
MAX3394E/MAX3395E/MAX3396E
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
VL
VCC
VL
VCC
VCC
VL
VCC
EN
EN
VL
VL
MAX3394E
MAX3395E
MAX3396E
VCC
RLOAD
RLOAD
I/O VL_
I/O VCC_
I/O VL_
VL
CIOVCC
MAX3394E
MAX3395E
MAX3396E
VCC
I/O VCC_
CIOVL
50Ω
50Ω
tEN
V
I/O VCC_
EN
0.5V
TIME
V
tEN
EN
I/O VL_
0.2V (VL < 2V)
0.5V (VL ≥ 2V)
TIME
Figure 5. Enable Test Circuit and Timing
Power-Supply Sequencing
The MAX3394E/MAX3395E/MAX3396E require two supply voltages. For proper operation, ensure that +1.65V ≤
VCC ≤ +5.5V, and +1.2V ≤ VL ≤ VCC. There are no restrictions on power-supply sequencing. During power-up or
power-down, the MAX3394E/MAX3395E/MAX3396E can
withstand either the VL or the VCC supply floating while
the other supply is applied. The device will not latch up in
this state.
10
Tri-State Output Mode
Connect EN to VL or VCC for normal operation. Drive
EN low to force the MAX3394E/MAX3395E/MAX3396E
to a tri-state output mode. In tri-state output mode, all
I/O lines are driven to a high-impedance state, and the
pass-FET is disabled to prevent current flow between
I/O lines. Tri-state output mode disables the internal
pullup resistors on I/O VL_ and I/O VCC_, and reduces
supply current to 3µA typ (VCC) and 0.7µA typ (VL).
______________________________________________________________________________________
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
CHARGE-CURRENTLIMIT RESISTOR
HIGHVOLTAGE
DC
SOURCE
Cs
100pF
RD
1500Ω
IP 100%
90%
DISCHARGE
RESISTANCE
STORAGE
CAPACITOR
Ir
PEAK-TO-PEAK RINGING
(NOT DRAWN TO SCALE)
AMPERES
DEVICEUNDERTEST
36.8%
10%
0
0
tRL
TIME
tDL
CURRENT WAVEFORM
Figure 6a. Human Body ESD Test Model
Figure 6b. HBM Discharge Current Waveform
The high-impedance state of the I/O lines during tristate output mode facilitates use in multidrop networks.
In tri-state output mode, do not exceed (VL + 0.3V) on
I/O VL_ or (VCC + 0.3V) on I/O VCC_.
To ensure full ±15kV ESD protection, bypass VCC to
ground with a 0.1µF ceramic capacitor and an additional
1µF ceramic capacitor as close to the device as possible.
Thermal-Shutdown Protection
ESD performance depends on a variety of conditions.
Contact Maxim for a reliability report documenting test
setup, methodology, and results.
The MAX3394E/MAX3395E/MAX3396E are protected
from thermal damage resulting from short-circuit faults.
In the event of a short-circuit fault, when the junction
temperature (TJ) reaches +125°C, a thermal sensor
forces the device into the tri-state output mode. When
TJ drops below +115°C, normal operation resumes.
±15kV ESD Protection
As with all Maxim devices, ESD-protection structures are
incorporated on all pins to protect against ESD encountered during handling and assembly. The I/O VCC_ lines
are further protected by advanced ESD structures to
guard these pins from damage caused by ESD of up to
±15kV. Protection structures prevent damage caused by
ESD events in normal operation, tri-state output mode,
and when the device is unpowered. After arresting an
ESD event, MAX3394E/MAX3395E/MAX3396E continue
to function without latching up, whereas competing
devices can enter a latched-up state and must be power
cycled to restore functionality.
Several ESD testing standards exist for gauging the
robustness of ESD structures. The ESD protection of
the MAX3394E/MAX3395E/MAX3396E is characterized
for the human body model (HBM). Figure 6a shows the
model used to simulate an ESD event resulting from
contact with the human body. The model consists of a
100pF storage capacitor that is charged to a high voltage then discharged through a 1.5kΩ resistor. Figure
6b shows the current waveform when the storage
capacitor is discharged into a low impedance.
ESD Test Conditions
Applications Information
Power-Supply Decoupling
Bypass V L and V CC to ground with 0.1µF ceramic
capacitors. To ensure full ±15kV ESD protection,
bypass VCC to ground with an additional 1µF or greater
ceramic capacitor. Place all capacitors as close to the
device as possible.
Open-Drain Mode vs. Push-Pull Mode
The MAX3394E/MAX3395E/MAX3396E are compatible
with push-pull (active) and open-drain drivers. For pushpull operation, maximum data rate is guaranteed to
6Mbps. For open-drain applications, the MAX3394E/
MAX3395E/MAX3396E include internal pullup resistors
and slew-rate enhancement circuitry, providing a maximum data rate of 1Mbps. External pullup resistors can
be added to increase data rate when the bus is loaded
by high capacitance. (See the Use of External Pullup
Resistors section.)
Serial-Interface Level Translation
The MAX3395E provides level translation on four I/O
lines, making it an ideal device for multivoltage I2C,
MICROWIRE, and SPI serial interfaces.
Use of External Pullup Resistors
The MAX3394E/MAX3395E/MAX3396E include internal
10kΩ pullup resistors. During a low-to-high logic transition, the internal pullup resistors charge the bus capac-
______________________________________________________________________________________
11
MAX3394E/MAX3395E/MAX3396E
RC
1MΩ
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
MAX3394E/MAX3395E/MAX3396E
Functional Diagram
VCC
VL
VL
MP1
VCC
MP2
GATE CONTROL
I/O VL_
I/O VCC_
N-CHANNEL
PASS-FET
SLEW-RATE
ENHANCEMENT
MN3
MN4
Typical Operating Circuit
+1.8V
+3.3V
0.1μF
+1.8V
SYSTEM
CONTROLLER
EN
CLK
DATA
GND
VL
1μF
+3.3V
SYSTEM
MAX3394E
EN
I/O VL1
I/O VL2
I/O VCC1
CLK
I/O VCC2
DATA
GND
itance with a characteristic RC charging waveform.
When the low-to-high transition threshold (VCC-TH or VLTH) is reached, the rise time accelerators switch on,
sourcing 15mA to fully charge the bus capacitance.
External pullup resistors reduce the time needed to
reach the low-to-high transition threshold, thereby
increasing the data rate. In the logic-low state however,
external pullup resistors increase the DC current
through the internal pass-FET, increasing the output
voltage of the device.
Smart-Card Interface
The MAX3395E provides level translation for Class A, B,
and C smart cards. When supply voltage VCC is interrupted due to the disconnection of a smart card, the
device does not latch up. Normal operation resumes
12
0.1μF
VCC
GND
upon restoration of the V CC supply voltage. The
MAX3395E provides bidirectional level translation on
four I/O lines, making it well suited for buffering and
translating 4-wire serial interfaces.
UCSP Applications Information
For the latest application details on UCSP construction,
dimensions, tape carrier information, PCB techniques,
bump-pad layout, and recommended reflow temperature
profiles, as well as the latest information on reliability testing results, go to Maxim’s web site at www.maximic.com/ucsp to find the Application Note 1891:
Wafer-Level Packaging (WLP) and Its Applications.
______________________________________________________________________________________
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
TOP VIEW
(BUMPS ON BOTTOM)
1
2
3
VCC
I/O VCC1
I/O VCC2
A
B
MAX3394E
EN
GND
C
VL
I/O VL1
I/O VL2
I/O VCC3
I/O VCC4
TOP VIEW
(LEADS ON BOTTOM)
I/O VCC2
UCSP
9
8
7
TOP VIEW
(BUMPS ON BOTTOM)
1
2
3
4
MAX3395E
A
I/O VCC1
10
VCC
11
VL
12
*EP
MAX3395E
6
EN
5
GND
4
I/O VL4
I/O VL1
I/O VL2
I/O VL3
I/O VL4
VCC
VL
EN
GND
I/O VCC1
I/O VCC2
I/O VCC3
I/O VCC4
B
1
2
3
I/O VL1
I/O VL2
I/O VL3
+
C
TQFN
UCSP
VCC
GND
I/O VCC5
I/O VCC6
TOP VIEW
(LEADS ON BOTTOM)
I/O VCC4
*CONNECT EXPOSED PAD TO GROUND
15
14
13
12
11
TOP VIEW
(BUMPS ON BOTTOM)
1
2
3
4
5
MAX3396E
10
I/O VCC7
9
I/O VCC8
8
I/O VL8
I/O VL1 19
7
I/O VL7
I/O VL2 20
6
I/O VL6
I/O VCC2 16
*EP
I/O VCC3 17
I/O VCC1 18
MAX3396E
A
I/O VL2
I/O VL4
VL
EN
I/O VL6
I/O VL1
I/O VL3
I/O VL5
I/O VL7
I/O VL8
I/O VCC1
I/O VCC3
I/O VCC5
I/O VCC7
I/O VCC8
I/O VCC2
I/O VCC4
VCC
GND
I/O VCC6
B
+
C
TQFN
*CONNECT EXPOSED PAD TO GROUND
5
I/O VL5
4
EN
3
VL
2
I/O VL4
I/O VL3
1
D
UCSP
______________________________________________________________________________________
13
MAX3394E/MAX3395E/MAX3396E
Pin Configurations (continued)
MAX3394E/MAX3395E/MAX3396E
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
Selector Guide
NUMBER OF
TRANSLATORS
TOP
MARK
MAX3394EETA+T
2
APE
MAX3394EEBL+T
2
AEZ
MAX3395EETC+
4
AAFZ
MAX3395EEBC+T
4
ACO
MAX3396EEBP+T
8
—
MAX3396EETP+
8
—
PART
Chip Information
PROCESS: BiCMOS
CONNECT EXPOSED PAD TO GND.
Note: All devices specified over the -40°C to +85°C operating
range.
+Denotes lead(Pb)-free/RoHS-compliant package.
14
______________________________________________________________________________________
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
COMMON DIMENSIONS
PACKAGE VARIATIONS
MIN.
MAX.
PKG. CODE
N
D2
E2
e
JEDEC SPEC
b
A
0.70
0.80
T633-2
6
1.50±0.10
2.30±0.10
0.95 BSC
MO229 / WEEA
0.40±0.05
1.90 REF
D
2.90
3.10
T833-2
8
1.50±0.10
2.30±0.10
0.65 BSC
MO229 / WEEC
0.30±0.05
1.95 REF
E
2.90
3.10
T833-3
8
1.50±0.10
2.30±0.10
0.65 BSC
MO229 / WEEC
0.30±0.05
1.95 REF
A1
0.00
0.05
T1033-1
10
1.50±0.10
2.30±0.10
0.50 BSC
MO229 / WEED-3
0.25±0.05
2.00 REF
L
0.20
0.40
T1033MK-1
10
1.50±0.10
2.30±0.10
0.50 BSC
MO229 / WEED-3
0.25±0.05
2.00 REF
SYMBOL
[(N/2)-1] x e
k
0.25 MIN.
T1033-2
10
1.50±0.10
2.30±0.10
0.50 BSC
MO229 / WEED-3
0.25±0.05
2.00 REF
A2
0.20 REF.
T1433-1
14
1.70±0.10
2.30±0.10
0.40 BSC
----
0.20±0.05
2.40 REF
T1433-2
14
1.70±0.10
2.30±0.10
0.40 BSC
----
0.20±0.05
2.40 REF
T1433-3F
14
1.70±0.10
2.30±0.10
0.40 BSC
----
0.20±0.05
2.40 REF
______________________________________________________________________________________
15
MAX3394E/MAX3395E/MAX3396E
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
9LUCSP, 3x3.EPS
MAX3394E/MAX3395E/MAX3396E
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
PACKAGE OUTLINE, 3x3 UCSP
21-0093
16
______________________________________________________________________________________
L
1
1
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
12L, UCSP 4x3.EPS
PACKAGE OUTLINE, 4x3 UCSP
21-0104
F
1
1
______________________________________________________________________________________
17
MAX3394E/MAX3395E/MAX3396E
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
24L QFN THIN.EPS
MAX3394E/MAX3395E/MAX3396E
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
18
______________________________________________________________________________________
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
QFN THIN.EPS
______________________________________________________________________________________
19
MAX3394E/MAX3395E/MAX3396E
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
5x4 UCSP.EPS
MAX3394E/MAX3395E/MAX3396E
±15kV ESD-Protected, High-Drive Current, Dual-/Quad-/
Octal-Level Translators with Speed-Up Circuitry
Revision History
Pages changed at Rev 2: 1–4, 9, 11, 12, 14, 20
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2007 Maxim Integrated Products
Boblet
is a registered trademark of Maxim Integrated Products, Inc.
Similar pages