Freescale MRF8S9100HR3 Rf power field effect transistors n-channel enhancement-mode lateral mosfet Datasheet

Freescale Semiconductor
Technical Data
Document Number: MRF8S9100H
Rev. 0, 9/2009
RF Power Field Effect Transistors
N - Channel Enhancement - Mode Lateral MOSFETs
MRF8S9100HR3
MRF8S9100HSR3
Designed for GSM and GSM EDGE base station applications with
frequencies from 865 to 960 MHz. Can be used in Class AB and Class C for all
typical cellular base station modulation formats.
• Typical GSM Performance: VDD = 28 Volts, IDQ = 500 mA, Pout =
72 Watts CW
Frequency
Gps
(dB)
hD
(%)
920 MHz
19.3
51.6
940 MHz
19.3
52.9
960 MHz
19.1
54.1
920 - 960 MHz, 72 W CW, 28 V
GSM, GSM EDGE
LATERAL N - CHANNEL
RF POWER MOSFETs
• Capable of Handling 10:1 VSWR, @ 32 Vdc, 940 MHz, 133 Watts CW
Output Power (3 dB Input Overdrive from Rated Pout)
• Typical Pout @ 1 dB Compression Point ] 108 Watts CW
• Typical GSM EDGE Performance: VDD = 28 Volts, IDQ = 700 mA, Pout =
45 Watts Avg.
Frequency
Gps
(dB)
hD
(%)
SR1
@ 400 kHz
(dBc)
SR2
@ 600 kHz
(dBc)
EVM
(% rms)
920 MHz
19.1
43
- 64.1
- 74.5
1.8
940 MHz
19.1
44
- 63.6
- 74.6
2.0
960 MHz
19.0
45
- 62.8
- 75.1
2.3
CASE 465- 06, STYLE 1
NI - 780
MRF8S9100HR3
CASE 465A - 06, STYLE 1
NI - 780S
MRF8S9100HSR3
Features
• Characterized with Series Equivalent Large - Signal Impedance Parameters
and Common Source S - Parameters
• Internally Matched for Ease of Use
• Integrated ESD Protection
• Greater Negative Gate - Source Voltage Range for Improved Class C
Operation
• RoHS Compliant
• In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain - Source Voltage
Rating
VDSS
- 0.5, +70
Vdc
Gate - Source Voltage
VGS
- 6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
- 65 to +150
°C
TC
150
°C
TJ
225
°C
Case Operating Temperature
Operating Junction Temperature
(1,2)
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
© Freescale Semiconductor, Inc., 2009. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF8S9100HR3 MRF8S9100HSR3
1
Table 2. Thermal Characteristics
Characteristic
Value (1,2)
Symbol
Thermal Resistance, Junction to Case
Case Temperature 80°C, 100 W CW, 28 Vdc, IDQ = 500 mA
Case Temperature 81°C, 72 W CW, 28 Vdc, IDQ = 500 mA
Case Temperature 82°C, 45 W CW, 28 Vdc, IDQ = 700 mA
RθJC
Unit
°C/W
0.60
0.65
0.69
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
1C (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
IV (Minimum)
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 70 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate - Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 460 μAdc)
VGS(th)
1.4
2.2
2.9
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, ID = 500 mAdc, Measured in Functional Test)
VGS(Q)
2.1
2.9
3.6
Vdc
Drain - Source On - Voltage
(VGS = 10 Vdc, ID = 1.7 Adc)
VDS(on)
0.1
0.17
0.3
Vdc
Off Characteristics
On Characteristics
Functional Tests (3) (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 500 mA, Pout = 72 W CW, f = 920 MHz
Power Gain
Gps
18
19.3
23
dB
Drain Efficiency
ηD
50
51.6
—
%
Input Return Loss
IRL
—
- 12.4
-9
dB
P1dB
100
—
—
W
Pout @ 1 dB Compression Point, CW
Typical Broadband Performance (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 500 mA, Pout = 72 W CW
Frequency
Gps
(dB)
hD
(%)
IRL
(dB)
920 MHz
19.3
51.6
- 12.4
940 MHz
19.3
52.9
- 14.3
960 MHz
19.1
54.1
- 12.2
1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
3. Part internally input matched.
(continued)
MRF8S9100HR3 MRF8S9100HSR3
2
RF Device Data
Freescale Semiconductor
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 500 mA, 920 - 960 MHz Bandwidth
Pout @ 1 dB Compression Point, CW
P1dB
—
108
—
—
4
—
W
IMD Symmetry @ 100 W PEP, Pout where IMD Third Order
Intermodulation ` 30 dBc
(Delta IMD Third Order Intermodulation between Upper and Lower
Sidebands > 2 dB)
IMDsym
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
VBWres
—
30
—
MHz
Gain Flatness in 40 MHz Bandwidth @ Pout = 72 W CW
GF
—
0.13
—
dB
Gain Variation over Temperature
( - 30°C to +85°C)
ΔG
—
0.02
—
dB/°C
ΔP1dB
—
0.005
—
dBm/°C
Output Power Variation over Temperature
( - 30°C to +85°C)
MHz
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 700 mA, Pout = 45 W Avg.,
920 - 960 MHz EDGE Modulation
Frequency
Gps
(dB)
hD
(%)
SR1
@ 400 kHz
(dBc)
SR2
@ 600 kHz
(dBc)
EVM
(% rms)
920 MHz
19.1
43
- 64.1
- 74.5
1.8
940 MHz
19.1
44
- 63.6
- 74.6
2.0
960 MHz
19.0
45
- 62.8
- 75.1
2.3
MRF8S9100HR3 MRF8S9100HSR3
RF Device Data
Freescale Semiconductor
3
C7
C22
C21
C20
B1
VGS
VDS
R1
C17 C18 C19
C16
C6
C15
C11
L1
C4
C8
C1
C2
C5
C3
CUT OUT AREA
L2
C9
C12 C10
C13
C14
MRF8S9100H
Rev. 2
Figure 1. MRF8S9100HR3(HSR3) Test Circuit Component Layout
Table 5. MRF8S9100HR3(HSR3) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1
Short RF Bead
2743019447
Fair - Rite
C1, C6
47 pF Chip Capacitors
ATC100B470JT500XT
ATC
C2
5.6 pF Chip Capacitor
ATC100B5R6BT500XT
ATC
C3
7.5 pF Chip Capacitor
ATC100B7R5BT500XT
ATC
C4, C5
9.1 pF Chip Capacitors
ATC100B9R1BT500XT
ATC
C7, C17, C18, C19
10 μF, 35 V Tantalum Capacitors
T491D106K035AT
Kemet
C8, C9
13 pF Chip Capacitors
ATC100B130BT500XT
ATC
C10, C11
2.7 pF Chip Capacitors
ATC100B2R7BT500XT
ATC
C12
6.2 pF Chip Capacitor
ATC100B6R2BT500XT
ATC
C13
1.8 pF Chip Capacitor
ATC100B1R8BT500XT
ATC
C14
20 pF Chip Capacitor
ATC100B200JT500XT
ATC
C15, C16
0.56 μF, 50 V Chip Capacitors
C1825C564J5RAC - TU
Kemet
C20, C21, C22
470 μF, 63 V Electrolytic Capacitors
MCGPR63V477M13X26 - RH
Multicomp
L1, L2
12.5 nH, 4 Turn Inductors
A04TJLC
Coilcraft
R1
0 Ω, 3 A Chip Resistor
CRCW12060000Z0EA
Vishay
PCB
0.030″, εr = 2.55
AD255A - 0300 - 55 - 11
Arlon
MRF8S9100HR3 MRF8S9100HSR3
4
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
Gps, POWER GAIN (dB)
20
50
Gps
19
40
18
30
17
20
IRL
16
15
800
820
840
860
880
900
920
940
960
−10
−15
10
VDD = 28 Vdc, Pout = 72 W CW, IDQ = 500 mA
−5
0
980 1000
−20
IRL, INPUT RETURN LOSS (dB)
60
ηD
ηD, DRAIN EFFICIENCY (%)
21
f, FREQUENCY (MHz)
Figure 2. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 72 Watts CW
40
30
19
Gps
VDD = 28 Vdc, Pout = 46 W Avg.
IDQ = 700 mA, EDGE Modulation
18
20
IRL
17
4
16
2
EVM
15
800
820
840
860
880
900
920
940
960
0
980 1000
−5
−10
−15
−20
IRL, INPUT RETURN LOSS (dB)
Gps, POWER GAIN (dB)
20
ηD, DRAIN
EFFICIENCY (%)
50
ηD
EVM, ERROR VECTOR
MAGNITUDE (% rms)
21
f, FREQUENCY (MHz)
20
VDD = 28 Vdc, Pout = 100 W (PEP)
IDQ = 500 mA, Two−Tone Measurements
−20 (f1 + f2)/2 = Center Frequency of 940 MHz
IM3−U
19
IM3−L
−30
IM5−U
IM5−L
−40
IM7−L
−50
75
60
f = 940 MHz
Gps
45
960 MHz
18
920 MHz
960 MHz
940 MHz
17
30
920 MHz
16
15
ηD
IM7−U
−60
VDD = 28 Vdc
IDQ = 500 mA
15
1
10
100
1
ηD, DRAIN EFFICIENCY (%)
−10
Gps, POWER GAIN (dB)
IMD, INTERMODULATION DISTORTION (dBc)
Figure 3. Power Gain, Input Return Loss, EVM and Drain
Efficiency versus Frequency @ Pout = 46 Watts Avg.
10
100
TWO−TONE SPACING (MHz)
Pout, OUTPUT POWER (WATTS) CW
Figure 4. Intermodulation Distortion Products
versus Two - Tone Spacing
Figure 5. Power Gain and Drain Efficiency
versus Output Power
200
0
MRF8S9100HR3 MRF8S9100HSR3
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS
−40
5
4
Pout = 64 W Avg.
3
45 W Avg.
2
1
14 W Avg.
0
800
820 840
860
880
900
920
940
960
940 MHz
f = 960 MHz
−50
920 MHz
−55
−60
−65
−70
10
0
20
30
40
50
60
70
80
Pout, OUTPUT POWER (WATTS)
Figure 6. EVM versus Frequency
Figure 7. Spectral Regrowth at 400 kHz
versus Output Power
VDD = 28 Vdc, IDQ = 700 mA
EDGE Modulation
f = 960 MHz
−60
940 MHz
−65
920 MHz
−70
−75
10
75
8
f = 960 MHz
6
45
940 MHz
4
ηD
20
30
40
50
60
70
80
90
100
30
920 MHz
960 MHz
2
920 MHz 15
EVM
1
940 MHz
Pout, OUTPUT POWER (WATTS) AVG.
Figure 9. EVM and Drain Efficiency versus
Output Power
15
25
20
GAIN (dB)
0
100
10
Pout, OUTPUT POWER (WATTS)
Figure 8. Spectral Regrowth at 600 kHz
versus Output Power
10
Gain
15
5
10
0
−5
5
IRL
0
−10
−5
VDD = 28 Vdc
Pin = 0 dBm
IDQ = 500 mA
−10
−15
500
60
600
700
IRL (dB)
10
100
VDD = 28 Vdc, IDQ = 700 mA
EDGE Modulation
0
−80
0
90
f, FREQUENCY (MHz)
EVM, ERROR VECTOR MAGNITUDE (% rms)
SPECTRAL REGROWTH @ 600 kHz (dBc)
−45
980 1000
−50
−55
VDD = 28 Vdc, IDQ = 700 mA
EDGE Modulation
ηD, DRAIN EFFICIENCY (%)
VDD = 28 Vdc, IDQ = 700 mA
EDGE Modulation
SPECTRAL REGROWTH @ 400 kHz (dBc)
EVM, ERROR VECTOR MAGNITUDE (% rms)
6
800
900
1000
1100
−15
−20
−25
1200
f, FREQUENCY (MHz)
Figure 10. Broadband Frequency Response
MRF8S9100HR3 MRF8S9100HSR3
6
RF Device Data
Freescale Semiconductor
GSM TEST SIGNAL
−10
−20
Reference Power
VWB = 30 kHz
Sweep Time = 70 ms
RBW = 30 kHz
−30
−40
(dB)
−50
−60
−70
−80
400 kHz
400 kHz
600 kHz
600 kHz
−90
−100
−110
Center 1.96 GHz
200 kHz
Span 2 MHz
Figure 11. EDGE Spectrum
VDD = 28 Vdc, IDQ = 500 mA, Pout = 72 W Avg.
f
MHz
Zsource
W
Zload
W
820
3.81 - j1.72
1.61 - j0.48
840
3.99 - j1.80
1.62 - j0.34
860
4.13 - j1.97
1.62 - j0.21
880
4.20 - j2.22
1.63 - j0.09
900
4.14 - j2.49
1.62 + j0.02
920
3.96 - j2.74
1.60 + j0.12
940
3.67 - j2.95
1.57 + j0.22
960
3.31 - j3.07
1.53 + j0.32
980
2.91 - j3.09
1.47 + j0.42
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 12. Series Equivalent Source and Load Impedance
MRF8S9100HR3 MRF8S9100HSR3
RF Device Data
Freescale Semiconductor
7
ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS
VDD = 28 Vdc, IDQ = 500 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle
57
Pout, OUTPUT POWER (dBm)
Ideal
f = 920 MHz
56
55
54
53
f = 920 MHz
Actual
52
51
f = 940 MHz
f = 940 MHz
50
f = 960 MHz
49
f = 960 MHz
48
47
46
27
28
29
30
31
32
33
34
35
36
37
38
Pin, INPUT POWER (dBm)
NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V
P1dB
P3dB
f
(MHz)
Watts
dBm
Watts
dBm
920
166
52.2
199
53.0
940
158
52.0
195
52.9
960
166
52.2
209
53.2
Test Impedances per Compression Level
f
(MHz)
Zsource
Ω
Zload
Ω
920
P1dB
3.96 - j2.74
1.60 + j0.12
940
P1dB
3.67 - j2.95
1.57 + j0.22
960
P1dB
3.31 - j3.07
1.53 + j0.32
Figure 13. Pulsed CW Output Power
versus Input Power @ 28 V
MRF8S9100HR3 MRF8S9100HSR3
8
RF Device Data
Freescale Semiconductor
PACKAGE DIMENSIONS
MRF8S9100HR3 MRF8S9100HSR3
RF Device Data
Freescale Semiconductor
9
MRF8S9100HR3 MRF8S9100HSR3
10
RF Device Data
Freescale Semiconductor
MRF8S9100HR3 MRF8S9100HSR3
RF Device Data
Freescale Semiconductor
11
MRF8S9100HR3 MRF8S9100HSR3
12
RF Device Data
Freescale Semiconductor
PRODUCT DOCUMENTATION, TOOLS AND SOFTWARE
Refer to the following documents, tools and software to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
• Electromigration MTTF Calculator
• RF High Power Model
• .s2p File
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the
Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Sept. 2009
Description
• Initial Release of Data Sheet
MRF8S9100HR3 MRF8S9100HSR3
RF Device Data
Freescale Semiconductor
13
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140
Fax: +1 - 303 - 675 - 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009. All rights reserved.
MRF8S9100HR3 MRF8S9100HSR3
Document Number: MRF8S9100H
Rev. 0, 9/2009
14
RF Device Data
Freescale Semiconductor
Similar pages