Freescale Semiconductor Technical Data Document Number: MRF8S9100H Rev. 0, 9/2009 RF Power Field Effect Transistors N - Channel Enhancement - Mode Lateral MOSFETs MRF8S9100HR3 MRF8S9100HSR3 Designed for GSM and GSM EDGE base station applications with frequencies from 865 to 960 MHz. Can be used in Class AB and Class C for all typical cellular base station modulation formats. • Typical GSM Performance: VDD = 28 Volts, IDQ = 500 mA, Pout = 72 Watts CW Frequency Gps (dB) hD (%) 920 MHz 19.3 51.6 940 MHz 19.3 52.9 960 MHz 19.1 54.1 920 - 960 MHz, 72 W CW, 28 V GSM, GSM EDGE LATERAL N - CHANNEL RF POWER MOSFETs • Capable of Handling 10:1 VSWR, @ 32 Vdc, 940 MHz, 133 Watts CW Output Power (3 dB Input Overdrive from Rated Pout) • Typical Pout @ 1 dB Compression Point ] 108 Watts CW • Typical GSM EDGE Performance: VDD = 28 Volts, IDQ = 700 mA, Pout = 45 Watts Avg. Frequency Gps (dB) hD (%) SR1 @ 400 kHz (dBc) SR2 @ 600 kHz (dBc) EVM (% rms) 920 MHz 19.1 43 - 64.1 - 74.5 1.8 940 MHz 19.1 44 - 63.6 - 74.6 2.0 960 MHz 19.0 45 - 62.8 - 75.1 2.3 CASE 465- 06, STYLE 1 NI - 780 MRF8S9100HR3 CASE 465A - 06, STYLE 1 NI - 780S MRF8S9100HSR3 Features • Characterized with Series Equivalent Large - Signal Impedance Parameters and Common Source S - Parameters • Internally Matched for Ease of Use • Integrated ESD Protection • Greater Negative Gate - Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel. Table 1. Maximum Ratings Symbol Value Unit Drain - Source Voltage Rating VDSS - 0.5, +70 Vdc Gate - Source Voltage VGS - 6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg - 65 to +150 °C TC 150 °C TJ 225 °C Case Operating Temperature Operating Junction Temperature (1,2) 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. © Freescale Semiconductor, Inc., 2009. All rights reserved. RF Device Data Freescale Semiconductor MRF8S9100HR3 MRF8S9100HSR3 1 Table 2. Thermal Characteristics Characteristic Value (1,2) Symbol Thermal Resistance, Junction to Case Case Temperature 80°C, 100 W CW, 28 Vdc, IDQ = 500 mA Case Temperature 81°C, 72 W CW, 28 Vdc, IDQ = 500 mA Case Temperature 82°C, 45 W CW, 28 Vdc, IDQ = 700 mA RθJC Unit °C/W 0.60 0.65 0.69 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1C (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 70 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 460 μAdc) VGS(th) 1.4 2.2 2.9 Vdc Gate Quiescent Voltage (VDD = 28 Vdc, ID = 500 mAdc, Measured in Functional Test) VGS(Q) 2.1 2.9 3.6 Vdc Drain - Source On - Voltage (VGS = 10 Vdc, ID = 1.7 Adc) VDS(on) 0.1 0.17 0.3 Vdc Off Characteristics On Characteristics Functional Tests (3) (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 500 mA, Pout = 72 W CW, f = 920 MHz Power Gain Gps 18 19.3 23 dB Drain Efficiency ηD 50 51.6 — % Input Return Loss IRL — - 12.4 -9 dB P1dB 100 — — W Pout @ 1 dB Compression Point, CW Typical Broadband Performance (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 500 mA, Pout = 72 W CW Frequency Gps (dB) hD (%) IRL (dB) 920 MHz 19.3 51.6 - 12.4 940 MHz 19.3 52.9 - 14.3 960 MHz 19.1 54.1 - 12.2 1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. 3. Part internally input matched. (continued) MRF8S9100HR3 MRF8S9100HSR3 2 RF Device Data Freescale Semiconductor Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 500 mA, 920 - 960 MHz Bandwidth Pout @ 1 dB Compression Point, CW P1dB — 108 — — 4 — W IMD Symmetry @ 100 W PEP, Pout where IMD Third Order Intermodulation ` 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB) IMDsym VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) VBWres — 30 — MHz Gain Flatness in 40 MHz Bandwidth @ Pout = 72 W CW GF — 0.13 — dB Gain Variation over Temperature ( - 30°C to +85°C) ΔG — 0.02 — dB/°C ΔP1dB — 0.005 — dBm/°C Output Power Variation over Temperature ( - 30°C to +85°C) MHz Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 700 mA, Pout = 45 W Avg., 920 - 960 MHz EDGE Modulation Frequency Gps (dB) hD (%) SR1 @ 400 kHz (dBc) SR2 @ 600 kHz (dBc) EVM (% rms) 920 MHz 19.1 43 - 64.1 - 74.5 1.8 940 MHz 19.1 44 - 63.6 - 74.6 2.0 960 MHz 19.0 45 - 62.8 - 75.1 2.3 MRF8S9100HR3 MRF8S9100HSR3 RF Device Data Freescale Semiconductor 3 C7 C22 C21 C20 B1 VGS VDS R1 C17 C18 C19 C16 C6 C15 C11 L1 C4 C8 C1 C2 C5 C3 CUT OUT AREA L2 C9 C12 C10 C13 C14 MRF8S9100H Rev. 2 Figure 1. MRF8S9100HR3(HSR3) Test Circuit Component Layout Table 5. MRF8S9100HR3(HSR3) Test Circuit Component Designations and Values Part Description Part Number Manufacturer B1 Short RF Bead 2743019447 Fair - Rite C1, C6 47 pF Chip Capacitors ATC100B470JT500XT ATC C2 5.6 pF Chip Capacitor ATC100B5R6BT500XT ATC C3 7.5 pF Chip Capacitor ATC100B7R5BT500XT ATC C4, C5 9.1 pF Chip Capacitors ATC100B9R1BT500XT ATC C7, C17, C18, C19 10 μF, 35 V Tantalum Capacitors T491D106K035AT Kemet C8, C9 13 pF Chip Capacitors ATC100B130BT500XT ATC C10, C11 2.7 pF Chip Capacitors ATC100B2R7BT500XT ATC C12 6.2 pF Chip Capacitor ATC100B6R2BT500XT ATC C13 1.8 pF Chip Capacitor ATC100B1R8BT500XT ATC C14 20 pF Chip Capacitor ATC100B200JT500XT ATC C15, C16 0.56 μF, 50 V Chip Capacitors C1825C564J5RAC - TU Kemet C20, C21, C22 470 μF, 63 V Electrolytic Capacitors MCGPR63V477M13X26 - RH Multicomp L1, L2 12.5 nH, 4 Turn Inductors A04TJLC Coilcraft R1 0 Ω, 3 A Chip Resistor CRCW12060000Z0EA Vishay PCB 0.030″, εr = 2.55 AD255A - 0300 - 55 - 11 Arlon MRF8S9100HR3 MRF8S9100HSR3 4 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS Gps, POWER GAIN (dB) 20 50 Gps 19 40 18 30 17 20 IRL 16 15 800 820 840 860 880 900 920 940 960 −10 −15 10 VDD = 28 Vdc, Pout = 72 W CW, IDQ = 500 mA −5 0 980 1000 −20 IRL, INPUT RETURN LOSS (dB) 60 ηD ηD, DRAIN EFFICIENCY (%) 21 f, FREQUENCY (MHz) Figure 2. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 72 Watts CW 40 30 19 Gps VDD = 28 Vdc, Pout = 46 W Avg. IDQ = 700 mA, EDGE Modulation 18 20 IRL 17 4 16 2 EVM 15 800 820 840 860 880 900 920 940 960 0 980 1000 −5 −10 −15 −20 IRL, INPUT RETURN LOSS (dB) Gps, POWER GAIN (dB) 20 ηD, DRAIN EFFICIENCY (%) 50 ηD EVM, ERROR VECTOR MAGNITUDE (% rms) 21 f, FREQUENCY (MHz) 20 VDD = 28 Vdc, Pout = 100 W (PEP) IDQ = 500 mA, Two−Tone Measurements −20 (f1 + f2)/2 = Center Frequency of 940 MHz IM3−U 19 IM3−L −30 IM5−U IM5−L −40 IM7−L −50 75 60 f = 940 MHz Gps 45 960 MHz 18 920 MHz 960 MHz 940 MHz 17 30 920 MHz 16 15 ηD IM7−U −60 VDD = 28 Vdc IDQ = 500 mA 15 1 10 100 1 ηD, DRAIN EFFICIENCY (%) −10 Gps, POWER GAIN (dB) IMD, INTERMODULATION DISTORTION (dBc) Figure 3. Power Gain, Input Return Loss, EVM and Drain Efficiency versus Frequency @ Pout = 46 Watts Avg. 10 100 TWO−TONE SPACING (MHz) Pout, OUTPUT POWER (WATTS) CW Figure 4. Intermodulation Distortion Products versus Two - Tone Spacing Figure 5. Power Gain and Drain Efficiency versus Output Power 200 0 MRF8S9100HR3 MRF8S9100HSR3 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS −40 5 4 Pout = 64 W Avg. 3 45 W Avg. 2 1 14 W Avg. 0 800 820 840 860 880 900 920 940 960 940 MHz f = 960 MHz −50 920 MHz −55 −60 −65 −70 10 0 20 30 40 50 60 70 80 Pout, OUTPUT POWER (WATTS) Figure 6. EVM versus Frequency Figure 7. Spectral Regrowth at 400 kHz versus Output Power VDD = 28 Vdc, IDQ = 700 mA EDGE Modulation f = 960 MHz −60 940 MHz −65 920 MHz −70 −75 10 75 8 f = 960 MHz 6 45 940 MHz 4 ηD 20 30 40 50 60 70 80 90 100 30 920 MHz 960 MHz 2 920 MHz 15 EVM 1 940 MHz Pout, OUTPUT POWER (WATTS) AVG. Figure 9. EVM and Drain Efficiency versus Output Power 15 25 20 GAIN (dB) 0 100 10 Pout, OUTPUT POWER (WATTS) Figure 8. Spectral Regrowth at 600 kHz versus Output Power 10 Gain 15 5 10 0 −5 5 IRL 0 −10 −5 VDD = 28 Vdc Pin = 0 dBm IDQ = 500 mA −10 −15 500 60 600 700 IRL (dB) 10 100 VDD = 28 Vdc, IDQ = 700 mA EDGE Modulation 0 −80 0 90 f, FREQUENCY (MHz) EVM, ERROR VECTOR MAGNITUDE (% rms) SPECTRAL REGROWTH @ 600 kHz (dBc) −45 980 1000 −50 −55 VDD = 28 Vdc, IDQ = 700 mA EDGE Modulation ηD, DRAIN EFFICIENCY (%) VDD = 28 Vdc, IDQ = 700 mA EDGE Modulation SPECTRAL REGROWTH @ 400 kHz (dBc) EVM, ERROR VECTOR MAGNITUDE (% rms) 6 800 900 1000 1100 −15 −20 −25 1200 f, FREQUENCY (MHz) Figure 10. Broadband Frequency Response MRF8S9100HR3 MRF8S9100HSR3 6 RF Device Data Freescale Semiconductor GSM TEST SIGNAL −10 −20 Reference Power VWB = 30 kHz Sweep Time = 70 ms RBW = 30 kHz −30 −40 (dB) −50 −60 −70 −80 400 kHz 400 kHz 600 kHz 600 kHz −90 −100 −110 Center 1.96 GHz 200 kHz Span 2 MHz Figure 11. EDGE Spectrum VDD = 28 Vdc, IDQ = 500 mA, Pout = 72 W Avg. f MHz Zsource W Zload W 820 3.81 - j1.72 1.61 - j0.48 840 3.99 - j1.80 1.62 - j0.34 860 4.13 - j1.97 1.62 - j0.21 880 4.20 - j2.22 1.63 - j0.09 900 4.14 - j2.49 1.62 + j0.02 920 3.96 - j2.74 1.60 + j0.12 940 3.67 - j2.95 1.57 + j0.22 960 3.31 - j3.07 1.53 + j0.32 980 2.91 - j3.09 1.47 + j0.42 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 12. Series Equivalent Source and Load Impedance MRF8S9100HR3 MRF8S9100HSR3 RF Device Data Freescale Semiconductor 7 ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS VDD = 28 Vdc, IDQ = 500 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle 57 Pout, OUTPUT POWER (dBm) Ideal f = 920 MHz 56 55 54 53 f = 920 MHz Actual 52 51 f = 940 MHz f = 940 MHz 50 f = 960 MHz 49 f = 960 MHz 48 47 46 27 28 29 30 31 32 33 34 35 36 37 38 Pin, INPUT POWER (dBm) NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V P1dB P3dB f (MHz) Watts dBm Watts dBm 920 166 52.2 199 53.0 940 158 52.0 195 52.9 960 166 52.2 209 53.2 Test Impedances per Compression Level f (MHz) Zsource Ω Zload Ω 920 P1dB 3.96 - j2.74 1.60 + j0.12 940 P1dB 3.67 - j2.95 1.57 + j0.22 960 P1dB 3.31 - j3.07 1.53 + j0.32 Figure 13. Pulsed CW Output Power versus Input Power @ 28 V MRF8S9100HR3 MRF8S9100HSR3 8 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS MRF8S9100HR3 MRF8S9100HSR3 RF Device Data Freescale Semiconductor 9 MRF8S9100HR3 MRF8S9100HSR3 10 RF Device Data Freescale Semiconductor MRF8S9100HR3 MRF8S9100HSR3 RF Device Data Freescale Semiconductor 11 MRF8S9100HR3 MRF8S9100HSR3 12 RF Device Data Freescale Semiconductor PRODUCT DOCUMENTATION, TOOLS AND SOFTWARE Refer to the following documents, tools and software to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model • .s2p File For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Sept. 2009 Description • Initial Release of Data Sheet MRF8S9100HR3 MRF8S9100HSR3 RF Device Data Freescale Semiconductor 13 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140 Fax: +1 - 303 - 675 - 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009. All rights reserved. MRF8S9100HR3 MRF8S9100HSR3 Document Number: MRF8S9100H Rev. 0, 9/2009 14 RF Device Data Freescale Semiconductor