ETC2 LCE16A Transient voltage suppressor Datasheet

LCE6.5 thru LCE170A
Transient Voltage Suppressor
Breakdown Voltage 6.5 to 170 Volts
Peak Pulse Power
1500 Watts
Features
CASE: DO-204AL (DO-27)






Breakdown Voltages (VBR)from 6.5 to 170V
1500W peak pulse power capability with a 10/1000μs
waveform, repetitive rate (duty cycle):0.01%
Low capacitance
Fast Response Time
Excellent clamping capability
High temperature soldering guaranteed: 265℃ /10
seconds, 0.375” (9.5mm) lead length, 5lbs. (2.3kg)
tension
效
无
Application

Use in sensitive electronics protection against voltage
transients induced by inductive load switching and
lighting on ICS, MOSFE, signal lines of sensor units for
consumer, computer, industrial, automotive and
telecommunication
印
打
Mechanical Data




Dimensions in inches and (millimeters)

Case: Void-free transfer molded thermosetting epoxy
body meeting UL94V-O
Terminals: Tin-Lead or ROHS Compliant annealed
matte-Tin plating readily solderable per MIL-STD-750,
Method 2026
Marking: Part number and cathode band
Polarity: Cathode indicated by band
Weight: 1.2g(Approximately)
Maximum Ratings and Electrical Characteristics @
Symbol
25OC unless otherwise specified
Value
Unit
1500
W
SEE TABLE1
A
5
W
Steady state power dissipation at TA=25℃ when mounted on FR4 PC
described for thermal resistance
1.52
W
Maximum instantaneous forward voltage at 100A
3.5
V
RθJL
Thermal resistance junction to lead
22
℃/W
RθJA
Thermal resistance junction to ambient
82
℃/W
-65 to +150
℃
Conditions
PPPM
Peak pulse power capability with a 10/1000μs
IPPM
Peak pulse current with a 10/1000μs
Steady state power dissipation at TL=40℃ ,Lead lengths 0.375”(10mm)
PM(AV)
VF
TJ, TSTG
Operating and Storage Temperature
Document Number: LCE6.5 thru LCE170A
Feb.29, 2012
www.smsemi.com
1
LCE6.5 thru LCE170A
Electrical Characteristics @ 25°C (Unless Otherwise Noted) TABLE1
Breakdown
Voltage
VBR @ IBR
Microsemi
Part
Number
MIN
LCE6.5
LCE6.5A
LCE7.0
LCE7.0A
LCE7.5
LCE7.5A
LCE8.0
LCE8.0A
LCE8.5
LCE8.5A
LCE9.0
LCE9.0A
LCE10
LCE10A
LCE11
LCE11A
LCE12
LCE12A
LCE13
LCE13A
LCE14
LCE14A
LCE15
LCE15A
LCE16
LCE16A
LCE17
LCE17A
LCE18
LCE18A
LCE20
LCE20A
LCE22
LCE22A
LCE24
LCE24A
LCE26
LCE26A
LCE28
LCE28A
LCE30
LCE30A
LCE33
LCE33A
LCE36
LCE36A
LCE40
LCE40A
LCE43
LCE43A
LCE45
LCE45A
LCE48
LCE48A
LCE51
LCE51A
MAX
VBR(V)
7.22
8.82
7.22
7.98
7.78
9.51
7.78
8.60
8.33
10.2
8.33
9.21
8.89
10.9
8.89
9.83
9.44
11.5
9.44
10.4
10.0
12.2
10.0
11.1
11.1
13.6
11.1
12.3
12.2
14.9
12.2
13.5
13.3
16.3
13.3
14.7
14.4
17.6
14.4
15.9
15.6
19.1
15.6
17.2
16.7
20.4
16.7
18.5
17.8
21.8
17.8
19.7
18.9
23.1
18.9
20.9
20.0
24.4
20.0
22.1
22.2
27.1
22.2
24.5
24.4
29.8
24.4
26.9
26.7
32.6
26.7
29.5
28.9
35.3
28.9
31.9
31.1
38.0
31.1
34.4
33.3
40.7
33.3
36.8
36.7
44.9
36.7
40.6
40.0
48.9
40.0
44.2
44.4
54.3
44.4
49.1
47.8
58.4
47.8
52.8
50.0
61.1
50.0
55.3
53.3
65.1
53.3
58.9
56.7
69.3
56.7
62.7
IBR
(mA)
10
10
10
10
10
10
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Reverse
Stand
Off
Voltage
Maximum
Standby
current
ID @ VWM
Maximum
Peak
Pulse
Current
IPP @ 10/
1000µs
Maximum
Clamping
Voltage
VC @ IPP
Maximum
Capacitance
@ 0V
f=1MHZ
VWM(V)
6.5
6.5
7.0
7.0
7.5
7.5
8.0
8.0
8.5
8.5
9.0
9.0
10.0
10.0
11.0
11.0
12.0
12.0
13.0
13.0
14.0
14.0
15.0
15.0
16.0
16.0
17.0
17.0
18.0
18.0
20.0
20.0
22.0
22.0
24.0
24.0
26.0
26.0
28.0
28.0
30.0
30.0
33.0
33.0
36.0
36.0
40.0
40.0
43.0
43.0
45.0
45.0
48.0
48.0
51.0
51.0
ID(µA)
1000
1000
500
500
250
250
100
100
50
50
10
10
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
IPP (A)
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
94.0
100.0
89.0
97.0
80.0
88.0
74.0
82.0
68.0
75.0
63.0
70.0
58.0
65.0
56.0
61.0
52.0
57.0
49.0
54.0
46.0
51.0
42.0
46.0
38.0
42.0
35.0
39.0
32.0
36.0
30.0
33.0
28.0
31.0
25.4
28.1
23.3
25.8
21.0
23.0
19.5
21.6
18.7
20.6
17.5
19.4
16.5
18.2
VC(V)
12.3
11.2
13.3
12.0
14.3
12.9
15.0
13.6
15.9
14.4
16.9
15.4
18.8
17.0
20.1
18.2
22.0
19.9
23.8
21.5
25.8
23.2
26.9
24.4
28.8
26.0
30.5
27.6
32.2
29.2
35.8
32.4
39.4
35.5
43.0
38.9
46.6
42.1
50.0
45.4
53.5
48.4
58.0
53.3
64.3
58.1
71.4
64.5
76.7
69.4
80.3
72.7
85.5
77.4
91.1
82.4
pF
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
VWIB(V)
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
150
150
150
150
150
150
150
150
IIB(μA)
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
Peak
Inverse
Blocking
Voltage
VPIB(V)
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
200
200
200
200
200
200
200
200
效
无
印
打
Document Number: LCE6.5 thru LCE170A
Feb.29, 2012
Working Inverse
Blocking Voltage
IIIB @VWIB
www.smsemi.com
2
LCE6.5 thru LCE170A
Microsemi
Part
Number
Breakdown
Voltage
VBR @ IBR
MIN
Maximum
Peak
Pulse
Current
IPP @ 10/
1000µs
Maximum
Standby
current
ID @ VWM
Reverse
Stand
Off
Voltage
MAX
Maximum
Clamping
Voltage
VC @ IPP
Maximum
Capacitance
@ 0V
f=1MHZ
IBR
VBR(V)
VWM(V)
ID(µA)
IPP (A)
VC(V)
(mA)
LCE54
60.0
73.3
1
54.0
5
15.6
96.3
LCE54A
60.0
66.3
1
54.0
5
17.2
87.1
LCE58
64.4
78.7
1
58.0
5
14.6
103.0
LCE58A
64.4
71.2
1
58.0
5
16.0
93.6
LCE60
66.7
81.5
1
60.0
5
14.0
107.0
LCE60A
66.7
73.7
1
60.0
5
15.5
96.8
LCE64
71.1
86.9
1
64.0
5
13.2
114.0
LCE64A
71.1
78.6
1
64.0
5
14.6
103.0
LCE70
77.8
95.1
1
70.0
5
12.0
125.0
LCE70A
77.8
86.0
1
70.0
5
13.3
113.0
LCE75
83.3
102
1
75.0
5
11.2
134.0
LCE75A
83.3
92.1
1
75.0
5
12.4
121.0
LCE80
88.7
108
1
80.0
5
10.6
142.0
LCE80A
88.7
98.0
1
80.0
5
11.6
129.0
LCE90
100
122
1
90.0
5
9.4
160.0
LCE90A
100
111
1
90.0
5
10.3
146.0
LCE100
111
136
1
100.0
5
8.4
179.0
LCE100A
111
123
1
100.0
5
9.3
162.0
LCE110
122
149
1
110.0
5
7.7
196.0
LCE110
122
135
1
110.0
5
8.4
178.0
LCE120
133
163
1
120.0
5
7.0
214.0
LCE120A
133
147
1
120.0
5
7.8
193.0
LCE130
144
176
1
130.0
5
6.5
231.0
LCE130A
144
159
1
130.0
5
7.2
209.0
LCE150
167
204
1
150.0
5
5.6
268.0
LCE150A
167
185
1
150.0
5
6.2
243.0
LCE160
178
218
1
160.0
5
5.2
287.0
LCE160A
178
197
1
160.0
5
5.8
259.0
LCE170
189
231
1
170.0
5
4.9
304.0
LCE170A
189
209
1
170.0
5
5.4
275.0
Note1: A transient voltage suppressor is normally selected according to voltage (VWM), which
greater than the dc or continuous peak operating voltage level.
10
tW
IPP
tW
Half Sine
tW=0.71p
tp
Square
Wave
tW
Current Waveforms
1.0
0.1
0.1
1.0
pF
VWIB(V) IIB(μA)
100
150
10
100
150
10
100
150
10
100
150
10
90
150
10
90
150
10
90
150
10
90
150
10
90
150
10
90
150
10
90
150
10
90
150
10
90
150
10
90
150
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
90
300
10
should be equal to or
VPIB(V)
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
400
400
400
400
400
400
400
400
400
400
400
400
150
Impulse
Exponential
Decay
1.0
IPP
0.5
IPP - Peak Pulse Current - % IPP
PPP - Peak Pulse Power (kW)
100
Peak
Inverse
Blocking
Voltage
效
无
印
打
Characteristic Curve
Working Inverse
Blocking Voltage
IIIB @VWIB
10
tw-Pulse Width (µs)
102
103
Peak Value IPP
100
Half Value IPP
2
10/1000µs Waveform
as defined by R.E.A.
50
0
0
1.0
2.0
t-Time (ms)
3.0
4.0
Fig.2 Pulse Waveform for Exponential Surge
Fig. 1 Peak Pulse Power vs. Pulse Time
Document Number: LCE6.5 thru LCE170A
Feb.29, 2012
tr=10µs
www.smsemi.com
3
LCE6.5 thru LCE170A
PPP-Peak Pulse Power or continuous
Average Power in Percent of 25 ℃ (%)
100
Peak Pulse Power
(Single pulse).
75
50
Average
Power
25
0
0
50
100
150
Lead or Ambient Temperature (℃)
200
效
无
印
Fig.3 Derating Curve
Schematic Applications
The TVS low capacitance device configuration is shown in Fig.4. As a further option for unidirectional applications, an
additional low capacitance rectifier diode may be used in parallel in the sane polarity direction as the TVS as shown in
Fig.5. In applications where random high voltage transients occur, this will prevent reverse transients from damaging
the internal low capacitance rectifier diode and also provide a low voltage conducting direction. The added rectifier
diode should be of similar low capacitance and also have a higher reverse voltage rating than the TVS clamping
voltage VC. If using two (2) low capacitance TVS devices in also provided. The unidirectional and bidirectional
configurations in Fig.5 and 6 will both in twice the capacitance of Fig.4
+
TVS
打
DIODE
Fig.4 TVS with internal
Low Capacitance Diode
Document Number: LCE6.5 thru LCE170A
Feb.29, 2012
IN
Fig.5 Optional Unidirectional
configuration (TVS and
separate rectifier diode
in parallel)
OUT
+
Fig.6 Optional Bidirectional
configuration (two TVS and
devices in anti-parallel)
www.smsemi.com
4
Similar pages