Features • 2nd Generation EE PROM-based Complex Programmable Logic Devices • • • • • • • • • • – VCCIO of 5.0V or 3.3V with 3.3V Operation being 5V Tolerant – 32 - 256 Macrocells with Enhanced Features – Pin-compatible with Industry Standard Devices – Speeds to 5 ns Maximum Pin-to-pin Delay – Registered Operation to 250 MHz Enhanced Macrocells with Logic Doubling™ Features – Bury Either Register or COM while Using the Other for Output – Dual Independent Feedback Allows Multiple Latch Functions per Macrocell – 5 Product Terms per Macrocell, expandable to 40 per Macrocell with Cascade Logic, Plus 15 more with Foldback Logic – D/T/Latch Configurable Flip-flops plus Transparent Latches – Global and/or per Macrocell Register Control Signals – Global and/or per Macrocell Output Enable – Programmable Output Slew Rate per Macrocell – Programmable Output Open Collector Option per Macrocell – Fast Registered Input from Product Term Enhanced Connectivity – Single Level Switch Matrix for Maximum Routing Options – Up to 40 Inputs per Logic Block Advanced Power Management Features – ITD (Input Transition Detection) Available Individually on Global Clocks, Inputs and I/O for µA Level Standby Current for “L” Versions – Pin-controlled 1 mA Standby Mode – Reduced-power Option per Macrocell – Automatic Power Down of Unused Macrocells – Programmable Pin-keeper Inputs and I/Os Available in Commercial and Industrial Temperature Ranges Available in All Popular Packages Including PLCC, PQFP and TQFP EE PROM Technology – 100% Tested – Completely Reprogrammable – 10,000 Program/Erase Cycles – 20 Year Data Retention – 2000V ESD Protection – 200 mA Latch-up Immunity JTAG Boundary-scan Testing Port per IEEE 1149.1-1990 and 1149.1a-1993 – Pull-up Option on JTAG Pins TMS and TDI IEEE 1532 Compatibility for Fast In-System Programmability (ISP) via JTAG PCI-compliant Security Fuse Feature ATF15xxSE Family Datasheet ATF1502SE(L) ATF1504SE(L) ATF1508SE(L) ATF1516SE(L) Preliminary Rev. 2401D–PLD–09/02 1 General Description Beginning with the introduction of the 100% connected ATF1500 with 32 enhanced macrocells in 1996, Atmel’s CPLD products have delivered extra IO connectivity and logic reusability. Atmel’s commitment to efficient, flexible architecture has continued with the current Atmel ATF15xxSE Family of industry-standard, pin-compatible CPLDs. Atmel’s Logic Doubling architecture consists of wider fan-in, additional routing and clock options, combined with sophisticated, proprietary device fitters, extend CPLD place and route efficiency. Atmel enhanced macrocell includes double independent buried feedback that allows designers to pack more logic (particularly shifters and latches) into a smaller CPLD or leave spare room for later revisions. The Atmel ATF15xxSE family delivers enhanced functionality and flexibility with no additional design effort and is highly cost effective. The Atmel ATF15xxSE Family includes all popular configurations and speeds. Table 1. ATF15xxSE Family Device Features Feature ATF1502SE(L) ATF1504SE(L) ATF1508SE(L) ATF1516SE(L) Usable Gates 750 1500 3000 6000 Macrocells 32 64 128 256 Logic Blocks 2 4 8 16 Max. # Pins 44 100 256 256 Max. User I/Os 36 68 100 164 TPD Grades (ns) 5, 6, 7, 10(15) 5, 6, 7, 10(15) 6, 7, 10(15) 7, 10(15) The Atmel ATF15xxSE Family includes pin-compatible products in all popular packages. Table 2. ATF15xxSE Family Device Packages and Number of Signal Pins(1)(2) Packages ATF1502SE(L) ATF1504SE(L) 44-pin PLCC 36 36 44-pin TQFP 36 36 84-pin PLCC 68 68 100-pin TQFP 68 84 100-pin PQFP 84 160-pin PQFP 100 ATF1516SE(L) 208-pin PQFP 164 208-pin RQFP 164 Notes: 2 ATF1508SE(L) 1. Contact Atmel for up-to-date information on device and package availability. 2. When the JTAG port is used for In System Programming (ISP) or Boundary-scan Testing (BST), the four associated pins become JTAG pins and are unavailable for user I/O. ATF15xxSE Family 2401D–PLD–09/02 ATF15xxSE Family Functional Description The ATF15xxSE Family of 5.0 Volt supply, high-performance, high-density complex programmable logic devices (CPLDs) utilizes Atmel’s proven electrically erasable non-volatile technology. With up to 512 macrocells, they easily integrate logic from several TTL, SSI, MSI, LSI and classic PLDs. The ATF15xxSE Family’s enhanced macrocell architecture, switch matrices and routing increase usable gate count for new designs and increase odds of successful pin-locked design modifications while maintaining pin-compatibility with industry standard CPLDs. The ATF15xxSE Family devices have four dedicated input pins and depending on the type of device and package, up to 208 bi-directional I/O pins. Each dedicated input pin can also serve as a global control signal, register clock, register reset or output enable. Each of these control signals can be selected for use individually within each macrocell. Each input and I/O pin also feeds into the global bus. The macrocells are organized into groups of sixteen called logic blocks. The switch matrix in each logic block selects 40 individual signals from the global bus. Macrocells within a given logic block may share their sixteen foldback signals on a regional foldback bus. Cascade logic between macrocells in the Logic Block allows fast, efficient generation of complex logic functions. All macrocells are capable of being I/Os, however, the actual number of I/O pins depends on the device and package type. The ATF15xxSE Family members contain two, four, eight, sixteen or thirty-two such logic blocks, each capable of creating sum term logic with a fan-in of 40 inputs from the switch matrix having access to up to 80 product terms. Unused macrocells are automatically disabled by the fitter software to decrease power consumption. A security fuse, when programmed, protects the contents of the other fuses. Two bytes (16 bits) of User Signature are accessible to the user for purposes such as storing project name, part number, revision or date. The User Signature is accessible regardless of the state of the security fuse. The ATF15xxSE Family devices are in-system programmable (ISP) devices. They use the industry-standard 4-pin JTAG interface (IEEE Std. 1149.1), and are fully-compliant with JTAG’s Boundary-scan Description Language (BSDL). ISP allows the device to be programmed without removing it from the printed circuit board. In addition to simplifying the manufacturing flow, ISP also allows design modifications to be made in the field via software. Global Bus/Switch Matrix The global bus (Figure 1) contains all input and I/O pin signals as well as the buried feedback signals from all macrocells. The switch matrix in each logic block receives as its inputs all signals from the global bus. Up to 40 of these signals can be selected as inputs to the individual logic blocks by the fitter software. Atmel’s ATF15xx Family of CPLDs use a single level switch matrix signal distribution structure, where each logic block input has access to the same number of global bus inputs, maximizing the number of possible ways to route a global bus signal. This single level structure is in contrast with split switch matrix structures used by others in which routing a particular global bus input to a particular logic block input makes that signal unavailable to some other logic blocks, thus greatly limiting the available opportunities to route. The ATF15xxSE Family macrocell, shown in Figure 2, consists of five sections: product terms and product term select multiplexer, OR/XOR/CASCADE logic, foldback bus, a flip-flop and output buffer. Extra fan-in and signal routing are provided throughout. Each macrocell can generate a foldback logic term from the product term mux and a buried feedback with extra routing that go to the global bus. 3 2401D–PLD–09/02 Figure 1. ATF15xxSE Family Typical Block Diagram 6 to 16 N 6 to 16 N-1 4 ATF15xxSE Family 2401D–PLD–09/02 ATF15xxSE Family Figure 2. ATF15xxSE Family Macrocell with Enhanced Features In Red SWITCH REGIONAL MATRIX FOLDBACK OUTPUTS BUS SWITCH MATRIX 80 16 CASIN LOGIC FOLDBACK 40 PT1 GOE[0:5] PT2 3 4 Product Term MUX 2 6 PT3 1 Q !Q AP I/O Pin GOE SWITCH MATRIX Q I/O Pin CK/CK/LE GCK[0:2] GOE [0:5] D/T*/L 3 SLEW RATE CE 5 PT4 AR !Q OPEN COLLECTOR PT5 GCLEAR GLOBAL BUS Reduced Power Option CASOUT * T flip-flop synthesised Product Terms and Select Mux Within each macrocell are five product terms. Each product term may receive as its inputs any combination of the signals from the switch matrix or regional foldback bus. The product term select multiplexer (PTMUX) allocates the five product terms as needed to the macrocell logic gates and control signals. The PTMUX programming is determined by the fitter software, which selects the optimum macrocell configuration. OR/XOR/ CASCADE Logic Within a single macrocell, all the product terms can be routed to the OR gate, creating a 5input AND/OR sum term. With the addition of the CASIN from neighboring macrocells, this can be expanded to as many as 40 product terms with little additional delay. The macrocell’s XOR gate allows efficient implementation of compare and arithmetic functions. One input to the XOR comes from the OR sum term. The other XOR input can be a product term or a fixed high- or low-level. For combinatorial outputs, the fixed level input allows polarity selection. For registered functions, the fixed levels allow DeMorgan minimization of product terms. The XOR gate may be fed from the flip-flop output to emulate T- and JKtype flip-flops, or fed to the buried feedback to synthesize an extra latch. Foldback Bus Each macrocell can also generate a foldback product term. This signal goes to the regional bus and is available to the 16 macrocells in a given logic block. The foldback is an inverse polarity of one of the macrocell’s product terms. Although Cascade Logic is the preferred method for expanding the number of macrocell inputs to as many as 40, the 16 foldback terms in each region can also generate additional fan-in sum terms with nominal additional delay. 5 2401D–PLD–09/02 Flip-flop The ATF15xxSE Family’s flip-flop has very flexible data and control functions. The data input can come from either the XOR gate, from a separate product term or directly from the I/O pin. Selecting the separate product term allows creation of a buried registered feedback within a combinatorial output or vice-versa. (This enhanced function is automatically implemented by the fitter software). The flip-flop can be configured for D, T, JK and SR operation, and changes state on the clock’s rising edge. It can also be configured as a flow-through latch. In this mode, data passes through when the clock is high and is latched when the clock is low. When a GCK signal is used as the clock, one of the macrocell product terms can be selected as a clock enable. When the clock enable function is active and the enable signal (product term) is low, all clock edges are ignored. The flip-flop has asynchronous reset and preset. The flip-flop’s asynchronous reset signal (AR) can be either the Global Clear (GCLEAR), a product term, or always off. AR can also be a logic OR of GCLEAR with a product term. The asynchronous preset (AP) can be a product term or always off. Extra Feedback The ATF15xxSE Family macrocell output can be selected as registered or combinatorial. The extra buried feedback signal can be either combinatorial or registered signal regardless of whether the output is combinatorial or registered. (This enhanced function is automatically implemented by the fitter software) Feedback of a buried combinatorial output allows the creation of a second latch within a macrocell. I/O Control The output enable multiplexer (MOE) controls the output enable signal. Each I/O can be individually configured as an input, output or for bi-directional operation. The output enable for each macrocell can be selected from the true or compliment of the two output enable pins, a subset of the I/O pins, or a subset of the I/O macrocells. This selection is automatically done by the fitter software when the I/O is configured as an input, all macrocell resources are still available, including the buried feedback, expander and cascade logic. The buffer has a fast/slow slew rate option to control EMI and an open-collector option which enables the device to provide control signals such as an interrupt that can be asserted by any of the several devices. Programmable Pin-keeper Option for Inputs and I/Os 6 The ATF15xxSE Family offers the option of programming all input and I/O pins with pin-keeper circuits enabled. When any pin is driven high or low and then subsequently left floating, the pin keeper circuit will hold it at that previous high or low-level. This circuitry prevents unused input and I/O lines from floating to intermediate voltage levels, which causes unnecessary power consumption and system noise. The pin-keeper circuits eliminate the need for external pull-up resistors and eliminate their DC power consumption. ATF15xxSE Family 2401D–PLD–09/02 ATF15xxSE Family Input Diagram PROGRAMMABLE OPTION (PIN KEEPER) I/O Diagram PROGRAMMABLE OPTION (PIN KEEPER) Speed/Power Management The ATF15xxSE Family has several speed and power management features. Multiple Power Supplies, Power Sequencing and Hot-Socketing Because the ATF15xxSE Family can be used in a system with mixture of power supplies, it has been designed to function with the V CCINT and V CCIO power supplies applied in any sequence. Also, until the power up sequence completes, the input/output buffers are kept in a high impedance state, and so may be driven but do not drive power out. 7 2401D–PLD–09/02 Power-on Reset The ATF15xx Family devices are designed with a power-on reset, a feature critical for state machine initialization. At a point delayed slightly from VCC crossing VRST, all registers will be initialized, and the state of each output will depend on the polarity of its buffer. However, due to the asynchronous nature of reset and uncertainty of how VCC actually rises in the system, the following conditions are required: 1. The VCC rise must be monotonic, 2. After reset occurs, all input and feedback setup times must be met before driving the clock pin high, and, 3. The clock must remain stable during TD. The ATF15xx Family has two options for the hysteresis about the reset level, VRST, Small and Large. In applications where the supply voltage may drop below 4.0V, Atmel recommends that during the fitting process users configure the device with the Power-on Reset hysteresis set to Large to ensure a robust operating environment. Power Down of Unused Macrocells To conserve power, Atmel fitters automatically power down all unused macrocells. Input Transition Detection/ Automatic Power Down The ATF15xxSEL versions provide automatic power-down to µA level stand-by power (the “L” suffix indicates “Low” power) through Atmel’s patented Input Transition Detection (ITD) circuitry on Global Clocks, Inputs and I/O. These ITD circuits automatically put the device into a low-power standby mode when no logic transitions are occurring. This reduces power consumption during inactive periods, and so provides proportional power savings for most applications running at system speeds below fCRITICAL (~5 MHz). In clocked applications, where the device is operated at a frequency high enough to keep the device from going into stand-by (above fCRITICAL), the device will perform at the faster speeds given in the next faster speed column. These higher speeds can be achieved in combinatorial designs as well, as long as once activated by an initial input transition, the device continues to receive input transitions often enough to keep the device from going into standby mode again. That is, the time between input transitions is less than 1/fCRITICAL. Reduced-Power per Macrocell To further reduce power, each ATF15xxSE Family macrocell has a reduced-power bit feature. With this feature the designer can reduce power by 50% or more for logic that does not need to operate at the maximum switching speed. The reduced-power bit may be activated by changing the default OFF to ON for any or all macrocells. For macrocells in reduced-power mode (reduced-power bit turned on), the reduced- power adder, tRPA, must be added to the AC parameters, which include the data paths tLAD, tLAC, tIC, tACL, tACH and tSEXP. All power-down AC characteristic parameters are computed from external input or I/O pins, with the reducedpower bit turned on. Slew Rate Control Each output also has individual slew rate control. This may be used to reduce system noise by slowing down outputs that do not need to operate at maximum speed. Outputs default to slow switching. The slew rate option is selected in the design source file. Pin Controlled Power-down All ATF15xx Family devices also have an optional pin-controlled power-down mode. When activated, one or both of two pins, PD1 and PD2, can act as power-down pins. The device goes into power-down when either PD1 or PD2 pins (or both) are high, and the device supply current is reduced to less than 1 mA. Also, all internal logic signals are latched and held, as are any enabled outputs. Therefore, all registered and combinatorial output data remain valid. Any outputs that were in a high-Z state at the onset will remain at high-Z. Input and I/O hold 8 ATF15xxSE Family 2401D–PLD–09/02 ATF15xxSE Family latches remain active to ensure that pins do not float to indeterminate levels, further reducing system power. All pin transitions are ignored until the PD pin is brought low. When the powerdown feature is enabled for PD1 or PD2, that pin cannot be used as a logic input or output. However, the pin’s macrocell may still be used to generate buried foldback and cascade logic signals. The power-down option is selected in the design source file. Power Consumption Estimates An estimate of power consumption can be made based on typical designs and operation conditions, but because it is sensitive to these factors, power consumption must be verified with actual pattern and operation conditions. The equations given below are based on a pattern of 16-bit up/down counters in each logic block and may be used to estimate power consumption for both operating modes. Standby Power 1. Pstandby = Iccstandby x Vsupply Where: Iccstandby = the standby current given for the particular device and standby mode (e.g. pin controlled Power Down) Vsupply= the power supply voltage Active Power 2. Pactive = Pinternal + Pload = Iccinternal x Vsupply + Pload Where: Iccinternal = the internal current estimated from equation 3 below Vsupply= the power supply voltage Pload = depends on the device output load capacitance and switching frequency on each output pin. Pload and additional power savings at low frequencies using Atmel Input Transition Detection (“L” versions) can be estimated according to the methods discussed in the Atmel Application Note “Saving Power with Atmel PLDs” 3. Iccinternal = [K1 x (MCinuse – MCreducedpower )] + (K2 x MCreducedpower) + (K3 x MCinuse x fop x NS) Where: MCreducedpower = the number of macrocells operating at reduced power (from fitter report file) MCinuse= the number of macrocells in use (from fitter report file. Unused macrocells are powered down.) NS = the proportion of logic nodes switching (typically 10-20%) fop = the switching frequency K1, K2,and K3 = device constants given in the table below. Device K1 (mA/MC) K2 (mA/MC) K3 (mA/MC · MHz) ATF1502SE 0.6 0.3 0.015 ATF1504SE 0.6 0.3 0.015 ATF1508SE 0.6 0.3 0.015 ATF1516SE 0.6 0.3 0.015 Note: Shaded data is preliminary and subject to change without notice. 9 2401D–PLD–09/02 Design Software Atmel ATF15xxSE Family fitters allow logic synthesis using a variety of high-level description languages and formats. ATF15xxSE Family designs are supported by Atmel specific design tools as well as by several third-party tools. Free conversion software is also offered for industry standard devices. Check the Atmel web site or contact your authorized Atmel sales representative for up-to-date design software information. Programming ATF15xxSE Family devices can be programmed using standard third-party programmers. With third-party programmers, the JTAG ISP port can be disabled thereby allowing four additional I/O pins to be used for logic. Check the Atmel web site, contact your authorized Atmel sales representative or Atmel PLD Applications for details of third-party programmers. ATF15xxSE Family devices are in-system programmable (ISP) devices utilizing the 4-pin JTAG protocol. This capability eliminates package handling normally required for programming and facilitates rapid design iterations and field changes. Atmel provides ISP hardware and software to allow programming of the ATF15xxSE Family via the PC. ISP is performed by using either a download cable, a compatible board tester or a simple microprocessor interface. It is most common to devote the JTAG pins to ISP, but it is possible to use ISP to program the part through the JTAG pins, and set these four pins I/O pins. However, this will effectively disable further ISP and the device will need to be erased on a programmer to re-enable ISP. Contact Atmel PLD Applications by email at [email protected] or call our Hotline at (408) 4364333 for details. To allow ISP programming support by the Automated Test Equipment (ATE) vendors, Serial Vector Format (SVF) files can be created by the Atmel ISP software. Conversion to other ATE tester formats is also possible. Check the Atmel web site for up-to-date programming and software support information. ISP Programming Protection The ATF15xxSE Family also incorporates a protection feature that locks the device and prevents the inputs and I/O from driving if the programming process is interrupted for any reason. The inputs and I/O default to high-Z state during such a condition. In addition the pin-keeper option preserves the former state during device programming. All ATF15xxSE Family devices are initially shipped in the erased state thereby making them ready to use for ISP. For more information refer to the “Designing for In-System Programmability with Atmel CPLDs” application note. Security Fuse Usage 10 A single fuse is provided to prevent unauthorized copying of the ATF15xxSE Family fuse patterns. Once programmed, fuse verify is inhibited. However, the User Signature and device ID remain accessible. ATF15xxSE Family 2401D–PLD–09/02 ATF15xxSE Family JTAG-BST Overview The JTAG-BST (JTAG boundary-scan testing) is controlled by the Test Access Port (TAP) controller. The boundary-scan technique involves the inclusion of a shift-register stage (contained in a boundary-scan cell) adjacent to each component so that signals at component boundaries can be controlled and observed using scan testing principles. Each input pin and I/O pin has its own Boundary-scan Cell (BSC) in order to support boundary-scan testing. The ATF15xxSE Family does not currently include a Test Reset (TRST) input pin because the TAP controller is automatically reset at power-up. The ATF15xxSE Family implements six BST instructions, and seven Atmel-defined In System Programming (ISP) instructions. All ATF15xx Family BST and ISP instructions have a length of 10 bits. JTAG BST Instructions Description SAMPLE/PRELOAD Captures signals at the device pins for later examination, or loads a data pattern prior to an EXTEST instruction. EXTEST Allows testing of off-chip circuitry and interconnections by forcing a pattern on the output pins or capturing signals from the input pins. BYPASS Places a single shift register stage between TDI and TDO, allowing test BST data to pass through a particular device in a chain of devices. IDCODE Places the 32-bit IDCODE register between TDI and TDO, allowing the IDCODE data to be shifted out of TDO. UESCODE Places the 16-bit user electronic signature register between TDI and TDO, allowing the UESCODE data to be shifted out of TDO. HIGHZ Places the BYPASS register between TDI and TDO in a high impedance mode, protecting the device from damage from externally applied test signals. 7 ISP instructions These seven instructions allow in-system programming via the four JTAG pins. The ATF15xxSE Family BST implementation complies with the Boundary-scan Definition Language (BSDL) described in the JTAG specification (IEEE Standard 1149.1). Any third-party tool that supports the BSDL format can be used to perform BST on the ATF15xxSE Family. The ATF15xxSE Family also has the option of using four JTAG-standard I/O pins for in-system programming (ISP). The ATF15xxSE Family is programmable through the four JTAG pins using programming-compatible with the IEEE JTAG Standard 1149.1. Programming is performed by using 5V TTL-level programming signals from the JTAG ISP interface. The JTAG feature is a programmable option. If JTAG (BST or ISP) is not needed, then the four JTAG control pins are available as I/O pins. Refer to Atmel Application Note “Designing for In-System Programmability with Atmel CPLDs for more details. 11 2401D–PLD–09/02 JTAG Boundary-scan Cell (BSC) Testing The ATF15xxSE Family has four dedicated input pins and a number of I/O pins depending on the device type and package type selected. Each input pin and I/O pin has a boundary-scan cell (BSC) which supports boundary-scan testing as described in detail by IEEE Standard 1149.1. A typical BSC consists of three capture registers or scan registers and up to two update registers. There are two types of BSCs, one for input or I/O pin, and one for the macrocells. The BSCs in the device are chained together through the (BST) capture registers. Input to the capture register chain is fed in from the TDI pin while the output is directed to the TDO pin. Capture registers are used to capture active device data signals, to shift data in and out of the device and to load data into the update registers. Control signals are generated internally by the JTAG TAP controller. Boundary-Scan Register Length Device 12 LSB ATF1502SE 96 0000,0001,0101,0100,0010,0000,0011,1111 ATF1504SE 192 0000,0001,0101,0100,0100,0000,0011,1111 ATF1508SE 352 0000,0001,0101,0100,1000,0000,0011,1111 ATF1516SE 672 0000,0001,0101,0101,0000,0000,0011,1111 Note: Boundary-scan Definition Language (BSDL) Models IDCODE MSB Shaded data is preliminary and subject to change without notice. These are now available in all package types via the Atmel web site. These models conform to the IEEE 1149.1 standard and can be used for Boundary-scan Test Operation of the ATF15xxSE Family. The BSC configuration for the input and I/O pins and macrocells are shown on page 13. ATF15xxSE Family 2401D–PLD–09/02 ATF15xxSE Family BSC Configuration for Pins (Except JTAG TAP Pins) BSC Configuration for Macrocell TDO OEJ 0 0 1 D Q D Q 1 OUTJ 0 0 Pin 1 D Q D Q Capture Register Update Register 1 Mode TDI Shift Clock Macrocell BSC 13 2401D–PLD–09/02 PCI Voltage-toCurrent Curves for +5V Signaling in Pull-up Mode The ATF15xx Family also supports peripheral component interconnect (PCI) interface standard in PCI-based designs and specifications. The PCI interface calls for high current drivers, which are much larger than the traditional TTL drivers. Pull Up VCC Test Point Voltage PCI Compliance 2.4 DC drive point 1.4 AC drive point -44 Current (mA) -178 -2 Pull Down VCC AC drive point Voltage PCI Voltage-toCurrent Curves for +5V Signaling in Pull-down Mode 2.2 DC drive point 0.55 Test Point 3,6 14 95 Current (mA) 380 ATF15xxSE Family 2401D–PLD–09/02 ATF15xxSE Family PCI DC Characteristics Symbol Parameter VCC Conditions Min Max Units Supply Voltage 4.75 5.25 V VIH Input High Voltage 2.0 VCC + 0.5 V VIL Input Low Voltage -0.5 0.8 V IIH Input High Leakage Current VIN = 2.7V 70 µA IIL Input Low Leakage Current VIN = 0.5V -70 µA VOH Output High Voltage IOUT = -2 mA VOL Output Low Voltage IOUT = 3 mA, 6 mA CIN 2.4 V 0.55 V Input Pin Capacitance 10 pF CCLK CLK Pin Capacitance 12 pF CIDSEL IDSEL Pin Capacitance 8 pF LPIN Pin Inductance 20 nH Note: Leakage current is without pin-keeper off. PCI AC Characteristics Symbol Parameter Conditions Min IOH(AC) Switching 0 < VOUT ≤ 1.4 -44 mA 1.4 < VOUT < 2.4 -44+(VOUT - 1.4)/0.024 mA Current High IOL(AC) Max Units 3.1 < VOUT < V CC Equation A mA (Test High) VOUT = 3.1V -142 µA Switching VOUT > 2.2V 95 mA 2.2 > VOUT > 0 VOUT/0.023 mA Current Low 0.1 > VOUT > 0 Equation B mA (Test Point) VOUT = 0.71 206 mA ICL Low Clamp Current -5 < VIN ≤ -1 -25+(VIN + 1)/0.015 SLEWR Output Rise Slew Rate 0.4V to 2.4V load 0.5 3.0 V/ns SLEWF Output Fall Slew Rate 2.4V to 0.4V load 0.5 3.0 V/ns Notes: mA 1. Equation A: IOH = 11.9 (VOUT - 5.25) * (VOUT + 2.45) for VCC > VOUT > 3.1V. 2. Equation B: IOL = 78.5 * VOUT * (4.4 - VOUT ) for 0V < VOUT < 0.71V. 15 2401D–PLD–09/02 Absolute Maximum Ratings* Ambient Temperature Under Bias.................. -65°C to +135°C *NOTICE: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Storage Temperature ..................................... -65°C to +150°C Junction Temperature ..............................................150°C(MAX) Voltage on Any Pin with Respect to Ground .........................................-2.0V to +7.0V(1) Voltage on Input Pins with Respect to Ground During Programming.....................................-2.0V to +14.0V(1) Programming Voltage with Respect to Ground .......................................-2.0V to +14.0V(1) Note: 1. For currents less than 100 mA, minimum voltage is -0.6 VDC and maximum voltage is VCC + 0.75 VDC. Pulses of less than 20µs may undershoot to -2.0V or overshoot to 7.0V. DC Output Current per Pin ................................ -25 to +25 mA DC and AC Operating Conditions Commercial Industrial 0°C - 70°C -40°C - 85°C – – VCCINT (5.0V) Power Supply 5V ± 5% 5V ± 10% VCCIO (5.0V) Power Supply 5V ± 5% 5V ± 10% VCCIO (3.3V) Power Supply 3.0 - 3.6 3.0 - 3.6 -0.5 - VCCINT + .5 -0.5 - V CCINT + .5 0 - VCCIO 0 - VCCIO tR 40 ns Max 40 ns Max tF 40 ns Max 40 ns Max Operating Temperature (Ambient), TA (1) Junction Temperature, TJ VI Input Voltage VO Output Voltage Note: 16 1. Junction temperature is package and device dependant and can be calculated as follows: TJ(MAX) = TA(MAX) + (θJA|Air Flow = 0*P(MAX)). For more information see “Thermal Characteristics of Atmel Packages.” ATF15xxSE Family 2401D–PLD–09/02 ATF15xxSE Family DC Characteristics(1) ATFxxSE Family Symbol Parameter Condition IIL Input or I/O Low Leakage Current VIN = VCC IIH Input or I/O High Leakage Current IOZ Tri-State Output Off-State Current Power Supply Current, Standby ICC1 Min VO = VCC or GND VCC = Max VIN = 0, VCC ICC3(2) Power Supply Current, Power-down Mode VCC = Max VIN = 0, VCC Reduced-power Mode Supply Current, Standby VCC = Max VIN = 0, VCC Min Unit -2 -10 µA 2 10 µA 40 µA -40 Std Mode “ITD” Mode ICC2 Typ Com. (3) mA Ind. (3) mA Com. 1 mA Ind. 1 mA PD Mode Std Mode 0.1 1 mA Com. (3) mA Ind. (3) mA VIL Input Low Voltage -0.3 0.8 V VIH Input High Voltage 2.0 VCCINT +0.5 V VOL 5.0V Output Low Voltage (TTL) IOL = 12 mA, V CCIO = 4.75V 0.45 V 3.3V Output Low Voltage (TTL) IOL = 12 mA, V CCIO = 3.0V 0.45 V 3.3V Output Low Voltage (CMOS) IOL = 0.1 mA, VCCIO = 3.0V 0.2 V 5.0V Output High Voltage (TTL) IOH = -4 mA, V CCIO = 4.75V 2.4 V 3.3V Output High Voltage (TTL) IOH = -4 mA, V CCIO = 3.0V 2.4 V 3.3V Output High Voltage (CMOS) IOH = -0.1 mA, VCCIO = 3.0V VCCIO – 0.2 V VOH Notes: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec. 2. ICC3 refers to the current in the reduced-power mode when macrocell reduced-power is turned ON. 3. See characteristic curves for each device. Power-down AC Characteristics(1) ATFxxSE Family -5 Symbol tIVDH tGVDH Parameter Min Valid 1, I/O before PD High Valid 1, OE (2) Max Min Max Min -15 Max Min Max Unit 7.0 10 15 ns before PD High 5.0 6.0 7.0 10 15 ns (2) 5.0 6.0 7.0 10 15 ns tDHIX I, I/O Don’t Care after PD High OE Min -10 6.0 Valid 1, Clock tDHGX Max -7 5.0 tCVDH (2) -6 before PD High 9.0 10.0 12 15.0 25 ns Don’t Care after PD High 9.0 10.0 12 15.0 25 ns (2) 9.0 10.0 12 15.0 25 ns tDHCX Clock tDLIV PD Low to Valid I, I/O 1.0 1.0 1.0 1.0 1.0 µs tDLGV PD Low to Valid OE, (Pin or Term) 1.0 1.0 1.0 1.0 1.0 µs tDLCV PD Low to Valid Clock, (Pin or Term) 1.0 1.0 1.0 1.0 1.0 µs tDLOV PD Low to Valid Output 1.0 1.0 1.0 1.0 1.0 µs Notes: Don’t Care after PD High 1. For slow slew outputs, add tSSO. 2. Pin or product term. 17 2401D–PLD–09/02 Timing Model U Pin Capacitance Typ(1) Max Units CIN 8 10 pF VIN = 0V; f = 1.0 MHz CI/O 8 10 pF VOUT = 0V; f = 1.0 MHz Note: Condition 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested. The OGI pin (high-voltage pin during programming) has a maximum capacitance of 12 pF. Input Test Waveforms and Measurement Levels Output AC Test Loads 5.0V (3.3V) 464 (703 ) 250 (8060 ) 18 C = CL ATF15xxSE Family 2401D–PLD–09/02 ATF1502SE AC Characteristics(1) ATF1502SE(L) SE -5 Symbol Parameter Min SE -6 Max Min Max SE -7 Min Max SE -10 Min Max SEL -15(6) Min Max Unit tPD1 Input or Feedback to Nonregistered Output 5.0 6.0 7.5 10 15 ns tPD2 I/O Input or Feedback to Nonregistered Feedback 5.0 6.0 7.5 10 12 ns tSU Global Clock Setup Time 2.9 4.0 5.0 7.0 11 ns tH Global Clock Hold Time 0.0 0.0 0.0 0.0 0.0 ns tFSU Global Clock Setup Time of Fast Input 2.5 2.5 2.5 3.0 3.0 ns tFH Global Clock Hold of Fast Input 0.0 0.0 0.0 0.0 1.0 ns tCO1 Global Clock to Output Delay tCH Global Clock High Time 2.0 2.5 3.0 4.0 5.0 ns tCL Global Clock Low Time 2.0 2.5 3.0 4.0 5.0 ns tASU Array Clock Setup Time 0.7 0.9 1.1 2.0 4.0 ns tAH Array Clock Hold Time 1.8 2.1 2.7 3.0 4.0 ns 3.2 3.5 4.3 5.0 8.0 ns tACO1 Array Clock Output Delay tACH Array Clock High Time 2.5 2.5 3.0 4.0 6.0 ns tACL Array Clock Low Time 2.5 2.5 3.0 4.0 6.0 ns tCNT Minimum Clock Global Period fCNT(3) Maximum Internal Global Clock Frequency tACNT Minimum Array Clock Period fACNT (4) Maximum Internal Array Clock Frequency 5.4 5.4 5.7 175.4 6.6 7.0 143 5.7 8.2 8.6 117 7.0 15 10.0 100 8.6 13 77 or 100(6) 10.0 ns ns MHz 13 ns 175.4 143 117 100 77 or 100(6) MHz 250 200 167 125 80 or 125(6) MHz fMAX(5) Maximum Clock Frequency tIN Input Pad and Buffer Delay 0.2 0.2 0.3 0.5 1.0 ns tIO I/O Input Pad and Buffer Delay 0.2 0.2 0.3 0.5 1.0 ns tFIN Fast Input Delay 2.2 2.1 2.5 1.0 1.5 ns tSEXP Foldback Term Delay 3.1 3.8 4.6 5.0 8.0 ns tPEXP Cascade Logic Delay 0.9 1.1 1.4 0.8 1.0 ns tLAD Logic Array Delay 2.6 3.3 4.0 5.0 6.0 ns tLAC Logic Control Delay 2.5 3.3 4.0 5.0 6.0 ns tIOE Internal Output Enable Delay 0.7 0.8 1.0 2.0 3.0 ns tOD1 Output Buffer and Pad Delay (slow slew rate = OFF; VCCIO = 5V; CL= 35 pF) 0.2 0.3 0.4 1.5 2.5 ns 19 2401D–PLD–09/02 AC Characteristics(1) ATF1502SE(L) (Continued) SE -5 Symbol Min Max Min Max SE -7 Min Max SE -10 Min Max SEL -15(6) Min Max Unit tOD2 Output Buffer and Pad Delay (slow slew rate = OFF; VCCIO = 3.3V; CL= 35 pF) 0.7 0.8 0.9 2.0 3.0 ns tOD3 Output Buffer and Pad Delay (slow slew rate = ON; VCCIO = 5V or 3.3V; CL= 35 pF) 5.2 5.3 5.4 5.5 6.0 ns tZX1 Output Buffer Enable Delay (slow slew rate = OFF; VCCIO = 5V; CL= 35 pF) 4.0 4.0 4.0 5.0 7.0 ns tZX2 Output Buffer Enable Delay (slow slew rate = OFF; VCCIO = 3.3V; CL= 35 pF) 4.5 4.5 4.5 5.5 7.0 ns tZX3 Output Buffer Enable Delay (slow slew rate = ON; VCCIO = 5V or 3.3V; CL= 35 pF) 9.0 9.0 9.0 9.0 10 ns tXZ Output Buffer Disable Delay (CL= 5 pF) 4.0 4.0 4.0 5.0 6.0 ns tSU Register Setup Time 0.8 1.0 1.3 2.0 4.0 ns tH Register Hold Time 1.7 2.0 2.5 3.0 4.0 ns tFSU Register Setup Time of Fast Input 1.9 1.7 1.7 3.0 5.0 ns tFH Register Hold Time of Fast Input 0.6 0.7 0.8 0.5 2.0 ns tRD Register Delay 1.2 1.6 1.2 2.0 2.0 ns Combinatorial Delay 0.9 1.1 1.0 2.0 2.0 ns tIC Array Clock Delay 2.7 3.4 2.0 5.0 7.0 ns tEN Register Enable Time 2.6 3.3 1.0 5.0 7.0 ns tGLOB Global Control Delay 1.6 1.4 1.3 1.0 1.0 ns tPRE Register Preset Time 2.0 2.4 1.9 3.0 5.0 ns tCLR Register Clear Time 2.0 2.4 3.0 3.0 5.0 ns tUIM Switch Matrix Delay 1.1 1.1 1.4 1.0 2.0 ns tCOMB tRPA(2) Notes: 20 Parameter SE -6 Reduced Power Adder 8 9 10 11 13 ns 1. See ordering Information for valid part numbers. 2. The tRPA parameter must be added to the tLAD, tLAC, tIC, tACL and tSEXP parameters for macrocells running in the reducedpower mode. 3. fCNT is the fastest 16-bit counter frequency available, using the local feedback when applicable, and a PIA fan-out of one logic block (16 macrocells). fCNT is also the Export Control Maximum flip-flop toggle rate, fTOG. 4. fACNT is the fastest 16-bit counter frequency available, using the internal array clock, local feedback when applicable and a PIA fan-out of one logic block (16 macrocells). 5. fMAX is the fastest available frequency for pipelined data. 6. For clocked applications and frequencies above fCRITICAL, OR, non-clocked applications with dormant times less than 1/fCRITICAL, the device will achieve the speeds of the –10 column. See “Input Transition Detection/ Automatic Power Down” on page 8. ATF1502SE 2401D–PLD–09/02 ATF1502SE STAND-BY ICC VS. NORMALIZED ICC VS. TEMP 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 1.4 TBD 4.5 4.8 5.0 1.2 NORMALIZED Icc ICC (µA) SUPPLY VOLTAGE (TA = 25°C) 5.3 1.0 TBD 0.8 0.6 0.4 -40.0 5.5 SUPPLY VOLTAGE (V) 25.0 75.0 TEMPERATURE (C) SUPPLY CURRENT VS. INPUT FREQUENCY (VCC = 5.0V, T A = 25°C) SUPPLY CURRENT VS. INPUT FREQUENCY (V CC = 5.0V, TA = 25°C) 1.000 120.000 0.800 ICC (mA) 140.000 100.000 ICC (mA) 0.0 80.000 0.600 TBD 0.400 TBD 0.200 60.000 0.000 40.000 0.0 0.5 2.5 5.0 20.000 7.5 10.0 25.0 37.5 50.0 FREQUENCY (MHz) 0.000 0.0 0.5 2.5 5.0 7.5 10.0 FREQUENCY (MHz) 25.0 37.5 50.0 OUTPUT SOURCE CURRENT VS. SUPPLY VOLTAGE (VOH = 2.4V) 0 0.0 -10.0 -10 -20.0 -20 TBD -30 IOH (mA) IOH (mA) OUTPUT SOURCE CURRENT VS. OUTPUT VOLTAGE (VCC = 5.0V, TA = 25°C) -40 -50 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 5.5 -30.0 -40.0 TBD -50.0 -60.0 -70.0 6.0 -80.0 -90.0 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 VOH (V) OUTPUT SINK CURRENT VS. SUPPLY VOLTAGE (VOL = 0.5V) 48 OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE (V CC = 5.0V, TA = 25°C) 140.0 120.0 44 42 100.0 TBD IOL (mA) Iol (mA) 46 40 38 80.0 TBD 60.0 40.0 36 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 5.5 6.0 20.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 21 2401D–PLD–09/02 INPUT CLAMP CURRENT VS. INPUT VOLTAGE (V CC = 5.0V, TA = 35°C) 40 INPUT CURRENT (uA) INPUT CURRENT (mA) 0 -20 -40 TBD -60 -80 -100 -120 0.0 -0.2 -0.4 -0.6 INPUT VOLTAGE (V) INPUT CURRENT VS. INPUT VOLTAGE (VCC = 5.0V, T A = 25°C) -0.8 30 20 10 TBD 0 -10 -20 -30 -1.0 0.0 NORMALIZED TPD VS. VCC NORMALIZED TPD NORMALIZED TPD 1.1 TBD 1.0 0.9 4.5 4.8 5.0 5.3 TBD 0.9 0.8 -40.0 5.5 NORMALIZED TCO VS. VCC 0.0 25.0 TEMPERATURE (C) 75.0 NORMALIZED T CO VS. TEMP 1.1 NORMALIZED TCO NORMALIZED TCO 6.0 1.0 SUPPLY VOLTAGE (V) 1.2 1.1 TBD 1.0 0.9 4.5 4.8 5.0 SUPPLY VOLTAGE (V) 5.3 1.0 TBD 0.9 0.8 -40.0 0.8 5.5 0.0 25.0 75.0 TEMPERATURE (V) NORMALIZED TSU VS. VCC NORMALIZED TSU VS. TEMP 1.2 1.2 NORMALIZED TCO NORMALIZED TSU 5.0 1.1 0.8 1.1 TBD 1.0 0.9 0.8 4.5 22 2.0 3.0 4.0 INPUT VOLTAGE (V) NORMALIZED T PD VS. TEMP 1.2 1.3 1.0 4.8 5.0 SUPPLY VOLTAGE (V) 5.3 5.5 1.1 1.0 TBD 0.9 0.8 -40.0 0.0 25.0 75.0 TEMPERATURE (C) ATF1502SE 2401D–PLD–09/02 ATF1502SE DELTA TPD VS. OUTPUT LOADING 8 8.00 7.00 DELTA T CO (ns) 6 DELTA T PD (ns) DELTA TCO VS. OUTPUT LOADING 4 TBD 2 0 6.00 5.00 TBD 4.00 3.00 2.00 1.00 -2 0.00 0 50 100 150 200 250 300 50 100 OUTPUT LOADING (PF) 150 200 250 300 NUMBER OF OUTPUTS LOADING DELTA TCO VS. # OF OUTPUT SWITCHING DELTA TPD VS. # OF OUTPUT SWITCHING DELTA TCO (ns) DELTA TPD (ns) 0.0 0.0 -0.1 -0.2 TBD -0.3 -0.1 TBD -0.2 -0.4 -0.3 -0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 NUMBER OF OUTPUTS SWITCHING 9.0 10.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 NUMBER OF OUTPUTS SWITCHING 23 2401D–PLD–09/02 ATF1502SE(L) Pinouts ATF1502SE(L) ATF1504SE(L) 39 38 37 36 35 34 33 32 31 30 29 18 19 20 21 22 23 24 25 26 27 28 7 8 9 10 11 12 13 14 15 16 17 I/O I/O/TDO I/O I/O VCC I/O I/O I/O/TCK I/O GND I/O I/O I/O I/O I/O GND VCC I/O PD2/I/O I/O I/O I/O TDI/I/O I/O I/O GND PD1/I/O I/O I/O/TMS I/O VCC I/O I/O 6 5 4 3 2 1 44 43 42 41 40 I/O I/O I/O VCC GCK2/OE2/I GCLR/I OE1/I GCK1/I GND I/O/GCLK3 I/O 44-lead TQFP - Top View 44 43 42 41 40 39 38 37 36 35 34 I/O I/O I/O VCC I/OE2/GCK2 GCLR/I I/OE1 GCK1/I GND GCK3 I/O 44-lead PLCC - Top View 1 2 3 4 5 6 7 8 9 10 11 ATF1502SE(L) ATF1504SE(L) 33 32 31 30 29 28 27 26 25 24 23 I/O I/O/TDO I/O I/O VCC I/O I/O I/O/TCK I/O GND I/O I/O I/O I/O I/O GND VCC I/O PD2/I/O I/O I/O I/O 12 13 14 15 16 17 18 19 20 21 22 I/O/TDI I/O I/O GND PD1/I/O I/O TMS/I/O I/O VCC I/O I/O 24 ATF1502SE 2401D–PLD–09/02 ATF1502SE ATF1502SE(L) Dedicated Pinouts Dedicated Pin 44-PLCC J-lead 44-lead TQFP INPUT/GCLK1 43 37 INPUT/GCLR 1 39 INPUT/OE1 44 38 INPUT/OE2/GCLK2 2 40 I/O/GCLK3 41 35 I/O/PD (1,2) 11, 25 5, 19 I/O/TDI (JTAG) 7 1 I/O/TMS (JTAG) 13 7 I/O/TCK (JTAG) 32 26 I/O/TDO (JTAG) 38 32 GNDINT 22, 42 16, 36 GNDIO 10, 30 4, 24 VCCINT 3, 23 17, 41 VCCIO 15, 35 9, 29 # of Signal Pins 36 36 # User I/O Pins 32 32 OE (1, 2) Global OE pins GCLR Global Clear pin GCLK (1, 2, 3) Global Clock pins PD (1, 2) Power-down pins TDI, TMS, TCK, TDO JTAG pins used for boundary-scan testing or in-system programming GNDINT Ground pins for the internal device logic GNDIO Ground pins for the I/O drivers VCCINT VCC pins for the internal device logic (+3.3V) VCCIO VCC for the I/O drivers 25 2401D–PLD–09/02 ATF1502SE(L) I/O Pinouts 26 MC PLC 44-lead PLCC 44-lead TQFP 1 A 4 42 2 A 5 43 3 A 6 44 4/TDI A 7 1 5 A 8 2 6 A 9 3 7/PD1 A 11 5 8 A 12 6 9/TMS A 13 7 10 A 14 8 11 A 16 10 12 A 17 11 13 A 18 12 14 A 19 13 15 A 20 14 16 A 21 15 17 B 41 35 18 B 40 34 19 B 39 33 20/TDO B 38 32 21 B 37 31 22 B 36 30 23 B 34 28 24 B 33 27 25/TCK B 32 26 26 B 31 25 27 B 29 23 28 B 28 22 29 B 27 21 30 B 26 20 31/PD2 B 25 19 32 B 24 18 ATF1502SE 2401D–PLD–09/02 ATF1502SE ATF1502SE(L) Ordering Information tPD (ns) tCO1 (ns) FMAX (MHz) 5.0 3.2 6.0 7.5 10 15 Ordering Code Package Operation Range 250 ATF1502SE-5 AC44 ATF1502SE-5 JC44 44A 44J Commercial (0°C to 70°C) 3.5 200 ATF1502SE-6 AC44 ATF1502SE-6 JC44 44A 44J Commercial (0°C to 70°C) 4.3 167 ATF1502SE-7 AC44 ATF1502SE-7 JC44 44A 44J Commercial (0°C to 70°C) ATF1502SE-7 AI44 ATF1502SE-7 JI44 44A 44J Industrial (-40°C to +85°C) ATF1502SE-10 AC44 ATF1502SE-10 JC44 44A 44J Commercial (0°C to 70°C) ATF1502SE-10 AI44 ATF1502SE-10 JI44 44A 44J Industrial (-40°C to +85°C) ATF1502SEL-15 AC44 ATF1502SEL-15 JC44 44A 44J Commercial (0°C to 70°C) 5.0 8.0 125 77 Using “C” Product for Industrial To use commercial product for industrial temperature ranges, downgrade one speed grade from the “I” to the “C” device, and de-rate power by 30%. Package Type 44A 44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP) 44J 44-lead, Plastic J-leaded Chip Carrier (PLCC) 27 2401D–PLD–09/02 AC Characteristics(1) ATF1504SE(L) SE -5 Symbol Parameter Min Max SE -6 Min Max SE -7 Min Max SE -10 Min Max SEL -15(6) Min Max Unit tPD1 Input or Feedback to Nonregistered Output 5.0 6.0 7.5 10 15 ns tPD2 I/O Input or Feedback to Nonregistered Feedback 5.0 6.0 7.5 10 12 ns tSU Global Clock Setup Time 2.9 3.6 6.0 7.0 11 ns tH Global Clock Hold Time 0.0 0.0 0.0 0.0 0.0 ns tFSU Global Clock Setup Time of Fast Input 2.5 2.5 3.0 3.0 3.0 ns tFH Global Clock Hold of Fast Input 0.0 0.0 0.5 0.5 1.0 ns tCO1 Global Clock to Output Delay tCH Global Clock High Time 2.0 2.5 3.0 4.0 5.0 ns tCL Global Clock Low Time 2.0 2.5 3.0 4.0 5.0 ns tASU Array Clock Setup Time 0.7 0.9 2.0 2.0 5.0 ns tAH Array Clock Hold Time 1.8 2.9 2.0 3.0 4.0 ns 3.2 4.0 4.5 5.0 9.0 ns tACO1 Array Clock Output Delay tACH Array Clock High Time 2.5 2.5 3.0 4.0 6.0 ns tACL Array Clock Low Time 2.5 2.5 3.0 4.0 6.0 ns tCNT Minimum Clock Global Period fCNT(3) Maximum Internal Global Clock Frequency tACNT Minimum Array Clock Period 5.4 6.7 5.7 176 7.5 7.1 141 5.7 10.0 8.0 125 7.1 15 10 100 8.0 13 77 10 ns ns MHz 13 ns fACNT(4) Maximum Internal Array Clock Frequency 176 141 125 100 77 MHz fMAX(5) Maximum Clock Frequency 250 200 167 125 77 MHz tIN Input Pad and Buffer Delay 0.2 0.2 0.5 0.5 1.0 ns tIO I/O Input Pad and Buffer Delay 0.2 0.2 0.5 0.5 1.0 ns tFIN Fast Input Delay 2.2 2.6 1.0 1.0 2.0 ns tSEXP Foldback Term Delay 3.1 3.8 4.0 5.0 8.0 ns tPEXP Cascade Logic Delay 0.9 1.1 0.8 0.8 1.0 ns tLAD Logic Array Delay 2.6 3.2 3.0 5.0 6.0 ns tLAC Logic Control Delay 2.5 3.2 3.0 5.0 6.0 ns tIOE Internal Output Enable Delay 0.7 0.8 2.0 2.0 3.0 ns tOD1 Output Buffer and Pad Delay (slow slew rate = OFF; VCCIO = 5V; C L= 35 pF) 0.2 0.3 2.0 1.5 2.5 ns 28 ATF1504SE(L) 2401D–PLD–09/02 ATF1504SE(L) AC Characteristics(1) ATF1504SE(L) (Continued) SE -5 Symbol Parameter Min Max SE -6 Min Max SE -7 Min Max SE -10 Min Max SEL -15(6) Min Max Unit tOD2 Output Buffer and Pad Delay (slow slew rate = OFF; VCCIO = 3.3V; CL= 35 pF) 0.7 0.8 2.5 2.0 3.0 ns tOD3 Output Buffer and Pad Delay (slow slew rate = ON; VCCIO = 5V or 3.3V; C L= 35 pF) 5.2 5.3 7.0 5.5 6.0 ns tZX1 Output Buffer Enable Delay (slow slew rate = OFF; VCCIO = 5V; C L= 35 pF) 4.0 4.0 4.0 5.0 7.0 ns tZX2 Output Buffer Enable Delay (slow slew rate = OFF; VCCIO = 3.3V; CL= 35 pF) 4.5 4.5 4.5 5.5 7.0 ns tZX3 Output Buffer Enable Delay (slow slew rate = ON; VCCIO = 5V or 3.3V; C L= 35 pF) 9.0 9.0 9.0 9.0 10 ns tXZ Output Buffer Disable Delay (CL= 5 pF) 4.0 4.0 4.0 5.0 6.0 ns tSU Register Setup Time 0.8 1.0 3.0 2.0 5.0 ns tH Register Hold Time 1.7 2.0 2.0 3.0 4.0 ns tFSU Register Setup Time of Fast Input 1.9 1.8 3.0 3.0 5.0 ns tFH Register Hold Time of Fast Input 0.6 0.7 0.5 0.5 2.0 ns tRD Register Delay 1.2 1.6 1.0 2.0 2.0 ns Combinatorial Delay 0.9 1.0 1.0 2.0 2.0 ns tIC Array Clock Delay 2.7 3.3 3.0 5.0 6.0 ns tEN Register Enable Time 2.6 3.2 3.0 5.0 6.0 ns tGLOB Global Control Delay 1.6 1.9 1.0 1.0 2.0 ns tPRE Register Preset Time 2.0 2.4 2.0 3.0 4.0 ns tCLR Register Clear Time 2.0 2.4 2.0 3.0 4.0 ns tUIM Switch Matrix Delay 1.1 1.3 1.0 1.0 2.0 ns tCOMB Reduced Power Adder 8.0 9.0 1.0 11 13 ns tRPA(2) Notes: 1. See ordering Information for valid part numbers. 2. The tRPA parameter must be added to the tLAD, tLAC, tIC, tACL and tSEXP parameters for macrocells running in the reducedpower mode. 3. fCNT is the fastest 16-bit counter frequency available, using the local feedback when applicable, and a PIA fan-out of one logic block (16 macrocells). fCNT is also the Export Control Maximum flip-flop toggle rate, fTOG. 4. fACNT is the fastest 16-bit counter frequency available, using the internal array clock, local feedback when applicable and a PIA fan-out of one logic block (16 macrocells). 5. fMAX is the fastest available frequency for pipelined data. 6. For clocked applications and frequencies above fCRITICAL, OR, non-clocked applications with dormant times less than 1/fCRITICAL, the device will achieve the speeds of the –10 column. See “Input Transition Detection/ Automatic Power Down” on page 8. 29 2401D–PLD–09/02 STAND-BY ICC VS. NORMALIZED ICC VS. TEMP 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 1.4 TBD 4.5 4.8 5.0 1.2 NORMALIZED Icc ICC (µA) SUPPLY VOLTAGE (TA = 25°C) 5.3 1.0 TBD 0.8 0.6 0.4 -40.0 5.5 SUPPLY VOLTAGE (V) 25.0 75.0 TEMPERATURE (C) SUPPLY CURRENT VS. INPUT FREQUENCY (VCC = 5.0V, T A = 25°C) SUPPLY CURRENT VS. INPUT FREQUENCY (VCC = 5.0V, TA = 25°C) 1.000 120.000 0.800 ICC (mA) 140.000 100.000 ICC (mA) 0.0 80.000 0.600 TBD 0.400 TBD 0.200 60.000 0.000 40.000 0.0 0.5 2.5 5.0 20.000 7.5 10.0 25.0 37.5 50.0 FREQUENCY (MHz) 0.000 0.0 0.5 2.5 5.0 7.5 10.0 FREQUENCY (MHz) 25.0 37.5 50.0 OUTPUT SOURCE CURRENT VS. SUPPLY VOLTAGE (VOH = 2.4V) 0 0.0 -10.0 -10 -20.0 -20 TBD -30 IOH (mA) IOH (mA) OUTPUT SOURCE CURRENT VS. OUTPUT VOLTAGE (VCC = 5.0V, T A = 25°C) -40 -50 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 5.5 -30.0 -40.0 TBD -50.0 -60.0 -70.0 6.0 -80.0 -90.0 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 VOH (V) OUTPUT SINK CURRENT VS. SUPPLY VOLTAGE (VOL = 0.5V) 48 OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE (VCC = 5.0V, TA = 25°C) 140.0 120.0 44 42 100.0 TBD IOL (mA) Iol (mA) 46 40 38 80.0 TBD 60.0 40.0 36 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 5.5 6.0 20.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 30 ATF1504SE(L) 2401D–PLD–09/02 ATF1504SE(L) INPUT CLAMP CURRENT VS. INPUT VOLTAGE (V CC = 5.0V, TA = 35°C) 40 INPUT CURRENT (uA) INPUT CURRENT (mA) 0 -20 -40 TBD -60 -80 -100 -120 0.0 -0.2 -0.4 -0.6 INPUT VOLTAGE (V) INPUT CURRENT VS. INPUT VOLTAGE (VCC = 5.0V, T A = 25°C) -0.8 30 20 10 TBD 0 -10 -20 -30 -1.0 0.0 NORMALIZED TPD VS. VCC NORMALIZED TPD NORMALIZED TPD 5.0 6.0 NORMALIZED T PD VS. TEMP 1.1 TBD 1.0 0.9 0.8 4.5 4.8 5.0 SUPPLY VOLTAGE (V) 5.3 1.0 TBD 0.9 0.8 -40.0 5.5 NORMALIZED TCO VS. VCC 1.3 0.0 25.0 TEMPERATURE (C) 75.0 NORMALIZED T CO VS. TEMP 1.1 NORMALIZED TCO NORMALIZED TCO 2.0 3.0 4.0 INPUT VOLTAGE (V) 1.1 1.2 1.2 1.1 TBD 1.0 0.9 4.5 4.8 5.0 SUPPLY VOLTAGE (V) 5.3 1.0 TBD 0.9 0.8 -40.0 0.8 5.5 0.0 25.0 75.0 TEMPERATURE (V) NORMALIZED TSU VS. VCC NORMALIZED TSU VS. TEMP 1.2 1.2 NORMALIZED TCO NORMALIZED TSU 1.0 1.1 TBD 1.0 0.9 0.8 4.5 4.8 5.0 SUPPLY VOLTAGE (V) 5.3 5.5 1.1 1.0 TBD 0.9 0.8 -40.0 0.0 25.0 75.0 TEMPERATURE (C) 31 2401D–PLD–09/02 DELTA TPD VS. OUTPUT LOADING 8 8.00 7.00 DELTA T CO (ns) 6 DELTA T PD (ns) DELTA TCO VS. OUTPUT LOADING 4 TBD 2 0 6.00 5.00 TBD 4.00 3.00 2.00 1.00 -2 0.00 0 50 100 150 200 250 300 50 100 OUTPUT LOADING (PF) DELTA TCO (ns) DELTA TPD (ns) 250 300 0.0 -0.1 -0.2 TBD -0.3 -0.4 -0.1 TBD -0.2 -0.3 -0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 NUMBER OF OUTPUTS SWITCHING 32 200 DELTA TCO VS. # OF OUTPUT SWITCHING DELTA TPD VS. # OF OUTPUT SWITCHING 0.0 150 NUMBER OF OUTPUTS LOADING 9.0 10.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 NUMBER OF OUTPUTS SWITCHING ATF1504SE(L) 2401D–PLD–09/02 ATF1504SE(L) ATF1504SE(L) Pinouts 44 43 42 41 40 39 38 37 36 35 34 I/O I/O I/O VCC I/OE2/GCK2 GCLR/I I/OE1 GCK1/I GND GCK3 I/O 44-lead TQFP – Top View 1 2 3 4 5 6 7 8 9 10 11 33 32 31 30 29 28 27 26 25 24 23 ATF1502SE(L) ATF1504SE(L) I/O I/O/TDO I/O I/O VCC I/O I/O I/O/TCK I/O GND I/O I/O I/O I/O I/O GND VCC I/O PD2/I/O I/O I/O I/O 12 13 14 15 16 17 18 19 20 21 22 I/O/TDI I/O I/O GND PD1/I/O I/O TMS/I/O I/O VCC I/O I/O ATF1502SE(L) ATF1504SE(L) 39 38 37 36 35 34 33 32 31 30 29 18 19 20 21 22 23 24 25 26 27 28 7 8 9 10 11 12 13 14 15 16 17 I/O I/O/TDO I/O I/O VCC I/O I/O I/O/TCK I/O GND I/O I/O I/O I/O I/O GND VCC I/O PD2/I/O I/O I/O I/O TDI/I/O I/O I/O GND PD1/I/O I/O I/O/TMS I/O VCC I/O I/O 6 5 4 3 2 1 44 43 42 41 40 I/O I/O I/O VCC GCK2/OE2/I GCLR/I OE1/I GCK1/I GND I/O/GCLK3 I/O 44-lead PLCC – Top View 33 2401D–PLD–09/02 11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75 I/O I/O I/O I/O GND I/O I/O I/O VCCINT INPUT/OE2/GCLK2 INPUT/GCLR INPUT/OE1 INPUT/GCLK1 GND I/O/GCLK3 I/O I/O VCCIO I/O I/O I/O 84-lead PLCC – Top View ATF1504SE(L) ATF1508SE(L) 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 I/O I/O GND I/O/TDO I/O I/O I/O I/O VCCIO I/O I/O I/O I/O/TCK I/O I/O GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCIO I/O I/O I/O GND VCCINT I/O I/O/PD2 I/O GND I/O I/O I/O I/O I/O VCCIO I/O/PD1 VCCIO I/O/TDI I/O I/O I/O I/O GND I/O I/O I/O I/O/TMS I/O I/O VCCIO I/O I/O I/O I/O I/O GND 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 I/O I/O I/O I/O I/O GND I/O I/O I/O VCCINT INPUT/OE2/GCLK2 INPUT/GCLR INPUT/OE1 INPUT/GCLK1 GND I/O/GCLK3 I/O I/O VCCIO I/O I/O I/O I/O I/O I/O 100-lead TQFP – Top View 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ATF1508SE(L) 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 I/O GND I/O/TDO I/O I/O I/O I/O I/O I/O VCCIO I/O I/O I/O I/O/TCK I/O I/O GND I/O I/O I/O I/O I/O I/O I/O VCCIO GND I/O I/O I/O I/O I/O I/O I/O VCCIO I/O I/O I/O GND VCCINT I/O I/O/PD2 I/O GND I/O I/O I/O I/O I/O I/O I/O 26 27 28 29 30 31 33 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 I/O/PD1 I/O VCCIO I/O/TDI I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O/TMS I/O I/O VCCIO I/O I/O I/O I/O I/O I/O I/O 34 ATF1504SE(L) 2401D–PLD–09/02 ATF1504SE(L) ATF1504SE(L) Dedicated Pinouts Dedicated Pin 44-lead TQFP 44-lead PLCC 84-lead PLCC 100-lead TQFP INPUT/GCLK1 37 43 83 87 INPUT/GCLR 39 1 1 89 INPUT/OE1 38 44 84 88 INPUT/OE2/GCLK2 40 2 2 90 I/O /GCLK3 35 41 81 85 I/O/PD (1,2) 5, 19 11, 25 20, 46 12, 42 I/O/TDI (JTAG) 1 7 14 4 I/O/TMS (JTAG) 7 13 23 15 I/O/TCK (JTAG) 26 32 62 62 I/O/TDO (JTAG) 32 38 71 73 GNDINT 16, 36 22, 44 42, 82 38, 86 GNDIO 4, 24 10, 30 7, 18, 32,47, 69, 72 11, 26, 43, 59, 74, 95 VCCINT 17, 41 3, 23 3, 43 39, 91 VCCIO 9, 29 15, 35 13, 26, 33, 53, 66, 78 3, 18, 34, 51, 66, 82 - - - 1, 2, 5, 7, 22, 24, 27, 28, 49, 50, 53, 55, 70, 72, 77, 78 # of Signal Pins 36 36 68 68 # User I/O Pins 32 32 64 64 N/C OE (1, 2) Global OE pins GCLR Global Clear pin GCLK (1, 2, 3) Global Clock pins PD (1, 2) Power-down pins TDI, TMS, TCK, TDO JTAG pins used for boundary-scan testing or in-system programming GNDINT Ground pins for the internal device logic GNDIO Ground pins for the I/O pins VCCINT VCC pins for the internal device logic VCCIO VCC for the I/O drivers 35 2401D–PLD–09/02 ATF1504SE(L) I/O Pinouts MC PLC 44-lead PLCC 44-lead TQFP 84-lead PLCC 100-lead TQFP MC PLC 44-lead PLCC 44-lead TQFP 84-lead PLCC 100-lead TQFP 1 A 12 6 22 14 33 C 24 18 44 40 2 A - - 21 13 34 C - - 45 41 3 A/ PD1 11 5 20 12 35 C/ PD2 25 19 46 42 4 A 9 3 18 10 36 C 26 20 48 44 5 A 8 2 17 9 37 C 27 21 49 45 6 A - - 16 8 38 C - - 50 46 7 A - - 15 6 39 C - - 51 47 8/ TDI A 7 1 14 4 40 C 28 22 52 48 9 A - - 12 100 41 C 29 23 54 52 10 A - - 11 99 42 C - - 55 54 11 A 6 44 10 98 43 C - - 56 56 12 A - - 9 97 44 C - - 57 57 13 A - - 8 96 45 C - - 58 58 14 A 5 43 6 94 46 C 31 25 60 60 15 A - - 5 93 47 C - - 61 61 C 32 26 62 62 D 33 27 63 63 16 A 4 42 4 92 48/ TCK 17 B 21 15 41 37 49 18 B - - 40 36 50 D - - 64 64 19 B 20 14 39 35 51 D 34 28 65 65 20 B 19 13 37 33 52 D 36 30 67 67 21 B 18 12 36 32 53 D 37 31 68 68 22 B - - 35 31 54 D - - 69 69 23 B - - 34 30 55 D - - 70 71 24 B 17 11 33 29 56/ TDO D 38 32 71 73 25 B 16 10 31 25 57 D 39 33 73 75 26 B - - 30 23 58 D - - 74 76 27 B - - 29 21 59 D - - 75 79 28 B - - 28 20 60 D - - 76 80 29 B - - 27 19 61 D - - 77 81 30 B 14 8 25 17 62 D 40 34 79 83 31 B - - 24 16 63 D - - 80 84 64 D/ GCLK3 41 35 81 85 32/ TMS 36 B 13 7 23 15 ATF1504SE(L) 2401D–PLD–09/02 ATF1504SE(L) ATF1504SE(L) Ordering Information tPD (ns) tCO1 (ns) fMAX (MHz) 5.0 3.2 6.0 7.5 10 15 Ordering Code Package 250 ATF1504SE-5 ATF1504SE-5 ATF1504SE-5 ATF1504SE-5 AC44 JC44 JC84 AC100 44A 44J 84J 100A Commercial (0°C to 70°C) 4.0 200 ATF1504SE-6 ATF1504SE-6 ATF1504SE-6 ATF1504SE-6 AC44 JC44 JC84 AC100 44A 44J 84J 100A Commercial (0°C to 70°C) 4.5 167 ATF1504SE-7 ATF1504SE-7 ATF1504SE-7 ATF1504SE-7 AC44 JC44 JC84 AC100 44A 44J 84J 100A Commercial (0°C to 70°C) ATF1504SE-7 ATF1504SE-7 ATF1504SE-7 ATF1504SE-7 AI44 JI44 J84 AI100 44A 44J 84J 100A Industrial (-40°C to +85°C) ATF1504SE-10 AC44 ATF1504SE-10 JC44 ATF1504SE-10 JC84 ATF1504SE-10 AC100 44A 44J 84J 100A Commercial (0°C to 70°C) ATF1504SE-10 AI44 ATF1504SE-10 JI44 ATF1504SE-10 JI84 ATF1504SE-10 AI100 44A 44J 84J 100A Industrial (-40°C to +85°C) ATF1504SEL-15 AC44 ATF1504SEL-15 JC44 ATF1504SEL-15 JC84 ATF1504SEL-15 AC100 44A 44J 84J 100A Commercial (0°C to 70°C) 5.0 9.0 125 77 Operation Range Using “C” Product for Industrial To use commercial product for industrial temperature ranges, down grade one speed grade from the “I” to the “C” device, and de-rate power by 30%. Package Type 44A 44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP) 44J 44-lead, Plastic J-leaded Chip Carrier (PLCC) 84J 84-lead, Plastic J-leaded Chip Carrier (PLCC) 100A 100-lead, Very Thin Plastic Gull Wing Quad Flatpack (TQFP) 37 2401D–PLD–09/02 AC Characteristics(1) ATF1508SE(L) SE -6 Symbol Parameter Min SE -7 Max Min Max SE -10 Min SEL -15(6) Max Min Max Unit tPD1 Input or Feedback to Non-registered Output 6 7.5 10 15 ns tPD2 I/O Input or Feedback to Non-registered Feedback 6 7.5 10 15 ns tSU Global Clock Setup Time 3.4 6.0 7.0 11 ns tH Global Clock Hold Time 0.0 0.0 0.0 0.0 ns tFSU Global Clock Setup Time of Fast Input 2.5 3.0 3.0 3.0 ns tFH Global Clock Hold of Fast Input 0 0.5 0.5 1 ns tCO1 Global Clock to Output Delay tCH Global Clock High Time 3 3.0 4.0 5.0 ns tCL Global Clock Low Time 3 3.0 4.0 5.0 ns tASU Array Clock Setup Time 0.9 3.0 2.0 4.0 ns tAH Array Clock Hold Time 1.8 2.0 5.0 4.0 ns 4.0 4.5 5.0 8.0 ns tACO1 Array Clock Output Delay tACH Array Clock High Time 3.0 3 4.0 6.0 ns tACL Array Clock Low Time 3.0 3 4.0 6.0 ns tCNT Minimum Clock Global Period fCNT(3) Maximum Internal Global Clock Frequency tACNT Minimum Array Clock Period 6.5 7.5 6.8 150 10 8.0 125 6.8 15 10 100 8.0 13 77 10 ns ns MHz 13 ns fACNT(4) Maximum Internal Array Clock Frequency 150 125 100 77 MHz fMAX(5) Maximum Clock Frequency 167 167 125 100 MHz tIN Input Pad and Buffer Delay 0.2 0.5 0.5 2.0 ns tIO I/O Input Pad and Buffer Delay 0.2 0.5 0.5 2.0 ns tFIN Fast Input Delay 2.6 1.0 1.0 2.0 ns tSEXP Foldback Term Delay 3.7 4.0 5.0 8.0 ns tPEXP Cascade Logic Delay 1.1 0.8 0.0 1.0 ns tLAD Logic Array Delay 3.0 3.0 5.0 6.0 ns tLAC Logic Control Delay 3.0 3.0 5.0 6.0 ns tIOE Internal Output Enable Delay 0.7 2.0 2.0 3.0 ns tOD1 Output Buffer and Pad Delay (slow slew rate = OFF; VCCIO = 5V; CL= 35 pF) 0.4 2.0 1.5 4.0 ns tOD2 Output Buffer and Pad Delay (slow slew rate = OFF; VCCIO = 3.3V; CL= 35 pF) 0.9 2.5 2.0 5.0 ns tOD3 Output Buffer and Pad Delay (slow slew rate = ON; VCCIO = 5V or 3.3V; C L= 35 pF) 5.4 7.0 5.5 8.0 ns tZX1 Output Buffer Enable Delay (slow slew rate = OFF; VCCIO = 5V; CL= 35 pF) 4.0 4.0 5 6.0 ns 38 ATF1508SE(L) 2401D–PLD–09/02 ATF1508SE(L) AC Characteristics(1) ATF1508SE(L) (Continued) SE -6 Symbol Parameter tZX2 Output Buffer Enable Delay (slow slew rate = OFF; VCCIO = 3.3V; CL= 35 pF) tZX3 Min SE -7 Max Min SE -10 Max Min Max SEL -15(6) Min Max Unit 4.5 4.5 5.5 7.0 ns Output Buffer Enable Delay (slow slew rate = ON; VCCIO = 5V or 3.3V; C L= 35 pF) 9 9 9 10.0 ns tXZ Output Buffer Disable Delay (C L= 5 pF) 4 4 5 6.0 ns tSU Register Setup Time 1.0 3.0 2.0 4.0 ns tH Register Hold Time 1.7 2.0 5.0 4.0 ns tFSU Register Setup Time of Fast Input 1.9 3.0 3.0 2.0 ns tFH Register Hold Time of Fast Input 0.6 0.5 0.5 1.0 ns tRD Register Delay 1.4 1.0 2.0 1.0 ns Combinatorial Delay 1.0 1.0 2.0 1.0 ns tIC Array Clock Delay 3.1 3.0 5.0 6.0 ns tEN Register Enable Time 3.0 3.0 5.0 6.0 ns tGLOB Global Control Delay 2.0 1.0 1.0 1.0 ns tPRE Register Preset Time 2.4 2.0 3.0 4.0 ns tCLR Register Clear Time 2.4 2.0 3.0 4.0 ns tUIM Switch Matrix Delay 1.4 1.0 1.0 2.0 ns tCOMB tRPA(2) Reduced Power Adder 10 10 11 13 ns Notes: 1. See ordering Information for valid part numbers. 2. The tRPA parameter must be added to the tLAD, tLAC, tIC, tACL and tSEXP parameters for macrocells running in the reducedpower mode. 3. fCNT is the fastest 16-bit counter frequency available, using the local feedback when applicable, and a PIA fan-out of one logic block (16 macrocells). fCNT is also the Export Control Maximum flip-flop toggle rate, fTOG. 4. fACNT is the fastest 16-bit counter frequency available, using the internal array clock, local feedback when applicable and a PIA fan-out of one logic block (16 macrocells). 5. fMAX is the fastest available frequency for pipelined data. 6. For clocked applications and frequencies above fCRITICAL, OR, non-clocked applications with dormant times less than 1/fCRITICAL, the device will achieve the speeds of the –10 column. See “Input Transition Detection/ Automatic Power Down” on page 8. 39 2401D–PLD–09/02 STAND-BY ICC VS. NORMALIZED ICC VS. TEMP 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 1.4 TBD 4.5 4.8 5.0 1.2 NORMALIZED Icc ICC (µA) SUPPLY VOLTAGE (TA = 25°C) 5.3 1.0 TBD 0.8 0.6 0.4 -40.0 5.5 SUPPLY VOLTAGE (V) 0.0 25.0 75.0 TEMPERATURE (C) SUPPLY CURRENT VS. INPUT FREQUENCY (VCC = 5.0V, TA = 25°C) SUPPLY CURRENT VS. INPUT FREQUENCY (VCC = 5.0V, TA = 25°C) 140.000 1.000 120.000 0.800 ICC (mA) ICC (mA) 100.000 80.000 TBD 0.600 TBD 0.400 60.000 0.200 40.000 0.000 20.000 0.0 0.5 2.5 5.0 7.5 10.0 25.0 37.5 50.0 FREQUENCY (MHz) 0.000 0.0 0.5 2.5 5.0 7.5 10.0 FREQUENCY (MHz) 25.0 37.5 50.0 OUTPUT SOURCE CURRENT VS. SUPPLY VOLTAGE (V OH = 2.4V) 0 OUTPUT SOURCE CURRENT VS. OUTPUT VOLTAGE (VCC = 5.0V, T A = 25°C) 0.0 -10.0 -20.0 -20 IOH (mA) IOH (mA) -10 TBD -30 -40 -30.0 -40.0 TBD -50.0 -60.0 -70.0 -50 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 5.5 -80.0 6.0 -90.0 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 VOH (V) OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE (VCC = 5.0V, TA = 25°C) OUTPUT SINK CURRENT VS. SUPPLY VOLTAGE (V OL = 0.5V) 48 140.0 120.0 44 100.0 42 IOL (mA) Iol (mA) 46 TBD 40 38 80.0 TBD 60.0 40.0 36 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 5.5 6.0 20.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 40 ATF1508SE(L) 2401D–PLD–09/02 ATF1508SE(L) INPUT CLAMP CURRENT VS. INPUT VOLTAGE (V CC = 5.0V, TA = 35°C) 40 INPUT CURRENT (uA) INPUT CURRENT (mA) 0 -20 -40 TBD -60 -80 -100 -120 0.0 -0.2 -0.4 -0.6 INPUT VOLTAGE (V) INPUT CURRENT VS. INPUT VOLTAGE (V CC = 5.0V, TA = 25°C) -0.8 30 20 10 TBD 0 -10 -20 -30 -1.0 0.0 NORMALIZED TPD VS. VCC NORMALIZED TPD NORMALIZED TPD 5.0 6.0 1.1 1.1 TBD 1.0 0.9 0.8 4.5 4.8 5.0 SUPPLY VOLTAGE (V) 5.3 1.0 TBD 0.9 0.8 -40.0 5.5 NORMALIZED TCO VS. VCC 1.3 0.0 25.0 TEMPERATURE (C) 75.0 NORMALIZED TCO VS. TEMP 1.1 NORMALIZED TCO NORMALIZED TCO 2.0 3.0 4.0 INPUT VOLTAGE (V) NORMALIZED TPD VS. TEMP 1.2 1.2 1.1 TBD 1.0 0.9 4.5 4.8 5.0 SUPPLY VOLTAGE (V) 5.3 1.0 TBD 0.9 0.8 -40.0 0.8 5.5 0.0 25.0 75.0 TEMPERATURE (V) NORMALIZED TSU VS. VCC NORMALIZED TSU VS. TEMP 1.2 1.2 NORMALIZED TCO NORMALIZED TSU 1.0 1.1 1.0 TBD 0.9 0.8 4.5 4.8 5.0 SUPPLY VOLTAGE (V) 5.3 5.5 1.1 1.0 TBD 0.9 0.8 -40.0 0.0 25.0 75.0 TEMPERATURE (C) 41 2401D–PLD–09/02 DELTA TPD VS. OUTPUT LOADING 8 8.00 7.00 DELTA T CO (ns) 6 DELTA T PD (ns) DELTA TCO VS. OUTPUT LOADING 4 TBD 2 0 6.00 5.00 TBD 4.00 3.00 2.00 1.00 -2 0.00 0 50 100 150 200 250 300 50 100 OUTPUT LOADING (PF) 150 200 250 300 NUMBER OF OUTPUTS LOADING DELTA TCO VS. # OF OUTPUT SWITCHING DELTA TPD VS. # OF OUTPUT SWITCHING DELTA TCO (ns) DELTA TPD (ns) 0.0 0.0 -0.1 -0.2 TBD -0.3 TBD -0.2 -0.4 -0.3 -0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 NUMBER OF OUTPUTS SWITCHING 42 -0.1 9.0 10.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 NUMBER OF OUTPUTS SWITCHING ATF1508SE(L) 2401D–PLD–09/02 ATF1508SE(L) ATF1508SE(L) Pinouts 11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75 I/O I/O I/O I/O GND I/O I/O I/O VCCINT INPUT/OE2/GCLK2 INPUT/GCLR INPUT/OE1 INPUT/GCLK1 GND I/O/GCLK3 I/O I/O VCCIO I/O I/O I/O 84-lead PLCC – Top View ATF1504SE(L) ATF1508SE(L) 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 I/O I/O GND I/O/TDO I/O I/O I/O I/O VCCIO I/O I/O I/O I/O/TCK I/O I/O GND I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCIO I/O I/O I/O GND VCCINT I/O I/O/PD2 I/O GND I/O I/O I/O I/O I/O VCCIO I/O/PD1 VCCIO I/O/TDI I/O I/O I/O I/O GND I/O I/O I/O I/O/TMS I/O I/O VCCIO I/O I/O I/O I/O I/O GND 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 I/O I/O I/O I/O I/O GND I/O I/O I/O VCCINT INPUT/OE2/GCLK2 INPUT/GCLR INPUT/OE1 INPUT/GCLK1 GND I/O/GCLK3 I/O I/O VCCIO I/O I/O I/O I/O I/O I/O 100-lead TQFP – Top View 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ATF1508SE(L) 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 I/O GND I/O/TDO I/O I/O I/O I/O I/O I/O VCCIO I/O I/O I/O I/O/TCK I/O I/O GND I/O I/O I/O I/O I/O I/O I/O VCCIO GND I/O I/O I/O I/O I/O I/O I/O VCCIO I/O I/O I/O GND VCCINT I/O I/O/PD2 I/O GND I/O I/O I/O I/O I/O I/O I/O 26 27 28 29 30 31 33 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 I/O/PD1 I/O VCCIO I/O/TDI I/O I/O I/O I/O I/O I/O GND I/O I/O I/O I/O/TMS I/O I/O VCCIO I/O I/O I/O I/O I/O I/O I/O 43 2401D–PLD–09/02 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 I/O I/O I/O GND I/O I/O I/O VCCINT INPUT/OE2/GCLK2 INPUT/GCLR INPUT/OE1 INPUT/GCLK1 GND I/O/GCLK3 I/O I/O VCCIO I/O I/O I/O 100-lead PQFP – Top View 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 NC NC I/O I/O GND I/O/TDO NC I/O NC I/O I/O I/O VCCIO I/O I/O I/O I/O/TCK I/O I/O GND I/O I/O I/O NC I/O NC I/O VCCIO NC NC I/O I/O I/O I/O I/O VCCIO I/O I/O I/O GND VCCINT I/O I/O I/O/PD2 GND I/O I/O I/O I/O I/O 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 NC NC I/O I/O VCCIO I/O/TDI NC I/O NC I/O I/O I/O GND I/O/PD1 I/O I/O I/O/TMS I/O I/O VCCIO I/O I/O I/O NC I/O NC I/O GND NC NC 141 160 160-lead TQFP – Top View 120 1 101 80 41 44 60 ATF1508SE(L) 20 ATF1508SE(L) 2401D–PLD–09/02 ATF1508SE(L) ATF1508SE(L) Dedicated Pinouts Dedicated Pin 84-PLCC JLead 100-pin TQFP 100-pin PQFP 160-lead PQFP INPUT/GCLK1 83 87 89 139 INPUT/GCLR 1 89 91 141 INPUT/OE1 84 88 90 140 INPUT/OE2/GCK2 2 90 92 142 I/O/GCLK3 81 85 87 137 I/O PD (1,2) 12, 45 1,41 3, 43 63,159 TDI (JTAG) 14 4 6 9 TMS (JTAG) 23 15 17 22 TCK (JTAG) 62 62 64 99 TDO (JTAG) 71 73 75 112 GNDINT 42, 82 38,86 40,88 60,138 GNDIO 7, 19, 32, 47, 59, 72 11, 26, 43, 59, 74, 95 13, 28, 61, 76, 45, 97 17, 42,113, 66, 95,148 VCCINT 3, 43 39, 91 41,93 61,143 VCCIO 13, 26, 38, 53, 66, 78 3, 18, 34, 51, 66, 82 5,20,36,53,68,84 8,26,55,79,104,133 - - – 1,2,3,4,5,6,7,34,35,36, 37,38,39,40,44,45,46, 47,74,75,76,77,81,82, 83,84,85,86,87,114, 115,116,117,118,119, 120,124,125,126,127, 154,155,156,157 No Connect # of Signal pins 68 84 84 100 # of User I/O pins 64 80 80 96 OE (1,2) Global OE pins. GCLR Global Clear pin. GCLK (1,2,3) Global Clock pins. TDI, TMS, TCK, TDO JTAG pins used for In System Programming or Boundary-scan Testing. GNDINT Ground pins for the internal device logic. GNDIO Ground pins for the I/O drivers. VCCINT VCC pins for the internal device logic. VCCIO VCC pins for the I/O drivers. 45 2401D–PLD–09/02 ATF1508SE(L) I/O Pinouts 46 MC PLB 84-PLCC J-lead 100-lead PQFP 100-lead TQFP 160-lead PQFP MC PLB 84-PLCC J-lead 100-lead PQFP 100-lead TQFP 160-lead PQFP 1 A – 4 2 160 33 C – 27 25 41 2 A – – – – 34 C – – – – 3/PD1 A 12 3 1 159 35 C 31 26 24 33 4 A – – – 158 36 C – – – 32 5 A 11 2 100 153 37 C 30 25 23 31 6 A 10 1 99 152 38 C 29 24 22 30 7 A – – – – 39 C – – – – 8 A 9 100 98 151 40 C 28 23 21 29 9 A – 99 97 150 41 C – 22 20 28 10 A – – – – 42 C – – – – 11 A 8 98 96 149 43 C 27 21 19 27 12 A – – – 147 44 C – – – 25 13 A 6 96 94 146 45 C 25 19 17 24 14 A 5 95 93 145 46 C 24 18 16 23 15 A – – – – 47 C – – – – 16 A 4 94 92 144 48/TMS C 23 17 15 22 17 B 22 16 14 21 49 D 41 39 37 59 18 B – – – – 50 D – – – – 19 B 21 15 13 20 51 D 40 38 36 58 20 B – – – 19 52 D – – – 57 21 B 20 14 12 18 53 D 39 37 35 56 22 B – 12 10 16 54 D – 35 33 54 23 B – – – – 55 D – – – – 24 B 18 11 9 15 56 D 37 34 32 53 25 B 17 10 8 14 57 D 36 33 31 52 26 B – – – – 58 D – – – – 27 B 16 9 7 13 59 D 35 32 30 51 28 B – – – 12 60 D – – – 50 29 B 15 8 6 11 61 D 34 31 29 49 30 B – 7 5 10 62 D – 30 28 48 31 B – – – – 63 D – – – – 32/ TDI B/ 14 6 4 9 64 D 33 29 27 43 ATF1508SE(L) 2401D–PLD–09/02 ATF1508SE(L) ATF1508SE(L) I/O Pinouts (Continued) MC PLB 84-PLCC J-lead 100-lead PQFP 100-lead TQFP 160-lead PQFP MC PLB 84-PLCC J-lead 100-lead PQFP 100-lead TQFP 160-lead PQFP 65 E 44 42 40 62 97 G 63 65 63 100 66 E – – – – 98 G – – – – 45 43 41 63 99 G 64 66 64 101 67/PD2 E 68 E – – – 64 100 G – – – 102 69 E 46 44 42 65 101 G 65 67 65 103 70 E – 46 44 67 102 G – 69 67 105 71 E – – – – 103 G – – – – 72 E 48 47 45 68 104 G 67 70 68 106 73 E 49 48 46 69 105 G 68 71 69 107 74 E – – – – 106 G – – – – 75 E 50 49 47 70 107 G 69 72 70 108 76 E – – – 71 108 G – – – 109 77 E 51 50 48 72 109 G 70 73 71 110 78 E – 51 49 73 110 G – 74 72 111 79 E – – – – 111 G – – – – 80 E 52 52 50 78 112/TDO G 71 75 73 112 81 F – 54 52 80 113 H – 77 75 121 82 F – – – – 114 H – – – – 83 F 54 55 53 88 115 H 73 78 76 122 84 F – – – 89 116 H – – – 123 85 F 55 56 54 90 117 H 74 79 77 128 86 F 56 57 55 91 118 H 75 80 78 129 87 F – – – – 119 H – – – – 88 F 57 58 56 92 120 H 76 81 79 130 89 F – 59 57 93 121 H – 82 80 131 90 F – – – – 122 H – – – – 91 F 58 60 58 94 123 H 77 83 81 132 92 F – – – 96 124 H – – – 134 93 F 60 62 60 97 125 H 79 85 83 135 94 F 61 63 61 98 126 H 80 86 84 136 95 F – – – – 127 H – – – – 96 F/ TCK 62 64 62 99 128/GCLK3 H 81 87 85 137 47 2401D–PLD–09/02 ATF1508SE(L) Ordering Information tPD (ns) tCO1 (ns) fMAX (MHz) 6.0 4.0 7.5 4.5 10 15 5.0 8.0 Ordering Code Package 167 ATF1508SE-5 ATF1508SE-5 ATF1508SE-5 ATF1508SE-5 JC84 AC100 QC100 QC160 84J 100A 100Q4 160Q1 Commercial (0°C to 70°C) 167 ATF1508SE-7 ATF1508SE-7 ATF1508SE-7 ATF1508SE-7 JC84 AC100 QC100 QC160 84J 100A 100Q4 160Q1 Commercial (0°C to 70°C) ATF1508SE-7 ATF1508SE-7 ATF1508SE-7 ATF1508SE-7 JI84 AI100 QI100 QI160 84J 100A 100Q4 160Q1 Industrial (-40°C to +85°C) ATF1508SE-10 JC84 ATF1508SE-10 AC100 ATF1508SE-10 QC100 ATF1508SE-10 QC160 84J 100A 100Q4 160Q1 Commercial (0°C to 70°C) ATF1508SE-10 JI84 ATF1508SE-10 AI100 ATF1508SE-10 QI100 ATF1508SE-10 QI160 84J 100A 100Q4 160Q1 Industrial (-40°C to +85°C) ATF1508SEL-15 JC84 ATF1508SEL-15 AC100 ATF1508SEL-15 QC100 ATF1508SEL-15 QC160 84J 100A 100Q4 160Q1 Commercial (0°C to 70°C) 125 100 Operation Range Using “C” Product for Industrial To use commercial product for industrial temperature ranges, down-grade one speed grade from the “I” to the “C” device and de-rate power by 30%. Package Type 84J 84-lead, Plastic J-leaded Chip Carrier (PLCC) 100A 100-lead, Very Thin Plastic Gull Wing Quad Flatpack (TQFP) 100Q4 100-lead, Plastic Quad Pin Flat Package (PQFP) 160Q1 160-lead, Plastic Quad Pin Flat Package (PQFP) 48 ATF1508SE(L) 2401D–PLD–09/02 ATF1516SE(L) AC Characteristics(1) ATF1516SE(L) SE -7 Symbol Parameter Min SEL -15(6) SE -10 Max Min Max Min Max Unit tPD1 Input or Feedback to Non-registered Output 7.5 10 15 ns tPD2 I/O Input or Feedback to Non-registered Feedback 7.5 10 12 ns tSU Global Clock Setup Time 3.9 7.0 11 ns tH Global Clock Hold Time 0.0 0.0 0.0 ns tFSU Global Clock Setup Time of Fast Input 3.9 3.0 3.0 ns tFH Global Clock Hold of Fast Input 0.0 0.5 1 ns tCO1 Global Clock to Output Delay tCH Global Clock High Time 3.0 4.0 5.0 ns tCL Global Clock Low Time 3.0 4.0 5 ns tASU Array Clock Setup Time 0.8 2.0 4.0 ns tAH Array Clock Hold Time 1.9 3.0 4.0 ns 4.7 5.0 8.0 ns tACO1 Array Clock Output Delay tACH Array Clock High Time 3.0 4 6 ns tACL Array Clock Low Time 3.0 4 6 ns tCNT Minimum Clock Global Period fCNT(3) Maximum Internal Global Clock Frequency tACNT Minimum Array Clock Period 7.3 1 7.8 130 10 15 10 100 7.8 13 77 10 ns ns MHz 13 ns fACNT(4) Maximum Internal Array Clock Frequency 130 100 77 MHz fMAX(5) Maximum Clock Frequency 167 125 100 MHz tIN Input Pad and Buffer Delay 0.3 0.5 2.0 ns tIO I/O Input Pad and Buffer Delay 0.3 0.5 2.0 ns tFIN Fast Input Delay 3.4 1.0 2.0 ns tSEXP Foldback Term Delay 3.9 5.0 8.0 ns tPEXP Cascade Logic Delay 1.1 0.8 1.0 ns tLAD Logic Array Delay 2.6 5.0 6.0 ns tLAC Logic Control Delay 2.6 5.0 6.0 ns tIOE Internal Output Enable Delay 0.8 2.0 3.0 ns tOD1 Output Buffer and Pad Delay (slow slew rate = OFF; VCCIO = 5V; CL= 35 pF) 0.5 1.5 4.0 ns tOD2 Output Buffer and Pad Delay (slow slew rate = OFF; VCCIO = 3.3V; CL= 35 pF) 1.0 2.0 5.0 ns tOD3 Output Buffer and Pad Delay (slow slew rate = ON; VCCIO = 5V or 3.3V; C L= 35 pF) 5.5 5.5 8.0 ns tZX1 Output Buffer Enable Delay (slow slew rate = OFF; VCCIO = 5V; CL= 35 pF) 4.0 5.0 6.0 ns 49 2401D–PLD–09/02 AC Characteristics(1) ATF1516SE(L) (Continued) SE -7 Symbol Parameter Min SEL -15(6) SE -10 Max Min Max Min Max Unit tZX2 Output Buffer Enable Delay (slow slew rate = OFF; VCCIO = 3.3V; CL= 35 pF) 4.5 5.5 7.0 ns tZX3 Output Buffer Enable Delay (slow slew rate = ON; VCCIO = 5V or 3.3V; CL= 35 pF) 9.0 9.0 10.0 ns tXZ Output Buffer Disable Delay (C L= 5 pF) 4.0 5.0 6.0 ns tSU Register Setup Time 1.1 2.0 4.0 ns tH Register Hold Time 1.6 3.0 4.0 ns tFSU Register Setup Time of Fast Input 2.4 3.0 2.0 ns tFH Register Hold Time of Fast Input 0.6 0.5 1.0 ns tRD Register Delay 1.1 2.0 1.0 ns Combinatorial Delay 1.1 2.0 1.0 ns tIC Array Clock Delay 2.9 5.0 6.0 ns tEN Register Enable Time 2.6 5.0 6.0 ns tGLOB Global Control Delay 2.8 1.0 1.0 ns tPRE Register Preset Time 2.7 3.0 4.0 ns tCLR Register Clear Time 2.7 3.0 4.0 ns tUIM Switch Matrix Delay 3.0 1.0 2.0 ns tCOMB (2) tRPA Reduced Power Adder 10 11 13 ns Notes: 1. See ordering Information for valid part numbers. 2. The tRPA parameter must be added to the tLAD, tLAC, tIC, tACL and tSEXP parameters for macrocells running in the reducedpower mode. 3. fCNT is the fastest 16-bit counter frequency available, using the local feedback when applicable, and a PIA fan-out of one logic block (16 macrocells). fCNT is also the Export Control Maximum flip-flop toggle rate, fTOG. 4. fACNT is the fastest 16-bit counter frequency available, using the internal array clock, local feedback when applicable and a PIA fan-out of one logic block (16 macrocells). 5. fMAX is the fastest available frequency for pipelined data. 6. For clocked applications and frequencies above fCRITICAL, OR, non-clocked applications with dormant times less than 1/fCRITICAL, the device will achieve the speeds of the –10 column. See “Input Transition Detection/ Automatic Power Down” on page 8. 50 ATF1516SE(L) 2401D–PLD–09/02 ATF1516SE(L) STAND-BY ICC VS. NORMALIZED ICC VS. TEMP 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 1.4 TBD 4.5 4.8 5.0 1.2 NORMALIZED Icc ICC (µA) SUPPLY VOLTAGE (TA = 25°C) 5.3 1.0 TBD 0.8 0.6 0.4 -40.0 5.5 SUPPLY VOLTAGE (V) 25.0 75.0 TEMPERATURE (C) SUPPLY CURRENT VS. INPUT FREQUENCY (VCC = 5.0V, TA = 25°C) SUPPLY CURRENT VS. INPUT FREQUENCY (V CC = 5.0V, TA = 25°C) 1.000 120.000 0.800 ICC (mA) 140.000 100.000 ICC (mA) 0.0 80.000 0.600 TBD 0.400 TBD 0.200 60.000 0.000 40.000 0.0 0.5 2.5 5.0 20.000 7.5 10.0 25.0 37.5 50.0 FREQUENCY (MHz) 0.000 0.0 0.5 2.5 5.0 7.5 10.0 FREQUENCY (MHz) 25.0 37.5 50.0 OUTPUT SOURCE CURRENT VS. SUPPLY VOLTAGE (V OH = 2.4V) 0 0.0 -10.0 -10 -20.0 -20 TBD -30 IOH (mA) IOH (mA) OUTPUT SOURCE CURRENT VS. OUTPUT VOLTAGE (VCC = 5.0V, T A = 25°C) -40 -50 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 5.5 -30.0 -40.0 TBD -50.0 -60.0 -70.0 6.0 -80.0 -90.0 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 VOH (V) OUTPUT SINK CURRENT VS. SUPPLY VOLTAGE (V OL = 0.5V) 48 OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE (V CC = 5.0V, TA = 25°C) 140.0 120.0 44 42 100.0 TBD IOL (mA) Iol (mA) 46 40 38 80.0 TBD 60.0 40.0 36 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 5.5 6.0 20.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 51 2401D–PLD–09/02 INPUT CLAMP CURRENT VS. INPUT VOLTAGE (VCC = 5.0V, T A = 35°C) 40 INPUT CURRENT (uA) INPUT CURRENT (mA) 0 -20 -40 TBD -60 -80 -100 -120 0.0 -0.2 -0.4 -0.6 INPUT VOLTAGE (V) INPUT CURRENT VS. INPUT VOLTAGE (VCC = 5.0V, T A = 25°C) -0.8 30 20 10 TBD 0 -10 -20 -30 -1.0 0.0 NORMALIZED TPD VS. VCC NORMALIZED TPD NORMALIZED TPD 1.1 TBD 1.0 0.9 4.5 5.0 SUPPLY VOLTAGE (V) 5.3 6.0 1.0 TBD 0.9 0.8 -40.0 5.5 NORMALIZED TCO VS. VCC 0.0 25.0 TEMPERATURE (C) 75.0 NORMALIZED T CO VS. TEMP 1.1 NORMALIZED TCO NORMALIZED TCO 4.8 1.2 1.1 TBD 1.0 0.9 4.5 4.8 5.0 SUPPLY VOLTAGE (V) 5.3 1.0 TBD 0.9 0.8 -40.0 0.8 5.5 0.0 25.0 75.0 TEMPERATURE (V) NORMALIZED TSU VS. VCC NORMALIZED TSU VS. TEMP 1.2 1.2 NORMALIZED TCO NORMALIZED TSU 5.0 1.1 0.8 1.1 1.0 TBD 0.9 0.8 4.5 52 2.0 3.0 4.0 INPUT VOLTAGE (V) NORMALIZED T PD VS. TEMP 1.2 1.3 1.0 4.8 5.0 SUPPLY VOLTAGE (V) 5.3 5.5 1.1 1.0 TBD 0.9 0.8 -40.0 0.0 25.0 75.0 TEMPERATURE (C) ATF1516SE(L) 2401D–PLD–09/02 ATF1516SE(L) DELTA TPD VS. OUTPUT LOADING 8 8.00 7.00 DELTA T CO (ns) 6 DELTA T PD (ns) DELTA TCO VS. OUTPUT LOADING 4 TBD 2 0 6.00 5.00 TBD 4.00 3.00 2.00 1.00 -2 0.00 0 50 100 150 200 250 300 50 100 OUTPUT LOADING (PF) 150 200 250 300 NUMBER OF OUTPUTS LOADING DELTA TCO VS. # OF OUTPUT SWITCHING DELTA TPD VS. # OF OUTPUT SWITCHING DELTA TCO (ns) DELTA TPD (ns) 0.0 0.0 -0.1 -0.2 TBD -0.3 -0.1 TBD -0.2 -0.4 -0.3 -0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 NUMBER OF OUTPUTS SWITCHING 9.0 10.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 NUMBER OF OUTPUTS SWITCHING 53 2401D–PLD–09/02 ATF1516SE(L) Dedicated Pinouts 183 131 104 53 54 156 ATF1516SE(L) 26 78 1 208 208-lead PQFP and RQFP – Top View ATF1516SE(L) 2401D–PLD–09/02 ATF1516SE(L) ATF1516SE(L) Dedicated Pinouts Dedicated Pin 208-pin PQFP 208-pin RQFP INPUT/GCLK1 184 184 INPUT/GCLR 182 182 INPUT/OE1 183 183 INPUT/OE2/GCK2 181 181 I/O/GCLK3 TBD TBD I/O PD (1,2) TBD TBD TDI (JTAG) 176 176 TMS (JTAG) 127 127 TCK (JTAG) 30 30 TDO (JTAG) 189 189 GNDINT 75, 82, 180, 185 75, 82, 180, 185 GNDIO 14, 32, 50, 72, 94, 116, 134, 152, 174, 200 14, 32, 50, 72, 94, 116, 134, 152, 174, 200 VCCINT 74, 83, 179, 186 74, 83, 179, 186 VCCIO 5, 23, 41, 63, 85, 107, 125, 143, 165, 191 5, 23, 41, 63, 85, 107, 125, 143, 165, 191 1,2, 51, 52, 53, 54, 103, 104, 105, 106, 155, 156, 157, 158, 207, 208 1,2, 51, 52, 53, 54, 103, 104, 105, 106, 155, 156, 157, 158, 207, 208 # of Signal pins 164 164 # of User I/O pins 160 160 No Connect OE (1,2) Global OE pins. GCLR Global Clear pin. GCLK (1,2,3) Global Clock pins. TDI, TMS, TCK, TDO JTAG pins used for In System Programming or Boundary-scan Testing. GNDINT Ground pins for the internal device logic. GNDIO Ground pins for the I/O drivers. VCCINT VCC pins for the internal device logic. VCCIO VCC pins for the I/O drivers. 55 2401D–PLD–09/02 ATF1516SE(L) I/O Pinouts 56 MC PLB 208-pin PQFP 208-pin RQRP MC PLB 208-pin PQFP 208-pin RQFP 1 A 153 153 33 C 108 108 2 A - - 34 C - - 3 A 154 154 35 C 109 109 4 A - - 36 C - - 5 A 159 159 37 C 110 110 6 A 160 160 38 C 111 111 7 A - - 39 C - - 8 A 161 161 40 C 112 112 9 A 162 162 41 C 113 113 10 A - - 42 C - - 11 A 163 163 43 C 114 114 12 A - - 44 C - - 13 A 164 164 45 C 115 115 14 A 166 166 46 C 117 117 15 A - - 47 C - - 16 A 167 167 48 C 118 118 17 B 141 141 49 D 92 92 18 B - - 50 D - - 19 B 142 142 51 D 93 93 20 B - - 52 D - - 21 B 144 144 53 D 95 95 22 B 145 145 54 D 96 96 23 B - - 55 D - - 24 B 146 146 56 D 97 97 25 B 147 147 57 D 98 98 26 B - - 58 D - - 27 B 148 148 59 D 99 99 28 B - - 60 D - - 29 B 149 149 61 D 100 100 30 B 150 150 62 D 101 101 31 B - - 63 D - - 32 B 151 151 64 D 102 102 ATF1516SE(L) 2401D–PLD–09/02 ATF1516SE(L) ATF1516SE(L) I/O Pinouts (Continued) MC PLB 208-pin PQFP 208-pin RQRP MC PLB 208-pin PQFP 208-pin RQFP 65 E 168 168 97 G 119 119 66 E - - 98 G - - 67 E 169 169 99 G 120 120 68 E - - 100 G - - 69 E 170 170 101 G 121 121 70 E 171 171 102 G 122 122 71 E - - 103 G - - 72 E 172 172 104 G 123 123 73 E 173 173 105 G 124 124 74 E - - 106 G - - 75 E 175 175 107 G 126 126 76 E - - 108 G - - 77 E 176 176 109 G 127 127 78 E 177 177 110 G 128 128 79 E - - 111 G - - 80 E 178 178 112 G 129 129 81 F 130 130 113 H 79 79 82 F - - 114 H - - 83 F 131 131 115 H 80 80 84 F - - 116 H - - 85 F 132 132 117 H 81 81 86 F 133 133 118 H 84 84 87 F - - 119 H - - 88 F 135 135 120 H 86 86 89 F 136 136 121 H 87 87 90 F - - 122 H - - 91 F 137 137 123 H 88 88 92 F - - 124 H - - 93 F 138 138 125 H 89 89 94 F 139 139 126 H 90 90 95 F - - 127 H - - 96 F 140 140 128 H 91 91 57 2401D–PLD–09/02 ATF1516SE(L) I/O Pinouts (Continued) 58 MC PLB 208-pin PQFP 208-pin RQRP MC PLB 208-pin PQFP 208-pin RQFP 129 I 197 197 161 K 38 38 130 I - - 162 K - - 131 I 196 196 163 K 37 37 132 I - - 164 K - - 133 I 195 195 165 K 36 36 134 I 194 194 166 K 35 35 135 I - - 167 K - - 136 I 193 193 168 K 34 34 137 I 192 192 169 K 33 33 138 I - - 170 K - - 139 I 190 190 171 K 31 31 140 I - - 172 K - - 141 I 189 189 173 K 30 30 142 I 188 188 174 K 29 29 143 I - - 175 K - - 144 I 187 187 176 K 28 28 145 J 27 27 177 L 78 78 146 J - - 178 L - - 147 J 26 26 179 L 77 77 148 J - - 180 L - - 149 J 25 25 181 L 76 76 150 J 24 24 182 L 73 73 151 J - - 183 L - - 152 J 22 22 184 L 71 71 153 J 21 21 185 L 70 70 154 J - - 186 L - - 155 J 20 20 187 L 69 69 156 J - - 188 L - - 157 J 19 19 189 L 68 68 158 J 18 18 190 L 67 67 159 J - - 191 L - - 160 J 17 17 192 L 66 66 ATF1516SE(L) 2401D–PLD–09/02 ATF1516SE(L) ATF1516SE(L) I/O Pinouts (Continued) MC PLB 208-pin PQFP 208-pin RQRP MC PLB 208-pin PQFP 208-pin RQFP 193 M 4 4 225 O 49 49 194 M - - 226 O - - 195 M 3 3 227 O 48 48 196 M - - 228 O - - 197 M 206 206 229 O 47 47 198 M 205 205 230 O 46 46 199 M - - 231 O - - 200 M 204 204 232 O 45 45 201 M 203 203 233 O 44 44 202 M - - 234 O - - 203 M 202 202 235 O 43 43 204 M - - 236 O - - 205 M 201 201 237 O 42 42 206 M 199 199 238 O 40 40 207 M - - 239 O - - 208 M 198 198 240 O 39 39 209 N 16 16 241 P 65 65 210 N - - 242 P - - 211 N 15 15 243 P 64 64 212 N - - 244 P - - 213 N 13 13 245 P 62 62 214 N 12 12 246 P 61 61 215 N - - 247 P - - 216 N 11 11 248 P 60 60 217 N 10 10 249 P 59 59 218 N - - 250 P - - 219 N 9 9 251 P 58 58 220 N - - 252 P - - 221 N 8 8 253 P 57 57 222 N 7 7 254 P 56 56 223 N - - 255 P - - 224 N 6 6 256 P 55 55 59 2401D–PLD–09/02 ATF1516SE(L) Ordering Information tPD (ns) tCO1 (ns) fMAX (MHz) 7.5 4.7 167 10 15 5.0 8.0 125 100 Ordering Code Package Operation Range ATF1516SE-7 QC208 ATF1516SE-7 RC208 208Q1 208Q2 Commercial (0°C to 70°C) ATF1516SE-7 QI208 ATF1516SE-7 RI208 208Q1 208Q2 Industrial (-40°C to +85°C) ATF1516SE-10 QC208 ATF1516SE-10 RC208 208Q1 208Q2 Commercial (0°C to 70°C) ATF1516SE-10 QI208 ATF1516SE-10 RI208 208Q1 208Q2 Industrial (-40°C to +85°C) ATF1516SEL-15 QC208 ATF1516SEL-15 RC208 208Q1 208Q2 Commercial (0°C to 70°C) Using “C” Product for Industrial To use commercial product for industrial temperature ranges, down-grade one speed grade from the “I” to the “C” device, and de-rate power by 30%. Package Type 208Q1 208-lead, 28 x 28 mm Body, 2.6 Form Opt., Plastic Quad Flatpack (PQFP) 208Q2 208-lead, 28 x 28 mm Body, 2.6 Form Opt., Plastic Quad Flatpack with Heat Spreader (PQFP) 60 ATF1516SE(L) 2401D–PLD–09/02 ATF1516SE(L) Package Information 44A – TQFP PIN 1 B PIN 1 IDENTIFIER E1 e E D1 D C 0˚~7˚ A1 A2 A L COMMON DIMENSIONS (Unit of Measure = mm) Notes: 1. This package conforms to JEDEC reference MS-026, Variation ACB. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch. 3. Lead coplanarity is 0.10 mm maximum. SYMBOL MIN NOM MAX A – – 1.20 A1 0.05 – 0.15 A2 0.95 1.00 1.05 D 11.75 12.00 12.25 D1 9.90 10.00 10.10 E 11.75 12.00 12.25 E1 9.90 10.00 10.10 B 0.30 – 0.45 C 0.09 – 0.20 L 0.45 – 0.75 e NOTE Note 2 Note 2 0.80 TYP 10/5/2001 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) DRAWING NO. REV. 44A B 61 2401D–PLD–09/02 44J – PLCC 1.14(0.045) X 45° PIN NO. 1 1.14(0.045) X 45° 0.318(0.0125) 0.191(0.0075) IDENTIFIER E1 D2/E2 B1 E B e A2 D1 A1 D A 0.51(0.020)MAX 45° MAX (3X) COMMON DIMENSIONS (Unit of Measure = mm) Notes: 1. This package conforms to JEDEC reference MS-018, Variation AC. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is .010"(0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line. 3. Lead coplanarity is 0.004" (0.102 mm) maximum. SYMBOL MIN NOM MAX A 4.191 – 4.572 A1 2.286 – 3.048 A2 0.508 – – D 17.399 – 17.653 D1 16.510 – 16.662 E 17.399 – 17.653 E1 16.510 – 16.662 D2/E2 14.986 – 16.002 B 0.660 – 0.813 B1 0.330 – 0.533 e NOTE Note 2 Note 2 1.270 TYP 10/04/01 R 62 2325 Orchard Parkway San Jose, CA 95131 TITLE 44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC) DRAWING NO. REV. 44J B ATF1516SE(L) 2401D–PLD–09/02 ATF1516SE(L) 84J – PLCC 1.14(0.045) X 45° PIN NO. 1 1.14(0.045) X 45° 0.318(0.0125) 0.191(0.0075) IDENTIFIER E1 D2/E2 B1 E B e A2 D1 A1 D A 0.51(0.020)MAX 45° MAX (3X) COMMON DIMENSIONS (Unit of Measure = mm) Notes: 1. This package conforms to JEDEC reference MS-018, Variation AF. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is .010"(0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line. 3. Lead coplanarity is 0.004" (0.102 mm) maximum. SYMBOL MIN NOM MAX A 4.191 – 4.572 A1 2.286 – 3.048 A2 0.508 – – D 30.099 – 30.353 D1 29.210 – 29.413 E 30.099 – 30.353 E1 29.210 – 29.413 D2/E2 27.686 – 28.702 B 0.660 – 0.813 B1 0.330 – 0.533 e NOTE Note 2 Note 2 1.270 TYP 10/04/01 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 84J, 84-lead, Plastic J-leaded Chip Carrier (PLCC) DRAWING NO. REV. 84J B 63 2401D–PLD–09/02 100A – TQFP PIN 1 B PIN 1 IDENTIFIER E1 e E D1 D C 0˚~7˚ A1 A2 A L COMMON DIMENSIONS (Unit of Measure = mm) Notes: 1. This package conforms to JEDEC reference MS-026, Variation AED. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch. 3. Lead coplanarity is 0.08 mm maximum. SYMBOL MIN NOM MAX A – – 1.20 A1 0.05 – 0.15 A2 0.95 1.00 1.05 D 15.75 16.00 16.25 D1 13.90 14.00 14.10 E 15.75 16.00 16.25 E1 13.90 14.00 14.10 B 0.17 – 0.27 C 0.09 – 0.20 L 0.45 – 0.75 e NOTE Note 2 Note 2 0.50 TYP 10/5/2001 R 64 2325 Orchard Parkway San Jose, CA 95131 TITLE 100A, 100-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) DRAWING NO. 100A REV. C ATF1516SE(L) 2401D–PLD–09/02 ATF1516SE(L) 100Q4 – PQFP D1 D E E1 Top View Bottom View A2 A1 e b L1 COMMON DIMENSIONS (Unit of Measure = mm) Side View SYMBOL Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MS-022, Variation GC-1, for additional information. 2. To be determined at seating plane. 3. Regardless of the relative size of the upper and lower body sections, dimensions D1 and E1 are determined at the largest feature of the body exclusive of mold Flash and gate burrs, but including any mismatch between the upper and lower sections of the molded body. 4. Dimension b does not include Dambar protrusion. The Dambar protrusion(s) shall not cause the lead width to exceed b maximum by more than 0.08 mm. Dambar cannot be located on the lower radius or the lead foot. 5. A1 is defined as the distance from the seating plane to the lowest point of the package body. MIN NOM MAX NOTE 5 A1 0.25 – 0.50 A2 2.50 2.70 2.90 D 23.20 BSC 2 D1 20.00 BSC 3 E 17.20 BSC 2 E1 14.00 BSC 3 e b 0.65 BSC 0.22 L1 0.40 4 1.60 REF 3/29/02 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 100Q4, 100-lead, 14 x 20 mm Body, 3.2 Form Opt., Plastic Quad Flat Pack (PQFP) DRAWING NO. 100Q4 REV. A 65 2401D–PLD–09/02 160Q1 – PQFP D1 D E E1 Top View Bottom View A2 A1 e b COMMON DIMENSIONS (Unit of Measure = mm) L1 SYMBOL Side View Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MS-022, Variation DD-1, for additional information. 2. To be determined at seating plane. 3. Regardless of the relative size of the upper and lower body sections, dimensions D1 and E1 are determined at the largest feature of the body exclusive of mold Flash and gate burrs, but including any mismatch between the upper and lower sections of the molded body. 4. Dimension b does not include Dambar protrusion. The Dambar protrusion(s) shall not cause the lead width to exceed b maximum by more than 0.08 mm. Dambar cannot be located on the lower radius or the lead foot. 5. A1 is defined as the distance from the seating plane to the lowest point of the package body. MIN NOM MAX A1 0.25 – 0.50 A2 3.20 3.40 3.60 D 31.20 BSC NOTE 5 2 D1 28.00 BSC 3 E 31.20 BSC 2 E1 28.00 BSC 3 e 0.65 BSC b 0.22 L1 – 0.40 4 1.60 REF 3/28/02 R 66 2325 Orchard Parkway San Jose, CA 95131 TITLE 160Q1, 160-lead, 28 x 28 mm Body, 3.2 Form Opt., Plastic Quad Flat Pack (PQFP) DRAWING NO. 160Q1 REV. A ATF1516SE(L) 2401D–PLD–09/02 ATF1516SE(L) 208Q1 – PQFP D1 A2 L1 A1 Side View E1 e b Top View D COMMON DIMENSIONS (Unit of Measure = mm) E SYMBOL MIN NOM MAX A1 0.25 – 0.50 A2 3.20 3.40 3.60 D 30.60 BSC D1 28.00 BSC E 30.60 BSC E1 28.00 BSC e b NOTE 2, 3 2, 3 0.50 BSC 0.17 L1 – 0.27 4 1.30 REF Bottom View Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-129, Variation FA-1, for proper dimensions, tolerances, datums, etc. 2. The top package body size may be smaller than the bottom package size by as much as 0.15 mm. 3. Dimensions D1 and E1 do not include mold protrusions. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch. 4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm. 07/23/02 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 208Q1, 208-lead (28 x 28 mm Body, 2.6 Form Opt.), Plastic Quad Flat Pack (PQFP) DRAWING NO. 208Q1 REV. B 67 2401D–PLD–09/02 208Q2 – PQFP D1 A2 L1 A1 Side View E1 e b Top View D COMMON DIMENSIONS (Unit of Measure = mm) E SYMBOL MIN NOM MAX A1 0.05 – 0.25 A2 3.20 3.40 3.60 D 30.60 BSC D1 28.00 BSC E 30.60 BSC E1 28.00 BSC e b NOTE 2, 3 2, 3 0.50 BSC 0.17 L1 – 0.27 4 1.30 REF Bottom View Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-129, Variation FA-2, for proper dimensions, tolerances, datums, etc. 2. The top package body size may be smaller than the bottom package size by as much as 0.15 mm. 3. Dimensions D1 and E1 do not include mold protrusions. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch. 4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm. 07/23/02 R 68 2325 Orchard Parkway San Jose, CA 95131 TITLE 208Q2, 208-lead (28 x 28 mm Body, 2.6 Form Opt.), Plastic Quad Flat Pack (PQFP) DRAWING NO. 208Q2 REV. A ATF1516SE(L) 2401D–PLD–09/02 Atmel Headquarters Atmel Operations Corporate Headquarters Memory 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600 Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500 Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369 Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314 RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340 Microcontrollers 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60 ASIC/ASSP/Smart Cards 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759 Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80 Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743 e-mail [email protected] Web Site http://www.atmel.com © Atmel Corporation 2002. Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical components in life support devices or systems. ATMEL ® is the registered trademark of Atmel; Logic Doubling ™ is the trademark of Atmel. Other terms and product names may be the trademarks of others. Printed on recycled paper. 2401D–PLD–09/02 xM