February 2007 HYB18T C25616 0 AF 256-Mbit Double-Data-Rate-Two SDRAM DDR2 SDRAM RoHS Compliant Products Internet Data Sheet Rev. 1.1 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM HYB18TC256160AF Revision History: 2007-02, Rev. 1.1 Page Subjects (major changes since last revision) All Adapted internet edition All Various editorial changes Previous Revision: 2005-07, Rev. 1.0 We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] qag_techdoc_rev400 / 3.2 QAG / 2006-07-21 03062006-H3V1-XJT4 2 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 1 Overview This chapter gives an overview of the 256-Mbit Double-Data-Rate-Two SDRAM product family and describes its main characteristics. 1.1 Features The 256-Mbit Double-Data-Rate-Two SDRAM offers the following key features: • Data masks (DM) for write data • 1.8 V ± 0.1 V Power Supply 1.8 V ± 0.1 V (SSTL_18) compatible I/O • Posted CAS by programmable additive latency for better • DRAM organizations with 4, 8 and 16 data in/outputs command and data bus efficiency • Double-Data-Rate-Two architecture: two data transfers • Off-Chip-Driver impedance adjustment (OCD) and Onper clock cycle four internal banks for concurrent operation Die-Termination (ODT) for better signal quality • CAS Latency: 3, 4, 5 • Auto-Precharge operation for read and write bursts • Burst Length: 4 and 8 • Auto-Refresh, Self-Refresh and power saving Power• Differential clock inputs (CK and CK) Down modes • Bi-directional, differential data strobes (DQS and DQS) are • Average Refresh Period 7.8 µs at a TCASE lower than transmitted / received with data. Edge aligned with read 85 °C, 3.9 µs between 85 °C and 95 °C data and center-aligned with write data • High Temperature Self Refresh Mode is supported • DLL aligns DQ and DQS transitions with clock (EMR2 A7) • DQS can be disabled for single-ended data strobe • Full and reduced Strength Data-Output Drivers operation • 1K page size • Commands entered on each positive clock edge, data and • Package: PG-TFBGA-84 data mask are referenced to both edges of DQS • RoHS Compliant Products1) TABLE 1 Performance table for –3S Product Type Speed Code –3S Unit Speed Grade DDR2–667D 5–5–5 — 333 MHz 266 MHz 200 MHz 15 ns 15 ns 45 ns 60 ns Max. Clock Frequency @CL5 @CL4 @CL3 Min. RAS-CAS-Delay Min. Row Precharge Time Min. Row Active Time Min. Row Cycle Time fCK5 fCK4 fCK3 tRCD tRP tRAS tRC 1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. Rev. 1.1, 2007-02 03062006-H3V1-XJT4 3 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 2 Performance table for –3.7 Product Type Speed Code –3.7 Unit Speed Grade DDR2–533C 4–4–4 — 266 MHz 266 MHz Max. Clock Frequency @CL5 @CL4 @CL3 Min. RAS-CAS-Delay Min. Row Precharge Time Min. Row Active Time Min. Row Cycle Time fCK5 fCK4 fCK3 tRCD tRP tRAS tRC 200 MHz 15 ns 15 ns 45 ns 60 ns TABLE 3 Performance Table for –5 Product Type Speed Code –5 Units Speed Grade DDR2–400B 3–3–3 — 200 MHz 200 MHz 200 MHz 15 ns 15 ns 40 ns 55 ns Max. Clock Frequency fCK5 fCK4 fCK3 tRCD tRP tRAS tRC @CL5 @CL4 @CL3 Min. RAS-CAS-Delay Min. Row Precharge Time Min. Row Active Time Min. Row Cycle Time Rev. 1.1, 2007-02 03062006-H3V1-XJT4 4 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 1.2 Description All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the cross point of differential clocks (CK rising and CK falling). All I/Os are synchronized with a single ended DQS or differential DQS-DQS pair in a source synchronous fashion. A 15 bit address bus is used to convey row, column and bank address information in a RAS-CAS multiplexing style. The DDR2 device operates with a 1.8 V ± 0.1 V power supply. An Auto-Refresh and Self-Refresh mode is provided along with various power-saving power-down modes. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation. The DDR2 SDRAM is available in PG-TFBGA-84 package. The 256-Mbit DDR2 DRAM is a high-speed Double-DataRate-Two CMOS Synchronous DRAM device. The DRAM contains 268,435,456 bits and internally configured as a quad-bank DRAM. The 256-Mbit device is organized as either 16 Mbit ×4 I/O ×4 banks, 8 Mbit ×8 I/O ×4 banks or 4 Mbit ×16 I/O ×4 banks chip. These synchronous devices achieve high speed transfer rates starting at 400 Mb/sec/pin for general applications. See tables for performance figures. The device is designed to comply with all DDR2 DRAM key features: 1. Posted CAS with additive latency, 2. Write latency = read latency - 1, 3. Normal and weak strength data-output driver, 4. Off-Chip Driver (OCD) impedance adjustment 5. On-Die Termination (ODT) function. TABLE 4 Ordering Information for RoHS Compliant Products Part Number Org. Speed CAS1)RCD2)RP3) Latencies Clock(MHz) Package Note HYB18TC256160AF–3S ×16 DDR2–667 5–5–5 333 PG-TFBGA-84 4) HYB18TC256160AF–3.7 ×16 DDR2–533 4–4–4 266 PG-TFBGA-84 HYB18TC256160AF–5 ×16 DDR2–400 3–3–3 200 PG-TFBGA-84 1) 2) 3) 4) CAS: Column Adress Strobe RCD: Row Column Delay RP: Row Precharge RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. Note: For product nomenclature see Chapter 9 of this data sheet Rev. 1.1, 2007-02 03062006-H3V1-XJT4 5 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 2 Configuration The chip configuration of a DDR2 SDRAM is listed by function in Table 5. The abbreviations used in the Ball# and Buffer Type columns are explained in Table 6 and Table 7 respectively. The ball numbering for the FBGA package is depicted in Figure 1 for ×16 components. TABLE 5 Chip Configuration Ball# Name Ball Type Buffer Type Function Clock Signal CK, Complementary Clock Signal CK Clock Signals ×16 organization J8 CK I SSTL K8 CK I SSTL K2 CKE I SSTL Clock Enable Row Address Strobe (RAS), Column Address Strobe (CAS), Write Enable (WE) Control Signals ×16 organization K7 RAS I SSTL L7 CAS I SSTL K3 WE I SSTL L8 CS I SSTL Chip Select Bank Address Bus 1:0 Address Signals ×16 organization L2 BA0 I SSTL L3 BA1 I SSTL L1 NC — — M8 A0 I SSTL M3 A1 I SSTL M7 A2 I SSTL N2 A3 I SSTL N8 A4 I SSTL N3 A5 I SSTL N7 A6 I SSTL P2 A7 I SSTL P8 A8 I SSTL P3 A9 I SSTL M2 A10 I SSTL AP I SSTL P7 A11 I SSTL R2 A12 I SSTL Rev. 1.1, 2007-02 03062006-H3V1-XJT4 Address Signal 12:0, Address Signal 10/Autoprecharge 6 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM Ball# Name Ball Type Buffer Type Function Data Signal 15:0 Data Signals ×16 organization G8 DQ0 I/O SSTL G2 DQ1 I/O SSTL H7 DQ2 I/O SSTL H3 DQ3 I/O SSTL H1 DQ4 I/O SSTL H9 DQ5 I/O SSTL F1 DQ6 I/O SSTL F9 DQ7 I/O SSTL C8 DQ8 I/O SSTL C2 DQ9 I/O SSTL D7 DQ10 I/O SSTL D3 DQ11 I/O SSTL D1 DQ12 I/O SSTL D9 DQ13 I/O SSTL B1 DQ14 I/O SSTL B9 DQ15 I/O SSTL Data Strobe ×16 organization B7 UDQS I/O SSTL A8 UDQS I/O SSTL F7 LDQS I/O SSTL E8 LDQS I/O SSTL Data Strobe Upper Byte Data Strobe Lower Byte Data Mask ×16 organization B3 UDM I SSTL F3 LDM I SSTL Data Mask Upper/Lower Byte Power Supplies ×16 organization A9,C1,C3,C7, C9 VDDQ PWR — I/O Driver Power Supply A1 VDD VSSQ PWR — Power Supply PWR — I/O Driver Power Supply VSS PWR — Power Supply A7,B2,B8,D2, D8 A3,E3 Power Supplies ×16 organization VREF E9, G1, G3, G7, VDDQ AI — I/O Reference Voltage PWR — I/O Driver Power Supply VDDL E1, J9, M9, R1 VDD E7, F2, F8, H2, VSSQ PWR — Power Supply PWR — Power Supply PWR — I/O Driver Power Supply PWR — Power Supply J2 G9 J1 H8 J7 VSSDL Rev. 1.1, 2007-02 03062006-H3V1-XJT4 7 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM Ball# Name A3, E3, J3, N1, VSS P9 Ball Type Buffer Type Function PWR — Power Supply — Not Connected SSTL On-Die Termination Control Not Connected ×16 organization A2, E2, L1, R3, NC R7, R8 NC Other Balls ×16 organization K9 ODT I TABLE 6 Abbreviations for Ball Type Abbreviation Description I Standard input-only ball. Digital levels. O Output. Digital levels. I/O I/O is a bidirectional input/output signal. AI Input. Analog levels. PWR Power GND Ground NC Not Connected TABLE 7 Abbreviations for Buffer Type Abbreviation Description SSTL Serial Stub Terminated Logic (SSTL_18) LV-CMOS Low Voltage CMOS CMOS CMOS Levels OD Open Drain. The corresponding ball has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR. Rev. 1.1, 2007-02 03062006-H3V1-XJT4 8 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM FIGURE 1 Chip Configuration for ×16 components, PG-TFBGA-84 (top view) $ 9664 8'46 9''4 8'0 % 8'46 9664 '4 '4 9''4 & 9''4 '4 9''4 '4 9664 '4 ' '4 9664 '4 9'' 1& 966 ( 9664 /'46 9''4 '4 9664 /'0 ) /'46 9664 '4 9''4 '4 9''4 * 9''4 '4 9''4 '4 9664 '4 + '4 9664 '4 9''/ 95() 966 - 966 '/ &. 9'' &.( :( . 5$6 &. 2'7 %$ %$ / &$6 &6 $ $3 $ 0 $ $ $ $ 1 $ $ $ $ 3 $ $ $ 1& 5 1& 1& 9'' 1& 966 '4 9664 9''4 1& 966 9'' 9'' 966 0337 Notes 2. LDM is the data mask signal for DQ[7:0], UDM is the data mask signal for DQ[15:8] 3. VDDL and VSSDL are power and ground for the DLL. VDDL is connected to VDD on the device. VDD, VDDQ, VSSDL, VSS, and VSSQ are isolated on the device. 1. UDQS/UDQS is data strobe for DQ[15:8], LDQS/LDQS is data strobe for DQ[7:0] Rev. 1.1, 2007-02 03062006-H3V1-XJT4 9 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 8 DDR2 Addressing for ×16 Organization Configuration 16Mb × 161) Note Bank Address BA[1:0] — Number of Banks 4 — Auto-Precharge A10 / AP — Row Address A[12:0] — Column Address A[8:0] — Number of Column Address Bits 9 2) Number of I/Os 16 — Page Size [Bytes] 1024 (1K) 3) 1) Referred to as ’org’ 2) Referred to as ’colbits’ 3) PageSize = 2colbits × org/8 [Bytes] Rev. 1.1, 2007-02 03062006-H3V1-XJT4 10 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 3 Functional Description %$ %$ %$ $ UHJDGGU $ $ $ $ $ $ $ $ $ $ $ $ 3' :5 '// 70 &/ %7 %/ Z Z Z Z Z Z Z $ 03%7 TABLE 9 Mode Register Definition (BA[2:0] = 000B) Field Bits Type1) Description BA2 16 reg. addr. Bank Address [2] Note: BA2 not available on 256 Mbit and 512 Mbit components 0B BA2 Bank Address BA1 15 Bank Address [1] BA1 Bank Address 0B BA0 14 Bank Address [0] 0B BA0 Bank Address A13 13 Address Bus [13] Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 0B A13 Address bit 13 PD 12 w Active Power-Down Mode Select 0B PD Fast exit 1B PD Slow exit WR [11:9] w Write Recovery 2) Note: All other bit combinations are illegal. 001B 010B 011B 100B 101B WR 2 WR 3 WR 4 WR 5 WR 6 DLL 8 w DLL Reset 0B DLL No 1B DLL Yes TM 7 w Test Mode 0B TM Normal Mode 1B TM Vendor specific test mode Rev. 1.1, 2007-02 03062006-H3V1-XJT4 11 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM Field Bits Type1) Description CL [6:4] w CAS Latency Note: All other bit combinations are illegal. 011B 100B 101B 110B 111B CL 3 CL 4 CL 5 CL 6 CL 7 BT 3 w Burst Type 0B BT Sequential BT Interleaved 1B BL [2:0] w Burst Length Note: All other bit combinations are illegal. 010B BL 4 011B BL 8 1) w = write only register bits 2) Number of clock cycles for write recovery during auto-precharge. WR in clock cycles is calculated by dividing tWR (in ns) by tCK (in ns) and rounding up to the next integer: WR [cycles] ≥ tWR (ns) / tCK (ns). The mode register must be programmed to fulfill the minimum requirement for the analogue tWR timing WRMIN is determined by tCK.MAX and WRMAX is determined by tCK.MIN. Rev. 1.1, 2007-02 03062006-H3V1-XJT4 12 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM %$ %$ %$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 6 '46 4RII 5'4 2&' 3URJUDP 5WW $/ 5WW ',& '// Z Z Z Z Z Z Z UHJ D GGU Z 03%7 TABLE 10 Extended Mode Register Definition (BA[2:0] = 001B) 1) Field Bits Type Description BA2 16 reg. addr. BA1 15 Bank Address [1] BA1 Bank Address 0B BA0 14 Bank Address [0] 1B BA0 Bank Address A13 13 w Qoff 12 w Output Disable 0B QOff Output buffers enabled 1B QOff Output buffers disabled RDQS 11 w Read Data Strobe Output (RDQS, RDQS) 0B RDQS Disable 1B RDQS Enable DQS 10 w Complement Data Strobe (DQS Output) 0B DQS Enable 1B DQS Disable OCD [9:7] Program w Off-Chip Driver Calibration Program 000B OCD OCD calibration mode exit, maintain setting 001B OCD Drive (1) 010B OCD Drive (0) 100B OCD Adjust mode 111B OCD OCD calibration default AL w Additive Latency Note: All other bit combinations are illegal. Bank Address [2] Note: BA2 not available on 256 Mbit and 512 Mbit components 0B Address Bus [13] Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 0B [5:3] 000B 001B 010B 011B 100B Rev. 1.1, 2007-02 03062006-H3V1-XJT4 BA2 Bank Address A13 Address bit 13 AL 0 AL 1 AL 2 AL 3 AL 4 13 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM Field Bits Type1) Description RTT 6,2 w Nominal Termination Resistance of ODT Note: See Table 21 “ODT DC Electrical Characteristics” on Page 21 00B 01B 10B 11B RTT ∞ (ODT disabled) RTT 75 Ohm RTT 150 Ohm RTT 50 Ohm DIC 1 w Off-chip Driver Impedance Control 0B DIC Full (Driver Size = 100%) 1B DIC Reduced DLL 0 w DLL Enable DLL Enable 0B DLL Disable 1B 1) w = write only register bits Rev. 1.1, 2007-02 03062006-H3V1-XJT4 14 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM %$ %$ %$ $ $ $ $ $ $ $ $ 65) $ $ $ '&& UHJDGGU $ $ $ 3$65 03%7 TABLE 11 EMRS(2) Programming Extended Mode Register Definition (BA[2:0]=010B) Field Bits Type1) Description BA2 16 w Bank Address Note: BA2 is not available on 256 Mbit and 512 Mbit components 0B BA2 Bank Address BA [15:14] w Bank Adress 00B BA MRS 01B BA EMRS(1) 10B BA EMRS(2) 11B BA EMRS(3): Reserved A [13:8] w Address Bus Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 000000B A Address bits SRF 7 w Address Bus, High Temperature Self Refresh Rate for TCASE > 85°C 0B A7 disable 1B A7 enable 2) A [6:4] w Address Bus 000B A Address bits DCC 3 w Address Bus, Duty Cycle Correction (DCC) A3 DCC disabled 0B 1B A3 DCC enabled Partial Self Refresh for 4 banks PASR [2:0] w Address Bus, Partial Array Self Refresh for 4 Banks 3) Note: Only for 256 Mbit and 512 Mbit components 000B 001B 010B 011B 100B 101B 110B 111B Rev. 1.1, 2007-02 03062006-H3V1-XJT4 PASR0 Full Array PASR1 Half Array (BA[1:0]=00, 01) PASR2 Quarter Array (BA[1:0]=00) PASR3 Not defined PASR4 3/4 array (BA[1:0]=01, 10, 11) PASR5 Half array (BA[1:0]=10, 11) PASR6 Quarter array (BA[1:0]=11) PASR7 Not defined 15 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM Field Bits Type1) Description Partial Self Refresh for 8 banks PASR [2:0] w Address Bus, Partial Array Self Refresh for 8 Banks 3) Note: Only for 1G and 2G components 000B 001B 010B 011B 100B 101B 110B 111B PASR0 Full Array PASR1 Half Array (BA[2:0]=000, 001, 010 & 011) PASR2 Quarter Array (BA[2:0]=000, 001) PASR3 1/8 array (BA[2:0] = 000) PASR4 3/4 array (BA[2:0]= 010, 011, 100, 101, 110 & 111) PASR5 Half array (BA[2:0]=100, 101, 110 & 111) PASR6 Quarter array (BA[2:0]= 110 & 111) PASR7 1/8 array(BA[2:0]=111) 1) w = write only 2) When DRAM is operated at 85°C ≤ TCase ≤ 95°C the extended self refresh rate must be enabled by setting bit A7 to "1" before the self refresh mode can be entered. 3) If PASR (Partial Array Self Refresh) is enabled, data located in areas of the array beyond the specified location will be lost if self refresh is entered. Data integrity will be maintained if tREF conditions are met and no Self Refresh command is issued %$ %$ %$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ UHJD GG U 03%7 TABLE 12 EMR(3) Programming Extended Mode Register Definition( BA[2:0]=011B) Field Bits Type1) Description BA2 16 reg.addr Bank Address [2] Note: BA2 is not available on 256 Mbit and 512Mbit components 0B BA2 Bank Address BA1 15 Bank Adress [1] BA1 Bank Address 1B BA0 14 Bank Adress [0] 1B BA0 Bank Address A [13:0] w Address Bus [13:0] Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 00000000000000B A [13:0] Address bits 1) w = write only Rev. 1.1, 2007-02 03062006-H3V1-XJT4 16 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM ODT Truth Tables The ODT Truth Table shows which of the input pins are terminated depending on the state of address bit A10 and A11 in the EMRS(1). To activate termination of any of these pins, the ODT function has to be enabled in the EMRS(1) by address bits A6 and A2. TABLE 13 ODT Truth Table Input Pin EMRS(1) Address Bit A10 EMRS(1) Address Bit A11 ×16 Components DQ[7:0] X DQ[15:8] X LDQS X LDQS 0 UDQS X UDQS 0 LDM X UDM X X X Note: X = don’t care; 0 = bit set to low; 1 = bit set to high TABLE 14 Burst Length and Sequence Burst Length Starting Address (A2 A1 A0) Sequential Addressing (decimal) Interleave Addressing (decimal) 4 ×00 0, 1, 2, 3 0, 1, 2, 3 ×01 1, 2, 3, 0 1, 0, 3, 2 ×1 0 2, 3, 0, 1 2, 3, 0, 1 ×1 1 3, 0, 1, 2 3, 2, 1, 0 000 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 001 1, 2, 3, 0, 5, 6, 7, 4 1, 0, 3, 2, 5, 4, 7, 6 010 2, 3, 0, 1, 6, 7, 4, 5 2, 3, 0, 1, 6, 7, 4, 5 011 3, 0, 1, 2, 7, 4, 5, 6 3, 2, 1, 0, 7, 6, 5, 4 100 4, 5, 6, 7, 0, 1, 2, 3 4, 5, 6, 7, 0, 1, 2, 3 101 5, 6, 7, 4, 1, 2, 3, 0 5, 4, 7, 6, 1, 0, 3, 2 110 6, 7, 4, 5, 2, 3, 0, 1 6, 7, 4, 5, 2, 3, 0, 1 111 7, 4, 5, 6, 3, 0, 1, 2 7, 6, 5, 4, 3, 2, 1, 0 8 Rev. 1.1, 2007-02 03062006-H3V1-XJT4 17 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 4 Truth Tables This chapter describes the truth tables. TABLE 15 Command Truth Table Function CKE CS RAS CAS WE BA0 BA1 A[13:11] A10 A[9:0] Note1)2)3) Previous Cycle Current Cycle (Extended) Mode Register Set H H L L L L BA OP Code Auto-Refresh H H L L L H X X X X 4) Self-Refresh Entry H L L L L H X X X X 4)7) Self-Refresh Exit L H H X X X X X X X 4)7)8) L H H H 4)5)6) Single Bank Precharge H H L L H L BA X L X 4)5) Precharge all Banks H H L L H L X X H X 4)5) Bank Activate H H L L H H BA Row Address Write H H L H L L BA Column L Column 4)5)9) Write with AutoPrecharge H H L H L L BA Column H Column 4)5)9) Read H H L H L H BA Column L Column 4)5)9) Read with AutoPrecharge H H L H L H BA Column H Column 4)5)9) No Operation H X L H H H X X X X 4) Device Deselect H X H X X X X X X X 4) Power Down Entry H L H X X X X X X X 4)10) L H H H H X X X X X X X 4)10) L H H H Power Down Exit L H 4)5) 1) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. 2) “X” means H or L (but a defined logic level)”. 3) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) All DDR2 SDRAM commands are defined by states of CS, WE, RAS, CAS, and CKE at the rising edge of the clock. 5) Bank addresses BA[1:0] determine which bank is to be operated upon. For (E)MRS BA[1:0] selects an (Extended) Mode Register. 6) All banks must be in a precharged idle state, CKE must be high at least for tXP and all read/write bursts must be finished before the (Extended) Mode Register set Command is issued. 7) VREF must be maintained during Self Refresh operation. 8) Self Refresh Exit is asynchronous. 9) Burst reads or writes at BL = 4 cannot be terminated. 10) The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by the refresh requirements. Rev. 1.1, 2007-02 03062006-H3V1-XJT4 18 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 16 Clock Enable (CKE) Truth Table for Synchronous Transitions Current State1) CKE Command (N)2)3) RAS, CAS, WE, CS Action (N)2) Note4)5) Previous Cycle6) (N-1) Current Cycle6) (N) L L X Maintain Power-Down 7)8)11) L H DESELECT or NOP Power-Down Exit 7)9)10)11) L L X Maintain Self Refresh 8)11)12) L H DESELECT or NOP Self Refresh Exit 9)12)13)14) Bank(s) Active H L DESELECT or NOP Active Power-Down Entry 7)9)10)11)15) All Banks Idle H L DESELECT or NOP Precharge Power-Down Entry 9)10)11)15) H L AUTOREFRESH Self Refresh Entry 7)11)14)16) H H Refer to the Command Truth Table Power-Down Self Refresh Any State other than listed above 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 17) Current state is the state of the DDR2 SDRAM immediately prior to clock edge N. Command (N) is the command registered at clock edge N, and Action (N) is a result of Command (N) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. CKE must be maintained HIGH while the device is in OCD calibration mode. Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge. The Power-Down Mode does not perform any refresh operations. The duration of Power-Down Mode is therefor limited by the refresh requirements “X” means “don’t care (including floating around VREF)” in Self Refresh and Power Down. However ODT must be driven HIGH or LOW in Power Down if the ODT function is enabled (Bit A2 or A6 set to “1” in EMRS(1)). All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document. Valid commands for Power-Down Entry and Exit are NOP and DESELECT only. tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 × tCK + tIH. VREF must be maintained during Self Refresh operation. On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR period. Read commands may be issued only after tXSRD (200 clocks) is satisfied. Valid commands for Self Refresh Exit are NOP and DESELCT only. Power-Down and Self Refresh can not be entered while Read or Write operations, (Extended) mode Register operations, Precharge or Refresh operations are in progress. Self Refresh mode can only be entered from the All Banks Idle state. Must be a legal command as defined in the Command Truth Table. TABLE 17 Data Mask (DM) Truth Table Name (Function) DM DQs Note Write Enable L Valid 1) Write Inhibit H X 1) 1) Used to mask write data; provided coincident with the corresponding data. Rev. 1.1, 2007-02 03062006-H3V1-XJT4 19 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 5 Electrical Characteristics This chapter describes the Electrical Characteristics. 5.1 Absolute Maximum Ratings Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 18 at any time. TABLE 18 Absolute Maximum Ratings Symbol VDD VDDQ VDDL VIN, VOUT TSTG Parameter Rating Unit Note Min. Max. Voltage on VDD pin relative to VSS –1.0 +2.3 V 1) Voltage on VDDQ pin relative to VSS –0.5 +2.3 V 1)2) Voltage on VDDL pin relative to VSS –0.5 +2.3 V 1)2) Voltage on any pin relative to VSS –0.5 +2.3 V 1) °C 1)2) Storage Temperature –55 +100 1) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV. 2) Storage Temperature is the case surface temperature on the center/top side of the DRAM. Attention: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. TABLE 19 DRAM Component Operating Temperature Range Symbol TOPER Parameter Rating Operating Temperature Min. Max. 0 95 Unit Note °C 1)2)3)4) 1) Operating Temperature is the case surface temperature on the center / top side of the DRAM. 2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case temperature must be maintained between 0 - 95 °C under all other specification parameters. 3) Above 85 °C the Auto-Refresh command interval has to be reduced to tREFI= 3.9 µs 4) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50 % Rev. 1.1, 2007-02 03062006-H3V1-XJT4 20 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 5.2 DC Characteristics TABLE 20 Recommended DC Operating Conditions (SSTL_18) Symbol VDD VDDDL VDDQ VREF VTT 1) 2) 3) 4) Parameter Rating Unit Note Min. Typ. Max. Supply Voltage 1.7 1.8 1.9 V 1) Supply Voltage for DLL 1.7 1.8 1.9 V 1) Supply Voltage for Output 1.7 1.8 1.9 V 1) Input Reference Voltage 0.49 × VDDQ 0.5 × VDDQ 0.51 × VDDQ V 2)3) 4) Termination Voltage VREF – 0.04 VREF VREF + 0.04 V VDDQ tracks with VDD, VDDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about 0.5 × VDDQ of the transmitting device and VREF is expected to track variations in VDDQ. Peak to peak ac noise on VREF may not exceed ± 2% VREF (dc) VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and must track variations in die dc level of VREF. TABLE 21 ODT DC Electrical Characteristics Parameter / Condition Symbol Min. Nom. Max. Unit Note Termination resistor impedance value for EMRS(1)[A6,A2] = [0,1]; 75 Ohm Rtt1(eff) 60 75 90 Ω 1) Termination resistor impedance value for EMRS(1)[A6,A2] =[1,0]; 150 Ohm Rtt2(eff) 120 150 180 Ω 1) Termination resistor impedance value for EMRS(1)(A6,A2)=[1,1]; 50 Ohm Rtt3(eff) 40 50 60 Ω 1) 2) + 6.00 % 1) Measurement Definition for Rtt(eff): Apply VIH(ac) and VIL(ac) to test pin separately, then measure current I(VIHac) and I(VILac) respectively. Rtt(eff) = (VIH(ac) – VIL(ac)) /(I(VIHac) – I(VILac)). 2) Measurement Definition for VM: Turn ODT on and measure voltage (VM) at test pin (midpoint) with no load: delta VM = ((2 x VM / VDDQ) – Deviation of VM with respect to VDDQ / 2 delta VM –6.00 — 1) x 100% TABLE 22 Input and Output Leakage Currents Symbol Parameter / Condition Min. Max. Unit Note IIL IOL Input Leakage Current; any input 0 V < VIN < VDD –2 +2 µA 1) Output Leakage Current; 0 V < VOUT < VDDQ –5 +5 µA 2) 1) All other pins not under test = 0 V 2) DQ’s, LDQS, LDQS, UDQS, UDQS, DQS, DQS, RDQS, RDQS are disabled and ODT is turned off Rev. 1.1, 2007-02 03062006-H3V1-XJT4 21 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 5.3 DC & AC Characteristics DDR2 SDRAM pin timing are specified for either single ended or differential mode depending on the setting of the EMRS(1) “Enable DQS” mode bit; timing advantages of differential mode are realized in system design. The method by which the DDR2 SDRAM pin timing are measured is mode dependent. In single ended mode, timing relationships are measured relative to the rising or falling edges of DQS crossing at VREF. In differential mode, these timing relationships are measured relative to the crosspoint of DQS and its complement, DQS. This distinction in timing methods is verified by design and characterization but not subject to production test. In single ended mode, the DQS (and RDQS) signals are internally disabled and don’t care. TABLE 23 DC & AC Logic Input Levels for DDR2-667 and DDR2-800 Symbol VIH(dc) VIL(dc) VIH(ac) VIL(ac) Parameter DDR2-667, DDR2-800 Units Min. Max. DC input logic high VREF + 0.125 –0.3 VDDQ + 0.3 VREF – 0.125 V DC input low AC input logic high VREF + 0.200 — V AC input low — VREF – 0.200 V V TABLE 24 DC & AC Logic Input Levels for DDR2-533 and DDR2-400 Symbol VIH(dc) VIL(dc) VIH(ac) VIL(ac) Parameter DDR2-533, DDR2-400 Units Min. Max. VREF + 0.125 V DC input low –0.3 VDDQ + 0.3 VREF - 0.125 AC input logic high VREF + 0.250 — V AC input low — VREF - 0.250 V DC input logic high V TABLE 25 Single-ended AC Input Test Conditions Symbol Condition Value Unit Note VREF VSWING.MAX Input reference voltage 0.5 x VDDQ V 1) Input signal maximum peak to peak swing 1.0 V 1) SLEW Input signal minimum Slew Rate 1.0 V / ns 2)3) 1) Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test. 2) The input signal minimum Slew Rate is to be maintained over the range from VIH(ac).MIN to VREF for rising edges and the range from VREF to VIL(ac).MAX for falling edges as shown in Figure 2 3) AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to VIL(ac) on the negative transitions. Rev. 1.1, 2007-02 03062006-H3V1-XJT4 22 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM FIGURE 2 Single-ended AC Input Test Conditions Diagram 9''4 9,+ DF PLQ 9,+ GF PLQ 96:,1* 0$; 95() 9,/ GF PD[ 9,/ DF PD[ 966 'HOWD7) )DOOLQJ6OHZ 'HOWD75 95()9,/ DF PD[ 5LVLQJ6OHZ 'HOWD7) 9,+ DF PLQ95() 'HOWD75 03(7 TABLE 26 Differential DC and AC Input and Output Logic Levels Symbol Parameter Min. Max. Unit Note VIN(dc) VID(dc) VID(ac) VIX(ac) VOX(ac) DC input signal voltage –0.3 — 1) DC differential input voltage 0.25 — 2) AC differential input voltage 0.5 V 3) AC differential cross point input voltage 0.5 × VDDQ – 0.175 V 4) AC differential cross point output voltage 0.5 × VDDQ – 0.125 VDDQ + 0.3 VDDQ + 0.6 VDDQ + 0.6 0.5 × VDDQ + 0.175 0.5 × VDDQ + 0.125 V 5) 1) 2) 3) 4) VIN(dc) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS etc. VID(dc) specifies the input differential voltage VTR– VCP required for switching. The minimum value is equal to VIH(dc) – VIL(dc). VID(ac) specifies the input differential voltage VTR – VCP required for switching. The minimum value is equal to VIH(ac) – VIL(ac). The value of VIX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VIX(ac) is expected to track variations in VDDQ. VIX(ac) indicates the voltage at which differential input signals must cross. 5) The value of VOX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VOX(ac) is expected to track variations in VDDQ. VOX(ac) indicates the voltage at which differential input signals must cross. Rev. 1.1, 2007-02 03062006-H3V1-XJT4 23 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM FIGURE 3 Differential DC and AC Input and Output Logic Levels Diagram 9'' 4 975 &URVVLQJ3RLQW 9,' 9,;RU9 2; 9&3 9664 5.4 Output Buffer Characteristics This chapter describes the Output Buffer Characteristics. TABLE 27 SSTL_18 Output DC Current Drive Symbol IOH IOL Parameter SSTL_18 Output Minimum Source DC Current –13.4 Unit Note mA 1)2) 2)3) Output Minimum Sink DC Current 13.4 mA 1) VDDQ = 1.7 V; VOUT = 1.42 V. (VOUT–VDDQ) / IOH must be less than 21 Ohm for values of VOUT between VDDQ and VDDQ – 280 mV. 2) The values of IOH(dc) and IOL(dc) are based on the conditions given in 1) and 3). They are used to test drive current capability to ensure VIH.MIN. plus a noise margin and VIL.MAX minus a noise margin are delivered to an SSTL_18 receiver. The actual current values are derived by shifting the desired driver operating points along 21 Ohm load line to define a convenient current for measurement. 3) VDDQ = 1.7 V; VOUT = 280 mV. VOUT / IOL must be less than 21 Ohm for values of VOUT between 0 V and 280 mV. TABLE 28 SSTL_18 Output AC Test Conditions Symbol Parameter SSTL_18 Unit Note VOH VOL VOTR Minimum Required Output Pull-up VTT + 0.603 VTT – 0.603 0.5 × VDDQ V 1) V 1) V — Maximum Required Output Pull-down Output Timing Measurement Reference Level 1) SSTL_18 test load for VOH and VOL is different from the referenced load. The SSTL_18 test load has a 20 Ohm series resistor additionally to the 25 Ohm termination resistor into VTT. The SSTL_18 definition assumes that ± 335 mV must be developed across the effectively 25 Ohm termination resistor (13.4 mA × 25 Ohm = 335 mV). With an additional series resistor of 20 Ohm this translates into a minimum requirement of 603 mV swing relative to VTT, at the ouput device (13.4 mA × 45 Ohm = 603 mV). Rev. 1.1, 2007-02 03062006-H3V1-XJT4 24 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 29 OCD Default Characteristics Symbol Description Min. — Output Impedance — — Pull-up / Pull down mismatch 0 — — Output Impedance step size for OCD calibration 0 1.5 SOUT Output Slew Rate 1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V Nominal Max. Unit Note Ω 1)2) 4 Ω 1)2)3) — 1.5 Ω 4) — 5.0 V / ns 1)5)6)7) 2) Impedance measurement condition for output source dc current: VDDQ = 1.7 V, VOUT = 1420 mV; (VOUT–VDDQ) / IOH must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ – 280 mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7 V; VOUT = –280 mV; VOUT / IOL must be less than 23.4 Ohms for values of VOUT between 0 V and 280 mV. 3) Mismatch is absolute value between pull-up and pull-down, both measured at same temperature and voltage. 4) This represents the step size when the OCD is near 18 ohms at nominal conditions across all process parameters and represents only the DRAM uncertainty. A 0 Ohm value (no calibration) can only be achieved if the OCD impedance is 18 ± 0.75 Ohms under nominal conditions. 5) The absolute value of the Slew Rate as measured from DC to DC is equal to or greater than the Slew Rate as measured from AC to AC. This is verified by design and characterization but not subject to production test. 6) Timing skew due to DRAM output Slew Rate mis-match between DQS / DQS and associated DQ’s is included in tDQSQ and tQHS specification. 7) DRAM output Slew Rate specification applies to 400, 533 and 667 MT/s speed bins. 5.5 Input / Output Capacitance This chapter contains the Input / Output Capacitance. TABLE 30 Input / Output Capacitance for DDR2-667 Symbol Parameter DDR2-667 Min. Max. Unit CCK Input capacitance, CK and CK 1.0 2.0 pF CDCK Input capacitance delta, CK and CK — 0.25 pF CI Input capacitance, all other input-only pins 1.0 2.0 pF CDI Input capacitance delta, all other input-only pins — 0.25 pF CIO Input/output capacitance, DQ, DM, DQS, DQS, RDQS, RDQS 2.5 3.5 pF CDIO Input/output capacitance delta, DQ, DM, DQS, DQS, RDQS, RDQS — 0.5 pF Rev. 1.1, 2007-02 03062006-H3V1-XJT4 25 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 31 Input / Output Capacitance for DDR2-533 Symbol Parameter DDR2-533 Min. Max. Unit CCK Input capacitance, CK and CK 1.0 2.0 pF CDCK Input capacitance delta, CK and CK — 0.25 pF CI Input capacitance, all other input-only pins 1.0 2.0 pF CDI Input capacitance delta, all other input-only pins — 0.25 pF CIO Input/output capacitance, DQ, DM, DQS, DQS, RDQS, RDQS 2.5 4.0 pF CDIO Input/output capacitance delta, DQ, DM, DQS, DQS, RDQS, RDQS — 0.5 pF TABLE 32 Input / Output Capacitance for DDR2-400 Symbol Parameter DDR2-400 Min. Max. Unit CCK Input capacitance, CK and CK 1.0 2.0 pF CDCK Input capacitance delta, CK and CK — 0.25 pF CI Input capacitance, all other input-only pins 1.0 2.0 pF CDI Input capacitance delta, all other input-only pins — 0.25 pF CIO Input/output capacitance, DQ, DM, DQS, DQS, RDQS, RDQS 2.5 4.0 pF CDIO Input/output capacitance delta, DQ, DM, DQS, DQS, RDQS, RDQS — 0.5 pF Rev. 1.1, 2007-02 03062006-H3V1-XJT4 26 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 5.6 Overshoot and Undershoot Specification This chapter contains Overshoot and Undershoot Specification. TABLE 33 AC Overshoot / Undershoot Specification for Address and Control Pins Parameter DDR2-400 DDR2-533 DDR2-667 DDR2-800 Unit Maximum peak amplitude allowed for overshoot area 0.9 0.9 0.9 0.9 V Maximum peak amplitude allowed for undershoot area 0.9 0.9 0.9 0.9 V Maximum overshoot area above VDD 1.33 1.00 0.80 0.66 V.ns Maximum undershoot area below VSS 1.33 1.00 0.80 0.66 V.ns FIGURE 4 AC Overshoot / Undershoot Diagram for Address and Control Pins 0D[LPXP$PSOLWXGH 9ROWV 9 2YHUVKRRW$UHD 9'' 966 8QGHUVKRRW$UHD 0D[LPXP$PSOLWXGH 7LPH QV 03(7 Rev. 1.1, 2007-02 03062006-H3V1-XJT4 27 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 34 AC Overshoot / Undershoot Spec. for Clock, Data, Strobe and Mask Pins Parameter DDR2-400 DDR2-533 DDR2-667 DDR2-800 Unit Maximum peak amplitude allowed for overshoot area 0.9 0.9 0.9 0.9 V Maximum peak amplitude allowed for undershoot area 0.9 0.9 0.9 0.9 V Maximum overshoot area above VDDQ 0.38 0.28 0.23 0.23 V.ns Maximum undershoot area below VSSQ 0.38 0.28 0.23 0.23 V.ns FIGURE 5 AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins 0D[LPXP$PSOLWXGH 9ROWV 9 2YHUVKRRW$UHD 9''4 9664 8QGHUVKRRW$UHD 0D[LPXP$PSOLWXGH 7LPH QV 03(7 Rev. 1.1, 2007-02 03062006-H3V1-XJT4 28 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 6 Currents Measurement Conditions This chapter describes the Current Measurement, Specifications and Conditions. TABLE 35 IDD Measurement Conditions Parameter Symbol Note Operating Current - One bank Active - Precharge IDD0 tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are switching; Databus inputs are switching. 1)2)3)4)5) IDD1 1)2)3)4)5) Operating Current - One bank Active - Read - Precharge IOUT = 0 mA, BL = 4, tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), tRCD = tRCD(IDD), AL = 0, CL = CL(IDD); CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are switching; Databus inputs are switching. 6) 6) Precharge Power-Down Current IDD2P All banks idle; CKE is LOW; tCK = tCK(IDD);Other control and address inputs are stable; Data bus inputs are floating. 1)2)3)4)5) IDD2N 1)2)3)4)5) Precharge Quiet Standby Current IDD2Q All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are stable, Data bus inputs are floating. 1)2)3)4)5) Precharge Standby Current All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are switching, Data bus inputs are switching. 6) 6) 6) Active Power-Down Current All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable; Data bus inputs are floating. MRS A12 bit is set to “0” (Fast Power-down Exit). IDD3P(0) 1)2)3)4)5) Active Power-Down Current All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable, Data bus inputs are floating. MRS A12 bit is set to 1 (Slow Power-down Exit); IDD3P(1) 1)2)3)4)5) Active Standby Current All banks open; tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; IDD3N 1)2)3)4)5) Operating Current Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS = tRAS.MAX.(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; IOUT = 0 mA. IDD4R 1)2)3)4)5) Operating Current Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching. IDD4W 1)2)3)4)5) Burst Refresh Current tCK = tCK(IDD), Refresh command every tRFC = tRFC(IDD) interval, CKE is HIGH, CS is HIGH between valid commands, Other control and address inputs are switching, Data bus inputs are switching. IDD5B 1)2)3)4)5) Distributed Refresh Current IDD5D tCK = tCK(IDD), Refresh command every tREFI = 7.8 µs interval, CKE is LOW and CS is HIGH between valid commands, Other control and address inputs are switching, Data bus inputs are switching. 1)2)3)4)5) Rev. 1.1, 2007-02 03062006-H3V1-XJT4 29 6) 6) 6) 6) 6) 6) 6) Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM Parameter Symbol Note Self-Refresh Current IDD6 CKE ≤ 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are floating, Data bus inputs are floating. 1)2)3)4)5) Operating Bank Interleave Read Current IDD7 1. All banks interleaving reads, IOUT = 0 mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD) -1 × tCK(IDD); tCK = tCK(IDD), tRC = tRC(IDD), tRRD = tRRD(IDD); CKE is HIGH, CS is HIGH between valid commands. Address bus inputs are stable during deselects; Data bus is switching. 2. Timing pattern: 1)2)3)4)5) 6) 6)7) DDR2-400-333: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D (11 clocks) DDR2-533-333: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D (15 clocks) DDR2-667-555: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D (20 clocks) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V IDD specifications are tested after the device is properly initialized. IDD parameter are specified with ODT disabled. 1) 2) 3) 4) 5) 6) 7) Data Bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS and UDQS. Definitions for IDD: see Table 36 Timing parameter minimum and maximum values for IDD current measurements are defined in Chapter 7. A = Activate, RA = Read with Auto-Precharge, D=DESELECT TABLE 36 Definition for IDD Parameter Description LOW defined as VIN ≤ VIL(ac).MAX HIGH defined as VIN ≥ VIH(ac).MIN STABLE defined as inputs are stable at a HIGH or LOW level FLOATING defined as inputs are VREF = VDDQ / 2 SWITCHING defined as: Inputs are changing between high and low every other clock (once per two clocks) for address and control signals, and inputs changing between high and low every other clock (once per clock) for DQ signals not including mask or strobes Rev. 1.1, 2007-02 03062006-H3V1-XJT4 30 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 37 IDD Specification Symbol IDD0 IDD1 IDD2N IDD2P IDD2Q IDD3N IDD3P(MRS= 0) IDD3P(MRS= 1) IDD4R IDD4W IDD5B IDD5D IDD6 IDD7 –3S –3.7 –5 Unit Note DDR2–667 DDR2–533 DDR2–400 62 55 50 mA — 71 45 60 55 mA — 35 28 mA — 5 4.5 4 mA — 30 25 20 mA — 45 35 30 mA — 19 16 13 mA 1) 5 4.5 4 mA 2) 145 115 90 mA — 160 130 90 mA — 95 90 80 mA — 6 6 6 mA 3) 4 4.5 4 mA — 157 150 140 mA — 1) MRS(12)=0 2) MRS(12)=1 3) 0 ≤ TCASE ≤ 85°C Rev. 1.1, 2007-02 03062006-H3V1-XJT4 31 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 7 Timing Characteristics This chapter contains speed grade definition, AC timing parameter and ODT tables. 7.1 Speed Grade Definitions All Speed grades faster than DDR2-DDR400B comply with DDR2-DDR400B timing specifications (tCK = 5ns with tRAS = 40ns). List of Speed Grade Definition tables: TABLE 38 Speed Grade Definition Speed Bins for DDR2–667D Speed Grade DDR2–667D QAG Sort Name –3S CAS-RCD-RP latencies 5–5–5 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. — tCK tCK tCK tRAS tRC tRCD tRP 5 8 ns 1)2)3)4) 3.75 8 ns 1)2)3)4) 3 8 ns 1)2)3)4) 45 70000 ns 1)2)3)4)5) 60 — ns 1)2)3)4) 15 — ns 1)2)3)4) 15 — ns 1)2)3)4) 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”. 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS, RDQS / RDQS is defined. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. Rev. 1.1, 2007-02 03062006-H3V1-XJT4 32 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 39 Speed Grade Definition Speed Bins for DDR2–533C Speed Grade DDR2–533C QAG Sort Name –3.7 CAS-RCD-RP latencies 4–4–4 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. — tCK tCK tCK tRAS tRC tRCD tRP 5 8 ns 1)2)3)4) 3.75 8 ns 1)2)3)4) 3.75 8 ns 1)2)3)4) 45 70000 ns 1)2)3)4)5) 60 — ns 1)2)3)4) 15 — ns 1)2)3)4) 15 — ns 1)2)3)4) 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”. 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS, RDQS / RDQS is defined. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. TABLE 40 Speed Grade Definition Speed Bins for DDR2-400B Speed Grade DDR2–400B QAG Sort Name –5 CAS-RCD-RP latencies 3–3–3 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. — tCK tCK tCK tRAS tRC tRCD tRP 5 8 ns 1)2)3)4) 5 8 ns 1)2)3)4) 5 8 ns 1)2)3)4) 40 70000 ns 1)2)3)4)5) 55 — ns 1)2)3)4) 15 — ns 1)2)3)4) 15 — ns 1)2)3)4) 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”. 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. Rev. 1.1, 2007-02 03062006-H3V1-XJT4 33 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. 7.2 Component AC Timing Parameters List of Timing Parameters Tables. TABLE 41 DRAM Component Timing Parameter by Speed Grade - DDR2–667 Parameter Symbol DDR2–667 Unit Note1)2)3)4)5)6)7) Min. Max. tAC tCCD tCH.AVG tCK.AVG tCKE –450 +450 ps 8) 2 — nCK — 0.48 0.52 tCK.AVG 9)10) 3000 8000 ps — 3 — nCK 11) tCL.AVG Auto-Precharge write recovery + precharge time tDAL Minimum time clocks remain ON after CKE tDELAY 0.48 0.52 tCK.AVG 10)11) WR + tnRP — nCK 12)13) tIS + tCK .AVG + tIH –– ns — tDH.BASE DQ and DM input pulse width for each input tDIPW DQS output access time from CK / CK tDQSCK DQS input high pulse width tDQSH DQS input low pulse width tDQSL DQS-DQ skew for DQS & associated DQ signals tDQSQ DQS latching rising transition to associated clock tDQSS 175 –– ps 18)19)14) tDS.BASE tDSH tDSS tHP DQ output access time from CK / CK CAS to CAS command delay Average clock high pulse width Average clock period CKE minimum pulse width ( high and low pulse width) Average clock low pulse width asynchronously drops LOW DQ and DM input hold time 0.35 — tCK.AVG — –400 +400 ps 0.35 — 0.35 — tCK.AVG — tCK.AVG — — 240 ps 15) – 0.25 + 0.25 tCK.AVG 16) 100 –– ps 17)18)19) 0.2 — 16) 0.2 — tCK.AVG tCK.AVG Min (tCH.ABS, tCL.ABS) __ ps 20) — tAC.MAX ps 8)21) 275 — ps 24)22) edges DQ and DM input setup time DQS falling edge hold time from CK DQS falling edge to CK setup time CK half pulse width tHZ Address and control input hold time tIH.BASE Control & address input pulse width for each input tIPW Address and control input setup time tIS.BASE DQ low impedance time from CK/CK tLZ.DQ DQS/DQS low-impedance time from CK / CK tLZ.DQS MRS command to ODT update delay tMOD Mode register set command cycle time tMRD OCD drive mode output delay tOIT Data-out high-impedance time from CK / CK Rev. 1.1, 2007-02 03062006-H3V1-XJT4 34 8) 16) 0.6 — tCK.AVG — 200 — ps 23)24) 2 x tAC.MIN ps 8)21) tAC.MIN tAC.MAX tAC.MAX ps 8)21) 0 12 ns 31) 2 — nCK — 0 12 ns 31) Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM Parameter Symbol DDR2–667 Unit Note1)2)3)4)5)6)7) Min. Max. tQH tQHS tRPRE tRPST tRTP tWPRE tWPST tWR tWTR tXARD tXARDS tHP – tQHS — ps 25) — 340 ps 26) 0.9 1.1 27)28) 0.4 0.6 tCK.AVG tCK.AVG 7.5 — ns 30) 0.35 — 0.4 0.6 tCK.AVG — tCK.AVG — 15 — ns 30) 7.5 — ns 30)31) Exit precharge power-down to any valid command (other than NOP or Deselect) Exit self-refresh to a non-read command DQ/DQS output hold time from DQS DQ hold skew factor Read preamble Read postamble Internal Read to Precharge command delay Write preamble Write postamble Write recovery time Internal write to read command delay Exit power down to read command 27)29) 2 — nCK — 7 – AL — nCK — tXP 2 — nCK — tRFC +10 — ns 30) Exit self-refresh to read command tXSNR tXSRD 200 — nCK — Write command to DQS associated clock edges WL RL–1 nCK — Exit active power-down mode to read command (slow exit, lower power) 1) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V. 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. The input reference level for signals other than CK/CK, DQS/DQS, RDQS / RDQS is defined. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. 7) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 8) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272 ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN – tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and tDQSCK.MAX(DERATED) = tDQSCK.MAX – tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED) = - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!) 9) Input clock jitter spec parameter. These parameters are referred to as 'input clock jitter spec parameters' and these parameters apply to DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution. 10) These parameters are specified per their average values, however it is understood that the relationship between the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations). 11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 x tCK + tIH. 12) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks. 13) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR. Rev. 1.1, 2007-02 03062006-H3V1-XJT4 35 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 14) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and VIH.DC.MIN. See Figure 7. 15) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate mismatch between DQS / DQS and associated DQ in any given cycle. 16) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. 17) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See Figure 7. 18) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed. 19) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/R)DQS / DQS) crossing. 20) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the minimum of the actual instantaneous clock low time. 21) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) . 22) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied to the device under test. See Figure 8. 23) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied to the device under test. See Figure 8. 24) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. 25) tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.} Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum. 26) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation of the output drivers. 27) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST), or begins driving (tRPRE). Figure 6 shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. 28) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX + tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!). 29) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX + tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!). 30) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter. 31) tWTR is at lease two clocks (2 x tCK) independent of operation frequency. Rev. 1.1, 2007-02 03062006-H3V1-XJT4 36 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM FIGURE 6 Method for calculating transitions and endpoint 92+[P9 977[P9 92+[P9 977[P9 W/= W+= W535(EHJLQSRLQW W5367 H QGSRLQW 92/[P9 977[P9 92/[P9 977[P9 7 7 7 7 W+=W5367 HQGSRLQW 77 W/=W535( E HJLQSRLQW 7 7 FIGURE 7 Differential input waveform timing - tDS and tDS '46 '46 W'6 W'+ W'6 W'+ 9''4 9,+ DF PL Q 9,+ GF PL Q 95() GF 9,/ GF PD [ [ 9,/ DF PD 966 FIGURE 8 Differential input waveform timing - tlS and tlH &. &. W,6 W,+ W,6 W,+ 9''4 9,+DF PLQ 9,+GF PLQ 95() GF 9,/ GF PD[ 9,/ DF PD[ 966 Rev. 1.1, 2007-02 03062006-H3V1-XJT4 37 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 42 DRAM Component Timing Parameter by Speed Grade - DDR2–533 Parameter Symbol DDR2–533 Unit Note1)2)3)4)5) 6) Min. Max. tAC tCCD tCH tCKE tCL tDAL –500 +500 ps — 2 — — 0.45 0.55 3 — 0.45 0.55 WR + tRP — tCK tCK tCK tCK tCK Minimum time clocks remain ON after CKE asynchronously drops LOW tDELAY tIS + tCK + tIH –– ns 8) DQ and DM input hold time (differential data strobe) tDH(base) 225 –– ps 9) –25 — ps 10) tDIPW tDQSCK tDQSL,H tDQSQ 0.35 — tCK — –450 +450 ps — 0.35 — tCK — — 300 ps 10) tDQSS tDS (base) – 0.25 + 0.25 tCK — 100 — ps 10) –25 — ps 10) tDSH 0.2 — tCK — DQS falling edge to CK setup time (write cycle) tDSS 0.2 — tCK — — 11) DQ output access time from CK / CK CAS A to CAS B command period CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time DQ and DM input hold time (single ended data tDH1(base) strobe) DQ and DM input pulse width (each input) DQS output access time from CK / CK DQS input low (high) pulse width (write cycle) DQS-DQ skew (for DQS & associated DQ signals) Write command to 1st DQS latching transition DQ and DM input setup time (differential data strobe) DQ and DM input setup time (single ended data tDS1 (base) strobe) DQS falling edge hold time from CK (write cycle) Clock half period Data-out high-impedance time from CK / CK Address and control input hold time Address and control input pulse width (each input) Address and control input setup time DQ low-impedance time from CK / CK DQS low-impedance from CK / CK Mode register set command cycle time OCD drive mode output delay Data output hold time from DQS Data hold skew factor Average periodic refresh Interval Rev. 1.1, 2007-02 03062006-H3V1-XJT4 tHP tHZ tIH (base) tIPW MIN. (tCL, tCH) tIS (base) tLZ(DQ) tLZ(DQS) tMRD tOIT tQH tQHS tREFI 38 — — — 7)17) — tAC.MAX ps 12) 375 — ps 10) 0.6 — tCK — 250 — ps 10) 2 × tAC.MIN ps 13) tAC.MIN tAC.MAX tAC.MAX ps 13) 2 — tCK — 0 12 ns — tHP – tQHS — — — — 400 ps — — 7.8 µs 13)14) Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM Parameter Symbol DDR2–533 Unit Note1)2)3)4)5) 6) Min. Max. tREFI tRFC — 3.9 µs 15)17) 75 — ns 16) tRP tRP tRPRE tRPST tRRD tRP + 1tCK 15 + 1tCK — ns — — ns — 0.9 1.1 13) 0.40 0.60 tCK tCK 7.5 — ns 13)17) Active bank A to Active bank B command period tRRD 10 — ns 15)21) Internal Read to Precharge command delay tRTP tWPRE tWPST tWR 7.5 — ns — 0.25 — — 0.40 0.60 tCK tCK 15 — ns — tWTR tXARD 7.5 — ns 19) 2 — tCK 20) Exit active power-down mode to Read command (slow exit, lower power) tXARDS 6 – AL — tCK 20) Exit precharge power-down to any valid command (other than NOP or Deselect) tXP 2 — tCK — Exit Self-Refresh to non-Read command tXSNR tXSRD tRFC +10 — ns — 200 — tWR/tCK tCK tCK — WR Average periodic refresh Interval Auto-Refresh to Active/Auto-Refresh command period Precharge-All (4 banks) command period Precharge-All (8 banks) command period Read preamble Read postamble Active bank A to Active bank B command period Write preamble Write postamble Write recovery time for write without AutoPrecharge Internal Write to Read command delay Exit power down to any valid command (other than NOP or Deselect) Exit Self-Refresh to Read command Write recovery time for write with AutoPrecharge 1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V. 13) 18) 21) 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. . 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. The input reference level for signals other than CK/CK, DQS/DQS, RDQS / RDQS is defined. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. 7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. 9) For timing definition, refer to the Component data sheet. 10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle. 11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). Rev. 1.1, 2007-02 03062006-H3V1-XJT4 39 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 13) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 14) 0 °C≤ TCASE ≤ 85 °C 15) 85 °C < TCASE ≤ 95 °C 16) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 17) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 4 “Ordering Information for RoHS Compliant Products” on Page 5. 18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 19) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz. 20) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied. 21) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS. Rev. 1.1, 2007-02 03062006-H3V1-XJT4 40 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 43 DRAM Component Timing Parameter by Speed Grade - DDR2-400 Parameter Symbol DDR2–400 Unit Note1)2)3)4)5) 6) Min. Max. tAC tCCD tCH tCKE tCL tDAL –600 +600 ps — 2 — — 0.45 0.55 3 — 0.45 0.55 WR + tRP — tCK tCK tCK tCK tCK Minimum time clocks remain ON after CKE asynchronously drops LOW tDELAY tIS + tCK + tIH –– ns 8) DQ and DM input hold time (differential data strobe) tDH (base) 275 –– ps 9) –25 — ps 10) 0.35 — tCK — –500 +500 ps — 0.35 — tCK — — 350 ps 10) – 0.25 + 0.25 tCK DQ output access time from CK / CK CAS A to CAS B command period CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time DQ and DM input hold time (single ended data tDH1 (base) strobe) DQ and DM input pulse width (each input) DQS output access time from CK / CK DQS input low (high) pulse width (write cycle) DQS-DQ skew (for DQS & associated DQ signals) tDIPW tDQSCK tDQSL,H tDQSQ Write command to 1st DQS latching transition tDQSS — — — 7)20) DQ and DM input setup time (differential data strobe) tDS (base) 150 — ps 10) DQ and DM input setup time (single ended data strobe) tDS1(base) –25 — ps 10) DQS falling edge hold time from CK (write cycle) tDSH 0.2 — tCK — DQS falling edge to CK setup time (write cycle) tDSS 0.2 — tCK — Clock half period Data-out high-impedance time from CK / CK Address and control input hold time Address and control input pulse width (each input) Address and control input setup time DQ low-impedance time from CK / CK DQS low-impedance from CK / CK Mode register set command cycle time OCD drive mode output delay Data output hold time from DQS Data hold skew factor Average periodic refresh Interval Rev. 1.1, 2007-02 03062006-H3V1-XJT4 tHP tHZ tIH (base) tIPW 11) MIN. (tCL, tCH) tIS (base) tLZ(DQ) tLZ(DQS) tMRD tOIT tQH tQHS tREFI 41 — tAC.MAX ps 12) 475 — ps 10) 0.6 — tCK — 350 — ps 10) 2 × tAC.MIN ps 13) tAC.MIN tAC.MAX tAC.MAX ps 13) 2 — tCK — 0 12 ns — tHP –tQHS — — — 450 ps — 7.8 µs 13)14) Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM Parameter Symbol DDR2–400 Unit Note1)2)3)4)5) 6) Min. Max. — 3.9 µs 15)17) 75 — ns 16) tRP tRP tRPRE tRPST tRRD tRP + 1tCK 15 + 1tCK — ns — — ns — 0.9 1.1 13) 0.40 0.60 tCK tCK 7.5 — ns 13)17) Active bank A to Active bank B command period tRRD 10 — ns 15)21) Internal Read to Precharge command delay tRTP tWPRE tWPST tWR 7.5 — ns — 0.25 — — 0.40 0.60 tCK tCK 15 — ns — tWTR tXARD 10 — ns 19) 2 — tCK 20) Exit active power-down mode to Read command (slow exit, lower power) tXARDS 6 – AL — tCK 20) Exit precharge power-down to any valid command (other than NOP or Deselect) tXP 2 — tCK — Exit Self-Refresh to non-Read command tXSNR tXSRD tRFC + 10 — ns — 200 — tWR/tCK — tCK tCK — WR Average periodic refresh Interval Auto-Refresh to Active/Auto-Refresh command period Precharge-All (4 banks) command period Precharge-All (8 banks) command period Read preamble Read postamble Active bank A to Active bank B command period Write preamble Write postamble Write recovery time for write without AutoPrecharge Internal Write to Read command delay Exit power down to any valid command (other than NOP or Deselect) Exit Self-Refresh to Read command Write recovery time for write with AutoPrecharge 1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V. tREFI tRFC 13) 18) 21) 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. The input reference level for signals other than CK/CK, DQS/DQS, RDQS / RDQS is defined. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. 7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. 9) For timing definition, refer to the Component data sheet. 10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle. 11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). Rev. 1.1, 2007-02 03062006-H3V1-XJT4 42 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 13) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 14) 0 °C≤ TCASE ≤ 85 °C 15) 85 °C < TCASE ≤ 95 °C 16) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 17) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 4 “Ordering Information for RoHS Compliant Products” on Page 5. 18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 19) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz. 20) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied. 21) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS. Rev. 1.1, 2007-02 03062006-H3V1-XJT4 43 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 7.3 Jitter Definition and Clock Jitter Specification Generally, jitter is defined as “the short-term variation of a signal with respect to its ideal position in time”. The following table provides an overview of the terminology. TABLE 44 Average Clock and Jitter Symbols and Definition Symbol Parameter Description Units tCK.AVG Average clock period tCK.AVG is calculated as the average clock period within any consecutive 200-cycle window: ⎛ N ⎞ 1 tCK.AVG = ---- . ⎜ ∑ tCK j⎟ ⎟ N⎜ ⎝j = 1 ⎠ ps (1) N = 200 tJIT.PER Clock-period jitter tJIT(PER, LCK) Clock-period jitter during DLL-locking period tJIT.CC Cycle-to-cycle clock period jitter tJIT(CC, LCK) Cycle-to-cycle clock period jitter during DLL-locking period tERR.2PER Cumulative error across 2 cycles tJIT.PER is defined as the largest deviation of any single tCK from tCK.AVG: tJIT.PER = Min/Max of {tCKi – tCK.AVG} where i = 1 to 200 tJIT.PER defines the single-period jitter when the DLL is already locked. tJIT.PER is not guaranteed through final production testing. tJIT(PER,LCK) uses the same definition as tJIT.PER, during the DLL-locking ps period only. tJIT(PER,LCK) is not guaranteed through final production testing. tJIT.CC is defined as the absolute difference in clock period between two ps tJIT.CC defines the cycle- to- cycle jitter when the DLL is already locked. tJIT.CC is not guaranteed through final production testing. tJIT(CC,LCK) uses the same definition as tJIT.CC during the DLL-locking ps consecutive clock cycles: tJIT.CC = Max of ABS{tCKi+1 – tCKi} period only. tJIT(CC,LCK) is not guaranteed through final production testing. tERR.2PER is defined as the cumulative error across 2 consecutive cycles from tCK.AVG: ⎛i + n – 1 ⎞ ⎜ tERR ( 2per ) = tCK j⎟ – n × tCK ( avg ) ⎜ ∑ ⎟ ⎝ j=i ⎠ n = 2 for tERR(2per) where i = 1 to 200 Rev. 1.1, 2007-02 03062006-H3V1-XJT4 ps 44 (2) ps Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM Symbol Parameter Description Units tERR.nPER Cumulative error across n cycles tERR.2PER is defined as the cumulative error across n consecutive cycles from tCK.AVG: ps ⎛i + n – 1 ⎞ tERR ( nper ) = ⎜ ∑ tCK j⎟ – n × tCK ( avg ) ⎜ ⎟ ⎝ j=i ⎠ (3) where, i = 1 to 200 and n = 3 for tERR.3PER n = 4 for tERR.4PER n = 5 for tERR.5PER 6 ≤ n ≤ 10 for tERR.6-10PER 11 ≤ n ≤ 50 for tERR.11-50PER tCH.AVG Average high-pulse width tCH.AVG is defined as the average high-pulse width, as calculated across any consecutive 200 high pulses: ⎛ N ⎞ 1 ⎜ . tCH ( avg ) = ---------------------------------------- ∑ tCH j⎟ ⎟ ( N × tCK ( avg ) ) ⎜ ⎝j = 1 ⎠ tCK.AVG (4) N = 200 tCL.AVG Average low-pulse width tCL.AVG is defined as the average low-pulse width, as calculated across any tCK.AVG consecutive 200 low pulses: ⎛ N ⎞ 1 tCL ( avg ) = ---------------------------------------- . ⎜ ∑ tCL j⎟ ⎟ ( N × tCK ( avg ) ) ⎜ ⎝j = 1 ⎠ (5) N = 200 tJIT.DUTY Duty-cycle jitter tJIT.DUTY = Min/Max of {tJIT.CH , tJIT.CL}, where: tJIT.CH is the largest deviation of any single tCH from tCH.AVG tJIT.CL is the largest deviation of any single tCL from tCL.AVG tJIT.CH = {tCHi - tCH.AVG × tCK.AVG} where i=1 to 200 tJIT.CL = {tCLi - tCL.AVG × tCK.AVG} where i=1 to 200 ps The following parameters are specified per their average values however, it is understood that the following relationship between the average timing and the absolute instantaneous timing holds all the time. Rev. 1.1, 2007-02 03062006-H3V1-XJT4 45 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 45 Absolute Jitter Value Definitions Symbol Parameter Min. tCK.ABS tCH.ABS Clock period tCL.ABS Clock low-pulse width tCK.AVG(Min) + tJIT.PER(Min) tCK.AVG(Max) + tJIT.PER(Max) tCH.AVG(Min) x tCK.AVG(Min) + tJIT.DUTY(Min) tCH.AVG(Max) x tCK.AVG(Max) + tJIT.DUTY(Max) tCL.AVG(Min) x tCK.AVG(Min) + tJIT.DUTY(Min) tCL.AVG(Max) x tCK.AVG(Max) + tJIT.DUTY(Max) Clock high-pulse width Max. Unit ps ps ps Example: for DDR2-667, tCH.ABS.MIN = (0.48 x 3000ps) – 125 ps = 1315 ps = 0.438 x 3000 ps. Table 46 shows clock-jitter specifications. TABLE 46 Clock-Jitter Specifications for –667 and –800 Symbol Parameter DDR2 -667 DDR2 -800 Min. Max. Min. Max. Unit tCK.AVG tJIT.PER tJIT(PER,LCK) tJIT.CC tJIT(CC,LCK) Average clock period nominal w/o jitter 3000 8000 2500 8000 ps Clock-period jitter –125 +125 –100 +100 ps Clock-period jitter during DLL locking period –100 +100 –80 +80 ps Cycle-to-cycle clock-period jitter –250 +250 –200 +200 ps Cycle-to-cycle clock-period jitter during DLLlocking period –200 +200 –160 +160 ps tERR.2PER tERR.3PER tERR.4PER tERR.5PER tERR(6-10PER) Cumulative error across 2 cycles –175 +175 –150 +150 ps Cumulative error across 3 cycles –225 +225 –175 +175 ps Cumulative error across 4 cycles –250 +250 –200 +200 ps Cumulative error across 5 cycles –250 +250 –200 +200 ps Cumulative error across n cycles with n = 6 .. 10, inclusive –350 +350 –300 +300 ps tERR(11-50PER) Cumulative error across n cycles with n = 11 .. –450 50, inclusive +450 –450 +450 ps tCH.AVG tCL.AVG tJIT.DUTY Average high-pulse width 0.52 0.48 0.52 Average low-pulse width 0.48 0.52 0.48 0.52 tCK.AVG tCK.AVG Duty-cycle jitter –125 +125 –100 +100 ps Rev. 1.1, 2007-02 03062006-H3V1-XJT4 0.48 46 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 7.4 ODT AC Electrical Characteristics This chapter describes the ODT AC electrical characteristics. TABLE 47 ODT AC Characteristics and Operating Conditions for DDR2-667& DDR2-800 Symbol tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD Parameter / Condition Values Unit Note Min. Max. ODT turn-on delay 2 2 nCK 1) ODT turn-on tAC.MAX + 0.7 ns 2 tCK + tAC.MAX + 1 ns ns 1)2) ODT turn-on (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns ns 1) ODT turn-off delay 2.5 2.5 nCK 1) ns 1)3) ns 1) nCK nCK 1) ODT turn-off (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns tAC.MAX + 0.6 ns 2.5 tCK + tAC.MAX + 1 ns ODT to Power Down Mode Entry Latency 3 — ODT turn-off 1) ODT Power Down Exit Latency 8 — 1) New units, “tCK.AVG” and “nCK”, are introduced in DDR2-667 and DDR2-800. Unit “tCK.AVG” represents the actual tCK.AVG of the input clock under operation. Unit “nCK” represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and DDR2-533, “tCK” is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-667/800, tAOND is 2 clock cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges. 3) ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-667/800, if tCK(avg) = 3 ns is assumed, tAOFD is 1.5 ns (= 0.5 x 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by counting the actual input clock edges. Rev. 1.1, 2007-02 03062006-H3V1-XJT4 47 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 48 ODT AC Characteristics and Operating Conditions for DDR2-533 & DDR2-400 Symbol tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD Parameter / Condition Values Unit Note Min. Max. ODT turn-on delay 2 2 tCK — ODT turn-on tAC.MAX + 1 ns 2 tCK + tAC.MAX + 1 ns ns 1) ODT turn-on (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns ns — ODT turn-off delay 2.5 2.5 tCK — ODT turn-off tAC.MAX + 0.6 ns 2.5 tCK + tAC.MAX + 1 ns ns 2) ODT turn-off (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns ns — ODT to Power Down Mode Entry Latency 3 — — ODT Power Down Exit Latency 8 — tCK tCK — 1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is 10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns. 2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is 12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns. Rev. 1.1, 2007-02 03062006-H3V1-XJT4 48 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 8 Package Dimensions This chapter describes the package dimensions. FIGURE 9 Package Outline PG-TFBGA-84 [ $ [ 0 $; % 0$ ; & 0 $; 0 ,1 & ¡ [ ¡ 0 $ % & ¡ 0 ' XPP \ SDGV Z LWK RXWE DOO 0 LGGOHRISDFN DJHVHGJ HV 3 D FN D JHRULHQWDWLRQP DUN$ % DGX QLWP DUNLQJ %8 0 ' LHVR UWILGXFLDO Rev. 1.1, 2007-02 03062006-H3V1-XJT4 49 *3 /$1( & 6($7 ,1 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM 9 Product Nomenclature For reference the Qimonda SDRAM component nomenclature is enclosed in this chapter. TABLE 49 Nomenclature Fields and Examples Example for DDR2 DRAM Field Number 1 2 3 4 5 6 HYB 18 TC 256 16 7 8 9 10 11 0 A C –3.7 — TABLE 50 DDR2 Memory Components Field Description Values Coding 1 Qimonda Component Prefix HYB Constant 2 Interface Voltage [V] 18 SSTL_18 3 DRAM Technology, consumer variant TC DDR2 4 Component Density [Mbit] 256 256 M 512 512 M 1G 1 Gb 40 x4 5+6 Number of I/Os 7 Product Variations 8 Die Revision 9 10 11 80 x8 16 x16 0 .. 9 look up table A First B Second C Third Package, Lead-Free Status C FBGA, lead-containing F FBGA, lead-free Speed Grade –1.9 DDR2–1066 –2.5F DDR2–800 5–5–5 –2.5 DDR2–800 6–6–6 –3 DDR2–667 4–4–4 –3S DDR2–667 5–5–5 –3.7 DDR2–533 4–4–4 N/A for Components Rev. 1.1, 2007-02 03062006-H3V1-XJT4 50 –5 DDR2–400 3–3–3 — — Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Chip Configuration for ×16 components, PG-TFBGA-84 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Single-ended AC Input Test Conditions Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Differential DC and AC Input and Output Logic Levels Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 AC Overshoot / Undershoot Diagram for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . . . . . . . . . . 28 Method for calculating transitions and endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Differential input waveform timing - tDS and tDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Differential input waveform timing - tlS and tlH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Package Outline PG-TFBGA-84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Rev. 1.1, 2007-02 03062006-H3V1-XJT4 51 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Table 27 Table 28 Table 29 Table 30 Table 31 Table 32 Table 33 Table 34 Table 35 Table 36 Table 37 Table 38 Table 39 Table 40 Table 41 Table 42 Table 43 Table 44 Table 45 Table 46 Table 47 Table 48 Table 49 Table 50 Performance table for –3S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Performance table for –3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Performance Table for –5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Ordering Information for RoHS Compliant Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chip Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Abbreviations for Ball Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 DDR2 Addressing for ×16 Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Mode Register Definition (BA[2:0] = 000B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Extended Mode Register Definition (BA[2:0] = 001B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 EMRS(2) Programming Extended Mode Register Definition (BA[2:0]=010B) . . . . . . . . . . . . . . . . . . . . . . . . . . 15 EMR(3) Programming Extended Mode Register Definition( BA[2:0]=011B) . . . . . . . . . . . . . . . . . . . . . . . . . . 16 ODT Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Burst Length and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Command Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Clock Enable (CKE) Truth Table for Synchronous Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Data Mask (DM) Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DRAM Component Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Recommended DC Operating Conditions (SSTL_18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 ODT DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Input and Output Leakage Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DC & AC Logic Input Levels for DDR2-667 and DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DC & AC Logic Input Levels for DDR2-533 and DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Single-ended AC Input Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Differential DC and AC Input and Output Logic Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 SSTL_18 Output DC Current Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 SSTL_18 Output AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 OCD Default Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Input / Output Capacitance for DDR2-667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Input / Output Capacitance for DDR2-533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Input / Output Capacitance for DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 AC Overshoot / Undershoot Specification for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 AC Overshoot / Undershoot Spec. for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 IDD Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Definition for IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 IDD Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Speed Grade Definition Speed Bins for DDR2–667D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Speed Grade Definition Speed Bins for DDR2–533C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Speed Grade Definition Speed Bins for DDR2-400B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DRAM Component Timing Parameter by Speed Grade - DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 DRAM Component Timing Parameter by Speed Grade - DDR2–533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 DRAM Component Timing Parameter by Speed Grade - DDR2-400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Average Clock and Jitter Symbols and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Absolute Jitter Value Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Clock-Jitter Specifications for –667 and –800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ODT AC Characteristics and Operating Conditions for DDR2-667& DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . 47 ODT AC Characteristics and Operating Conditions for DDR2-533 & DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . 48 Nomenclature Fields and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 DDR2 Memory Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Rev. 1.1, 2007-02 03062006-H3V1-XJT4 52 Internet Data Sheet HYB18TC256160AF 256-Mbit Double-Data-Rate-Two SDRAM Table of Contents 1 1.1 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 5.1 5.2 5.3 5.4 5.5 5.6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC & AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Buffer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overshoot and Undershoot Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Currents Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7 7.1 7.2 7.3 7.4 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Component AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jitter Definition and Clock Jitter Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 9 Product Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Rev. 1.1, 2007-02 03062006-H3V1-XJT4 53 20 20 21 22 24 25 27 32 32 34 44 47 Internet Data Sheet Edition 2007-02 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 München, Germany © Qimonda AG 2007. All Rights Reserved. Legal Disclaimer The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office. Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. www.qimonda.com