MLX80050/51/30/31 LIN System Basis ICs Datasheet Features VS 1 8 VCC EN 2 7 NRES MLX80030/50 o LIN 2.x / SAE J2602 compliant o Operating voltage VSUP = 5 ... 27 V o 3 modes: Normal, Silent and Sleep o Linear low drop voltage regulator: GND 3 5 TxD LIN 4 5 RxD MLX80030/31: Normal mode 3.3V/70mA ±2% Silent mode 3.3V/20mA ±2% MLX80050/51: o Normal mode 5V/70mA ±2% Silent mode 5V/20mA ±2 Low current consumption (typ) Sleep mode 20 A Silent mode “noload” 45 A o Output current limitation o LIN-Bus Transceiver Baud rate up to 20 kBaud Slew rate control for best EME behaviour Low slew mode for optimized SAE J2602 transmission High impedance LIN pin in case of loss of ground or battery Bus input voltages -24V to 30V independent from VBat o Remote and local wake up source recognition o VCC undervoltage detection at NRES output (start-up delay 4ms) Vres threshold 3.0 V (MLX80030/31); Vres threshold 4.1V (MLX80050/51) o Programmable Window Watchdog (only MLX80031/51) o VSUP undervoltage detection (POR), Over temperature shutdown o TxD dominant time out function, Standby mode time out after 350ms o Automotive temperature range of –40°C to 125°C o Interface I/O’s independent from voltage regulator output o Enhanced ESD robustness according to IEC 61000-4-2 o o Direct discharge for pin LIN >20kV (only Lin cap connected) and for pin VBAT >15kV o Indirect discharge for pin LIN >15kV Load dump protected (40V) Order Code Temp. Range Package Delivery Remark MLX80050 KDC-CAA-000-RE MLX80051 KLW-CAA-000-RE MLX80030 KDC-CAA-000-RE MLX80031 KLW-CAA-000-RE -40 - 125 °C -40 - 125 °C -40 - 125 °C -40 - 125 °C SOIC8 QFN_WF20/5x5 SOIC8 QFN_WF20/5x5 Reel Reel Reel Reel Silent Mode enabled Silent Mode enabled Silent Mode enabled Silent Mode enabled Short Description The MLX8005x/3x consist of a low-drop voltage regulator 5V/3.3V/70mA combined with a Reset/Watchdog unit and a LIN bus transceiver. The LIN transceiver is suitable for LIN bus systems conform to LIN specification revision 2.x and SAE J2602. The watchdog times of the integrated window watchdog can be adapted on application needs via external resistors. With the help of an external bipolar transistor it is possible to extend the output current of the integrated voltage regulator. The combination of voltage regulator and bus transceiver as well as watchdog unit makes it possible to develop simple, but powerful and cheap slave nodes in LIN Bus systems. MLX80050/51/30/31 – Datasheet 3901080050 Page 1 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet Contents 1. LIST OF TABLES ................................................................................................................................................................ 4 2. LIST OF FIGURES .............................................................................................................................................................. 4 3. ELECTRICAL SPECIFICATION ............................................................................................................................................ 5 3.1. DC CHARACTERISTICS .................................................................................................................................................... 6 3.2. AC CHARACTERISTICS .................................................................................................................................................. 11 3.3. TIMING DIAGRAMS...................................................................................................................................................... 14 4. PIN CONFIGURATION .................................................................................................................................................... 15 4.1. MLX80030 AND MLX80050 - SOIC8 ......................................................................................................................... 15 4.2. MLX80031 AND MLX80051 IN QFN20 ...................................................................................................................... 16 3. FUNCTIONAL DESCRIPTION........................................................................................................................................... 17 3.1. SUPPLY PIN VS........................................................................................................................................................... 19 3.2. EN INPUT PIN ............................................................................................................................................................ 19 3.3. GROUND PIN GND ..................................................................................................................................................... 19 3.4. LIN 19 3.5. RECEIVER OUTPUT RXD ............................................................................................................................................... 19 3.6. TRANSMIT INPUT TXD ................................................................................................................................................. 19 3.6.1. TxD dominant time-out feature .................................................................................................................. 19 3.7. OUTPUT NRES .......................................................................................................................................................... 20 3.8. VOLTAGE REGULATOR PINS VCC AND RTG ...................................................................................................................... 20 3.9. INH OUTPUT (ONLY MLX80031/51) ........................................................................................................................... 20 3.10. WAKE INPUT (ONLY MLX80031/51)......................................................................................................................... 20 3.11. KL15 INPUT (ONLY MLX80031/51) ........................................................................................................................... 20 3.12. WATCHDOG TRIGGER INPUT NWDI (ONLY MLX80031/51) ........................................................................................... 20 3.13. WATCHDOG OSCILLATOR RESISTOR RBWD (ONLY MLX80031/51) ................................................................................... 20 3.14. MODE INPUT MODE (ONLY MLX80031/51) .............................................................................................................. 20 4. OPERATIONAL MODES .................................................................................................................................................. 21 4.1. MODES OVERVIEW ..................................................................................................................................................... 22 4.2. INITIALISATION AND STANDBY MODE .............................................................................................................................. 23 4.3. NORMAL MODE ......................................................................................................................................................... 23 4.4. SILENT MODE ............................................................................................................................................................ 24 4.5. SLEEP MODE ............................................................................................................................................................. 25 4.6. INIT-STATE ................................................................................................................................................................ 27 5. WAKE UP PROCEDURES ................................................................................................................................................ 28 5.1. WAKE UP SOURCE RECOGNITION IN MLX80031/51 ....................................................................................................... 28 6. FUNCTIONALITY ............................................................................................................................................................ 29 6.1. RESET BEHAVIOUR OF MLX8003X/5X .......................................................................................................................... 29 6.2. THERMAL SHUTDOWN ................................................................................................................................................. 29 6.3. VS UNDER VOLTAGE RESET ........................................................................................................................................... 30 6.4. LIN-TRANSCEIVER ...................................................................................................................................................... 30 6.5. VOLTAGE REGULATOR ................................................................................................................................................. 31 7. WINDOW-WATCHDOG (ONLY MLX80031/51) .............................................................................................................. 32 7.1. MLX80031/51 WATCHDOG BEHAVIOUR ...................................................................................................................... 32 7.2. ALL WATCHDOG START-UP SCENARIOS ............................................................................................................................ 33 7.2.1. After power-on and initialization ................................................................................................................ 33 MLX80050/51/30/31 – Datasheet 3901080050 Page 2 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 7.2.2. Wake up indicated transition to Standby Mode from Sleep or Silent Mode .............................................. 33 7.2.3. Undervoltage reset on VCC on Normal Mode or Silent Mode .................................................................... 33 7.2.4. EN indicated transition from Silent Mode to Normal Mode ....................................................................... 33 7.3. CALCULATION OF WATCHDOG PERIOD ............................................................................................................................ 34 8. FAIL-SAFE FEATURES ..................................................................................................................................................... 36 9. APPLICATION HINTS ...................................................................................................................................................... 37 9.1. SAFE OPERATING AREA................................................................................................................................................ 37 9.2. APPLICATION CIRCUITRY............................................................................................................................................... 38 10. ESD AND EMC ............................................................................................................................................................. 39 10.1. RECOMMENDATIONS FOR ACTUATOR PRODUCTS ............................................................................................................ 39 10.1.1. Automotive Qualification Test Pulses ......................................................................................................... 40 10.1.2. Test Pulses On supply Lines ........................................................................................................................ 40 10.1.3. Test pulses on Pin LIN ................................................................................................................................. 41 10.1.4. Test pulses on signal lines ........................................................................................................................... 41 10.1.5. EMV Test pulse definition ........................................................................................................................... 42 10.2. TYPICAL APPLICATION CIRCUITRY ................................................................................................................................. 43 10.2.1. External Circuitry on Supply Lines ............................................................................................................... 44 10.2.2. External Circuitry on LIN Lines .................................................................................................................... 44 10.2.3. External Circuitry on Signal Lines ................................................................................................................ 44 11. MECHANICAL SPECIFICATION ..................................................................................................................................... 45 11.1. SOIC8 PACKAGE ...................................................................................................................................................... 45 11.2. QFN20 5X5 PACKAGE............................................................................................................................................... 46 12. REVISION HISTORY ...................................................................................................................................................... 47 13. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS WITH DIFFERENT SOLDERING PROCESSES ........................................................................................................................................................................ 49 14. DISCLAIMER ................................................................................................................................................................ 50 MLX80050/51/30/31 – Datasheet 3901080050 Page 3 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 1. List of Tables Table 1: Absolute maximum ratings ................................................................................................................................... 5 Table 2: Voltage Regulator and Reset Unit ......................................................................................................................... 6 Table 3: LIN DC Characteristics ......................................................................................................................................... 10 Table 4: AC Characteristics ............................................................................................................................................... 11 Table 5: MLX80050/30 pin list in SOIC8 ............................................................................................................................ 15 Table 6: MLX80051/31 pin list in QFN20 .......................................................................................................................... 16 Table 7: MLX80050/30 Operation Modes ........................................................................................................................ 22 Table 8: MLX80051/31 Operation Modes ........................................................................................................................ 22 Table 9: Parameters of Window Watchdog ...................................................................................................................... 35 Table 10: Window Watchdog Timing Selection ................................................................................................................ 35 Table 11: Test pulses Supply Line ..................................................................................................................................... 40 Table 12: Test pulses LIN .................................................................................................................................................. 41 Table 13: Test pulses signal lines ...................................................................................................................................... 41 Table 14: Test pulses shapes ISO7637-2 ........................................................................................................................... 42 Table 15: Test pulses shapes ISO7637-3 ........................................................................................................................... 43 Table 12: SOIC8 dimensions.............................................................................................................................................. 45 Table 13: QFN20 Package Dimensions .............................................................................................................................. 46 2. List of Figures Figure 1: LIN propagation delays ...................................................................................................................................... 14 Figure 2: LIN duty cycles ................................................................................................................................................... 14 Figure 3: MLX80050/30 Block Diagram ............................................................................................................................ 17 Figure 4: MLX80051/31 Block Diagram ............................................................................................................................ 18 Figure 5: MLX8005x3x state diagram of modes of operation........................................................................................... 21 Figure 6: LIN wake-up from Silent Mode .......................................................................................................................... 24 Figure 7 Local Wake-up from Silent Mode via WAKE ....................................................................................................... 25 Figure 8: Remote wake-up from Sleep Mode ................................................................................................................... 26 Figure 9: Local wake-up from Sleep Mode ....................................................................................................................... 27 Figure 10: VCC reset behavior .......................................................................................................................................... 29 Figure 11: MLX80031/51 Watchdog behavior .................................................................................................................. 32 Figure 12: Watchdog timing ............................................................................................................................................. 33 Figure 13: Watchdog open and close window tolerances ................................................................................................ 34 Figure 14: Safe operating area for MLX80030/50 in SOIC-8 for Vsup up to 18V .............................................................. 37 Figure 15: Safe operating area for MLX80031/51 in QFN20 for Vsup up to 18V .............................................................. 38 Figure 16: Application circuit with MLX80050 or MLX80030 (slave node) ....................................................................... 38 Figure 17: Application circuit with MLX80031 or MLX80051 (slave node) ....................................................................... 39 Figure 19: SOIC8 Drawing ................................................................................................................................................. 45 Figure 20: QFN20 Drawing ................................................................................................................................................ 46 MLX80050/51/30/31 – Datasheet 3901080050 Page 4 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 3. Electrical Specification All voltages are referenced to ground (GND), positive currents flow into the IC. Absolute Maximum Ratings Table 1: Absolute maximum ratings Parameter Condition Min Max Unit Respective to GND -0.3 40 V Transient voltage ISO 7637/2 pulse 1, 2 -100 100 V Transient voltage ISO 7637/2 pulse 3A; 3B, coupling 1nF -150 100 V VLIN_DC Respective to GND and VS Loss of Ground (VGND = VS) -20 -30 40 40 V VWAKE_DC Respective to GND and VS Loss of Ground (VGND = VS) -20 -30 40 40 V Supply voltage at VS DC voltage LIN DC voltage WAKE Symbol VS DC voltage INH VINH_DC -0.3 VS+0.3 V DC voltage VCC VVCC_DC -0.3 7 V DC voltage RTG VRTG_DC -0.3 7 V VIN -0.3 7 V Input voltage at low voltage I/O’s (EN, TxD, RxD, NRES, WDI, RBWD, MODE) VESDIEC IEC 61000-4-2, direct ESD Pin LIN with LIN cap 220pF Pin VS to GND VESDIECind IEC 61000-4-2, indirect ESD Pin LIN with LIN cap 220pF VESDHBM HBM (CDF-AEC-Q100-002) Pin LIN Pin WAKE, KL15, VS Other pins VESDCDM CDM (AEC-Q100-011) ESD voltage Power dissipation Thermal resistance from junction to ambient 20 15 kV 15 kV ±6 ±4 ±2 kV kV kV ±500 V Internal limited, see also chapter 9.1 P0 RTHJA_SOIC8 JEDEC 1s0p board, no air flow 150 K/W RTHJA_QFN20 JEDEC 1s0p board, no air flow 50 K/W Junction temperature TJ -40 150 °C Storage temperature TSTG -55 150 °C MLX80050/51/30/31 – Datasheet 3901080050 Page 5 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 3.1. DC Characteristics Unless otherwise specified all values in the following tables are valid for VS = 5 to 27V and o TAMB = -40 to 125 C. All voltages are referenced to ground (GND), positive currents flow into the IC. For MLX80031/51 apply: RTG connected to VCC. Table 2: Voltage Regulator and Reset Unit Parameter Symbol Condition Min Typ Max Unit T[1] 5 27 V A Supply Voltage Pin VS Nominal DC operating voltage VS 1.01 VS under voltage reset VSUVR_OFF VS ramp up 4.1 5.0 V A 1.02 VS under voltage reset VSUVR_ON VS ramp down 3.7 4.8 V A 1.03 VS under voltage reset hysteresis VSUVR_HYS VSUVR_OFF - VSUVR_ON 0.04 0.3 0.7 V A VS 14V, VEN > 2V , LIN recessive, no load at VCC 400 750 1500 A A Supply currents MLX80030, MLX80050 2.00 Supply current, normal mode IVS_nor VS 14V 2.01 Supply current, sleep mode IVS_sleep 2.02 Supply current, silent mode IVS_sil TA = -40 °C TA = 25 °C TA 85 ° C TA 125 °C 15 VS 14V, LIN recessive no load at VCC TA = -40 °C TA = 25 °C TA 85 ° C TA 125 °C 65 30 20 30 45 85 95 100 125 A A A A Supply currents MLX80031, MLX80051 2.00 Supply current, normal mode IVS_nor VS 14V, VEN > 2V ,RBWD = 60k LIN recessive, no load at VCC VS 14V 2.01 Supply current, sleep mode IVS_sleep 2.02 Supply current, silent mode IVS_sil MLX80050/51/30/31 – Datasheet 3901080050 TA = -40 °C TA = 25 °C TA 85 ° C TA 125 °C VS 14V, LIN recessive no load at VCC TA = -40 °C TA = 25 °C TA 85 ° C TA 125 °C Page 6 400 750 15 65 1500 30 20 30 45 85 95 100 125 A A A A A A Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet Voltage Regulator Pin VCC MLX80050, MLX80051 (RTG connected to VCC) 3.01 Output voltage VCC Output voltage VCC under disturbances functional state A 3.02 3.03 Drop-out voltage [2] 3.04 3.05 Line regulation 3.06 3.07 Load regulation 3.08 VCCn5 6V VS 18V 1mA ILOAD 70mA TA = 25°C TA = -40°C to 125°C 4.90 4.85 5.0 5.10 5.15 V A 5.25 V C VCCndis5 6V VS 18V, TA = 25°C RLOAD = 330 VD10_5 VS 4V , IVCC = 10mA 75 120 mV C VD30_5 VS 4V , IVCC = 30mA 220 350 mV C VD70_5 VS 4V , IVCC = 70mA 500 800 mV C VLNR5 6V VS 18V, IVCC = 30mA 6V VS 18V, IVCC = 70mA 20 100 mV A VLDR10_5 1 mA < ILOAD < 10 mA 50 mV A VLDR30_5 1 mA < ILOAD < 30 mA 90 mV A VLDR70_5 1 mA < ILOAD < 70 mA 150 mV A -75 -80 mA A F D V A 3.465 V C 4.75 VS > 6V 3.09 Output current limitation [3] 3.10 Load capacity IVCCLIM_5 TA = -40 °C 25 °C TA 125 °C CLOAD -135 -150 -110 2.2 22 3.234 3.201 3.3 MLX80030, MLX80031 (RTG connected to VCC) 3.01 Output voltage VCC VCCn3 4 V VS 18 V 1m A ILOAD 70 mA TA = 25 °C TA = -40 °C to 125 °C 3.366 3.399 Output voltage VCC under disturbances functional state A VCCndis3 6 V VS 18 V, TA = 25 °C RLOAD = 330 Drop-out voltage [2] VD10_3 VS 3 V , IVCC = 10 mA 100 mV C 3.03 VD30_3 VS 3 V , IVCC = 30 mA 300 mV C 3.04 VD70_3 VS 3 V , IVCC = 70 mA 700 mV C 5 V VS 18 V, IVCC = 30mA 5V VS 18V, IVCC = 70mA 20 100 mV A 3.02 3.135 3.05 Line regulation VLNR_3 3.06 Load regulation VLDR10_3 1 mA < ILOAD < 10 mA 50 mV A 3.07 VLDR30_3 1 mA < ILOAD < 30 mA 90 mV A 3.08 VLDR70_3 1 mA < ILOAD < 70 mA 150 mV A -75 -80 mA A F D VS > 4 V 3.09 Output current limitation [3] 3.10 Load capacity MLX80050/51/30/31 – Datasheet 3901080050 IVCCLIM_3 TA = -40 °C 25 °C TA 125 °C CLOAD Page 7 -135 -150 -110 2.2 22 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet Output Pin NRES 4.01 Output voltage low VOL_NRES INRES = 1 mA 4.02 Leakage current low Ileak_RxD VNRES = 0 V 4.03 Leakage current high Ileak_RxD VNRES = VCC Output voltage high NRES under disturbances to fulfil functional state A VOH_NRES Rload = 2.7 k to VCC 0.25 V A -5 5 µA A -5 5 µA A V C 4.3 V A 200 mV C 3.15 V A VCC -1 MLX80050, MLX80051 5.01 VCC reset threshold on NRES pin VRES5V 5.02 VRES Hysteresis VRESHYS = |VRES(ON) – VRES(OFF)| VRESHYS5V t > trr 3.9 4.10 MLX80030, MLX80031 5.01 VCC reset threshold on NRES pin VRES3V 5.02 VRES Hysteresis VRESHYS = |VRES(ON) – VRES(OFF)| VRESHYS3V 100 mV C 0.8 V A V A t > trr 2.75 2.95 Input Pin EN 6.01 Input voltage low VIL_EN 6.02 Input voltage high VIH_EN 2.0 6.03 Hysteresis VHYS_EN 50 100 700 mV C 6.04 Pull-down resistor Rpd_EN 50 125 250 k A V A VS-3.3V V A -1 µA A VEN =VCC Input Pin WAKE (MLX80031, MLX80051) 7.01 High level input voltage VIH_WAKE Sleep mode VS-1V 7.02 Low level input voltage VIL_WAKE Sleep mode 7.03 Pull up current WAKE IWAKE_PU Normal & sleep -30 7.04 Leakage current WAKE high IWAKE_lk VS = 18V -5 5 µA A -15 Input Pin KL15 (MLX80031, MLX80051) 8.01 High level input voltage VIH_KL15 Rv = 50k 4 VS+0.3V V A 8.02 Low level input voltage VIL_KL15 Rv = 50k -1 2 V A 8.03 Pull down current KL15 IKL15_PD 65 µA A 0.8 V A V A 600 mV C 600 k A 30 Input Pin MODE (MLX80031, MLX80051) 23.01 Input voltage low VIL_MODE 23.02 Input voltage high VIH_MODE 2.0 23.03 Hysteresis VHYS_MODE 50 23.04 Pull-down resistor Rpd_MODE MLX80050/51/30/31 – Datasheet 3901080050 VMODE = VCC Page 8 200 100 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet Input Pin NWDI (MLX80031, MLX80051) 9.01 Input voltage low VIL_NWDI 0.8 9.02 Input voltage high VIH_NWDI 2.0 9.03 Hysteresis VHYS_NWDI 50 100 9.04 Pull-up resistor to VCC Rpu_NWDI 125 250 9.05 Min low pulse width VNWDI = 0V Tminlow_NWDI one WD_OSC clock period V A V A 600 mV C 375 k A 1 D V A 1 Watchdog Oscillator pin RBWD (MLX80031, MLX80051) 10.01 Voltage at RBWD VRBwd 10.02 Range of RBWD resistance RBWD 10.03 RBWD short resistance threshold to enable fail-safe state IOUT = -50 A 1.2 20 150 k B 0 330 B 60 A RBWDSH see paragraph 7.3 RON_INH VS = 12V IleakH_INH Sleep Mode, VINH = 18V, VS = 18V -5 5 µA A IleakL_INH Sleep Mode, VINH = 0V, VS = 18V -5 5 µA A 170 190 °C D 10 30 °C D Output INH (MLX80031, MLX80051) 11.01 ON Resistance 11.02 Leakage current INH high 11.03 Leakage current INH low 20 Thermal Protection Thermal shutdown TJSHD Thermal hysteresis TJHYS 155 Notes: [1] A = 100% serial test, B = Operating parameter, C = characterization data, D = Value guaranteed by design [2] The nominal VCC voltage is measured at VSUP = 12V. If the VCC voltage is 100mV below its nominal value then the voltage drop is VD = VSUP – VCC [3] Functionality range of current limitation at silent mode is limited by reset threshold VRES. Below them the IC change to normal mode. Validity for IVCC_MAXsil: VCCn (min) ≤ VCC ≤ VRES MLX80050/51/30/31 – Datasheet 3901080050 Page 9 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet Table 3: LIN DC Characteristics Parameter Symbol Condition Min Typ Max Unit T[1] 80 A A 60 k A µA A General 12.01 Pull up current LIN (recessive) IINLINpu VLIN = 18 V, VS = 6V 12.02 Pull up resistor LIN RLINpu VS = 12V, VLIN = 0V 20 12.03 Reverse current LIN (dominant) IINLINdom VS = 12V, VLIN = 0V -400 12.04 Reverse current LIN (recessive) IINLINrec VLIN VS, 8V VLIN 18V, 8V VS 18V 0 23 µA A 12.05 Reverse current LIN (loss of battery) IINLIN_lob VS = 0V, 0V VLIN 18V 0 23 µA A 12.06 Reverse current LIN (loss of ground) IINLIN_log VS= 12V, 0V VLIN 18V -10 50 µA A Voltage drop serial Diode VSerDiode 1.0 V D Battery Shift VShift_BAT related to VS 0 11.5 % D Ground Shift VShift_GND related to VS 0 11.5 % D Ground-Battery shift difference VShift_diff related to VS 0 8 % D 0.4 30 0.7 Receiver Receiver dominant voltage VBUSdom Receiver recessive voltage VBUSrec 12.08 Centre point of receiver threshold Vthr_cnt = (Vthr_rec+Vthr_dom)/2 Vthr_cnt 12.09 Receiver Hysteresis Vhys = Vthr_rec-Vthr_dom 12.07 0.4*VS A 0.6*VS 7.0 V VS 18 V 0.475*VS Vhys A V 0.5*VS 0.525*VS A 0.15*VS 0.175*VS A D Transmitter 12.10 Transmitter dominant voltage 12.11 Current limitation LIN 12.12 Transmitter recessive voltage Rload = 500, VS = 5V 0 1.2 Rload = 500, VS >= 7V 0 0.2*VS ILIM VLIN = VS, TxD = 0V 40 VohBUS No load, VEN = 0/5V, VTxD = 5V 0.8*VS rising VoIbus 120 V A 200 mA A VS V A 0.8 V A V A Input/Output Pin TxD 13.01 Input voltage low TxD VIL_TxD 13.02 Input voltage high TxD VIH_TxD MLX80050/51/30/31 – Datasheet 3901080050 2 Page 10 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 13.03 Hysteresis VHYS_TxD 50 13.04 Pull-up resistor to VCC Rpu_TxD VTxD = 0V 125 13.06 Low level output current IOL_TxD local wake-up request; standby mode; VTxD = 0.4V 1.5 250 700 mV C 375 k A mA A 0.6 V A 7 k A 5 µA A V C Output Pin RxD 14.01 Output voltage low RxD VOL_RxD IRxD = 2 mA 14.02 Pull-up resistor to VCC Rpu_RxD VRxD = 0V 3 14.03 Leakage current high Ileak_RxD VRxD = VCC -5 Output voltage high RxD under disturbances to fulfil functional state A VOH_RxD Rload = 2.7k to VCC 5 VCC -1 Notes: [1] A = 100% serial test, B = Operating parameter, C = characterization data, D = Value guaranteed by design 3.2. AC Characteristics 6V VS 27V, -40°C TA 125°C, RTG connected to VCC, unless otherwise specified Table 4: AC Characteristics Parameter Symbol Condition Min Typ Max Unit T [1] Reset parameter on NRES 16.01 Reset time 16.02 Reset rising time tRes VS = 14V 2.5 4 5.5 ms A trr VS = 14V 3.0 6.5 12 s A Watchdog parameter on NRES (MLX80031, MLX80051) 17.01 tWDOSC20 RBWD = 20k1% 6.87 8.09 9.30 s A 17.02 tWDOSC60 RBWD = 51k1% 16.06 18.90 21.73 s A tWDOSC100 RBWD = 100k1% 30.58 35.98 41.37 s A tWDOSC150 RBWD = 150k1% 45.40 53.41 61.42 s A 17.03 Watchdog-Oscillator Period 17.04 Watchdog Close Window Watchdog Open Window 17.05 Watchdog Reset Low Time Watchdog Lead Window 17.06 Watchdog Safety Oscillator MLX80050/51/30/31 – Datasheet 3901080050 tCW tCW = cycles * tWDOSC 1053 cycles D tOW tOW = cycles * tWDOSC 1105 cycles D ms A cycles D µs A tWDres tLDT tWDsafety 3 tOWS = cycles * tWDOSC RBWD open / RBWD gnd Page 11 4 5 7895 30 50 75 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet Parameter Symbol Condition [1] Min Typ Max Unit 30 70 150 s A 50 s A T Wake-up and Mode Control 18.01 Remote Wake-up filter time twu_remote 18.02 Wake-up filter time on WAKE (only MLX80051,MLX80031) twu_WAKE Sleep or Silent Mode, WAKE falling edge 10 18.03 Wake-up filter time on KL15 (only MLX80051,MLX80031) twu_KL15 Sleep or Silent Mode, KL15 rising edge 80 168 250 s A 18.04 Propagation delay from Normal Mode to Sleep Mode via EN tpd_sleep VEN = 0V 5 15 20 s A 18.05 Propagation delay from Standby Mode to Normal Mode via EN tpd_norm VEN = 5V 5 15 20 s A 18.06 Propagation delay from Silent Mode to Normal Mode via EN tpd_sil_n VEN = 5V Silicon Revision C 5 15 40 s A 18.07 Propagation delay: go to silent mode after EN=H/L tpd_sil check falling edge on RBwd, EN = 0V Silicon Revision C 20 s A Setup time TxD to EN for low slew mode tset_TxD_EN 5 s B Hold time TxD after EN for low slew mode thold_TxD_EN 20 s B 2 20 s A 18.08 Debouncing time EN tdeb_EN 18.09 TxD dominant time out tTxD_to Normal Mode, VTxD = 0V 27 60 ms A 18.10 Standby time out tsby_to Standby Mode, VEN= 0V 150 500 ms A 18.11 Wake up time vs. EN twu_EN Wake form sleep via EN=L/H 20 s A tdr_RxD tdf_RxD CL(RXD) = 50 pF 6 s A tdsym_RxD tdr_RXD - tdf_RXD 2 s A 4.0 s D 2 5 5 General LIN Parameter 19.01 Receiver propagation delay LIN -> RxD 19.02 Symmetry prop. delay LIN->RxD 19.03 Receiver debouncing time MLX80050/51/30/31 – Datasheet 3901080050 tdeb_LIN -2 1.5 Page 12 2.8 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 19.04 slew rate rising edge LIN dV/dTrise 19.05 slew rate falling edge LIN dV/dTfall 19.06 slew rate rising edge LIN dV/dTrise 19.07 slew rate falling edge LIN dV/dTfall Internal capacity CLIN Normal Mode LIN-Load: 1kΩ/1nF Low Slew Mode LIN-Load: 1kΩ/1nF 1.0 1.5 2.5 V/s C -2.5 -1.5 -1.0 V/s C 0.3 0.8 1.3 V/s C -1.3 -0.8 -0.3 V/s C 25 35 pF D Pulse at LIN via 10kOhm with 0/10V; VS = open LIN transceiver parameter according to LIN Physical Layer Spec. rev. 2.0, table 3.4 (20kbit/s) Conditions: Normal slew mode; VS =7.0V to 18V; LIN loads: 1k/1nF; 660/6.8nF; 500/10nF TxD signal: tBit = 50µs, twH = TwL = tBit; trise = tfall < 100ns Minimal recessive bit time trec(min) 40 50 58 s Maximum recessive bit time trec(max) 40 50 58 s 20.01 Duty cycle 1 D1 D1 = trec(min) / (2*tBit) 20.02 Duty cycle 2 D2 D2 = trec(max) / (2*tBit) 0.396 A 0.581 A Transceiver parameter according to LIN Physical Layer Spec. rev. 2.0, table 3.4 (10.4kbit/s) Conditions: Low slew mode; VS =7.0V to 18V; LIN loads: 1k/1nF; 660/6.8nF; 500/10nF TxD signal: tBit = 96µs, twH = TwL = tBit; trise = tfall < 100ns Minimal recessive bit time trec(min) 80 96 113 s Maximum recessive bit time trec(max) 80 96 113 s 21.01 Duty cycle 1 D3 D3 = trec(min) / (2*tBit) 21.02 Duty cycle 2 D4 D4 = trec(max) / (2*tBit) 0.417 A 0.590 A LIN transceiver parameter according to SAE J2602 (10.4kbit/s) Conditions: Low slew mode; VS =7.0V to 18V; LIN loads: 1k/1nF;660/6.8nF;500/10nF TxD signal: tBit = 96µs, twH = TwL = tBit; trise = tfall < 100ns 22.01 Minimal recessive delay TxD -> LIN tx_rec_min 48 s A 22.02 Maximum recessive delay TxD -> LIN tx_rec_max 48 s A 22.03 Minimal dominant delay TxD -> LIN tx_dom_min 48 s A 22.04 Maximum dominant delay TxD -> LIN tx_dom_max 48 s A 22.05 Maximum rec. to dom. delay Tr_d_max tx_rec_max - tx_dom_min 15.9 s A 22.06 Maximum dom. to rec. delay Td_r_max tx_dom_max - tx_rec_min 17.2 s A Notes: [1] A = 100% serial test, B = Operating parameter, C = characterization data, D = Value guaranteed by design MLX80050/51/30/31 – Datasheet 3901080050 Page 13 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 3.3. Timing diagrams 50% TxD tdf_TXD tdr_TXD VBUS 100% 95% LIN 50% 50% 5% 0% tdr_RXD tdf_RXD RxD 50% transceiver_delays.vsd Figure 1: LIN propagation delays tBit tBit TxD tx_rec_max tx_dom_max tx_dom_min VSUP trec(min) tx_rec_min 100% tdom(max) 74.4% (77.8%) tdom(min) LIN 58.1% (61.6%) 28.4% (25.1%) VSS 58.1% (61.6%) 42.2% (38.9%) Level for LSM in brackets trec(max) 28.4% (25.1%) 0% timing_lin20.vsd Figure 2: LIN duty cycles MLX80050/51/30/31 – Datasheet 3901080050 Page 14 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 4. Pin Configuration 4.1. MLX80030 and MLX80050 - SOIC8 VS 1 8 VCC EN 2 7 NRES MLX80030/50 GND 3 5 TxD LIN 4 5 RxD Table 5: MLX80050/30 pin list in SOIC8 Pin Name IO-Typ Description 1 VS P Battery supply voltage 2 EN I Mode control pin, enables the normal operation mode when HIGH 3 GND G Ground 4 LIN I/O LIN bus transmitter/receiver pin, (low = dominant) 5 RxD I/O Received data from LIN bus, low in dominant state; internal pull-up resistor 6 TxD I/O Transmit data input (low = dominant) 7 NRES O Undervoltage reset output (open drain), low active 8 VCC P Voltage regulator output MLX80050/51/30/31 – Datasheet 3901080050 Page 15 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 4.2. MLX80031 and MLX80051 in QFN20 Table 6: MLX80051/31 pin list in QFN20 Pin Name IO-Typ Description 1 EN I 2 NC 3 NWDI I Watchdog trigger input; negative edge; pull-up 4 WAKE I High voltage input for local wake up, negative edge triggered 5 GND G Ground 6 NC 7 LIN 8 NC 9 RxD I/O Received data from LIN bus, low in dominant state; internal pull-up resistor 10 INH O High side switch; High voltage 11 TxD I/O Transmit data input (low = dominant) 12 NRES O Reset output (open drain), low active 13 RBWD I/O Bias resistor for watchdog oscillator 14 NC 15 MODE I Input to control window watchdog 16 KL15 I High voltage input for local wake up, positive edge triggered 17 NC 18 VCC I Voltage regulator sense input 19 RTG P Voltage regulator output 20 VS P Battery supply voltage EP G Exposed pad should be connected to Ground Mode control pin, enables the normal operation mode when HIGH not connected not connected I/O LIN bus transmitter/receiver pin, (low = dominant) not connected not connected not connected MLX80050/51/30/31 – Datasheet 3901080050 Page 16 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 3. Functional Description The MLX8003x/5x consists of a low drop 3.3V/5V voltage regulator capable to drive 70mA and a LIN bus transceiver, which is a bi-directional bus interface for data transfer between LIN bus and the LIN protocol controller. Additionally integrated is a Window-Watchdog/RESET unit with a fixed power-on-reset delay of 4 ms and an adjustable watchdog time defined by an external bias resistor. VS VCC control amplifier Aux. Supply 3 5 VBG POR 4.1 V / 2.9V Temp. Protection Adjust ment VS TSHD Undervoltage Reset UVR Mode Control EN Reset Generator VBG SBY 6bit Reg Calib ZZ 16bit 4bit BG BG current limitation Standby timer 350k Reset PORTimer RESETBuffer NRES fosc RC osc. VSS VCC Wake-Filter Receiver VSUP 5k 70s Vaux RxDBuffer RxD Rec-Filter 30k VCC Transmitter LIN SBY Driver control 250k TxDTimeout TxD POR Figure 3: MLX80050/30 Block Diagram MLX80050/51/30/31 – Datasheet 3901080050 Page 17 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet VS RTG Vaux control amplifier Aux. Supply VBG VBG BG VCC Reset Generator Vaux Vaux 5 Adjust ment POR 4.1 V / 2.9V Vaux POR TSHD SBY 6bit Reg Calib ZZ 16bit 4bit BG 3 current limitation 5V / 3.3V VSUP TSHD RC osc. Undervoltage Reset POR UVR Standby timer Test logic TxDTimeout timer EN INH fosc Reset PORTimer RESETBuffer NRES Window watchdog Mode Control 350k VS 91kHz SBY ZZ Control Vaux VCC VS RxDcontrol Wake_sig fwdosc WD Osc VBG WAKE RBWD VCC 250k KL15_sig WDI_sig KL15 VS Wake-Filter 70s MODE TxD_out Receiver to_RxD Vaux Vaux 250k VCC RecFilter 30k 5k RxD_out Transmitter LIN VSS NWDI SBY Driver control RxDBuffer RxD VCC 250k UVR_POR TxD VSS Figure 4: MLX80051/31 Block Diagram MLX80050/51/30/31 – Datasheet 3901080050 Page 18 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 3.1. Supply Pin VS VS is the operational voltage pin of MLX8005x/3x. The voltage range is VS = 6 to 18V. After switching on VS, the MLX8003x/5x starts at Standby Mode and the VCC voltage regulator ramps up. An undervoltage detection unit prevent an undefined operation for Vs < 4V. VS- Power-ON If VS is switched on, the MLX8003x/5x starts in Standby Mode. A combination of dynamic POR and under voltage reset circuitry generates a POR signal, which switches the MLX8003x/5x on. This power on behaviour is independent from the status of the EN-pin. Power-on reset and under-voltage reset operate independent from each other, which secures the independence from the rise time of VS. 3.2. EN input pin The ENable input is the mode control pin of MLX8003x/5x in combination with the TxD input. The MLX8003x/5x is switched into the Sleep Mode with a falling edge and into normal mode with a rising edge at the EN pin. The state machine goes to Normal Mode after t Res (see also Table 4: AC Characteristics). The Normal Mode will be kept as long as EN remains high. The Normal Mode can be entered from Standby Mode, when the pin EN is driven HIGH. To prevent unwanted mode transitions, the EN input contains a debounce filter as specified (t EN_deb). The pin EN contains a weak pull down resistor. The input thresholds are compatible to 3.3V and 5V supply systems. MLX80031/51: Additionally the positive edge on pin EN results in an immediate reset of the active low interrupt on pin RxD as well as the wake-up source recognition flag on pin TxD. 3.3. Ground pin GND This is the reference pin of the IC. The absence of GND connection will not influence or disturb the communication between other LIN bus nodes. 3.4. LIN This bidirectional pin consists of a low side driver in the output path and a high-voltage comparator in the input path. Furthermore is integrated a LIN pull-up resistor between LIN and VS pin. Low side driver consist a current limitation. 3.5. Receiver Output RxD The pin RxD is a buffered open drain output. Output signals can be shifted by the external pull up resistor to 3.3V and 5V supply systems. 3.6. Transmit Input TxD The transmit data stream of the LIN protocol controller applied to the pin TxD is converted into the LIN bus signal with slew rate control in order to minimize electromagnetic emissions. The pin TxD contains a weak pull up resistor. The input thresholds are compatible to 3.3V and 5V supply systems. To enable the transmit path, the TxD pin has to be driven recessive (HIGH) after or during the normal mode has been entered. 3.6.1. TxD dominant time-out feature With the first dominant level on pin TxD after the transmit path has been enabled, the dominant time-out counter is started. In case of a faulty blocked permanent dominant level on pin TxD the transmit path will be disabled after the specified time tTxD_to. The time-out counter is reset by the first negative edge on pin TxD. MLX80050/51/30/31 – Datasheet 3901080050 Page 19 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 3.7. Output NRES The NRES pin outputs the reset state as well as the watchdog condition in MLX80031 and MLX80051. 3.8. Voltage regulator pins VCC and RTG The MLX80030/50 has an integrated low drop linear regulator with a p-channel-MOSFET as driving transistor. This regulator outputs a voltage of 5V ±2% (MLX80050/51) or 3.3V ±2% (MLX80030/31) with a load current of max. 70mA. The current limitation unit limits the output current for short circuits or overload to 130mA by decreasing the VCC voltage. This way the power dissipation is held constant at a maximum value. The voltage regulator has two pins, output pin RTG and sense input pin VCC. For MLX80030/50 both, RTG and VCC, are commonly bonded to pin VCC on the package. Devices MLX80031/51 has both pins bonded and provides the possibility to use an external npn transistor to boost the maximum load current. In this case the basis of the npn transistor has to be connected to the RTG pin and the emitter to the VCC pin. In case of using the internal voltage regulator, both pins have to be connected to each other. 3.9. INH Output (only MLX80031/51) INH switches to high (VS connected to INH) in case of Standby or Normal Mode. INH is switched off at Silent and Sleep Mode. The pin will be used for switch on an external power supply or for switch off the external 1k master resistor in master node applications. 3.10. WAKE Input (only MLX80031/51) High voltage input pin for local wake-up functionality. With a falling edge on WAKE the IC wakes-up from Silent Mode or Sleep Mode to Standby Mode. The pin WAKE provides a weak pull up current source towards Vs which provides a HIGH level on the pin in case of open circuit failures or if no local wake-up feature is required. In such applications it is recommended to connect the pin WAKE directly to pin Vs in order to prevent influences due to EMI. 3.11. KL15 Input (only MLX80031/51) High voltage input pin for local wake-up functionality. With a rising edge on KL15 the IC wakes-up from Silent Mode or Sleep Mode to Standby Mode. The pin KL15 provides a weak current sink towards GND which provides a LOW level on the pin in case of open circuit failures or if no local wake-up feature is required. In such applications it is recommended to connect the pin KL15 directly to GND in order to prevent influences due to EMI. KL15 is typically connected to the ignition terminal and generates a local wake-up at start of ignition. 3.12. Watchdog Trigger Input NWDI (only MLX80031/51) This input is used to trigger the integrated window watchdog in MLX80031/51. Every falling edge on NWDI in watchdog open window is used to reset the watchdog timer. An internal pull up resistor of 250k secures a stable high condition if this pin is open. The NWDI input is a low voltage CMOS input. The minimum low time of NWDI is one WD_OSC clock period to allow falling edge detection. 3.13. Watchdog Oscillator Resistor RBWD (only MLX80031/51) A resistor between RBWD and GND defines the window watchdog times as trigger time. 3.14. Mode Input MODE (only MLX80031/51) Special pin for to disable the window watchdog function. For normal watchdog operation connect the MODE pin to GND directly or via external resistor. With MODE pin on 3.3V/5V the window watchdog is switched off. MLX80050/51/30/31 – Datasheet 3901080050 Page 20 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 4. Operational Modes The MLX8003x/5x provides four main operating modes “Standby”, “Normal”, “Silent” and “Sleep”. The main modes are fixed states defined by basic actions (VS start, EN or wake-up). Start Vaux; Regulator OFF VSUP power on Init Regulator on; VCC ramp up VCC cross reset threshold -> start tres LIN transmitter off LIN termination 30k --------------------------------------------------after power on: RxD: high TxD: high after wake up: RxD: low TxD: wake source output End of Initialization Standby Local wake-up or Remote wake-up or EN = L/H Local wake-up or Remote wake-up or Vcc < VRES Vcc < VRES SleepMode EN = H[2] or L/H [1] t > tsby (350ms) & Vcc > VRES EN = H/L & TxD =H Silent Mode EN = H/L & TxD=L EN = L/H Regulator off LIN transmitter off LIN termination 200k ----------------------------------------------RxD: floating (0V) TxD: floating (0V) Regulator on LIN transmitter off LIN termination 30k -----------------------------------------RxD = high TxD = high Normal Mode Regulator on NRES = H LIN transmitter on LIN termination 30k -----------------------------------------------RxD:= data output TxD:= data input [1] Set Slew Mode: Normal => EN=L/H & TxD=H (default) Low Slew => EN=L/H & TxD=L [2] Only after Wake-up from Sleep mode with EN=L/H Figure 5: MLX8005x3x state diagram of modes of operation MLX80050/51/30/31 – Datasheet 3901080050 Page 21 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 4.1. Modes Overview Table 7: MLX80050/30 Operation Modes [1] Mode VCC TxD RxD LIN remarks Standby 3.3V/5V high high recessive entered after power on or wake up Normal 3.3V/5V input for transmit data stream output for LIN data stream follows TxD [1] Silent 3.3V/5V high high recessive high = 3.3V/5V Sleep 0 floating floating recessive remote wake up to enter Standby Mode, EN = H to go to Normal Mode Normal mode will be entered form Standby Mode by a low -> high transition on pin EN and from Sleep Mode by EN = H after startup of the regulator. When recessive level (high) on pin TxD is present the transmit path will be enabled Table 8: MLX80051/31 Operation Modes [1] [2] [3] [4] [5] Mode VCC TxD RxD LIN INH Watchdog remarks Standby 3.3V/5V High/ active [1] low high/ active [2] low recessive ON ON entered after power on or wake up Normal 3.3V/5V input for transmit data stream output for LIN data stream follows TxD ON ON [3] [4] [5] Silent 3.3V/5V high high recessive OFF OFF Sleep 0 floating floating recessive OFF OFF Local or remote wake up to enter Standby Mode, EN = H to go to Normal Mode Indicates the wake up flag in case of local wake up After power on RxD is going high via pull-up to Vcc. If any wake up(local or remote) occurs it will be indicated by active low Active low interrupt at pin RxD will be removed when entering normal mode Wake up source flag at pin TxD will be removed when entering normal mode Normal mode will be entered from Standby Mode by a low -> high transition on pin EN and from Sleep Mode by EN = H after startup of the regulator. When recessive level (high) on pin TxD is present the transmit path will be enabled MLX80050/51/30/31 – Datasheet 3901080050 Page 22 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 4.2. Initialisation and Standby mode When the battery supply voltage VS exceeds the specified threshold V SUVR_OFF, the MLX8003x/5x automatically enters the Standby Mode. Following internal procedure is running: First: Start of internal supply Vaux and POR of Vaux Start of internal RC oscillator Second and parallel after POR: Start of voltage regulator The output voltage VCC ramps up to nominal value. The pin RxD is floating and the integrated slave pull up resistor with decoupling diode pulls the pin LIN. The transmitter as well as the receiver is disabled. If there occurs no mode change to Normal Mode via an EN LOW to HIGH transition within the time stated (typically 350ms), the IC enters the most power saving Sleep Mode. Furthermore the standby mode will be entered after a valid local or remote wake up event, when the MLX8003x/5x is in Sleep or Silent mode. The entering of the standby mode after wake up will be indicated by an active LOW interrupt on pin RxD. 4.3. Normal Mode This mode is the base mode. The bus transceiver is able to send with a max baud rate of 20kbit/s. The whole MLX8003x/5x is active. The incoming bus traffic is detected by the receiver and transferred via the RxD output pin to the microcontroller. Exit the Normal Mode with one of the following conditions: 1. High-to-low edge on EN pin with TxD = H -> switch to Silent Mode 2. High-to-low edge on EN pin with TxD = L -> switch to Sleep Mode 3. Undervoltage monitor on VCC detects a low voltage reset condition (VCC < V RES) -> switch back to stand-by mode. Low Slew Mode The first rising edge on EN after power-on defines the slew rate of the device. With TxD = High at this point works the MLX8003x/5x with normal slew rate (default state). TxD = Low activates the Low Slew Mode, as long as VS > V SUVR_OFF. In this mode the slew rate is switched from the normal value of typ. 1.6V/µs to a low value of typ. 0.8V/µs. This mode is optimized to send with a maximum baud rate of 10.4kbit/s (acc. to SAE J2602). Because of this reduction of the slew rate the EME behaviour is improved especially in the frequency range of 100 kHz to 10MHz. MLX80050/51/30/31 – Datasheet 3901080050 Page 23 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 4.4. Silent Mode The Silent Mode is a special mode for application with active Sleep Mode on LIN, but the connected MCU still needs to be supplied with VCC. With a falling edge on EN input in combination with TxD=high switches the MLX8003x/5x from Normal Mode to the Silent Mode with reduced internal current consumption. In Silent Mode the voltage regulator is on with a 2% tolerance. The transmitter is disabled and the pin RxD is disconnected from the receive path and is floating. The slave termination resistor (LIN pull up resistor with decoupling diode between pins LIN and VS) is disconnected; only a weak current source is applied to the LIN bus. Value is typical -75uA, limits -20…-100uA. Exit the silent mode with one of the following conditions: 1. Low-to-high edge on the EN pin -> switch back to normal mode 2. Remote wake up (all versions) or local wake up request (MLX80031/51 only) -> switch to standby mode 3. Undervoltage monitor on VCC detects a low voltage reset condition (VCC < VRES) -> switch back to stand-by mode. Normal Mode Silent Mode Standby Mode Normal Mode EN tpd_sil TxD VCC Regulator ON twu_remote Transmitter ON LIN RxD Transmitter ON Transmitter OFF Low NRES Watchdog * Watchdog ON Watchdog OFF Start watchdog lead time * only for MLX80031/51 timing_silent_mode.vsd Figure 6: LIN wake-up from Silent Mode MLX80050/51/30/31 – Datasheet 3901080050 Page 24 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet Normal Mode Silent Mode Standby Mode Normal Mode EN tpd_sil TxD low * VCC Regulator ON twu_WAKE WAKE * LIN Transmitter ON RxD low Undervoltage detection active NRES Watchdog * Transmitter ON Transmitter OFF Watchdog ON Watchdog OFF Start watchdog lead time * only for MLX80031/51 timing_sleep_mode_locwu.vsd Figure 7 Local Wake-up from Silent Mode via WAKE 4.5. Sleep Mode The most power saving mode of the MLX8003x/5x is the Sleep Mode. The MLX8003x/5x offers two procedures to enter the sleep mode: The mode is selected from normal mode with a falling edge on EN in combination with TxD = L. If the MLX8003x/5x is in Standby Mode after power-on or wake-up, a sleep counter is started and switches the transceiver into Sleep Mode after the specified time (typ. 350ms) even when the microcontroller of the ECU will not confirm the normal operation by setting the EN pin to logic HIGH. This new feature allows faulty blocked LIN nodes to reach always the most power saving mode. Being in Sleep Mode the voltage regulator switched off in order to minimize the current consumption of the complete LIN node. The transmitter is disabled and the pin RxD is disconnected from the receive path and is low (follows VCC). The slave termination resistor (LIN pull up resistor with decoupling diode between pins LIN and VS) is disconnected, only a weak current source is applied to the LIN bus (see chapter 8 fail-safe features) MLX80050/51/30/31 – Datasheet 3901080050 Page 25 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet Exit the Sleep Mode with the following condition: 1. Remote (all versions) or local wake up request (MLX80031/51 only) -> Switch to Standby Mode 2. EN = L/H -> Switch to Standby Mode Figure 8: Remote wake-up from Sleep Mode MLX80050/51/30/31 – Datasheet 3901080050 Page 26 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet Normal Mode Sleep Mode Standby Mode Normal Mode EN TxD low * VCC tpd_sleep twu_WAKE WAKE * LIN Transmitter ON RxD Transmitter ON Transmitter OFF floating low Reset time NRES Watchdog * Watchdog ON Watchdog OFF * only for MLX80031/51 Start watchdog lead time timing_sleep_mode_locwu.vsd Figure 9: Local wake-up from Sleep Mode 4.6. Init-State This is an intermediate state, which will pass through after switch on of VS or after undervoltage detection VS with VS < VSUVR_ON. The internal supply voltage Vaux ramp up and the initial readout procedure of zenerzap storage are started. At the end of this phase the VCC voltage definition and the definition of MLX8003x5x version is established. This Init-State changes to Standby Mode with the start of VCC regulator. MLX80050/51/30/31 – Datasheet 3901080050 Page 27 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 5. Wake Up Procedures The MLX80030/50 versions offer only remote wake-up: After a falling edge on the LIN bus followed by a dominant voltage level for longer than the specified value (twu_remote) and a rising edge on pin LIN will cause a remote wake up. The device switches to Standby Mode and the wake-up request is indicated by an active LOW on pin RxD. The MLX80031/51 versions offer three wake-up procedures: In applications with continuously powered ECU a wake up via mode transition to normal mode is possible (see chapter 4.3 Normal Mode). Remote wake-up via LIN bus traffic After a falling edge on the LIN bus followed by a dominant voltage level for longer than the specified value(twu_remote) and a rising edge on pin LIN will cause a remote wake up. Local wake-up via a falling edge on pin WAKE A falling edge on the pin WAKE and a dominant voltage level for longer than the specified time (twu_WAKE) will cause a local wake-up. The current for an external switch has to be provided by an external pull up resistor RWK. For a reverse current limitation in case of a closed external switch and a negative ground shift or an ECU loss of ground a protection resistor RWK_prot between pin WAKE and the switch is recommended. Local wake-up via a rising edge on pin KL15 A positive edge on the pin KL15 followed by a high voltage level for a time period t wu_KL15 > 250µs results in a local wake-up request. The MLX80031/51 switches to the Standby Mode. The long debouncing time on KL15 suppresses unintentional transients. A high level on KL15 has no influence of switching between modes with EN input. Before a new local wake-up request via KL15 can be started, KL15 have to be switched to low level for a time > 250µs. 5.1. Wake Up Source Recognition in MLX80031/51 The device can distinguish between a local wake-up event (pin WAKE or pin KL15) and a remote wake-up event. The wake-up source flag is set after a local wake-up event and is indicated by an active LOW on pin TxD. The wake-up flag can be read if an external pull up resistor towards the microcontroller supply voltage has been added and the MLX80031/51 is still in standby mode: • • LOW level indicates a local wake-up event HIGH level indicates a remote wake up event The wake-up request is indicated by an active LOW on pin RxD and can be used for an interrupt. When the microcontroller confirms a normal mode operation by setting the pin EN to HIGH, both the wake-up request on pin RxD as well as the wake-up source flag on pin TxD are reset immediately. MLX80050/51/30/31 – Datasheet 3901080050 Page 28 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 6. Functionality 6.1. RESET behaviour of MLX8003x/5x The MLX8003x/5x contains a reset unit which controls the initialization and generation of the reset signal. The NRES pin flags the reset state of the MLX8003x/5x. The POR timer will be started if V S is switched on and VCC > VRES threshold. After the time tRes the NRES output is switched from low to high. The reset unit combines a VCC low voltage detection unit with fixed reset timer. This output is switched from low to high if VS is switched on and after the time tRes is VCC > VRES. A drop of the VCC voltage will be detected by the low voltage reset unit which generates a reset signal. The MLX8003x/5x will be reinitialized if the VCC voltage rises above the low voltage limit. If the voltage VCC drops below VRES then the NRES output is switched from high to low after the time trr. This filters short breaks of the VCC voltage and avoids uncontrolled reset generation. VSUP spike VS VSUP_UVR T>Tj T<Tj t<trr VCC VCC spike Unterspannung an VSUP t<trr VCC overload VRES tRes NRES power-on tRes tRes trr tRes thermal shutdown reset_timing_8003x5x.vsd Figure 10: VCC reset behavior The MLX80031/51 version combines the reset behaviour described above with a window-watchdog unit. The NRES pin outputs the reset state as well as the watchdog condition. The POR timer will be started if V SUP is switched on and VCC > POR threshold. After the time tRes the RESET output is switched from low to high. The watchdog is disabled during this POR procedure. After the POR delay, the NRES output is switched from low to high and the watchdog starts. In normal mode the NRES pin flags the status of the window watchdog. 6.2. Thermal Shutdown If the junction temperature TJ is higher than TJSHD, the MLX8003x/5x switches from any mode into Standby Mode. During TSD all functions are switched-off. The transceiver is completely disabled; no wake-up functionality is available. If TJ falls below the thermal recovery temperature TJREC, MLX8003x/5x resumes operation starting from Standby Mode. If EN=H at recovery, chip switches to NORMAL after VCC>VRES and tres. SBY-timeout timer is disabled during TSD. MLX80050/51/30/31 – Datasheet 3901080050 Page 29 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 6.3. VS under voltage reset The under voltage detection unit prevents an undefined behaviour of the MLX8003x/5x under low voltage condition (VS < VSUVR_ON). If VS drops below VSUVR_ON, the under voltage detection becomes active and the IC will be switched from every state to Init-State followed by Standby Mode with the same behaviour like after VS power-on. With the following increase of VS above VSUVR_OFF the MLX8003x5x remains in Standby Mode and the voltage regulator starts with the initialization sequence (Vcc available). If EN=H at power-up, the chip switches to NORMAL after VCC>VRES and tres. Remark: In case Vs drops below 5V but still remains above V SUVR_ON , Vcc follows Vs. Vcc is switched off during Vs Undervoltage reset. 6.4. LIN-Transceiver The MLX8003x/5x has an integrated bi-directional bus interface device for data transfer between LIN bus and the LIN protocol controller. The transceiver consists of a driver with slew rate control, wave shaping and current limitation and a receiver with high voltage comparator followed by a debouncing unit. Transmit Mode During transmission the data at the pin TxD will be transferred to the LIN driver to generate a bus signal. To minimize the electromagnetic emission of the bus line, the LIN driver has an integrated slew rate control and wave shaping unit. Transmitting will be interrupted in the following cases: - Sleep Mode - Silent Mode - Thermal Shutdown active - Power on Reset The recessive LIN bus level is generated from the integrated 30k pull up resistor in serial with an active diode This diode prevents the reverse current of VLIN during differential voltage between VS and LIN (VLIN>VS). No additional termination resistor is necessary to use the MLX8003x/5x in LIN slave nodes. If this ICs are used for LIN master nodes it is necessary that the LIN pin is terminated via an external 1k resistor in series with a diode to VBAT. Receive Mode The data signals from the LIN pin will be transferred continuously to the pin RxD. Short spikes on the bus signal are suppressed by the implemented debouncing circuit. Slew Modes and Data rates The MLX8003x/5x consists a constant slew rate transceiver which means that the bus driver works with a mode depended slew rate. In normal mode the slew rate is typical 1.6 V/µs (max. baud rate 20kbit/s) and in low slew mode typical 0.8 V/µs. The lower slew rate in low slew mode associated with a baud rate of 10.4kbit/s improves the EME behaviour. The LIN transceiver of MLX8003x/5x is compatible to the physical layer specification according to LIN 2.x specification for data rates up to 20kbit/s and the SAE specification J2602 for data rates up to 10.4kbit/s. The constant slew rate principle is very robust against voltage drops and can operate with RC- oscillator systems with a clock tolerance up to ±2% between 2 nodes. Low Slew Mode In this mode the slew rate is switched from the normal value of typical 1.6V/µs to a low value of typical 0.8V/µs. This mode is optimized to send with a maximum baud rate of 10.4kbit/s (acc. to SAE J2602). Because of this reduction of the slew rate the EME behaviour is improved especially in the frequency range of 100 kHz to 10MHz. MLX80050/51/30/31 – Datasheet 3901080050 Page 30 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 6.5. Voltage Regulator The MLX8003x/5x has an integrated low drop linear regulator with a p-channel-MOSFET as driving transistor. This regulator outputs a voltage of 3.3V/5V ±2% and a current of 70mA within an input voltage range of 6V ≤ VSUP ≤ 18V. The current limitation unit limits the output current for short circuits or overload to 130mA respectively drop-down of the VCC voltage. MLX80050/51/30/31 – Datasheet 3901080050 Page 31 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 7. Window-Watchdog (only MLX80031/51) The integrated window watchdog unit observes the correct function of the connected Microcontroller. The required timing can be programmed with an external resistor connected to the pin RB WD. This resistor defines together with an internal capacitor the watchdog oscillator frequency. The watchdog is re-triggered by the Microcontroller via the NWDI input. The watchdog status is represented by the NRES pin. Negative edges on NWDI reset the watchdog timer. If no pulse is received at NWDI, the MLX80051/31 generates low pulses on the NRES output with a pulse width of t WDres and a period of tWDper. 7.1. MLX80031/51 Watchdog Behaviour After power-on and elapsed reset time tres, the window watchdog starts operation with a rising edge on pin NRES. This start is independent from Standby or Normal Mode. VS, VCC VRES tWRes tOWS tCW tOW trr tRes NRES Start-up POR delay Watchdog Lead Window Watchdog Sequence Power-off NWDI init_mlx8003151-all.vsd Figure 11: MLX80031/51 Watchdog behavior In case of leaving Silent or Sleep Mode via remote wake-up (LIN) or local wake-up (WAKE or KL15), the window watchdog starts immediately after entering Standby Mode. After tres the window watchdog unit starts with the Lead Time State. In this state the watchdog clock periods (1/fwdosc) are counted 7895(=nlead) times. A falling edge on NWDI pin within this lead time stops the lead counter and activates the Closed Window State with ncw=1053. Thereafter follows the Open Window State with counter start value of now=1105. In case the lead counter elapses, the watchdog enters the Reset State and starts the reset timer with time tres. Close Window State and Open Window State are the normal states of the window watchdog. At each of these states runs a counter with the watchdog clock signal. The CWT counter runs always to the end. The watchdog does not trigger when the NWDI trigger signal arrives within the Open Window State. A NWDI trigger pulse outside the Open Window State generates a reset condition and the NRES output switches to low for the time tWDres (see Figure 12). MLX80050/51/30/31 – Datasheet 3901080050 Page 32 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet tOW tCW tOW tCW tOW tCW tOW tCW tOW NWDI tWDres tCW tOW tWDres tCW tCW tCW NWDI = High or Low tWD NRES watchdog_timing.vsd 3 correct watchdog services 2 Twd > tcw+tow at NWDI= High or Low Twd < tcw Figure 12: Watchdog timing 7.2. All watchdog start-up scenarios 7.2.1. After power-on and initialization Watchdog starts after VCC ramp up and elapsed time of reset timer (typ. 4ms) with Lead Time State. MLX80031/51 is in Standby or Normal Mode. 7.2.2. Wake up indicated transition to Standby Mode from Sleep or Silent Mode Watchdog starts immediately with activation of Standby Mode (SBY_MODE = 1). Waking up from Sleep Mode the VCC regulator ramps up and the reset timer starts. The reset timer has in this case no influence on the watchdog start. 7.2.3. Undervoltage reset on VCC on Normal Mode or Silent Mode MLX80031/51 goes to Standby Mode. Running watchdog process is stopped and cleared. With active undervoltage reset the signal the output pin NRES goes to low. Leaving undervoltage reset starts the reset timer (4ms) and thereafter starts a new watchdog cycle. 7.2.4. EN indicated transition from Silent Mode to Normal Mode Mode control changes from Silent Mode to Normal Mode. Watchdog starts immediately with activation of Normal Mode in Closed Window State. MLX80050/51/30/31 – Datasheet 3901080050 Page 33 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 7.3. Calculation of Watchdog Period The RC-oscillator of MLX80031/51 which generates the responsible timing of the watchdog has a tolerance of ±15%. This has the consequence that also the watchdog window times tCW and tOW variants with this tolerance. tWD -ΔtWD CW +ΔtWD OW t 0 tCWmin tCW tCWmax tCW +tOW (tCW +tOW)min (tCW +tOW)max Figure 13: Watchdog open and close window tolerances The ideal watchdog period can be calculated with: tWD_id tCW 1 tOW 2 The average value tWD of the real usable watchdog trigger time under consideration of the oscillator tolerance is: tWD (tCW min tOW min t CW max) 2 [EQ1] The allowed tolerance tWD is: tWD (tCW min tOW min t CW max) 2 [EQ2] With the definition of tCW = ncw * (1± TOL) * tWDOSC and tOW = now * (1± TOL) * tWDOSC from [EQ1] tWD can be calculated with: tWD tWDOSC (2 ncw now ( 1 TOL)) 2 [EQ3] and with [EQ2]: tWD tWDOSC (now ( 1 TOL) 2 TOL ncw) 2 [EQ4] The variation ΔtWD will be normalized to the mean value tWD and both counter values set in a relationship of a=now/ncw, then follows for the relative deviation: tWDTOL a (1 TOL) 2 TOL 2 a (1 TOL) [EQ5] The watchdog trigger time as well as the tolerance depends only on the oscillator frequency respectively the period tWDOSC, if there are fixed values for both counters (ncw and now) and oscillator tolerance. Implemented in MLX80031/51 is a precision RC oscillator with a tolerance of TOL = 15%. Combined with the relation of counter values a=1.04 reached them a tolerance of trigger time of 20%. MLX80050/51/30/31 – Datasheet 3901080050 Page 34 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet Table 9: Parameters of Window Watchdog Symbol Parameter Value TOL Tolerance WD oscillator 15% ncw Close window counter 1053 now Open window counter 1105 tWDTOL Tolerance WD-trigger time 20% With the predefined counter values (ncw and now) and the oscillator tolerance TOL are the trigger time of watchdog and them tolerance only be calculated by the selection of oscillator frequency, or their period tWDOSC. Fort the used precision RC-oscillator the oscillator period is shown as a linear function of the external resistor RBWD. tWDOSC[s] 0.3486 RBWD[k] 1.117 [EQ6] The trigger period can be calculated with the help of EQ3 together with Table 9 – Parameter of Window Watchdog tWD[ms] 0.99477 RBWD[k] 5.58462 [EQ7] Or convert to RBWD: RBWD[k] 1.00526 tWD[ms] 5.61398 [EQ8] Some samples of different RDWD values and the corresponding watchdog times: Table 10: Window Watchdog Timing Selection RBWD [k] tWDOSC [s] Lead Time tLEAD [ms] Close Window tCW [ms] Open Window tOW [ms] Trigger Period tWD [ms] 20 8.09 63.9 8.52 8.94 25.48 30 11.58 91.4 12.19 12.79 35.42 51 18.90 149.2 19.90 20.88 56.31 75 27.26 215.2 28.71 30.12 80.19 100 35.98 284.0 37.88 39.75 105.06 120 42.95 339.1 45.23 47.46 124.95 150 53.41 421.6 56.24 59.01 154.80 Short or open circuit on RBWD The MLX80031/51 can detect a short circuit against GND on the RBWD pin or an open RBWD pin. If on pin a resistor RBWD <330 or RBWD >10M detected, then the MLX80031/51 checks during the initialization phase a fail-safe state. The watchdog oscillator will be set in a fail-safe mode with an oscillator period of about 50s. RBWD values between 150k and 10M are not allowed. MLX80050/51/30/31 – Datasheet 3901080050 Page 35 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 8. Fail-safe features Loss of battery If the ECU is disconnected from the battery, the LIN bus pin is in high impedance state. There is no impact to the bus traffic and to the ECU itself. Reverse current is limited to < 20µA Loss of Ground In case of an interrupted ECU ground connection there is no influence to the bus line. The current from the ECU to the LIN bus is limited by the weak pull up resistor of the pin LIN. The slave termination resistor is disconnected in order to fulfil the SAE J2602 requirements for the loss of ground current (<100µA @12V). Short circuit to battery The transmitter output current is limited to the specified value in case of short circuit to battery in order to prevent high current densities and thermal hot spots in the LIN driver. Short circuit to ground If the LIN bus wiring is shorted to negative shifted ground levels, there is no current flow from the ECU ground to the bus and no distortion of the bus traffic occurs. If the controller detects a short circuit of the LIN bus to ground the transceiver can be set into sleep mode. Additionally the internal slave termination resistor is switched off and only a weak pull up termination is applied to the LIN bus (typ. 50µA). If the failure disappears, the bus level will become recessive again and will wake up the system even if no local wake up occurs or is possible. Thermal overload All MLX8003x/5x versions are protected against thermal overloads. If the chip temperature exceeds the specified value, the transmitter is disabled until thermal recovery and the following recessive to dominant transition on pin TxD. The receiver is still working while thermal shutdown. Undervoltage lock out If the battery supply voltage is missing or decreases below the specified value (VS_UV), the transmitter is disabled to prevent undefined bus traffic. While in sleep mode, the MLX8003x/5x enters the Standby Mode if Vs drops below the internal power on reset threshold. Open Circuit protection • • • • • • • The pin TxD provides a pull up resistor to VCC. The transmitter cannot be enabled. The pin EN provides a pull down resistor to prevent undefined normal mode transitions. The pin NWDI provides a pull up resistor to VCC. The window watchdog generates NRES pulse. The pin MODE provides a pull down resistor to GND. No influence on window watchdog. If the battery supply voltage is disconnected, the pin RxD is floating. The pin WAKE provides a weak pull up current towards supply voltage Vs to prevent local wake-up requests. The pin KL15 provides a weak pull down current towards GND to prevent local wake-up requests. Short circuit RxD, NRES against GND or VCC Both outputs are short circuit proof to VCC and ground. RBWD short circuit against GND or open The watchdog oscillator runs with an internal controlled frequency and guarantees a reset. MLX80050/51/30/31 – Datasheet 3901080050 Page 36 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 9. Application Hints 9.1. Safe Operating Area The linear regulator of the MLX8003x/5x operates with input voltages up to 27 V and can output a current of 70 mA. The maximum power dissipation limits the maximum output current at high input voltages and high ambient temperatures. The output current of 70 mA at an ambient temperature of T A = 125°C is only possible with small voltage differences between VS and VCC. 80 Safe Operating Area maximum current 70 60 MLX80030 TA = +105 oC 50 max. supply Ivcc [mA] MLX80050 TA = +105 oC 40 30 MLX80030 TA = +125 oC 20 MLX80050 TA = +125 oC 10 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 VSUP [V] Figure 14: Safe operating area for MLX80030/50 in SOIC-8 for Vsup up to 18V MLX80050/51/30/31 – Datasheet 3901080050 Page 37 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 80 maximum current Safe Operating Area 70 MLX80051 TA = +105 oC MLX80031 TA = +105 oC 60 MLX80051 TA = +125 oC Ivcc [mA] 50 max. supply voltage MLX80031 TA = +125 oC 40 30 20 10 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 VSUP [V] Figure 15: Safe operating area for MLX80031/51 in QFN20 for Vsup up to 18V 9.2. Application Circuitry 2.2u MLX80050/30 2.2u ..100u VBAT 100n 100n LIN 100n VS VCC EN NRES GND TxD BUS RxD 10k MCU +5V/ 3.3V 220p Figure 16: Application circuit with MLX80050 or MLX80030 (slave node) MLX80050/51/30/31 – Datasheet 3901080050 Page 38 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 47k 2.2u CL 2 0 GND 3 4 MODE 10k RBwd 60k uC 14 13 QFN 5 mm x 5 mm 0. 65 mm pitch 20 lead 12 NRES LIN 8 9 RESET TxD 11 7 VDD RxD TxD 5 6 LINBUS Debug 1 6 WD Trig EN 1 0 RxD WAKE 1 7 MLX80031/51 GND 33k 1 8 15 2 NWDI 1 9 1 10k EN KL15 100n VCC RTG VS CIN 2.2u ..100u 100n 100n 2.2u VBAT 10k Ignition INH 220p Figure 17: Application circuit with MLX80031 or MLX80051 (slave node) To minimize the influence of EMI on the bus line an 220pF capacitor should be connected directly to the LIN pin (see Figure 17). This EMI-Filter assures that the RF injection into the IC from the LIN bus line has no effect or will be limited. It is also possible to use LC- or RC-filters. The dimensions of C-L or R-L depend on the corner frequency, the maximum LIN bus capacitance (10nF) and the compliance with the DC- and AC LIN bus parameters. 10. ESD and EMC 10.1. Recommendations for Actuator products In order to minimize EMC influences, the PCB has to be designed according to EMC guidelines. Actuators products are ESD sensitive devices and have to be handled according to the rules in IEC61340-5-2. Actuators products will apply the requirements in the application according to the specification, to ISO7637-2, -3 and ISO16750-2. Prototype samples of actuators products will be evaluated according AEC-Q100-002. The result will be published after qualification. After ESD stress single parameters may be shifted out of their limit, but IC function will still be correctly. MLX80050/51/30/31 – Datasheet 3901080050 Page 39 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 10.1.1. Automotive Qualification Test Pulses That means that automotive test pulses are applied to the module in the application environment and not to the single IC. Therefore attention must be taken, that only protected pins (protection by means of the IC itself or by means of external components) are wired to a module connector. In the recommended application diagrams, the reverse polarity diode together with the capacitors on supply pins, the protection resistors in several lines and the load dump protected IC itself will protect the module against the below listed automotive test pulses. The exact value of the capacitors for the application has to be figured out during design-in of the product according to the automotive requirements. For the LIN pin the specification “LIN Physical Layer Spec 2.1 (Nov. 24, 2006)” is valid. Supply Pin VS is protected via the reverse polarity diode and the supply capacitors. No damage will occur for defined test pulses. A deviation of characteristics is allowed during pulse 1 and 2; but the module will recover to the normal function after the pulse without any additional action. During test pulse 3a, 3b, 5 the module will work within characteristic limits. 10.1.2. Test Pulses On supply Lines Table 11: Test pulses Supply Line Parameter Symbol Min Max Dim Coupling test condition, functional status Transient test pulses in accordance to ISO7637-2 (supply lines) & , VS=13.5V, TA=(23 5)°C & (Document: “Hardware Requirements for LIN, CAN and FlexRay Interfaces in Automotive Applications”; Audi, BMW, Daimler, Porsche, VW; 2009-12-02) 5000 pulses, Test pulse #1 vpulse1 -100 V Direct functional state C 5000 pulses, Test pulse #2a vpulse2a 75 V Direct functional state A Test pulse #3a vpulse3a -150 V Direct 1h,functional state A Test pulse #3b vpulse3b 100 V Direct 1h,functional state A Load dump test pulse in accordance to ISO16750-2 (supply lines), VS=13.0V, TA=(23 5)°C 1 pulse clamped to 27V (+13V (VS)), (32V (+13V (VS))for 65 87 Test pulse #5b vpulse5b V Direct (+13V (VS)) (+13V (VS)) applications for north America), functional state C MLX80050/51/30/31 – Datasheet 3901080050 Page 40 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 10.1.3. Test pulses on Pin LIN Table 12: Test pulses LIN Parameter Symbol Min Max Dim Coupling test condition, functional status Transient test pulses in accordance to ISO7637-3, VS=13.5V, TA=(23 5)°C & (Document: “Hardware Requirements for LIN, CAN and FlexRay Interfaces in Automotive Applications”; Audi, BMW, Daimler, Porsche, VW; 2009-12-02) Direct capacitive Vpulse_ 1000 pulses, coupled: Test pulse ‘DCC slow –‘ -100 V slow+ functional state D 1nF Direct capacitive Vpulse_ 1000 pulses, Test pulse ‘DCC slow +‘ 75 V coupled: slowfunctional state D 1nF Direct capacitive Vpulse_ 10 min, coupled: Test pulse ‘DCC fast a’ -150 V functional state D fast_a 1nF Direct capacitive Vpulse_ 10 min, coupled: Test pulse ‘DCC fast b’ 100 V functional state D fast_b 1nF 10.1.4. Test pulses on signal lines Table 13: Test pulses signal lines Parameter Symbol Min Max Dim Coupling Transient test pulses in accordance to ISO7637-3 (signal lines). VS=13.5V, TA=(23 5)°C Direct capacitive Vpulse_ coupled: Test pulse ‘DCC slow –‘ -30 -8 V slow+ 100nF Direct capacitive Vpulse_ Test pulse ‘DCC slow +‘ +8 +30 V coupled: slow100nF Direct capacitive Vpulse_ coupled: Test pulse ‘DCC fast a’ -60 -10 V fast_a 100pF Direct capacitive Vpulse_ coupled: Test pulse ‘DCC fast b’ 10 40 V fast_b 100pF MLX80050/51/30/31 – Datasheet 3901080050 Page 41 test condition, functional status 1000 pulses, functional state C 1000 pulses, functional state A 10 min, functional state A 10 min, functional state A Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet Description of functional state A: B: C: D: E: All functions of the device are performed as designed during and after the disturbance occurs. All functions of the device are performed as designed during the disturbance occurs. One or more functions can violate the specified tolerances. All functions return automatically within their normal limits after the disturbances is removed.. A function of a device does not perform as designed during the disturbance occurs but returns automatically to the normal operation after the disturbances is removed. A function of a device does not perform as designed during the disturbance occurs and does not return automatically to the normal operation after the disturbances is removed. The device needs to be reset by a simple operation/action to return to the specified limits/function. One or more functions of a device do not perform as designed during and after the disturbance occurs and does not return automatically to the normal operation after the disturbances is removed. After a reset of the device, it does not return to the specified limits/function. The device needs to be repaired or replaced. 10.1.5. EMV Test pulse definition Table 14: Test pulses shapes ISO7637-2 Test Pulse 1 Ri = 10 Ohm Test pulse 2a Ri = 2 Ohm 200 ms V 0.5...5s < 100 µs 50 µs V 12 V 0V 10% t 1 µs 90% vpulse1 vpulse2 a 90% 10% 12V 1 µs 2 ms 0V t 200 ms 0.5...5s Test Pulse 3a Ri = 50 Ohm Test Pulse 3b Ri = 50 Ohm 100 ns 5 ns V 90% V 12V vpulse3b 10% 0V t vpulse3b vpulse3a vpulse3a 10% 12V 0V 100 µs 10 ms 90 ms 100 µs 90% 10 ms t 90 ms 5 ns 100 ns Test Pulse 5a (Load Dump) Ri = 0.5Ohm (clamped to 45V during test) V Pulse 5 90% Pulse 5 at device vpulse5 40V 10% 12V t tr = 0.1...10ms td = 40...400ms MLX80050/51/30/31 – Datasheet 3901080050 Page 42 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet Table 15: Test pulses shapes ISO7637-3 EMV Test Pulse shapes (ISO7637-3 (non-supply lines)) Test Pulse ‘DCC slow -’ Ri = 2 Ohm Test pulse ‘DCC slow +’ Ri = 2 Ohm Test Pulse ‘Fast a, DCC’ Ri = 50 Ohm Test Pulse ‘Fast b, DCC’ Ri = 50 Ohm 10.2. Typical Application Circuitry In order to minimize EMC influences, the external application circuitry shall be designed as followed: D12) VS C22) + Connector C11) C32) VS R12) R22) LIN LIN C41) C52) C61) Actuators Product D21) Signalline Signal -line C71) D31) GND GND optional implemented 2) mandatory implemented 1) MLX80050/51/30/31 – Datasheet 3901080050 Page 43 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 10.2.1. External Circuitry on Supply Lines In order to minimize EMC influences, the external application circuitry shall be designed as followed: Name Mounting Min Recommended Max Dim C1 recommended - 100 - nF D1 C2 mandatory mandatory 1 22 100 μF C3 mandatory - 100 - nF Comment Ceramic SMD: 10%, 0805, ≥50V; close to the connector Inverse-polarity protection diode Tantal SMD: 10%, 7343, 35V Ceramic SMD: 10%, 0805, ≥50V; close to the pin 10.2.2. External Circuitry on LIN Lines In order to minimize EMC influences, the external application circuitry shall be designed as followed: Name Mounting Min Recommended Max Dim D2 no - PESD1LIN - C4 no - - - pF R1 mandatory - 0 - Ω C5 mandatory - 220 - pF C6 no - - - pF Comment ESD protection Diode: SOD323 close to the connector; optional part Ceramic SMD: 10%, 0805, ≥50V; CSlave≤ CD2+C4+C5+C6+CIC CSlave≤250pF; optional part Serial resistor: 0805; or optional Ferrite Ceramic SMD: 10%, 0805, ≥50V; CSlave≤ CD2+C4+C5+C6+CIC CSlave≤250pF Ceramic SMD: 10%, 0805, ≥50V; CSlave≤ CD2+C4+C5+C6+CIC CSlave≤250pF; optional part 10.2.3. External Circuitry on Signal Lines In order to minimize EMC influences, the external application circuitry shall be designed as followed: Name Mounting Min Recommended Max Dim C7 no 0.1 1 100 nF R2 mandatory 0 560 1000 Ω D3 no - PESD1LIN - MLX80050/51/30/31 – Datasheet 3901080050 Page 44 Comment Ceramic SMD: 10%, 0805, ≥50V; optional part Serial resistor: 0805; or optional Ferrite ESD protection Diode: SOD323 close to the connector; optional part Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 11. Mechanical Specification 11.1. SOIC8 package Figure 18: SOIC8 Drawing Table 16: SOIC8 dimensions Small Outline Integrated Circiut (SOIC), SOIC 8, 150 mil A1 B C D E e H h L A ZD A2 3.81 3.99 1.27 5.80 6.20 0.25 0.50 0.41 1.27 1.52 1.72 0° 8° 0.53 1.37 1.57 All Dimension in mm, coplanarity < 0.1 mm min max 0.10 0.25 0.36 0.46 0.19 0.25 MLX80050/51/30/31 – Datasheet 3901080050 4.80 4.98 Page 45 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 11.2. QFN20 5x5 package 1 2 N E2 L K E Bottom Exposed Pad D A A3 D2 e A1 b Figure 19: QFN20 Drawing Table 17: QFN20 Package Dimensions Symbol min max [1] [2] [3] [4] A A1 0.80 0 1.00 0.05 A3 0.20 b 0.25 0.35 D 5.00 D2 3.00 3.25 E 5.00 E2 3.00 3.25 e 0.65 K 0.20 L 0.45 0.65 N [3] ND [4] NE [4] [1] 20 5 5 Dimensions and tolerances conform to ASME Y14.5M-1994 All dimensions are in Millimeters. All angels are in degrees N is the total number of terminals ND and NE refer to the number of terminals on each D and E side respectively MLX80050/51/30/31 – Datasheet 3901080050 Page 46 Jun 2016 011 [2] MLX80050/51/30/31 LIN System Basis ICs Datasheet 12. Revision History Version Changes 001 First Release 002 Remark st 1 Release Date April 2012 For TSD added: "If EN=H at recovery, chip switches to NORMAL after VCC>VRES and tres" and "SBY-timeout timer is disabled during TSD" For TSD removed explicit values and kept parameter name only. For Vs_uvr added: "If EN=H at power-up, chip switches to NORMAL after VCC>VRES and tres" Changed state diagram: sleep mode can be left with EN = H (was a L-H transition in A version of the device), refers to Errata 80050AA07. June 2012 003 ESD robustness level adapted to Conformance Test Report Static Characteristics adapted to CPK-Values Block Diagram updated Corrected short description of product Dec 2012 004 Removed 06.05, 09.05, 13.05 Changed 05.02 to 200mV (5V) and 100mV (3.3V) Changed 06.03 and 13.03 to 700mV Changed 09.03 to 600mV Added MODE pin to parameter list Changed 15.05 to LL = 2.7V and UL to 3.3V Changed 14.01 to 0.6V at 2mA Changed 08.03 to LL = 30 Changed 02.00 to LL = 400 and UL to 1500 Changed Tjshd to 155/170/190°C Changed 12.04 and 12.05 UL to 20uA Changed 03.05 to relevance “C” (only for characterization) Added 17.06 Watchdog safety oscillator Changed 3.01 for 80030/31 to UL = 3.201 and UL = 3.399 Mar 2013 005 Corrected value “e” of QFN package data to “0.65” Apr 2013 006 Changed 15.01 Changed 1.03 LL to 40mV Changed 3.09 LL to -135mA and UL to -75mA Changed ESD capability of LIN pin to +/-6kV July 2013 007 Changed operating voltage to max. 27V Changed table 2, nominal operating voltage, max to 27V Update 3.09: split temperature ranges Changed 12.03 to min: -400µA Changed 12.06 to min: -10µA, max: 50µA Changed 6.04 to typ: 125 k, max: 250 k Changed 12.01 to 80µA Feb 2014 008 Added condition for thermal resistance Updated chapter 4.1, tables 7 and 8 for TxD and RxD values de- April 2014 MLX80050/51/30/31 – Datasheet 3901080050 Page 47 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet pending on the mode and EN = H transition from Sleep Mode to Normal Mode Changed operating voltage to 27V max in application hints 9.1 Re-phrased information to EMC compliance in 9.2.2 LIN: Changed parameter 12.10 and added parameter 12.12 to Lin spec 2.x and compatible to SAE J2602, split parameter 12.07 into dominant and recessive 009 Updated product codes to “wettable flanks” Nov 2014 010 Silent Mode for Silicon Version B not supported Silicon Version C added, support of silent mode Feb 2015 011 Silicon Version B removed Changed 1.01, 1.02 VS under voltage reset Changed 2.01 supply current sleep mode Changed 2.02 supply current silent mode Addition of 18.11 Wake up time vs. EN Update state diagram (Fig 5) Update of paragraph ESD and EMC Jun 2016 MLX80050/51/30/31 – Datasheet 3901080050 Page 48 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 13. Standard information regarding manufacturability of Melexis products with different soldering processes Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods: Reflow Soldering SMD’s (Surface Mount Devices) IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2) EIA/JEDEC JESD22-A113 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2) Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) EN60749-20 Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat EIA/JEDEC JESD22-B106 and EN60749-15 Resistance to soldering temperature for through-hole mounted devices Iron Soldering THD’s (Through Hole Devices) EN60749-15 Resistance to soldering temperature for through-hole mounted devices Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices) EIA/JEDEC JESD22-B102 and EN60749-21 Solderability For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board. Melexis recommends reviewing on our web site the General Guidelines soldering recommendation (http://www.melexis.com/Quality_soldering.aspx) as well as trim&form recommendations (http://www.melexis.com/Assets/Trim-and-form-recommendations-5565.aspx). Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx MLX80050/51/30/31 – Datasheet 3901080050 Page 49 Jun 2016 011 MLX80050/51/30/31 LIN System Basis ICs Datasheet 14. Disclaimer Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application. The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering of technical or other services. © 2015 Melexis NV. All rights reserved. For the latest version of this document, go to our website at www.melexis.com Or for additional information contact Melexis Direct: Europe, Africa, Asia: Phone: +32 1367 0495 E-mail: [email protected] America: Phone: +1 248 306 5400 E-mail: [email protected] ISO/TS 16949 and ISO14001 Certified MLX80050/51/30/31 – Datasheet 3901080050 Page 50 Jun 2016 011