Fujitsu MB82D01171A-90 16 mbit (1 m word x 16 bit) mobile phone application specific memory Datasheet

FUJITSU SEMICONDUCTOR
DATA SHEET
DS05-11404-2E
MEMORY Mobile FCRAMTM
CMOS
16 Mbit (1 M word × 16 bit)
Mobile Phone Application Specific Memory
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
CMOS 1,048,576-WORD × 16 BIT
Fast Cycle Random Access Memory
with Low Power SRAM Interface
■ DESCRIPTION
The Fujitsu MB82D01171A is a CMOS Fast Cycle Random Access Memory (FCRAM) with asynchronous Static
Random Access Memory (SRAM) interface containing 16,777,216 storages accessible in a 16-bit format. This
MB82D01171A is suited for low power applications such as Cellular Handset and PDA.
Note: FCRAM is a trademark of Fujitsu Limited, Japan.
■ PRODUCT LINEUP
MB82D01171A
Parameter
80
Access Time (tAA Max, tCE Max)
80L
80 ns
Active Current (IDDA1 Max)
80LL
85
85L
85LL
85 ns
90
90L
90LL
90 ns
20 mA
Standby Current (IDDS1 Max)
200 µA 100 µA 70 µA 200 µA 100 µA 70 µA 200 µA 100 µA 70 µA
Power Down Current (IDDP Max)
10 µA
■ PACKAGES
48-ball plastic FBGA
48-ball plastic FBGA
(BGA-48P-M16)
(BGA-48P-M18)
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
■ FEATURES
•
•
•
•
•
•
Asynchronous SRAM Interface
1 M word × 16 bit Organization
Fast Random Cycle Time : tRC = 90 ns
Fast Random Access Time : tAA = tCE = 80 ns, 85 ns, 90 ns
Low Power Consumption : IDDS1 = 200 µA, 100 µA (L version) , 70 µA (LL version)
Wide Operating Conditions : VDD = +2.3 V to +2.7 V
+2.7 V to +3.1 V
+3.1 V to +3.5 V
TA = −30 °C to +85 °C
• Byte Write Control
• 4 words Address Access Capability
• Power Down Control by CE2
2
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
■ PIN ASSIGNMENTS
(TOP VIEW)
Flash Compatible FBGA
(suffix PBT)
SRAM Compatible FBGA
(suffix PBN)
1
2
3
4
5
6
A
A4
A17
UB
CE2
A8
A12
B
A3
A7
LB
WE
A9
C
A2
A6
A18
NC
D
A1
A5
NC
E
A0
DQ1
DQ3
F
CE1
DQ9
G
OE
DQ10 DQ12
VDD
H
VSS
DQ2
DQ5
1
2
3
4
5
6
A
LB
OE
A0
A1
A2
CE2
A13
B
DQ9
UB
A3
A4
CE1
DQ1
A10
A14
C
DQ10 DQ11
A5
A6
DQ2
DQ3
A19
A11
A15
D
VSS
DQ12
A17
A7
DQ4
VDD
DQ6
DQ8
A16
E
VDD
DQ13
NC
A16
DQ5
VSS
DQ11 DQ13 DQ15
NC
F
DQ15 DQ14
A14
A15
DQ6
DQ7
DQ14 DQ16
G
DQ16
A19
A12
A13
WE
DQ8
DQ7
H
A18
A8
A9
A10
A11
NC
DQ4
VSS
(BGA-48P-M16)
(BGA-48P-M18)
■ PIN DESCRIPTION
Pin Name
A0 to A19
Description
Address Input
CE1
Chip Enable (Low Active)
CE2
Chip Enable (High Active)
WE
Write Enable (Low Active)
OE
Output Enable (Low Active)
LB
Lower Byte Write Control (Low Active)
UB
Upper Byte Write Control (Low Active)
DQ1 to DQ8
Lower Byte Data Input/Output
DQ9 to DQ16
Upper Byte Data Input/Output
VDD
Power Supply
VSS
Ground
NC
No Connection
3
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
■ BLOCK DIAGRAM
VDD
VSS
A0 to A19
DQ1 to DQ8
Address
Latch &
Buffer
I/O
Buffer
DQ9 to DQ16
Row
Decoder
Input Data
Latch &
Control
Memory
Cell
Array
16,777,216 bit
Sense /
Switch
Column /
Decoder
Address
Latch &
Buffer
CE2
CE1
WE
LB
UB
OE
4
Power
Control
Timing
Control
Output
Data
Control
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
■ FUNCTION TRUTH TABLE *1
CE1
CE2
WE
OE
LB
UB
DQ1 to
DQ8
DQ9 to
DQ16
IDD
Data
Retention
Power Down *2
X
L
X
X
X
X
High-Z
High-Z
IDDP
No
Standby (Deselect)
H
X
X
X
X
High-Z
High-Z
IDDS
H
X
X
High-Z
High-Z
L
X
X
Output
Valid
Output
Valid
L
L
Input
Valid
Input
Valid
L
H
Input
Valid
Invalid
H
L
Invalid
Input
Valid
Mode
Output Disable*3
H
Read*4
Write
Write (Lower Byte)
L
H
L
Write (Upper Byte)
H
IDDA
Yes
*1 : V = Valid, L = Logic Low, H = Logic High, X = either “L” or “H”, High-Z = High Impedance
*2 : Power Down mode can be entered from Standby state and all DQ pins are in High-Z state.
*3 : Output Disable mode should not be kept longer than 1 µs.
*4 : Byte control at Read mode is not supported.
5
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
■ ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Rating
Unit
Min
Max
VDD
−0.5
+3.6
V
VIN
−0.5
+3.6
V
VOUT
−0.5
+3.6
V
Short Circuit Output Current
IOUT
−50
+50
mA
Storage Temperature
TSTG
−55
+125
°C
Voltage of VDD Supply Relative to VSS
Voltage at Any Pin Relative to VSS
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
■ RECOMMENDED OPERATING CONDITIONS
Parameter
Supply Voltage *1
Symbol
Value
Max
VDD (31)
3.1
3.5
V
VDD (27)
2.7
3.1
V
VDD (23)
2.3
2.7
V
VSS
0
0
V
VIH (31)
2.6
VDD + 0.3
and
≤ 3.6
V
VIH (27)
2.2
VDD + 0.3
V
VIH (23)
2.0
VDD + 0.3
V
VIL (31)
−0.3
0.5
V
VIL (27)
−0.3
0.5
V
VIL (23)
−0.3
0.4
V
TA
−30
85
°C
High Level Input Voltage *1, *2
Low Level Input Voltage *1, *2
Ambient Temperature
Unit
Min
*1 : All voltages are referenced to VSS.
*2 : Minimum DC voltage on input or I/O pins are −0.3 V. During voltage transitions, inputs may undershoot VSS to
−1.0 V for periods of up to 5 ns. Maximum DC voltage on input and I/O pins are VDD + 0.3 V.
During voltage transitions, inputs may positive overshoot to VDD + 1.0 V for periods of up to 5 ns.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representatives beforehand.
6
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
■ PIN CAPACITANCE
Parameter
Symbol
Conditions
Min
(f = 1.0 MHz, TA = +25 °C)
Value
Unit
Typ
Max
Address Input Capacitance
CIN1
VIN = 0 V


5
pF
Control Input Capacitance
CIN2
VIN = 0 V


5
pF
Data Input/Output Capacitance
CIO
VIO = 0 V


8
pF
■ ELECTRICAL CHARACTERISTICS
1. DC Characteristics
Parameter
Symbol
Conditions
Value
Min
Max
Unit
Input Leakage Current
ILI
VSS ≤ VIN ≤ VDD
−1.0
+1.0
µA
Output Leakage Current
ILO
0 V ≤ VOUT ≤ VDD, Output Disable
−1.0
+1.0
µA
VOH(31)
VDD = VDD(31), IOH = −0.5 mA
2.4

V
VOH(27)
VDD = VDD(27), IOH = −0.5 mA
2.25

V
VOH(23)
VDD = VDD(23), IOH = −0.5 mA
1.8

V
IOL = 1 mA

0.4
V
VDD = VDD(31) Max, VIN = VIH or VIL,
CE2 ≤ 0.2 V

20
µA
VDD = VDD(27, 23) Max, VIN = VIH or VIL,
CE2 ≤ 0.2 V

10
µA

5.5

2.0

1.5

5

1.5

1

250

150

120

200

100

70
Output High Voltage Level
Output Low Voltage Level
VDD Power Down Current
L Version
VOL
IDDP
IDDS
LL Version
L Version
VDD Standby
Current
IDDS
LL Version
L Version
IDDS1
LL Version
L Version
LL Version
IDDS1
VDD = VDD(31) Max,
VIN = VIH or VIL
CE1 = CE2 = VIH, IOUT = 0 mA
VDD = VDD(27, 23) Max,
VIN = VIH or VIL
CE1 = CE2 = VIH, IOUT = 0 mA
VDD = VDD(31) Max,
VIN ≤ 0.2 V or VIN ≥ VDD − 0.2 V,
CE1 = CE2 ≥ VDD − 0.2 V, IOUT = 0 mA
VDD = VDD(27, 23) Max,
VIN ≤ 0.2 V or VIN ≥ VDD − 0.2 V,
CE1 = CE2 ≥ VDD − 0.2 V, IOUT = 0 mA
mA
mA
µA
µA
(Continued)
7
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
(Continued)
Parameter
Symbol
IDDA1
VDD Active Current
IDDA2
Conditions
VDD(31) = VDD Max,
VIN = VIH or VIL,
CE1 = VIL and CE2 = VIH, IOUT
= 0 mA
tRC / tWC =
Min
VDD(27, 23) = VDD Max,
VIN = VIH or VIL,
CE1 = VIL and CE2 = VIH, IOUT
= 0 mA
VDD(31) = VDD Max,
VIN = VIH or VIL,
CE1 = VIL and CE2 = VIH, IOUT
= 0 mA
tRC / tWC =
1 µs
VDD(27, 23) = VDD Max,
VIN = VIH or VIL,
CE1 = VIL and CE2 = VIH, IOUT
= 0 mA
Notes: • All voltages are referenced to Vss.
• DC Characteristics are measured after following POWER-UP timing.
• IOUT depends on the output load conditions.
8
Value
Min
Max
Unit
25

mA
20
4.0

mA
3.0
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
2. AC Characteristics
(1) Read Operation
Parameter
Symbol
-80/-80L/
-80LL
-85/-85L/
-85LL
-90/-90L/
-90LL
Min
Max
Min
Max
Min
Max
Unit
Notes
Read Cycle Time
tRC
90

90

90

ns
Chip Enable Access Time
tCE

80

85

90
ns
*1, *3
Output Enable Access Time
tOE

45

45

45
ns
*1
Address Access Time
tAA

80

85

90
ns
*1, *4
Output Data Hold Time
tOH
5

5

5

ns
*1
CE1 Low to Output Low-Z
tCLZ
5

5

5

ns
*2
OE Low to Output Low-Z
tOLZ
0

0

0

ns
*2
CE1 High to Output High-Z
tCHZ

30

30

30
ns
*2
OE High to Output High-Z
tOHZ

25

25

25
ns
*2
Address Setup Time to CE1 Low
tASC
−5

−5

−5

ns
*5
tASO
45

45

45

ns
*3, *6
tASO[ABS]
10

10

10

ns
*7
tAX

5

5

5
ns
*4
tCLAH
90

90

90

ns
*4
OE Low to Address Hold Time
tOLAH
45

45

45

ns
*4, *8
CE1 High to Address Hold Time
tCHAH
−5

−5

−5

ns
OE High to Address Hold Time
tOHAH
−5

−5

−5

ns
CE1 Low to OE Low Delay Time
tCLOL
45
1000
45
1000
45
1000
ns
*3, *6, *8, *9
OE Low to CE1 High Delay Time
tOLCH
45

45

45

ns
*8
tCP
20

20

20

ns
tOP
45
1000
45
1000
45
1000
ns
*6, *8, *9
tOP[ABS]
20

20

20

ns
*7
Address Setup Time to OE Low
Address Invalid Time
CE1 Low to Address Hold Time
CE1 High Pulse Width
OE High Pulse Width
*1: The output load is 30 pF.
*2: The output load is 5 pF.
*3: The tCE is applicable if OE is brought to Low before CE1 goes Low and is also applicable if actual value of both
or either tASO or tCLOL is shorter than specified value.
*4: Applicable only to A0 and A1 when both CE1 and OE are kept at Low for the address access.
*5: Applicable if OE is brought to Low before CE1 goes Low.
*6: The tASO, tCLOL (Min) and tOP (Min) are reference values when the access time is determined by tOE.
If actual value of each parameter is shorter than specified minimum value, tOE become longer by the amount of
subtraction actual value from specified minimum value.
For example, if actual tASO, tASO (actual) , is shorter than specified minimum value, tASO (Min) , during OE control
access (i.e., CE1 stays Low) , the tOE become tOE (Max) + tASO (Min) − tASO (actual) .
*7: The tASO[ABS] and tOP[ABS] is the absolute minimum value during OE control access.
*8: If actual value of either tCLOL or tOP is shorter than specified minimum value, both tOLAH and tOLCH become
tRC (Min) − tCLOL (actual) or tRC (Min) − tOP (actual) .
*9: Maximum value is applicable if CE1 is kept at Low.
9
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
(2) Write Operation
Parameter
Symbol
-80/-80L/
-80LL
-85/-85L/
-85LL
-90/-90L/
-90LL
Min
Max
Min
Max
Min
Max
Unit
Notes
Write Cycle Time
tWC
90

90

90

ns
*1
Address Setup Time
tAS
0

0

0

ns
*2
Address Hold Time
tAH
45

45

45

ns
*2
CE1 Write Setup Time
tCS
0
1000
0
1000
0
1000
ns
CE1 Write Hold Time
tCH
0
1000
0
1000
0
1000
ns
WE Setup Time
tWS
0

0

0

ns
WE Hold Time
tWH
0

0

0

ns
LB and UB Setup Time
tBS
−5

−5

−5

ns
LB and UB Hold Time
tBH
−5

−5

−5

ns
OE Setup Time
tOES
0
1000
0
1000
0
1000
ns
*3
tOEH
45
1000
45
1000
45
1000
ns
*3, *4
tOEH[ABS]
20

20

20

ns
*5
OE High to CE1 Low Setup Time
tOHCL
−3

−3

−3

ns
*6
Address Hold Time to OE High
tOHAH
0

0

0

ns
*7
CE1 Write Pulse Width
tCW
60

60

60

ns
*1, *8
WE Write Pulse Width
tWP
60

60

60

ns
*1, *8
CE1 Write Recovery Time
tWRC
15

15

15

ns
*1, *9
WE Write Recovery Time
tWR
15
1000
15
1000
15
1000
ns
*1, *3, *9
Data Setup Time
tDS
20

20

20

ns
Data Hold Time
tDH
0

0

0

ns
CE1 High Pulse Width
tCP
20

20

20

ns
OE Hold Time
*9
*1: Minimum value must be equal or greater than the sum of actual tCW (or tWP) and tWRC (or tWR) .
*2: New write address is valid from either CE1 or WE is brought to High.
*3: Maximum value is applicable if CE1 is kept at Low and both WE and OE are kept at High.
*4: The tOEH is specified from end of tWC (Min) and is a reference value when access time is determined by tOE.
If actual value is shorter than specified minimum value, tOE become longer by the amount of subtracting actual
value from specified minimum value.
*5: The tOEH[ABS] is the absolute minimum value if write cycle is terminated by WE and CE1 stays Low.
*6: tOHCL (Min) must be satisfied if read operation is not performed prior to write operation.
In case OE is disabled after tOHCL (Min) , WE Low must be asserted after tRC (Min) from CE1 Low.
In other words, read operation is initiated if tOHCL (Min) is not satisfied.
*7: Applicable if CE1 stays Low after read operation.
*8: tCW and tWP is applicable if write operation is initiated by CE1 and WE, respectively.
*9: tWRC and tWR is applicable if write operation is terminated by CE1 and WE, respectively.
The tWR (Min) can be ignored if CE1 is brought to High together or after WE is brought to High.
In such case, the tCP (Min) must be satisfied.
10
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
(3) Power Down Parameters
Parameter
Symbol
Value
Min
Max
Unit
CE2 Low Setup Time for Power Down Entry
tCSP
10

ns
CE2 Low Hold Time after Power Down Entry
tC2LP
100

ns
CE1 High Hold Time following CE2 High
after Power Down Exit
tCHH
350

µs
CE1 High Setup Time following CE2 High
after Power Down Exit
tCHS
10

ns
Note
(4) Other Timing Parameters
Parameter
Symbol
CE1 High to OE Invalid Time for Standby Entry
Value
Unit
Note
Min
Max
tCHOX
20

ns
CE1 High to WE Invalid Time for Standby Entry
tCHWX
20

ns
*1
CE2 Low Hold Time after Power-up
tC2LH
50

µs
*2
CE2 High Hold Time after Power-up
tC2HL
50

µs
*3
CE1 High Hold Time following CE2 High after
Power-up
tCHH
350

µs
*2
tT
1
25
ns
*4
Input Transition Time
*1: It may write some data into any address location if tCHWX is not satisfied.
*2: Must satisfy tCHH (Min) after tC2LH (Min) .
*3: Requires Power Down mode entry and exit after tC2HL.
*4: The Input Transition Time (tT) at AC testing is 5 ns as shown in below. If actual tT is longer than 5 ns,
it may violate some timing parameters of AC specification.
(5) AC Test Conditions
Parameter
Input High Level
Input Low Level
Input Timing Measurement Level
Input Transition Time
Symbol
VIH
VIL
VREF
tT
Conditions
Measured Value
Unit
VDD = 3.1 V to 3.5 V
2.6
V
VDD = 2.7 V to 3.1 V
2.3
V
VDD = 2.3 V to 2.7 V
2.0
V
VDD = 3.1 V to 3.5 V
0.5
V
VDD = 2.7 V to 3.1 V
0.5
V
VDD = 2.3 V to 2.7 V
0.4
V
VDD = 3.1 V to 3.5 V
1.5
V
VDD = 2.7 V to 3.1 V
1.3
V
VDD = 2.3 V to 2.7 V
1.1
V
Between VIL and VIH
5
ns
Note
11
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
■ TIMING DIAGRAM
1. READ Timing #1 (OE Control Access)
tRC
Address
tRC
Address Valid
Address Valid
tOHAH
tASO
tCE
tOHAH
CE1
tOLCH
tCLOL
tOE
tOP
tOE
OE
tOHZ
tASO
tOLZ
tOHZ
tOLZ
tOH
tOH
DQ
(Output)
Valid Data Output
Valid Data Output
Note : CE2 and WE must be High for entire read cycle.
2. READ Timing #2 (CE1 Control Access)
tRC
tRC
Address
Address Valid
tASC
Address Valid
tCE
tCHAH
tASC
tCE
tCHAH
CE1
tOLCH
tCP
tOE
tCHZ
tCHZ
OE
tOH
tCLZ
tCLZ
tOH
DQ
(Output)
Valid Data Output
Note : CE2 and WE must be High for entire read cycle.
12
Valid Data Output
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
3. READ Timing #3 (Address Access after OE Control Access)
tRC
tRC
Address
(A19 - A2)
Address Valid
Address Valid (No change)
Address
(A1, A0)
Address Valid
Address Valid
tASO
tOLAH
tOHAH
tAA
tAX
CE1
tOHZ
tOE
OE
tOH
tOH
tOLZ
DQ
(Output)
Valid Data Output
Valid Data Output
Note : CE2 and WE must be High for entire read cycle.
4. READ Timing #4 (Address Access after CE1 Control Access)
tRC
Address
(A19-A2)
Address Valid
Address
(A1, A0)
Address Valid
tRC
Address Valid (No change)
Address Valid
tCLAH
tASC
tAA
tCHAH
tAX
CE1
tCHZ
tCE
OE
tOH
tCLZ
tOH
DQ
(Output)
Valid Data Output
Valid Data Output
Note : CE2 and WE must be High for entire read cycle.
13
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
5. WRITE Timing #1 (CE1 Control)
tWC
Address
Address Valid
tAS
tAH
tAS
CE1
tCW
tWRC
tWS
tWH
tWS
tBS
tBH
tBS
WE
UB, LB
tOHCL
OE
tDS
tDH
DQ
(Input)
Valid Data Input
Note : CE2 must be High for write cycle.
14
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
6. WRITE Timing #2-1 (WE Control, Single Write Operation)
tWC
Address
Address Valid
tOHAH
tAS
tAH
tAS
tCH
CE1
tCP
tOHCL
tCS
tWP
tWR
WE
tBS
tBH
UB, LB
tOES
OE
tOHZ
tDS
tDH
DQ
(Input)
Valid Data Input
Note : CE2 must be High for write cycle.
15
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
7. WRITE Timing #2 (WE Control, Continuous Write Operation)
tWC
Address Valid
Address
tOHAH
tAS
tAH
tAS
CE1
tOHCL
tCS
tWP
tWR
WE
tBH
tBS
UB, LB
tOES
OE
tOHZ
tDS
tDH
DQ
(Input)
Valid Data Input
16
tBS
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
8. READ/WRITE Timing #1-1 (CE1 Control)
tWC
Write Address
Address
tCHAH
tAS
Read Address
tASC
tAH
CE1
tCP
tWH
tWRC
tWS
tCW
tWH
tWS
WE
tBH
tBS
UB, LB
tCLOL
tOHCL
OE
tCHZ
tOH
tDS
tDH
tOLZ
tCLZ
DQ
Read Data Output
Write Data Input
Note : Write address is valid from either CE1 or WE of last falling edge.
17
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
9. READ/WRITE Timing #1-2 (CE1 Control)
tRC
Address
Read Address
Write Address
tASC
tCHAH
tWRC
tAS
CE1
tWRC (Min)
tWH
tCP
tWH
tWS
tWS
WE
tBH
tBS
tCE
UB, LB
tOHCL
tOEH
OE
tCHZ
tDH
tCLZ
tOH
DQ
Write Data Input
Read Data Output
Note : The tOEH is specified from the time satisfied both tWRC and tWR (Min) .
18
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
10. READ (OE Control) /WRITE (WE Control) Timing #2-1
tWC
Write Address
Address
tOHAH
CE1
tAS
Read Address
tAH
tASO
Low
tWR
tWP
WE
tBH
tBS
UB, LB
tOEH
tOES
OE
tOHZ
tOH
tDS
tDH
tOLZ
DQ
Read Data Output
Write Data Input
Note : CE1 can be tied to Low for WE and OE controlled operation.
When CE1 is tied to Low, output is exclusively controlled by OE.
19
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
11. READ (OE Control) /WRITE (WE Control) Timing #2-2
tRC
Address
Read Address Valid
Write Address
tOHAH
tASO
CE1
tAS
Low
tWR
WE
tBS
tBH
UB, LB
tOEH
tOES
tOE
OE
tOHZ
tDH
tOLZ
tOH
DQ
Write Data Input
Read Data Output
Note : CE1 can be tied to Low for WE and OE controlled operation.
When CE1 is tied to Low, output is exclusively controlled by OE.
20
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
12. POWER DOWN Timing
CE1
tCHS
CE2
tCSP
tC2LP
tCHH
High-Z
DQ
Power Down Entry
Power Down Mode
Power Down Exit
13. Standby Entry Timing after Read or Write
CE1
tCHOX
tCHWX
OE
WE
Active (Read)
Active (Write)
Standby
Standby
Note : Both tCHOX and tCHWX define the earliest entry timing for Standby mode. If either of timing is not satisfied,
it takes tRC (Min) period from either last address transition of A0 and A1, or CE1 Low to High transition.
14. POWER-UP Timing 1
CE1
tCHS
tC2LH
tCHH
CE2
VDD
VDD Min
0V
Note : It is recommended to keep CE2 at Low during VDD power-up.
The tC2LH specifies after VDD reaches specified minimum level.
21
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
15. POWER-UP Timing 2
CE1
tCHS
tC2HL
tCSP
tC2LP
tCHH
CE2
tC2HL
VDD
VDD Min
0V
Note : The tC2HL specifies from CE2 Low to High transition after VDD reaches specified minimum level.
CE1 must be brought to High prior to or together with CE2 Low to High transition.
22
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
■ DATA RETENTION
1. Low VDD Characteristics
Parameter
Symbol
VDD Data Retention Supply
Voltage
L Version
VDR
CE1 = CE2 ≥ VDD − 0.2 V or,
CE1 = CE2 = VIH,
IDR
VDD = VDD (23) ,
VIN = VIH (23) or VIL
CE1 = CE2 = VIH (23) , IOUT = 0 mA
LL Version
VDD Data Retention
Supply Current
L Version
Value
Test Conditions
IDR1
LL Version
Min
Max
2.1
3.5

5

1.5

1
VDD = VDD (23) ,
VIN ≤ 0.2 V or VIN ≥ VDD − 0.2 V,
CE1 = CE2 ≥ VDD − 0.2 V, IOUT = 0 mA

200

100

70
Unit
V
mA
µA
Data Retention Setup Time
tDRS
VDD = VDD (27) at data retention entry
0

ns
Data Retention Recovery Time
tDRR
VDD = VDD (27) after data retention
90

ns
0.5

V/µs
∆V/∆t
VDD Voltage Transition Time

2. Data Retention Timing
tDRS
tDRR
3.5 V
VDD
∆V/∆t
∆V/∆t
2.7 V
CE2
2.1 V
CE1
CE1 = CE2 ≥ VDD - 0.2 V or
VIH (23) Min
0.4 V
VSS
Data Retention Mode
Data bus must be in High-Z at data retention entry.
23
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
■ ORDERING INFORMATION
Part Number
24
Package
Remarks
MB82D01171A-80PBT
48-ball plastic FBGA 0.8 mm pitch
(BGA-48P-M16)
tCE = 80 ns Max, IDDS1 = 200 µA Max
Flash Compatible Package
MB82D01171A-80LPBT
48-ball plastic FBGA 0.8 mm pitch
(BGA-48P-M16)
tCE = 80 ns Max, IDDS1 = 100 µA Max
Flash Compatible Package
MB82D01171A-80LLPBT
48-ball plastic FBGA 0.8 mm pitch
(BGA-48P-M16)
tCE = 80 ns Max, IDDS1 = 70 µA Max
Flash Compatible Package
MB82D01171A-85PBT
48-ball plastic FBGA 0.8 mm pitch
(BGA-48P-M16)
tCE = 85 ns Max, IDDS1 = 200 µA Max
Flash Compatible Package
MB82D01171A-85LPBT
48-ball plastic FBGA 0.8 mm pitch
(BGA-48P-M16)
tCE = 85 ns Max, IDDS1 = 100 µA Max
Flash Compatible Package
MB82D01171A-85LLPBT
48-ball plastic FBGA 0.8 mm pitch
(BGA-48P-M16)
tCE = 85 ns Max, IDDS1 = 70 µA Max
Flash Compatible Package
MB82D01171A-90PBT
48-ball plastic FBGA 0.8 mm pitch
(BGA-48P-M16)
tCE = 90 ns Max, IDDS1 = 200 µA Max
Flash Compatible Package
MB82D01171A-90LPBT
48-ball plastic FBGA 0.8 mm pitch
(BGA-48P-M16)
tCE = 90 ns Max, IDDS1 = 100 µA Max
Flash Compatible Package
MB82D01171A-90LLPBT
48-ball plastic FBGA 0.8 mm pitch
(BGA-48P-M16)
tCE = 90 ns Max, IDDS1 = 70 µA Max
Flash Compatible Package
MB82D01171A-80PBN
48-ball plastic FBGA 0.75 mm pitch
(BGA-48P-M18)
tCE = 80 ns Max, IDDS1 = 200 µA Max
SRAM Compatible Package
MB82D01171A-80LPBN
48-ball plastic FBGA 0.75 mm pitch
(BGA-48P-M18)
tCE = 80 ns Max, IDDS1 = 100 µA Max
SRAM Compatible Package
MB82D01171A-80LLPBN
48-ball plastic FBGA 0.75 mm pitch
(BGA-48P-M18)
tCE = 80 ns Max, IDDS1 = 70 µA Max
SRAM Compatible Package
MB82D01171A-85PBN
48-ball plastic FBGA 0.75 mm pitch
(BGA-48P-M18)
tCE = 85 ns Max, IDDS1 = 200 µA Max
SRAM Compatible Package
MB82D01171A-85LPBN
48-ball plastic FBGA 0.75 mm pitch
(BGA-48P-M18)
tCE = 85 ns Max, IDDS1 = 100 µA Max
SRAM Compatible Package
MB82D01171A-85LLPBN
48-ball plastic FBGA 0.75 mm pitch
(BGA-48P-M18)
tCE = 85 ns Max, IDDS1 = 70 µA Max
SRAM Compatible Package
MB82D01171A-90PBN
48-ball plastic FBGA 0.75 mm pitch
(BGA-48P-M18)
tCE = 90 ns Max, IDDS1 = 200 µA Max
SRAM Compatible Package
MB82D01171A-90LPBN
48-ball plastic FBGA 0.75 mm pitch
(BGA-48P-M18)
tCE = 90 ns Max, IDDS1 = 100 µA Max
SRAM Compatible Package
MB82D01171A-90LLPBN
48-ball plastic FBGA 0.75 mm pitch
(BGA-48P-M18)
tCE = 90 ns Max, IDDS1 = 70 µA Max
SRAM Compatible Package
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
■ PACKAGE DIMENSIONS
48-ball plastic FBGA
(BGA-48P-M16)
+0.15
1.05 –0.10
+.006
.041 –.004
9.00±0.10(.354±.004)
(Mounting height)
(5.60(.220))
0.36±0.10
(Stand off)
(.014±.004)
0.80(.031)
TYP
6
5
6.00±0.10
(.236±.004)
4
(4.00(.157))
3
2
1
0.80(.031)
TYP
INDEX AREA
H G
F
E
D C
B
48-Ø0.45±0.10
(48-Ø.018±.004)
A
0.08(.003)
M
0.20(.008) S
S
0.10(.004)
C
2000 FUJITSU LIMITED B48016S-1c-1
Dimensions in mm (inches)
(Continued)
25
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
(Continued)
48-ball plastic FBGA
(BGA-48P-M18)
+0.15
1.05 –0.10
+.006
(Mounting height)
.041 –.004
9.00±0.10(.354±.004)
(5.25(.207))
0.25±0.10
(.010±.004) (Stand off)
0.75(.030)
TYP
6
5
6.00±0.10
(.236±.004)
4
(3.75(.148))
3
2
1
0.75(.030)
TYP
INDEX AREA
H
G F E
D C
B A
48-ø0.35±0.10
(48-ø.014±.004)
INDEX MARK
0.08(.003)
M
0.20(.008) S
S
0.10(.004) S
C
2001 FUJITSU LIMITED B48018S-c-1-1
Dimensions in mm (inches)
26
MB82D01171A-80/80L/80LL/85/85L/85LL/90/90L/90LL
FUJITSU LIMITED
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications, and
are not intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the use
of this information or circuit diagrams.
The products described in this document are designed, developed
and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use,
personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal
risks or dangers that, unless extremely high safety is secured, could
have a serious effect to the public, and could lead directly to death,
personal injury, severe physical damage or other loss (i.e., nuclear
reaction control in nuclear facility, aircraft flight control, air traffic
control, mass transport control, medical life support system, missile
launch control in weapon system), or (2) for use requiring
extremely high reliability (i.e., submersible repeater and artificial
satellite).
Please note that Fujitsu will not be liable against you and/or any
third party for any claims or damages arising in connection with
above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You
must protect against injury, damage or loss from such failures by
incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of
over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Law of Japan, the prior
authorization by Japanese government will be required for export
of those products from Japan.
F0112
 FUJITSU LIMITED Printed in Japan
Similar pages