Maxim MAX5312 -10v, 12-bit, serial, voltage-output dac Datasheet

19-3119; Rev 0; 12/03
±10V, 12-Bit, Serial, Voltage-Output DAC
Features
The MAX5312 12-bit, serial-interface, digital-to-analog
converter (DAC) provides bipolar ±5V to ±10V outputs
from ±12V to ±15V power-supply voltages, or a unipolar 5V to 10V output from a single 12V to 15V powersupply voltage.
The MAX5312 features excellent linearity with both integral nonlinearity (INL) and differential nonlinearity (DNL)
guaranteed to ±1 LSB (max). The device also features
a fast 10µs to 0.5 LSB settling time, and a hardwareshutdown feature that reduces current consumption to
3.5µA. The output goes to midscale at power-up in
bipolar mode (0V), and to zero scale at power-up in
unipolar mode (0V). A clear input (CLR) asynchronously
clears the DAC register and sets the output to 0V. The
output can be asynchronously updated with the load
DAC (LDAC) input.
The device features a 10MHz SPI™-/QSPI™-/
MICROWIRE™-compatible serial interface that operates with 3V or 5V logic. Additional features include a
serial-data output (DOUT) for daisy chaining and readback functions. The MAX5312 requires a 2V to 5.25V
external reference voltage and is available in a 16-pin
SSOP package that operates over the extended -40°C
to +85°C temperature range.
♦ Unipolar or Bipolar Output-Voltage Ranges
Unipolar: 0 to (+2 x VREF) (Single or Dual
Supply)
Bipolar: (-2 x VREF) to (+2 x VREF) (Dual Supply)
♦ Guaranteed INL ≤ ±1 LSB (max)
♦ Guaranteed Monotonic: DNL ≤ ±1 LSB (max)
♦ 10µs Settling Time to 0.5 LSB
♦ Low 3.5µA Shutdown Current
♦ 10MHz SPI-/QSPI-/MICROWIRE-Compatible Serial
Interface
♦ Power-On Reset Sets DAC Output to 0V
♦ Schmitt Trigger Inputs for Direct
Optocoupler Interface
♦ Serial-Data Output Allows Daisy Chaining
of Devices
♦ Small 16-Pin SSOP
Ordering Information
Applications
Motor Control
Industrial Process Controls
Industrial Automation
Automatic Test Equipment (ATE)
Analog I/O Boards
Data-Acquisition Systems
PART
MAX5312EAE
TEMP RANGE
PIN-PACKAGE
-40°C to +85°C
16 SSOP
Pin Configuration
TOP VIEW
SCLK 1
16 LDAC
DIN 2
15 CLR
CS 3
DOUT 4
14 VDD
MAX5312
DGND 5
13 REF
12 VSS
VCC 6
11 AGND
SHDN 7
10 SGND
UNI/BIP 8
9
OUT
SSOP
SPI and QSPI are trademarks of Motorola, Inc.
MICROWIRE is a trademark of National Semiconductor Corp.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
MAX5312
General Description
MAX5312
±10V, 12-Bit, Serial, Voltage-Output DAC
ABSOLUTE MAXIMUM RATINGS
REF to AGND............................................................-0.3V to +6V
Maximum Current into REF...............................................±10mA
Maximum Current into Any Pin Excluding REF.................±50mA
Continuous Power Dissipation (TA = +70°C)
16-Pin SSOP (derate 7.1mW/°C above +70°C) ...........571mW
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
VDD to AGND..........................................................-0.3V to +17V
VSS to AGND ..........................................................-17V to +0.3V
VDD to VSS ..........................................................................+34V
VCC to DGND ...........................................................-0.3V to +6V
AGND to DGND.....................................................-0.3V to +0.3V
SGND to AGND .....................................................-0.3V to +0.3V
SCLK, DIN, CS, SHDN, UNI/BIP, CLR,
LDAC, DOUT to DGND ..........................-0.3V to (VCC + 0.3V)
OUT to AGND ..................................(VSS - 0.3V) to (VDD + 0.3V)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS (DUAL SUPPLY)
(VDD = +15V ±5%, VSS = -15V ±5%, VCC = +5V ±10%, AGND = DGND = SGND = 0V, VREF = 5V, RLOAD = 2kΩ, CLOAD = 250pF,
TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
STATIC ACCURACY
Resolution
N
Integral Nonlinearity
INL
Differential Nonlinearity
DNL
Zero-Scale Error
Zero-Scale Temperature
Coefficient
Gain Error
Gain-Error Temperature
Coefficient
12
Bits
±1
LSB
Guaranteed monotonic
±1
LSB
Bipolar, code = 800hex
±1
Unipolar, code = 000hex
±2
Bipolar
0.3
Unipolar
0.5
ppm
FSR/°C
Bipolar, no load
±2
Unipolar, no load
±2
Bipolar, no load
2
Unipolar, no load
2
LSB
LSB
ppm
FSR/°C
ANALOG OUTPUT (OUT)
Output Voltage Range
(VSS + 1.5V) < VOUT < (VDD - 1.5V)
Resistive Load to GND
RLOAD
Capacitive Load to GND
CLOAD
-2 x
VREF
+2 x
VREF
2
kΩ
250
DC Output Resistance
V
pF
0.5
Ω
92
kΩ
SGND INPUT (SGND)
Input Impedance
REFERENCE INPUT (REF)
Reference-Voltage Input Range
Input Resistance
Reference Bandwidth
2
2.00
RREF
Code = 555hex, worst-case code
15
5.25
22
Shutdown
22
VREF = 200mVP-P + 5VDC
200
_______________________________________________________________________________________
V
kΩ
kHz
±10V, 12-Bit, Serial, Voltage-Output DAC
(VDD = +15V ±5%, VSS = -15V ±5%, VCC = +5V ±10%, AGND = DGND = SGND = 0V, VREF = 5V, RLOAD = 2kΩ, CLOAD = 250pF,
TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
DIGITAL INPUTS (SCLK, DIN, CS, SHDN, UNI/BIP, CLR, LDAC)
Input-Voltage High
VIH
Input-Voltage Low
VIL
Input Capacitance
C
Input Current (Note 1)
+2.7V ≤ VCC ≤ +3.6V
0.7 x
VCC
+4.5V ≤ VCC ≤ +5.5V
2.4
V
+2.7V ≤ VCC ≤ +3.6V
0.6
+4.5V ≤ VCC ≤ +5.5V
0.8
+2.7V ≤ VCC ≤ +3.6V
10
+4.5V ≤ VCC ≤ +5.5V
10
V
pF
0 ≤ all digital inputs ≤ VCC,
+2.7V ≤ VCC ≤ +3.6V
±1
0 ≤ all digital inputs ≤ VCC,
+4.5V ≤ VCC ≤ +5.5V
±1
µA
DIGITAL OUTPUT (DOUT)
Output-Voltage High
VOH
ISOURCE = 2mA
Output-Voltage Low
VOL
ISINK = 2mA
VCC 0.5
V
0.4
V
Tri-State Leakage Current
0.2
µA
Tri-State Capacitance
10
pF
2.5
V/µs
DYNAMIC PERFORMANCE
Voltage-Output Slew Rate
Output Settling Time
To ±0.5 LSB of full scale, code 000 to
code FFF
10
µs
Digital Feedthrough
CS = high, fSCLK = 10MHz, VOUT = 0V
10
nV-s
130
nV/√Hz
Output-Noise Spectral Density at
10kHz
POWER SUPPLIES
Positive Analog-Supply Voltage
VDD
10.80
15.75
V
Negative Analog-Supply Voltage
VSS
-10.80
-15.75
V
Positive Digital-Supply Voltage
VCC
2.7
5.5
V
Positive Analog-Supply Current
IDD
Output unloaded, VOUT = FS
1.8
4
mA
Negative Analog-Supply Current
ISS
Output unloaded, VOUT = FS
0.75
-2
mA
Digital-Supply Current
ICC
All digital inputs = 0 or VCC
30
200
µA
Positive analog supply
0.4
Negative analog supply
0.6
Positive analog supply
1.7
50
Negative analog supply
2.4
50
Digital supply
3.5
10
Power-Supply Rejection Ratio
(Note 2)
Shutdown Current
PSRR
LSB/V
µA
_______________________________________________________________________________________
3
MAX5312
ELECTRICAL CHARACTERISTICS (DUAL SUPPLY) (continued)
MAX5312
±10V, 12-Bit, Serial, Voltage-Output DAC
ELECTRICAL CHARACTERISTICS (SINGLE SUPPLY)
(VDD = +15V ±5%, VSS = 0V, VCC = +5V ±10%, AGND = DGND = SGND = 0V, VREF = 5V, RLOAD = 10kΩ, CLOAD = 250pF,
TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
(Note 3)
±1
LSB
STATIC ACCURACY
Resolution
N
Integral Nonlinearity
INL
Differential Nonlinearity
DNL
12
Bits
Guaranteed monotonic
±1
LSB
Unipolar Zero-Scale Error
Code = 14hex
±2
LSB
Unipolar Zero-Scale Temperature
Coefficient
Code = 14hex
Gain Error
No load
Gain-Error Temperature
Coefficient
No load
ppm
FSR/°C
0.05
±2
LSB
ppm
FSR/°C
2
ANALOG OUTPUT (OUT)
Output Voltage Range
+2 x
VREF
0
Resistive Load to GND
RLOAD
Capacitive Load to GND
CLOAD
10
kΩ
250
DC Output Resistance
V
pF
0.5
Ω
92
kΩ
SGND INPUT (SGND)
Input Impedance
REFERENCE INPUT (REF)
Reference-Voltage Input Range
2.00
Input Resistance
Code = 555hex, worst-case code
Reference Input Bandwidth
VREF = 200mVP-P + 5VDC
15
5.25
V
22
kΩ
150
kHz
DIGITAL INPUTS (SCLK, DIN, CS, SHDN, UNI/BIP, CLR, LDAC)
Input-Voltage High
VIH
Input-Voltage Low
VIL
Input Capacitance
CIN
Input Current
IIN
+2.7V ≤ VCC ≤ +3.6V
0.7 x
VCC
+4.5V ≤ VCC ≤ +5.5V
2.4
V
+2.7V ≤ VCC ≤ +3.6V
0.6
+4.5V ≤ VCC ≤ +5.5V
0.8
+2.7V ≤ VCC ≤ +3.6V
10
+4.5V ≤ VCC ≤ +5.6V
10
V
pF
0 ≤ VIN ≤ VCC, +2.7V ≤ VCC ≤ +3.6V
±1
0 ≤ VIN ≤ VCC, +4.5V ≤ VCC ≤ +5.5V
±1
µA
DIGITAL OUTPUT (DOUT)
Output-Voltage High
VOH
ISOURCE = 2mA
Output-Voltage Low
VOL
ISINK = 2mA
Tri-State Leakage Current
4
VCC 0.5
V
0.4
0.2
_______________________________________________________________________________________
V
µA
±10V, 12-Bit, Serial, Voltage-Output DAC
(VDD = +15V ±5%, VSS = 0V, VCC = +5V ±10%, AGND = DGND = SGND = 0V, VREF = 5V, RLOAD = 10kΩ, CLOAD = 250pF,
TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
MIN
Tri-State Capacitance
TYP
MAX
UNITS
10
pF
2.5
V/µs
DYNAMIC PERFORMANCE
Voltage-Output Slew Rate
Output Settling Time
To ±0.5 LSB of full scale, code 14hex to
code FFF
10
µs
Digital Feedthrough
CS = high, fSCLK = 10MHz, VOUT = 0V
10
nV-s
130
nV/√Hz
Output-Noise Spectral Density at
1kHz
POWER SUPPLIES
Positive Analog-Supply Voltage
VDD
Negative Analog-Supply Voltage
VSS
Positive Digital-Supply Voltage
VCC
Positive Analog-Supply Current
IDD
Output unloaded, VOUT = 0
1.8
4
mA
Negative Analog-Supply Current
ISS
Output unloaded, VOUT = 0
0.75
-2
mA
30
200
Digital-Supply Current
Power-Supply Rejection Ratio
Shutdown Current
ICC
PSRR
10.80
15.75
0
2.7
All digital inputs = 0 or VCC
∆VDD = 14.5V to 15.5V, code FFF
V
V
5.5
0.04
V
µA
LSB/V
Analog supply
1.7
50
Digital supply
3.5
10
µA
_______________________________________________________________________________________
5
MAX5312
ELECTRICAL CHARACTERISTICS (SINGLE SUPPLY) (continued)
MAX5312
±10V, 12-Bit, Serial, Voltage-Output DAC
TIMING CHARACTERISTICS
(VDD = +15V, VSS = -15V or 0V, VCC = +2.7V to +5.5V, AGND = DGND = SGND = 0, VREF = 5V, RLOAD = 2kΩ, CLOAD = 250pF, TA
= TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
SCLK Frequency
SCLK Clock Period
tCP
SCLK Pulse-Width High
tCH
For nondaisy-chain use
SCLK Pulse-Width Low
tCL
For nondaisy-chain use
CS Fall to SCLK Rise Setup Time
tCSS
SCLK Rise to CS Rise Hold Time
tCSH
MAX
UNITS
10
MHz
100
ns
45
ns
45
ns
40
ns
+2.7V ≤ VCC ≤ +3.6V
15
+4.5V ≤ VCC ≤ +5.5V
10
ns
DIN Setup Time
tDS
20
ns
DIN Hold Time
tDH
10
ns
LDAC Pulse Width
tLD
50
ns
CS Rise to LDAC Low Setup Time
tLDS
SCLK Fall to DOUT Valid
Propagation Delay
tDO1
SCLK Rise to CS Fall Delay
tCS0
CS Low to DOUT Valid Time
tCSE
CS High to DOUT Disabled Time
tCSD
CS Rise to SCLK Rise Hold Time
tCS1
CS Pulse-Width High
tCSW
CLR Pulse-Width Low
tCLR
+2.7V ≤ VCC ≤ +3.6V
100
+4.5V ≤ VCC ≤ +5.5V
50
CLOAD = 20pF, +2.7V ≤ VCC ≤ +3.6V
100
CLOAD = 20pF, +4.5V ≤ VCC ≤ +5.5V
80
10
CLOAD = 20pF
120
50
+2.7V ≤ VCC ≤ +3.6V
200
+4.5V ≤ VCC ≤ +5.5V
100
ns
ns
120
ns
ns
ns
ns
50
Note 1: Output unloaded, digital inputs = VCC or DGND.
Note 2: ∆VDD = +14.5V to +15.5V, ∆VSS = -15.5V to -14.5V, code = FFF.
Note 3: Measured from code 14hex to FFFhex.
6
ns
_______________________________________________________________________________________
ns
±10V, 12-Bit, Serial, Voltage-Output DAC
INTEGRAL NONLINEARITY
vs. REFERENCE VOLTAGE
0.4
0.3
0.5
MAX5312 toc02
0.50
MAX5312 toc01
0.5
DIFFERENTIAL NONLINEARITY
vs. INPUT CODE
0.45
0.4
0.3
0.40
0.2
0
-0.1
0.35
DNL (LSB)
0.1
INL (LSB)
0.30
0.25
-0.2
0.1
0
-0.1
-0.2
0.20
-0.3
-0.3
0.15
-0.4
-0.4
0.10
-0.5
0
1024
2048
2.0
4096
3072
-0.5
2.5
3.0
3.5
4.0
4.5
5.0
5.5
1024
2048
4096
3072
VREF (V)
INPUT CODE (DECIMAL)
DIFFERENTIAL NONLINEARITY
vs. REFERENCE VOLTAGE
INTEGRAL NONLINEARITY
vs. TEMPERATURE
DIFFERENTIAL NONLINEARITY
vs. TEMPERATURE (WORST-CASE CODES)
0.8
0.6
0.40
INL (LSB)
0.35
0.30
0.25
0.20
0.15
0.10
3.0
3.5
4.0
4.5
5.0
0.6
0.4
0.4
0.2
0.2
0
-0.2
0
-0.4
-0.6
-0.6
-0.8
-0.8
5.5
CODE = 9FFhex
-0.2
-0.4
CODE = 7FFhex
-1.0
-1.0
2.5
0.8
DNL (LSB)
0.45
1.0
MAX5312 toc05
1.0
MAX5312 toc04
0.50
2.0
0
INPUT CODE (DECIMAL)
MAX5312 toc06
INL (LSB)
0.2
DNL (LSB)
MAX5312 toc03
INTERGRAL NONLINEARITY
vs. INPUT CODE
-40
-15
10
35
60
VREF (V)
TEMPERATURE (°C)
UNIPOLAR SETTLING TIME
(CLOAD = 250pF, RLOAD = 2kΩ)
BIPOLAR SETTLING TIME
(CLOAD = 250pF, RLOAD = 10kΩ)
-40
85
-15
10
35
MAX5312 toc07
5V/div
5V/div
CS
2V/div
VOUT
5V/div
0
VOUT
85
BIPOLAR MAJOR CARRY GLITCH
ENERGY, CLOAD = 250pF
MAX5312 toc09
MAX5312 toc08
CS
60
TEMPERATURE (°C)
5V/div
CS
VOUT
100mV/div
0
t = 10.0µs/div
t = 10.0µs/div
t = 4.00µs/div
_______________________________________________________________________________________
7
MAX5312
Typical Operating Characteristics
(VDD = +15V, VSS = -15V for bipolar graphs, VSS = 0 for unipolar graphs, VCC = +5V, AGND = DGND = SGND = 0, VREF = +5.0V,
output unloaded, TA = +25°C, all graphs apply to both unipolar and bipolar, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VDD = +15V, VSS = -15V for bipolar graphs, VSS = 0 for unipolar graphs, VCC = +5V, AGND = DGND = SGND = 0, VREF = +5.0V,
output unloaded, TA = +25°C, all graphs apply to both unipolar and bipolar, unless otherwise noted.)
2.5
MAX5312 toc11
50
CS
5V/div
BIPOLAR MIDSCALE VOLTAGE
vs. TEMPERATURE
UNIPOLAR ZERO-SCALE VOLTAGE
vs. TEMPERATURE
MAX5312 toc10
CODE = 014hex
49
VOUT (mV)
VOUT (mV)
VOUT
100mV/div
46
CODE = 800hex
2.0
48
47
MAX5312 toc12
BIPOLAR MAJOR CARRY GLITCH
CLOAD = 10pF
45
44
1.5
1.0
0.5
43
42
9.998
MAX5312 toc13
CODE = FFFhex
9.999
-15
10
35
85
60
CODE = FFFhex
-9.993
VOUT (mV)
VOUT (mV)
9.995
-9.995
9.995
9.993
-9.997
-9.998
9.992
35
85
60
-40
-15
10
35
4.0
3.0
2.5
2.5
2.0
1.5
1.0
1.0
0.5
0.5
13.76
VDD (V)
14.78
60
2.0
1.5
12.74
15.80
VSS = -15V
3.5
3.0
11.72
35
BIPOLAR POSITIVE SUPPLY CURRENT
vs. SUPPLY VOLTAGE
IDD (mA)
IDD (mA)
3.5
10
TEMPERATURE (°C)
MAX5312 toc16
VSS = 0V
0
10.70
-15
TEMPERATURE (°C)
UNIPOLAR SUPPLY CURRENT
vs. SUPPLY VOLTAGE
4.0
-40
85
60
MAX5312 toc17
10
85
-9.994
TEMPERATURE (°C)
8
CODE = 000hex
-9.996
-15
60
-9.992
9.994
-40
35
BIPOLAR NEGATIVE FULL-SCALE VOLTAGE
vs. TEMPERATURE
9.996
9.994
10
BIPOLAR POSITIVE FULL-SCALE VOLTAGE
vs. TEMPERATURE
9.996
9.997
-15
TEMPERATURE (°C)
9.997
9.998
-40
TEMPERATURE (°C)
MAX5312 toc15
UNIPOLAR FULL-SCALE VOLTAGE
vs. TEMPERATURE
10.000
0
-40
MAX5312 toc14
t = 4.00µs/div
VOUT (mV)
MAX5312
±10V, 12-Bit, Serial, Voltage-Output DAC
0
10.70
11.72
12.74
13.76
14.78
VDD (V)
_______________________________________________________________________________________
15.80
85
±10V, 12-Bit, Serial, Voltage-Output DAC
BIPOLAR NEGATIVE SUPPLY CURRENT
vs. SUPPLY VOLTAGE
-0.5
VSS = 0V
2.2
2.5
2.1
-1.0
-2.0
IDD (mA)
2.0
-1.5
IDD (mA)
ISS (mA)
MAX5312 toc20A
VDD = 15V
MAX5312 toc19
3.0
MAX5312 toc18
0
BIPOLAR POSITIVE SUPPLY CURRENT
vs. TEMPERATURE
UNIPOLAR SUPPLY CURRENT
vs. TEMPERATURE
1.5
2.0
1.9
-2.5
1.0
-3.0
-4.0
-15.80
1.7
0
-14.78
-13.76
-12.74
-10.70
-11.72
-40
-15
10
35
-40
85
60
-15
10
35
85
60
VSS (V)
TEMPERATURE (°C)
TEMPERATURE (°C)
BIPOLAR NEGATIVE SUPPLY CURRENT
vs. TEMPERATURE
UNIPOLAR SHUTDOWN CURRENT
vs. TEMPERATURE
BIPOLAR SHUTDOWN CURRENT
vs. TEMPERATURE
-0.60
-0.65
-0.70
-0.75
-0.80
ICC
3
2
ISS
1
0
-1
10
35
-40
85
60
-15
10
35
0
-1
-2
ISS
-4
85
60
IDD
1
-40
-15
TEMPERATURE (°C)
TEMPERATURE (°C)
0.135
MAX5312 toc23A
CODE = FFFhex
10.000
9.995
35
60
85
UNIPOLAR OUTPUT VOLTAGE
vs. OUTPUT CURRENT
UNIPOLAR OUTPUT VOLTAGE
vs. OUTPUT CURRENT
10.005
10
TEMPERATURE (°C)
MAX5312 toc23B
-15
CODE = 014hex
0.125
0.115
0.105
VOUT (V)
9.990
VOUT (V)
-40
2
-3
-0.90
-0.95
ICC
3
IDD
MAX5312 toc22
4
-0.85
4
SHUTDOWN CURRENT (µA)
-0.55
5
MAX5312 toc21
-0.50
SHUTDOWN CURRENT (µA)
MAX5312 toc20B
-0.45
ISS (mA)
1.8
0.5
-3.5
9.985
9.980
0.095
0.085
9.975
0.075
9.970
0.065
9.965
0.055
0.045
9.960
0
4
8
12
IOUT (mA)
16
20
0
0.2
0.4
0.6
0.8
1.0
1.2
IOUT (mA)
_______________________________________________________________________________________
9
MAX5312
Typical Operating Characteristics (continued)
(VDD = +15V, VSS = -15V for bipolar graphs, VSS = 0 for unipolar graphs, VCC = +5V, AGND = DGND = SGND = 0, VREF = +5.0V,
output unloaded, TA = +25°C, all graphs apply to both unipolar and bipolar, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VDD = +15V, VSS = -15V for bipolar graphs, VSS = 0 for unipolar graphs, VCC = +5V, AGND = DGND = SGND = 0, VREF = +5.0V,
output unloaded, TA = +25°C, all graphs apply to both unipolar and bipolar, unless otherwise noted.)
CODE = FFFhex
10.000
9.995
-9.975
9.990
VOUT (V)
-9.980
-9.985
-9.990
9.985
9.980
9.975
-9.995
9.970
-10.000
9.965
-16
-12
-8
4
0
0
-4
8
12
16
3072
2048
IOUT (mA)
IOUT (mA)
INPUT CODE (DECIMAL)
BIPOLAR REF INPUT RESISTANCE
vs. INPUT CODE
UNIPOLAR REFERENCE
INPUT BANDWIDTH
BIPOLAR REFERENCE
INPUT BANDWIDTH
REF = 0.2VP-P + 5.0VDC
3
10
6
REF = 0.2VP-P + 5.0VDC
3
0
0.1
0.01
RESPONSE (dB)
RESPONSE (dB)
0
1
-3
-6
2048
3072
-6
-9
-12
-12
4096
-15
0.01
INPUT CODE (DECIMAL)
0.1
1
10
100
1000
0.01
0.1
1
UNIPOLAR STARTUP RESPONSE,
CLOAD = 250pF
MAX5312 toc29A
VDD
MAX5312 toc29B
20V/div
VCC
5V/div
10
FREQUENCY (kHz)
FREQUENCY (kHz)
UNIPOLAR STARTUP RESPONSE,
CLOAD = 10pF
20V/div
-3
-9
-15
1024
VDD
VCC
5V/div
VREF
5V/div
VREF
5V/div
VOUT
2V/div
VOUT
1V/div
t = 10.0µs/div
4096
MAX5312 toc28
6
MAX5312 toc26
100
0
1024
0
20
MAX5312 toc27
-20
0.1
0.01
9.960
-10.005
10
1
MAX5312 toc25
-9.970
10.005
REF INPUT RESISTANCE (MΩ)
CODE = 000hex
MAX5312 toc24B
MAX5312 toc24A
-9.965
VOUT (V)
UNIPOLAR REF INPUT RESISTANCE
vs. INPUT CODE
BIPOLAR OUTPUT VOLTAGE
vs. OUTPUT CURRENT
BIPOLAR OUTPUT VOLTAGE
vs. OUTPUT CURRENT
REF INPUT RESISTANCE (MΩ)
MAX5312
±10V, 12-Bit, Serial, Voltage-Output DAC
t = 10.0µs/div
______________________________________________________________________________________
100
1000
±10V, 12-Bit, Serial, Voltage-Output DAC
BIPOLAR STARTUP RESPONSE,
CLOAD = 250pF
BIPOLAR STARTUP RESPONSE,
CLOAD = 10pF
MAX5312 toc30B
MAX5312 toc30A
VDD
20V/div
20V/div
VCC
5V/div
VDD
VCC
5V/div
10V/div
10V/div
VSS
VSS
VOUT
2V/div
VOUT
1V/div
t = 10.0µs/div
t = 10.0µs/div
UNIPOLAR RELEASE FROM
HARDWARE-SHUTDOWN RESPONSE
BIPOLAR RELEASE FROM
HARDWARE-SHUTDOWN RESPONSE
MAX5312 toc32
MAX5312 toc31
VOUT
VOUT
5V/div
5V/div
VSHDN
VSHDN
2V/div
2V/div
t = 100µs/div
t = 100µs/div
UNIPOLAR
SOFTWARE-SHUTDOWN RESPONSE
BIPOLAR
SOFTWARE-SHUTDOWN RESPONSE
MAX5312 toc33A
MAX5312 toc33B
CS
CS
5V/div
5V/div
VOUT
VOUT
10V/div
5V/div
t = 40.0µs/div
t = 40.0µs/div
______________________________________________________________________________________
11
MAX5312
Typical Operating Characteristics (continued)
(VDD = +15V, VSS = -15V for bipolar graphs, VSS = 0 for unipolar graphs, VCC = +5V, AGND = DGND = SGND = 0, VREF = +5.0V,
output unloaded, TA = +25°C, all graphs apply to both unipolar and bipolar, unless otherwise noted.)
MAX5312
±10V, 12-Bit, Serial, Voltage-Output DAC
Pin Description
PIN
12
NAME
FUNCTION
1
SCLK
Serial-Clock Input. Data is shifted from DIN into the internal register on the rising edge of SCLK. Data is
clocked out at DOUT on the falling edge of SCLK. SCLK is active only while CS is low.
2
DIN
Serial-Data Input. DIN is the data input port for the serial interface. Clock data in on the rising edge of SCLK.
3
CS
Active-Low Chip-Select Input. CS activates the serial interface. Drive CS low to initiate serial communication.
4
DOUT
5
DGND
6
VCC
7
SHDN
8
UNI/BIP
9
OUT
10
SGND
11
AGND
Serial-Data Output. DOUT is the data output port for the serial interface. Data shifted into DIN appears at
DOUT 16.5 clock cycles later, valid on the falling edge of SCLK. DOUT is high impedance when CS is high.
Digital Ground
Digital Power Input. VCC ranges from +2.7V to +5.5V. Bypass VCC with a 0.1µF and 1.0µF capacitor to
Active-Low Shutdown Input. SHDN places the device into low-power shutdown mode. When shut down
REF and DOUT are high impedance, drive SHDN low to place the device into shutdown mode.
Unipolar/Bipolar-Select Input. UNI/BIP selects unipolar or bipolar output. In unipolar mode, the analog
output range is 0 to (+2 x VREF). In bipolar mode, the analog output range is (-2 x VREF) to (+2 x VREF).
Drive UNI/BIP high for unipolar output. Drive UNI/BIP low for bipolar output. Dual supplies are required for
bipolar operation.
Analog Output. OUT is the output port for the DAC. Read OUT relative to SGND.
Signal Ground. SGND is the ground-reference node for the output amplifier’s internal feedback resistors.
Connect SGND directly to AGND. (See Figure 1.)
Analog Ground. AGND is the ground return for VDD and VSS.
12
VSS
Negative Power Input. Bypass VSS with a 0.1µF and 1.0µF capacitor to AGND. If operating with a single
supply, connect VSS to AGND.
13
REF
External Reference Input. Apply an external reference voltage of +2V to +5.25V to REF to determine the
output voltage range. In unipolar mode, the output range is from 0 to (+2 x VREF). In bipolar mode, the
output range is from (-2 x VREF) to (+2 x VREF).
14
VDD
Positive Power Input. Bypass VDD with a 0.1µF and 1.0µF capacitor to AGND.
15
CLR
Active-Low Clear Input. CLR clears input and DAC registers and resets the DAC output to 0V. Drive CLR
low to assert the clear condition.
16
LDAC
Active-Low Load Input. Use LDAC to update the DAC register. LDAC is an asynchronous control input.
Drive low to force an update.
______________________________________________________________________________________
±10V, 12-Bit, Serial, Voltage-Output DAC
The MAX5312 12-bit DAC operates from either single or
dual supplies. Dual ±12V to ±15V power supplies provide a bipolar ±5V to ±10V output, or a unipolar 0 to 10V
output. Single 12V to 15V power supplies provide only a
unipolar 0 to 10V output. The reference input accepts
voltages from 2V to 5.25V. The DAC features INL and
DNL less than ±1 LSB (max), a fast 10µs settling time,
and a hardware-shutdown mode that reduces current
consumption to 3.5µA (max). The device features a
10MHz SPI-/QSPI-/MICROWIRE-compatible serial interface that operates with 3V or 5V logic, an asynchronous
load input, and a serial-data output. The device offers a
CLR that sets the DAC output to 0V. Figure 1 shows the
functional diagram of the MAX5312.
Serial Interface
An SPI-/QSPI-/MICROWIRE-compatible serial interface
allows complete control of the DAC through a 16-bit
control word. The first 4 bits form the control bits that
determine register loading and software-shutdown
functions. The last 12 bits form the DAC data. The 16bit word is entered MSB first.
Table 1 shows the serial-data format. Table 2 shows
the interface commands.
The MAX5312 can be programmed while in shutdown.
The serial interface contains three registers: a 16-bit shift
register, a 12-bit input register, and a 12-bit DAC register
(Figure 1). The shift register accepts data from the serial
interface. The input register acts as a holding register for
data going to the DAC register and isolates the shift register from the DAC register. The DAC register controls
the DAC ladder and thus the output voltage. Any update
in the DAC register updates the output voltage.
2R
2R
VDD
VCC
SW2
A1
REF
SW1
12-BIT DAC
SW3
12
LDAC
CLR
A2
OUT
2R
DAC REGISTER
2R
12
SGND
INPUT REGISTER
12
DOUT
16-BIT SHIFT REGISTER
DIN
SCLK
CS
UNI/BIP
SERIAL INTERFACE
AND CONTROL
MAX5312
AGND
SHDN
VSS
DGND
Figure 1. Functional Diagram
______________________________________________________________________________________
13
MAX5312
Detailed Description
MAX5312
±10V, 12-Bit, Serial, Voltage-Output DAC
DAC Architecture
Data in the shift register is transferred to the input register
during the appropriate software command only. Data in
the input register is transferred to the DAC register in one
of two ways: using the software command, or through
external logic control using the asynchronous load input
(LDAC). Table 2 shows the software commands that
transfer the data from the shift register to the input and/or
DAC registers. The CLR, an external logic control, asynchronously forces the input and DAC registers to zero
code, and the output to 0V, in both unipolar and bipolar
modes. The interface timing is shown in Figures 2 and 3.
Wait a minimum of 100ns after CS goes high before
implementing LDAC or CLR. If either of these logic
inputs activates during a data transfer, the incoming
data is corrupted and needs to be reloaded. For software control only, connect LDAC and CLR high.
The MAX5312 uses an inverted DAC ladder architecture to convert the digital input into an analog output
voltage. The digital input controls weighted-switches
that connect the DAC ladder nodes to either REF or
GND (Figure 4). The sum of the weights produces the
analog equivalent of the digital-input word and is then
buffered at the output.
Table 1. Serial-Data Format
CONTROL BITS
DATA BITS
MSB
LSB
C3
C2
C1
C0
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Table 2. Serial-Interface Programming Commands
CONTROL BITS*
INPUT DATA
FUNCTION
C3
C2
C1
C0
D11–D0
0
0
0
0
XXXXXXXXXXXX No operation; command is ignored.
0
0
1
0
12-bit DAC data
Load input register from shift register; DAC output unchanged.
0
1
0
0
12-bit DAC data
Load input and DAC registers from shift register; DAC output updated.
0
1
1
0
XXXXXXXXXXXX Load DAC register from input register; DAC output updated; input register unchanged.
1
0
0
0
XXXXXXXXXXXX Enter shutdown; input and DAC registers unchanged.
1
1
0
0
XXXXXXXXXXXX Exit shutdown; input and DAC registers unchanged.
X = Don’t care.
*All unlisted commands are reserved commands. Do not use.
COMMAND EXECUTED
CS
SCLK
1
DIN
C3
8
C2
C1
C0
D11
D10
D9
D8
9
D7
16
D6
D5
D4
D3
D2
D1
D0
Figure 2. Serial-Interface Signals
14
______________________________________________________________________________________
(1)
±10V, 12-Bit, Serial, Voltage-Output DAC
MAX5312
tCSW
CS
tCSS
tCS0
tCP
tCSH
tCS1
SCLK
tCH
tDS
DIN
tCL
tDH
LSB
MSB
tCSE
tCSD
tDO1
DOUT
tLDS
tLD
LDAC
Figure 3. Serial-Interface Timing Diagram
2R
R
2R
R
MAX5312
R
SW2
2R
2R
2R
2R
2R
SW1
OUT
D0
1
0
D1
1
0
D10
1
0
D11
1
SW3
2R
0
REF
2R
AGND
SGND
DAC REGISTER
UNI/BIP
CONTROL LOGIC
Figure 4. Basic Inverted DAC Ladder
______________________________________________________________________________________
15
MAX5312
±10V, 12-Bit, Serial, Voltage-Output DAC
External Reference and Transfer
Functions
Connect an external 2V to 5.25V reference to REF (the
MAX6350 is recommended). Set the output voltage
range with the reference and the input code by using
the equations below.
Unipolar Output Voltage:
VOUT _ UNI = LSBUNI × CODE
where
LSBUNI =
2 × VREF
212
Bipolar Output Voltage:
VOUT _ BIP = (LSBBIP × CODE) − (2 × VREF )
where
LSBBIP =
4 × VREF
212
where VOUT_UNI is the unipolar output voltage, VOUT_BIP
is the bipolar output voltage, LSBUNI is the unipolar LSB
step size, LSBBIP is the bipolar LSB step size, VREF is
the reference voltage, and CODE is the decimal equivalent of the binary, 12-bit, DAC input code.
In either case, a 000hex input code produces the minimum output (-2 x VREF for bipolar and 0 for unipolar),
an 800hex input code produces the midscale output (0
for bipolar and VREF for unipolar), and a FFFhex input
code produces the full-scale output (2 x VREF for bipolar and unipolar).
Output Amplifiers
The output-amplifier section can be configured as
either unipolar or bipolar by the UNI/BIP logic input.
With UNI/BIP forced low, SW1 and SW2 in Figure 4 are
closed, and SW3 is open. This configuration channels
the DAC output through two output stages to generate
the ±2 x VREF output swing. The first amplifier generates the ±VREF voltage range and the second amplifier
increases it by two. When configured for bipolar operation, the MAX5312 must be driven with dual ±12V to
±15V power supplies.
With UNI/BIP forced high, switches SW1 and SW2 are
open, and SW3 is closed. This configuration channels
the DAC output through only a single gain stage to generate a 0 to (2 x VREF) output swing.
Daisy Chaining
SPI-/QSPI-/MICROWIRE-compatible devices can be
daisy chained to reduce I/O lines from the host controller (Figure 7). Daisy chain devices by connecting
the DOUT of one device to the DIN of the next, and
connect the SCLK of all devices to a common clock.
Data is shifted out of DOUT 16.5 clock cycles after it is
shifted into DIN, and is available on the rising edge of
the 17th clock cycle. The SPI-/QSPI-/MICROWIRE-compatible serial interface normally works at up to 10MHz,
but must be slowed to 6.0MHz if daisy chaining. DOUT
is high impedance when CS is high.
Shutdown
Shutdown is controlled by software commands or by the
SHDN logic input. The SHDN logic input can be implemented at any time. The SPI-/QSPI-/MICROWIRE-compatible serial interface remains fully functional, and the device
is programmable while shut down. When shut down, the
MAX5312 supply current reduces to 3.5µA, DOUT is high
impedance, and OUT is pulled to SGND through the internal feedback resistors of the output amplifier (Figure 1).
When coming out of shutdown, or during device powerup, allow 350µs for the output to stabilize.
Table 3. Output Voltage as Input Code Examples
BINARY DAC CODE
MSB
16
LSB
ANALOG OUTPUT
UNIPOLAR (UNI/BIP_ = HIGH)
BIPOLAR (UNI/BIP_ = LOW)
1111 1111 1111
+2 x VREF (4095 / 4096)
+2 x VREF (2047 / 2048)
1000 0000 0001
+2 x VREF (2049 / 4096)
+2 x VREF (1 / 2048)
1000 0000 0000
+2 x VREF (2048 / 4096) = VREF
0
0111 1111 1111
+2 x VREF (2047 / 4096)
-2 x VREF (1 / 2048)
0000 0000 0001
+2 x VREF (1 / 4096)
-2 x VREF (2047 / 2048)
0000 0000 0000
0
-2 x VREF (2048 / 2048) = -2 x VREF
______________________________________________________________________________________
±10V, 12-Bit, Serial, Voltage-Output DAC
4 x VREF
4096
+2047
+2046
+2045
+2044
+1
0
-1
3
2
1
-2045
0
-2048
4 x VREF
2 x VREF
2049
2048
2047
ANALOG OUTPUT VOLTAGE (LSB)
1 LSB =
4095
4094
4093
4092
-2046
hex DIGITAL INPUT CODE (LSB)
Figure 5. Unipolar Transfer Function
FFC
FFD
FFE
FFF
801
800
7FF
000
001
002
003
FFC
FFD
FFE
FFF
801
800
7FF
-2047
000
001
002
003
ANALOG OUTPUT VOLTAGE (LSB)
2 x VREF
4096
MAX5312
1 LSB =
hex DIGITAL INPUT CODE (LSB)
Figure 6. Bipolar Transfer Function
Applications Information
Power-Supply Bypassing and Ground
Management
Power Supplies
Bypass VDD and VSS with 0.1µF and 1.0µF capacitors to
AGND, and bypass VCC with 0.1µF and 1.0µF capacitors
to DGND. Minimize trace lengths to reduce inductance.
Digital and AC transient signals on AGND or DGND can
create noise at the output. Connect AGND and DGND to
the highest quality ground available. Use proper grounding techniques, such as a multilayer board with a lowinductance ground plane or star connect all groundreturn paths back to AGND. Carefully lay out the traces
between channels to reduce AC crosscoupling and
crosstalk. Wire-wrapped boards, sockets, and breadboards are not recommended.
A single +12V to +15V supply is required to realize a
0 to 10V output swing. A dual ±12V to ±15V supply is
required to realize a ±10V output swing, and allows
unipolar, 0 to +10V output if UNI/BIP is forced high. A
+3V to +5V digital power supply and a +2.000V to
+5.250V external reference voltage are also required.
Always bring up the reference voltage last. The other
power supplies do not require sequencing.
______________________________________________________________________________________
17
MAX5312
±10V, 12-Bit, Serial, Voltage-Output DAC
SCLK
CS
CS
CS
CS
TO OTHER
SERIAL DEVICES
MAX5312
MAX5312
SCLK
DIN
MAX5312
SCLK
DOUT
DIN
DIN
SCLK
DOUT
DIN
DOUT
Figure 7. Daisy Chaining Devices
Chip Information
TRANSISTOR COUNT: 3280
TECHNOLOGY: BiCMOS
18
______________________________________________________________________________________
±10V, 12-Bit, Serial, Voltage-Output DAC
SSOP.EPS
2
1
INCHES
E
H
MILLIMETERS
DIM
MIN
MAX
MIN
MAX
A
0.068
0.078
1.73
1.99
A1
0.002
0.008
0.05
0.21
B
0.010
0.015
0.25
0.38
C
D
0.20
0.09
0.004 0.008
SEE VARIATIONS
E
0.205
e
0.212
0.0256 BSC
5.20
MILLIMETERS
INCHES
D
D
D
D
D
5.38
MIN
MAX
MIN
MAX
0.239
0.239
0.278
0.249
0.249
0.289
6.07
6.07
7.07
6.33
6.33
7.33
0.317
0.397
0.328
0.407
8.07
10.07
8.33
10.33
N
14L
16L
20L
24L
28L
0.65 BSC
H
0.301
0.311
7.65
7.90
L
0.025
0∞
0.037
8∞
0.63
0∞
0.95
8∞
N
A
C
B
e
L
A1
D
NOTES:
1. D&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED .15 MM (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. MEETS JEDEC MO150.
5. LEADS TO BE COPLANAR WITHIN 0.10 MM.
PROPRIETARY INFORMATION
TITLE:
PACKAGE OUTLINE, SSOP, 5.3 MM
APPROVAL
DOCUMENT CONTROL NO.
21-0056
REV.
C
1
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19
© 2003 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.
MAX5312
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
Similar pages