Melexis MLX90333LDCBCH-100RE Triaxisâ® position sensor Datasheet

MLX90333
Triaxis® Position Sensor
Features and Benefits
Absolute 3D Position Sensor
Simple & Robust Magnetic Design
Tria⊗is® Hall Technology
Programmable Linear Transfer Characteristics (Alpha, Beta)
Selectable Analog (Ratiometric), PWM, Serial Protocol
12 bit Angular Resolution - 10 bit Angular Thermal Accuracy
40 bit ID Number
Single Die – SO8 Package RoHS Compliant
Dual Die (Full Redundant) – TSSOP16 Package RoHS Compliant
Applications
3D Position Sensor
Joystick
4-Way Scroll Key
Joypad
Man Machine Interface Device
Linear Position Sensor
Ordering Code
Product Code Temperature Code
MLX90333
S
MLX90333
S
MLX90333
E
MLX90333
E
MLX90333
E
MLX90333
E
MLX90333
E
MLX90333
E
MLX90333
K
MLX90333
K
MLX90333
K
MLX90333
K
MLX90333
K
MLX90333
L
MLX90333
L
MLX90333
L
MLX90333
L
MLX90333
L
MLX90333
L
MLX90333
L
MLX90333
L
MLX90333
E
MLX90333
E
MLX90333
E
MLX90333
E
MLX90333
E
MLX90333
E
MLX90333
K
MLX90333
K
3901090333
Rev. 007
Package Code
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
GO
GO
GO
GO
GO
GO
GO
GO
GO
GO
Option Code
BCH-000
BCH-000
BCH-000
BCH-000
BCH-100
BCH-100
BCT-000
BCT-000
BCH-000
BCH-100
BCH-100
BCT-000
BCT-000
BCH-000
BCH-000
BCT-000
BCT-000
BCH-100
BCH-100
BCH-000
BCH-000
BCH-000
BCH-000
BCH-100
BCH-100
BCT-000
BCT-000
BCH-000
BCH-000
Page 1 of 48
Packing Form Code
RE
TU
RE
TU
RE
TU
RE
TU
RE
TU
RE
RE
TU
RE
TU
RE
TU
RE
TU
TU
RE
RE
TU
RE
TU
RE
TU
RE
TU
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
MLX90333
MLX90333
MLX90333
MLX90333
MLX90333
MLX90333
MLX90333
MLX90333
Legend:
Temperature Code:
Package Code:
K
K
K
K
L
L
L
L
GO
GO
GO
GO
GO
GO
GO
GO
Packing Form:
Ordering example:
MLX90333LGO-BCH-000-TU
3901090333
Rev. 007
RE
TU
RE
TU
TU
RE
RE
TU
L for Temperature Range -40°C to 150°C
K for Temperature Range -40°C to 125°C
S for Temperature Range -20°C to 85°C
E for Temperature Range -40°C to 85°C
GO for TSSOP16
DC for SOIC8
AAA-xxx: Die version
xxx-000: Standard version
xxx-100: SPI version
RE for Reel, TU for Tube
Option Code:
BCH-100
BCH-100
BCT-000
BCT-000
BCH-100
BCH-100
BCT-000
BCT-000
Page 2 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
1.
Functional Diagram
3V3
Reg
Rev.Pol.
&
OverVolt.
VDD
VSS
DSP
12
D
MUX
VY
G
A
-1
5
VX
14
Tria is™
x1
A
OUT 1
(Analog/PWM)
µC
D
VZ
ROM - F/W
RAM
x1
EEP
ROM
OUT 2
(Analog/PWM)
Figure 1 - Block Diagram (Analog & PWM)
DSP
Rev.Pol.
VDD
VX
G
A
-1
5
MUX
VY
14
Triais™
3V3
Reg
/SS
µC
D
VZ
SERIAL PROTOCOL
SCLK
MOSI/MISO
ROM - F/W
RAM
EEP
ROM
VSS
Figure 2 - Block Diagram (Serial Protocol)
3901090333
Rev. 007
Page 3 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
1. Description
The MLX90333 is a monolithic sensor IC featuring the Tria⊗is® Hall technology. Conventional planar Hall
technology is only sensitive to the flux density applied orthogonally to the IC surface. The Tria⊗is® Hall
sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an
Integrated Magneto-Concentrator (IMC) which is deposited on the CMOS die (as an additional back-end
step).
The MLX90333 is sensitive to the 3 components of the flux density applied to the IC (BX, BY and BZ). This
allows the MLX90333 to sense any magnet moving in its surrounding and it enables the design of novel
generation of non-contacting joystick position sensors which are often required for both automotive and
industrial applications (e.g. man-machine interface).
Furthermore, the capability of measuring BX, BY and BZ allows the MLX90333 to be considered as
universal non-contacting position sensor i.e. not limited to joystick applications. For instance, a linear
travel can be sensed with the MLX90333 once included in a specific magnetic design.
In combination with the appropriate signal processing, the magnetic flux density of a small magnet (axial
magnetization) moving above the IC can be measured in a non-contacting way (Figure 3). The two (2)
angular information are computed from the three (3) vector components of the flux density (i.e. BX, BY and
BZ). MLX90333 reports two (2) linear output signals. The output formats are selectable between Analog,
PWM and Serial Protocol.
Figure 3 - Typical application of MLX90333
3901090333
Rev. 007
Page 4 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
TABLE of CONTENTS
FEATURES AND BENEFITS ....................................................................................................................... 1
APPLICATIONS ............................................................................................................................................ 1
ORDERING CODE ........................................................................................................................................ 1
1.
DESCRIPTION ....................................................................................................................................... 4
2.
GLOSSARY OF TERMS − ABBREVIATIONS − ACRONYMS ............................................................ 7
3.
PINOUT .................................................................................................................................................. 7
4.
ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 8
5.
DETAILED DESCRIPTION.................................................................................................................... 8
6.
MLX90333 ELECTRICAL SPECIFICATION ....................................................................................... 14
7.
MLX90333 ISOLATION SPECIFICATION .......................................................................................... 16
8.
MLX90333 TIMING SPECIFICATION ................................................................................................. 16
9.
MLX90333 ACCURACY SPECIFICATION ......................................................................................... 17
10. MLX90333 MAGNETIC SPECIFICATION .......................................................................................... 18
11. MLX90333 CPU & MEMORY SPECIFICATION ................................................................................. 18
12. MLX90333 END-USER PROGRAMMABLE ITEMS ........................................................................... 19
13. DESCRIPTION OF END-USER PROGRAMMABLE ITEMS .............................................................. 21
13.1.
OUTPUT CONFIGURATION ......................................................................................................................... 21
13.2.
OUTPUT MODE .......................................................................................................................................... 21
13.2.1. Analog Output Mode ............................................................................................................................ 21
13.2.2. PWM Output Mode ............................................................................................................................... 21
13.2.3. Serial Protocol Output Mode ............................................................................................................... 22
13.2.4. Switch Out ............................................................................................................................................ 22
13.3.
OUTPUT TRANSFER CHARACTERISTIC....................................................................................................... 22
13.3.1. The Polarity and Modulo Parameters .................................................................................................. 23
13.3.2. Alpha/Beta Discontinuity Point (or Zero Degree Point) ...................................................................... 24
13.3.3. LNR Parameters ................................................................................................................................... 24
13.3.4. CLAMPING Parameters ...................................................................................................................... 25
13.3.5. DEADZONE Parameter ....................................................................................................................... 25
13.4.
IDENTIFICATION ........................................................................................................................................ 26
13.5.
SENSOR FRONT-END ................................................................................................................................. 26
13.5.1. HIGHSPEED Parameter ...................................................................................................................... 26
13.5.2. GAINMIN and GAINMAX Parameters ................................................................................................ 27
13.5.3. FIELDTHRES_LOW and FIELDTHRES_HIGH Parameters .............................................................. 27
13.6.
FILTER .................................................................................................................................................... 28
13.6.1. Hysteresis Filter ................................................................................................................................... 28
13.6.2. FIR Filters ............................................................................................................................................ 28
13.6.3. IIR Filters ............................................................................................................................................. 29
13.7.
PROGRAMMABLE ENHANCED “JOYSTICK’ ANGLE CORRECTION ................................................................. 30
13.7.1. Enhanced “Joystick “Angle Formula................................................................................................... 31
13.8.
PROGRAMMABLE DIAGNOSTIC SETTINGS ................................................................................................. 31
13.8.1. OUTxDIAG Parameter......................................................................................................................... 31
13.8.2. RESONFAULT Parameter ................................................................................................................... 31
13.8.3. EEHAMHOLE Parameter .................................................................................................................... 32
13.9.
LOCK......................................................................................................................................................... 32
13.9.1. MLXLOCK Parameter ......................................................................................................................... 32
3901090333
Rev. 007
Page 5 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
13.9.2.
LOCK Parameter ................................................................................................................................. 32
14. MLX90333 SELF DIAGNOSTIC .......................................................................................................... 33
15. SERIAL PROTOCOL ........................................................................................................................... 35
15.1.
INTRODUCTION ......................................................................................................................................... 35
15.2.
SERIAL PROTOCOL MODE ................................................................................................................... 35
15.3.
MOSI (MASTER OUT SLAVE IN) ............................................................................................................... 35
15.4.
MISO (MASTER IN SLAVE OUT) ............................................................................................................... 35
15.5.
SS (SLAVE SELECT) .................................................................................................................................. 35
15.6.
MASTER START-UP ................................................................................................................................... 35
15.7.
SLAVE START-UP ...................................................................................................................................... 35
15.8.
TIMING ...................................................................................................................................................... 36
15.9.
SLAVE RESET ............................................................................................................................................ 37
15.10.
FRAME LAYER .......................................................................................................................................... 37
15.10.1.
Frame Type Selection ....................................................................................................................... 37
15.10.2.
Data Frame Structure ...................................................................................................................... 37
15.10.3.
Timing............................................................................................................................................... 37
15.10.4.
Data Structure .................................................................................................................................. 38
15.10.5.
Angle Calculation ............................................................................................................................. 38
15.10.6.
Error Handling ................................................................................................................................. 38
16. RECOMMENDED APPLICATION DIAGRAMS .................................................................................. 39
16.1.
16.2.
16.3.
16.4.
ANALOG OUTPUT WIRING WITH THE MLX90333 IN SOIC PACKAGE....................................................... 39
PWM LOW SIDE OUTPUT WIRING ............................................................................................................ 39
ANALOG OUTPUT WIRING WITH THE MLX90333 IN TSSOP PACKAGE .................................................... 40
SERIAL PROTOCOL .................................................................................................................................... 40
17. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS
WITH DIFFERENT SOLDERING PROCESSES ........................................................................................ 42
18. ESD PRECAUTIONS ........................................................................................................................... 42
19. PACKAGE INFORMATION ................................................................................................................. 43
19.1.
19.2.
19.3.
19.4.
19.5.
19.6.
SOIC8 - PACKAGE DIMENSIONS ............................................................................................................... 43
SOIC8 - PINOUT AND MARKING ............................................................................................................... 43
SOIC8 - IMC POSITIONNING ..................................................................................................................... 44
TSSOP16 - PACKAGE DIMENSIONS .......................................................................................................... 45
TSSOP16 - PINOUT AND MARKING .......................................................................................................... 46
TSSOP16 - IMC POSITIONNING ................................................................................................................ 47
20. DISCLAIMER ....................................................................................................................................... 48
3901090333
Rev. 007
Page 6 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
2. Glossary of Terms − Abbreviations − Acronyms
Gauss (G), Tesla (T): Units for the magnetic flux density − 1 mT = 10 G
TC: Temperature Coefficient (in ppm/Deg.C.)
NC: Not Connected
PWM: Pulse Width Modulation
%DC: Duty Cycle of the output signal i.e. TON /(TON + TOFF)
ADC: Analog-to-Digital Converter
DAC: Digital-to-Analog Converter
LSB: Least Significant Bit
MSB: Most Significant Bit
DNL: Differential Non-Linearity
INL: Integral Non-Linearity
RISC: Reduced Instruction Set Computer
ASP: Analog Signal Processing
DSP: Digital Signal Processing
ATAN: trigonometric function: arctangent (or inverse tangent)
IMC: Integrated Magneto-Concentrator (IMC)
CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform)
EMC: Electro-Magnetic Compatibility
3. Pinout1
Pin #
SOIC-8
TSSOP-16
Analog / PWM
Serial Protocol
Analog / PWM
Serial Protocol
1
VDD
VDD
VDIG1
VDIG1
2
Test 0
Test 0
VSS1 (Ground1)
VSS1 (Ground1)
3
Not Used
/SS
VDD1
VDD1
4
Out 2
SCLK
Test 01
Test 01
5
Out 1
MOSI / MISO
Not Used
/SS2
6
Test 1
Test 1
Out 22
SCLK2
7
VDIG
VDIG
Out 12
MOSI2 / MISO2
8
VSS (Ground)
VSS (Ground)
Test 12
Test 12
9
VDIG2
VDIG2
10
VSS2 (Ground2)
VSS2 (Ground2)
11
VDD2
VDD2
12
Test 02
Test 02
13
Not Used
/SS1
14
Out 21
SCLK1
15
Out 11
MOSI1 / MISO1
16
Test 11
Test 11
For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the Ground (see section 15)
1
See Section 13.1 for the Out 1 and Out 2 configuration
3901090333
Rev. 007
Page 7 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
4. Absolute Maximum Ratings
Parameter
Value
Supply Voltage, VDD (overvoltage)
+ 20 V
Reverse Voltage Protection
− 10 V
Positive Output Voltage
(Analog or PWM)
Both outputs OUT 1 & OUT 2
+ 10 V
+ 14 V (200 s max − TA = + 25°C)
Output Current (IOUT)
± 30 mA
Reverse Output Voltage
Both outputs OUT 1 & OUT 2
− 0.3 V
Reverse Output Current
Both outputs OUT 1 & OUT 2
− 50 mA
Operating Ambient Temperature Range, TA
− 40°C … + 150°C
Storage Temperature Range, TS
− 40°C … + 150°C
Magnetic Flux Density
±4T
Exceeding the absolute maximum ratings may cause permanent damage.
maximum-rated conditions for extended periods may affect device reliability.
Exposure to absolute-
5. Detailed Description
As described on the block diagram (Figure 1 and Figure 2), the magnetic flux density applied to the IC is
sensed through the Tria⊗is® sensor front-end. This front-end consists into two orthogonal pairs (for each
of the two directions parallel with the IC surface i.e. X and Y) of conventional planar Hall plates (sensitive
element – blue area on Figure 4) and an Integrated Magneto-Concentrator (IMC yellow disk on Figure
4).
Bz
Bz
Bz
Bz
Figure 4 - Tria⊗is® sensor front-end (4 Hall plates + IMC disk)
Two orthogonal components (respectively BX⊥ and BY⊥) proportional to the parallel components
(respectively BX// and BY//) are induced through the IMC and can be measured by both respective pairs of
conventional planar Hall plates as those are sensitive to the flux density applied orthogonally to them and
the IC surface. The third component BZ is also sensed by those four (4) conventional Hall plates as shown
above.
3901090333
Rev. 007
Page 8 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
In summary, along X-axis, the left Hall plate measures “BX⊥ - BZ” while the right Hall plate measures “-BX⊥
- BZ”. Similarly, along the Y-axis, the left Hall plate measures “BY⊥ - BZ” while the right Hall plate measures
“-BY⊥ - BZ”.
Through an appropriate signal processing, the Tria⊗is® sensor front-end reports the three (3)
components of the applied magnetic flux density B i.e. BX, BY and BZ.
Indeed, by subtracting the signals from the two (2) Hall plates in each pair, the components BX⊥ and BY⊥
are measured while BZ is cancelled. To the contrary, by adding the signals from the two (2) Hall plates in
each pair, the component BZ is measured while BX⊥ and BY⊥ are cancelled
In a joystick based on a “gimbal” mechanism as shown on Figure 3 (left), the magnet (axial magnetization)
moves on a hemisphere centered at the IC. The flux density is described through the following
relationships:
B X = COS (α ) ⋅ SIN ( β )
BY = SIN (α ) ⋅ COS ( β )
BZ = SIN (α ) ⋅ SIN ( β )
Those components are plotted on the Figure 5, Figure 6 and Figure 7.
Figure 5 – Magnetic Flux Density – BX, BY, BZ
3901090333
Rev. 007
Page 9 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
400
Magnetic Flux Density (G)
300
200
100
0
-100
-200
-300
-400
0
45
90
135
180
Alpha (Deg)
BX
BY
BZ
Figure 6 – Magnetic Flux Density – β = 90 Deg – BX ∝ cos(α), BY = 0 & BZ ∝ sin(α)
400
Magnetic Flux Density (G)
300
200
100
0
-100
-200
-300
-400
0
45
90
135
180
Beta (Deg)
BX
BY
BZ
Figure 7 – Magnetic Flux Density – α = 0 Deg – BX = 0, BY ∝ cos(β) & BZ ∝ sin(β)
Three (3) differential voltages corresponding to the three (3) components of the applied flux density are
provided to the ADC (Analog-to-Digital Converter – Figure 8 and Figure 9). The Hall signals are
processed through a fully differential analog chain featuring the classic offset cancellation technique (Hall
plate quadrature spinning and chopper-stabilized amplifier).
The amplitude of VZ is smaller than the other two (2) components VX and VY due to fact that the magnetic
gain of the IMC only affects the components parallel to the IC surface.
3901090333
Rev. 007
Page 10 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
2000
ADC Input Voltages VX, VY & VZ (mV)
1500
1000
500
0
-500
-1000
-1500
-2000
0
45
90
135
180
Alpha (Deg)
VX
VY
VZ
Figure 8 – ADC Input Signals – β = 90 Deg – VX ∝ BX ∝ cos(α), VY = BY = 0 & VZ ∝ BZ ∝ sin(α)
2000
ADC Input Voltages VX, VY & VZ (mV)
1500
1000
500
0
-500
-1000
-1500
-2000
0
45
90
135
180
Beta (Deg)
VX
VY
VZ
Figure 9 – ADC Input Signals – α = 90 Deg – VX = BX = 0, VY ∝ BY ∝ cos(β) & VZ ∝ BZ ∝ sin(β)
3901090333
Rev. 007
Page 11 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
The conditioned analog signals are converted through an ADC (configurable − 14 or 15 bits) and provided
to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose
primary function is the extraction of the two (2) angular information from the three (3) raw signals (after socalled front-end compensation steps) through the following operations:
k V 
α = ATAN  Z Z 
 VX 
k V 
β = ATAN  Z Z 
 VY 
where kZ is a programmable parameter. First of all, kZ is used to compensate the smaller amplitude of VZ
vs. VX & VY. On the other hand, kZ allows also a targeted reduction of the linearity error through a
normalization of the raw signals prior to performing the “ATAN” function.
In a joystick based on a “ball & socket” joint as shown on Figure 3 (right), the magnet (axial
magnetization) moves on a hemisphere centered at the pivot point. The flux density is described through
slightly more complex equations but the MLX90333 offers an alternate algorithm to extract both angular
informations:
 (k V ) 2 + ( k V ) 2
Z Z
t Y
α = ATAN 

VX





 (k V ) 2 + (k V ) 2
Z Z
t X
β = ATAN 

VY





where kZ and kt are programmable parameters.
The DSP functionality is governed by the micro-code (firmware − F/W) of the micro-controller which is
stored into the ROM (mask programmable). In addition to the ″ATAN″ function, the F/W controls the whole
analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also
the self-diagnostic modes.
In the MLX90333, the ″ATAN″ function is computed via a look-up table (i.e. it is not obtained through a
CoRDiC algorithm).
Due to the fact that the ″ATAN″ operation is performed on the ratios ″VZ/VX″ and ″VZ/VY″, the angular
information are intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or
ageing effects) affecting the magnetic signal. This feature allows therefore an improved thermal accuracy
vs. joystick based on conventional linear Hall sensors.
Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the
target transfer characteristic and it is provided at the output(s) as:
•
•
•
an analog output level through a 12 bit DAC followed by a buffer
a digital PWM signal with 12 bit depth (programmable frequency 100 Hz … 1 kHz)
a digital Serial Protocol (SP − 16 bits computed angular information available)
3901090333
Rev. 007
Page 12 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary
position sensor output transfer characteristic:
Vout(α) = ClampLo
Vout(α) = Voffset + Gain × α
Vout(α) = ClampHi
for α ≤ αmin
for αmin ≤ α ≤ αmax
for α ≥ αmax
Vout(β) = ClampLo
Vout(β) = Voffset + Gain × β
Vout(β) = ClampHi
for β ≤ βmin
for βmin ≤ β ≤ βmax
for β ≥ βmax
where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user.
The linear part of the transfer curve can be adjusted through a 3 point calibration. Once only one output is
used, a 5 point calibration is also available for further improvement of the linearity.
The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC).
The programming steps do not require any dedicated pins. The operation is done using the supply and
output nodes of the IC. The programming of the MLX90333 is handled at both engineering lab and
production line levels by the Melexis Programming Unit PTC-04 with the MLX90316 daughterboard and
dedicated software tools (DLL − User Interface).
3901090333
Rev. 007
Page 13 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
6. MLX90333 Electrical Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (K or L).
Parameter
Nominal Supply Voltage
Supply Current(2)
POR Level
Symbol
Test Conditions
VDD
Idd
Min
Typ
Max
Units
4.5
5
5.5
V
8.5
13.5
11
16
mA
mA
2.7
3
V
8
20
mA
mA
12
12
24
15
15
45
mA
mA
mA
10
10
∞(5)
∞(5)
kΩ
kΩ
3
%VDD
mode(3)
Slow
Fast mode(3)
VDD POR
Supply Under Voltage
2
Output Current
Both outputs OUT 1 & OUT 2
Iout
Analog Output mode
PWM Output mode
-8
-20
Output Short Circuit Current
Both outputs OUT 1 & OUT 2
Ishort
Vout = 0 V
Vout = 5 V
Vout = 14 V (TA = 25°C)
Output Load
Both outputs OUT 1 & OUT 2
RL
Pull-down to Ground
Pull-up to 5V(4)
Analog Saturation Output Level
Both outputs OUT 1 & OUT 2
Vsat_lo
Pull-up load RL ≥ 10 kΩ
Vsat_hi
Pull-down load RL ≥ 5 kΩ
Digital Saturation Output Level
Both outputs OUT 1 & OUT 2
VsatD_lo
Pull-up Low Side RL ≥ 10 kΩ
Push-Pull (IOUT = -20mA)
VsatD_hi
Push-Pull (IOUT = 20mA)
Diag_lo
Pull-down load RL ≥ 5 kΩ
Pull-up load RL ≥ 10 kΩ
Diag_hi
Pull-down load RL ≥ 5 kΩ
Pull-up load RL ≥ 5 kΩ
BVSSPD
Broken VSS&
Pull-down load RL ≤ 10 kΩ
Active Diagnostic Output Level
Both outputs OUT 1 & OUT 2
Passive Diagnostic Output Level BVSSPU
Both outputs OUT 1 & OUT 2
(Broken Track Diagnostic) (6)
BVDDPD
Clamped Output Level
Both outputs OUT 1 & OUT 2
Broken VSS(6) &
Pull-up load RL ≥ 1kΩ
1
1
96
%VDD
1.5
97
%VDD
1
1.5
96
98
Broken VDD(6) &
Pull-down load RL ≥ 1kΩ
%VDD
%VDD
4(6)
99
%VDD
100
0
%VDD
%VDD
1
%VDD
BVDDPU
Broken VDD &
Pull-up load to 5V
Clamp_lo
Programmable
0
100
%VDD(7)
Clamp_hi
Programmable
0
100
%VDD(7)
No Broken Track diagnostic
%VDD
2 For
the dual version, the supply current is multiplied by 2
section 13.5.1 for details concerning Slow and Fast mode
4 Applicable for output in Analog and PWM (Open-Drain) modes
5 RL < ∞ for output in PWM mode
6 For detailed information, see also section 14
7 Clamping levels need to be considered vs the saturation of the output stage (see Vsat_lo and Vsat_hi)
3 See
3901090333
Rev. 007
Page 14 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
As an illustration of the previous table, the MLX90333 fits the typical classification of the output span
described on the Figure 10.
100 %
90 %
96 %
92 %
88 %
Diagnostic Band (High)
Clamping High
80 %
Output Level
70 %
60 %
Linear Range
50 %
40 %
30 %
20 %
10 %
0%
12 %
8%
4%
Clamping Low
Diagnostic Band (Low)
Figure 10 - Output Span Classification
3901090333
Rev. 007
Page 15 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
7. MLX90333 Isolation Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (K or L). Only valid for the package code GO i.e. dual die version.
Parameter
Symbol
Isolation Resistance
Test Conditions
Between 2 dies
Min
Typ
Max
Units
4
MΩ
8. MLX90333 Timing Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (K or L).
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
Main Clock Frequency
Ck
Slow mode(8)
Fast mode(8)
7
20
Sampling Rate
CT
Slow mode(8)
Fast mode(8)
600
200
1000
330
µs
µs
Step Response Time
Ts
Slow mode(8), Filter=5(9)
Fast mode(8), Filter=0(9)
400
4
600
ms
µs
MHz
MHz
Watchdog
Wd
See Section 14
5
ms
Start-up Cycle
Tsu
Slow and Fast mode(8)
15
ms
Analog Output Slew Rate
PWM Frequency
COUT = 42 nF
COUT = 100 nF
FPWM
PWM Output Enabled
200
100
100
V/ms
1000
Hz
Digital Output Rise Time
Both outputs OUT 1 & OUT 2
Mode 5 – 10nF, RL = 10 kΩ
Mode 7 – 10nF, RL = 10 kΩ
120
2.2
µs
µs
Digital Output Fall Time
Both outputs OUT 1 & OUT 2
Mode 5 – 10nF, RL = 10 kΩ
Mode 7 – 10nF, RL = 10 kΩ
1.8
1.9
µs
µs
Maximum Field amplitude
Change(10) (%) vs. Field
Frequency(Hz)
AGC 90%(11)
Slow mode(8) - Field Freq> 40Hz
Field Freq= 20Hz
(
)
Fast mode 8 -Field Freq> 150Hz
Field Freq= 50Hz
AGC 64% (90333BCT only)
Slow mode(8) -Field Freq> 80Hz
Field Freq=50Hz
Fast mode(8) - Field Freq> 250Hz
Field Freq=50Hz
-10
-30
-12
-30
10
30
12
30
%
%
%
%
-22
-30
-30
-60
22
30
30
60
%
%
%
%
8 See
section 13.5.1 for details concerning Slow and Fast mode
See section 13.6 for details concerning Filter parameter
10 Ex.: Magnetic field amplitude change in case of vibration.
11 Automatic Gain Control – see Section 13.5.2 for more information.
9
3901090333
Rev. 007
Page 16 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
9. MLX90333 Accuracy Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (K or L).
Parameter
Symbol
RADC
ADC Resolution on the raw
signals X, Y and Z
Test Conditions
Slow Mode(12)
Fast Mode(12)
Offset on the Raw Signals X, Y X0, Y0, Z0 TA = 25°C
and Z
Mismatch on the Raw Signals
X, Y and Z
Magnetic Angle
Phase error
Typ
Max
15
14
Units
bits
bits
-60
60
LSB15
SMISMXY
SMISMXZ
SMISMYZ
TA = 25°C
Between X and Y
Between X and Z(13)
Between Y and Z(13)
-1
-30
-30
1
30
30
%
%
%
ORTHXY
ORTHXZ
ORTHYZ
TA = 25°C
Between X and Y
Between X and Z
Between Y and Z
-0.3
-10
-10
0.3
10
10
Deg
Deg
Deg
Thermal Offset Drift at the DSP
input (excl. DAC and output stage)
Temperature suffix K
Temperature suffix L
-60
-90
+60
+90
LSB15
LSB15
Thermal Offset Drift of the DAC
and Output Stage
Temperature suffix K
Temperature suffix L
- 0.3
- 0.4
+ 0.3
+ 0.4
%VDD
%VDD
Temperature suffix K
Temperature suffix L
- 0.3
- 0.5
+ 0.3
+ 0.5
%
%
∆SMISMXZ Temperature suffix K
∆SMISMYZ Temperature suffix L
-1
- 1.5
+1
+ 1.5
%
%
+4
1
%VDD/LSB
LSB
LSB
Thermal Offset Drift #1 on the
raw signals X, Y and Z(14)
Thermal Offset Drift #2
(to be considered only for the
analog output mode)
Thermal Drift of Sensitivity
Mismatch
Min
∆SMISMXY
Analog Output Resolution
RDAC
Output stage Noise
12 bits DAC (Theoretical – Noise free)
INL
DNL
Clamped Output
0.025
-4
-1
0
0.05
%VDD
MLX90333 Accuracy Specification continues…
… MLX90333 Accuracy Specification
Noise pk-pk(15)
Gain = 14, Slow mode, Filter=5
5
10
LSB15
15 bits corresponds to 14 bits + sign and 14 bits corresponds to 13 bits + sign. After angular calculation, this corresponds to
0.005Deg/LSB15 in Low Speed Mode and 0.01Deg/LSB14 in High Speed.
13 The mismatch between X and Z (Y and Z) can be reduced through the calibration of the 2 parameters kZ and kt as described in
the formulas page 12 in order to take into account the IC mismatch and system tolerances (magnetic and mechanical).
14 To evaluate the error affecting the computed angle i.e. “ATAN” function (See section 5), it is important to take into account the
actual value of the factor kZ as it amplifies the signal VZ and consequently its drift too.
15 The application diagram used is described in the recommended wiring. For detailed information, refer to section Filter in
application mode (Section 13.6).
12
3901090333
Rev. 007
Page 17 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
Gain = 14, Fast mode, Filter=0
Ratiometry Error
-0.1
PWM Output Resolution
RPWM
12 bits (Theoretical – Jitter free)
PWM Jitter
JPWM
Gain = 11, FPWM = 250 Hz – 800Hz
Serial Output Resolution
RSPI
Theoretical – Jitter free
10.
10
20
LSB15
0
0.1
%VDD
0.025
%DC/LSB
5
16
LSB12
bits
MLX90333 Magnetic Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (K or L).
Parameter
Symbol
Magnetic Flux Density
Min
Typ
Max
Units
BX, BY(16)
20
50
70(17)
mT
Magnetic Flux Density
BZ(16)
24
75
140
mT
Magnet Temperature Coefficient
TCm
-2400
0
ppm/°C
GainIMC
1.2
IMC
Gain(18)
11.
Test Conditions
1.4
1.8
MLX90333 CPU & Memory Specification
The DSP is based on a 16 bit RISC µController. This CPU provides 5 Mips while running at 20 MHz.
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
ROM
10
kB
RAM
256
B
EEPROM
128
B
16
The condition must be fulfilled for at least one field BX, BY or BZ.
Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error.
18 This is the magnetic gain linked to the Integrated Magneto Concentrator structure. It applies to BX and BY and not to BZ. This
is the overall variation. Within one lot, the part to part variation is typically ± 10% versus the average value of the IMC gain of that
lot.
17
3901090333
Rev. 007
Page 18 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
12.
MLX90333 End-User Programmable Items
Parameter
MAINMODE
Outputs Mode
PWMPOL1
PWMPOL2
PWM_Freq
3-Points
ALPHA_POL
ALPHA_MOD180
ALPHA_DP
ALPHA_DEADZONE
ALPHA_S0
ALPHA_X
ALPHA_Y
ALPHA_S1
BETA_POL
BETA_MOD180
BETA_DP
BETA_DEADZONE
BETA_S0
BETA_X
BETA_Y
BETA_S1
CLAMP_LOW
CLAMP_HIGH
2D
XYZ
KZ
KT(19)
FIELDTHRES_LOW
FIELDTHRES_HIGH
DERIVGAIN
FILTER
FILTER A1
FILTER A2
FILTERFIRST
FHYST
MELEXISID1
MELEXISID2
MELEXISID3
CUSTUMERID1
CUSTUMERID2
CUSTUMERID3
HIGHSPEED
GAINMIN
19
20
Comments
Select Outputs Configuration
Define the output stages mode
PWM Polarity (Out 1)
PWM Polarity (Out 2)
PWM Frequency
4 segments transfer curve for single angle output
Revert the Sign of Alpha
Modulo Operation (180deg) on Alpha
Alpha Discontinuity Point
Alpha Dead Zone
Initial Slope
Alpha X Coordinate
Alpha Y Coordinate
Alpha S Coordinate
Revert the Sign of Beta
Modulo Operation (180deg) on Beta
Beta Discontinuity Point
Beta Dead Zone
Beta Dead Zone
Beta X Coordinate
Beta Y Coordinate
Beta S Coordinate
Clamping Low
Clamping High
SPI Only
Filter coefficient A1 for FILTER=6
Filter coefficient A2 for FILTER=6
BCH
STD/IP1
0
2
0
0
1000h
0
0
1
0
0
4000h
4000h
8000h
4000h
0
1
0
0
4000h
4000h
8000h
4000h
0%
100%
0
0
B3h
80h
0h
0h
40h
3
6600h
2A00h
0
0
MLX
MLX
MLX
1
17d(20)
MLX
0
0
Default Values
BCH
BCT
SPI
STD/IP1
0
0
N/A
2
N/A
0
N/A
0
N/A
1000h
0
0
0
0
1
1
0
0
0
0
4000h
4000h
4000h
4000h
8000h
8000h
4000h
4000h
0
0
1
1
0
0
0
0
4000h
4000h
4000h
4000h
8000h
8000h
4000h
4000h
0%
0%
100%
100%
0
0
0
0
B3h
N/A
80h
0h
0h
0h
0h
40h
40h
0
3
6600h
6600h
2A00h
2A00h
0
0
0
0
MLX
MLX
MLX
MLX
MLX
MLX
1
1
37d
38d
MLX
MLX
0
0
0
0
# bit
2
3
1
1
16
1
1
1
8
6
16
16
16
16
1
1
6
8
16
16
16
16
16
16
1
1
8
8
8
8
8
8
16
16
1
8
16
16
16
16
16
16
1
8
Only applicable for 90333BCH
CUSTUMERID2 = 29d for MLX90333SDC–BCH–STANDARD
3901090333
Rev. 007
Page 19 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
GAINMAX
End-User Programmable Items continues...
… End-User Programmable Items
EEHAMHOLE
Diagn mode
RESONFAULT
MLXLOCK
LOCK
Extra end-User Programmable Items 90333BCT
AGCRADIUSTARGET(21)
Define Gain target 64% / 90% ADC
SWTHRES
Angle Trigger level for switch on out2
SWLOW
Switch Low level output on out2
SWHIGH
Switch high level output on out2
SWHYST
Switch hysteresis
CodePWMLATCH
Enable synchronized % DC update
OUT1DIAG
Active Diagnostic Output 1 behavior
OUT2DIAG
Active Diagnostic Output 2 behavior
CodeKTALPHA
“Joystick” ALPHA angle correction parameter
CodeKTBETA
“Joystick” BETA angle correction parameter
CodeORTHZXALPHA
Front-end “Joystick” angle correction parameter
CodeORTHZYALPHA
Front-end “Joystick” angle correction parameter
CodeORTHZXBETA
Front-end “Joystick” angle correction parameter
CodeORTHZYBETA
Front-end “Joystick” angle correction parameter
CodeENHORTH
Enable enhanced Front-end “Joystick” angle
correction
21
41d
41d
41d
8
3131h
1h
0h
0h
0h
N/Ah
0h
1h
3131h
0h
0h
0h
16
2
1
1
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
0
FFFFh
40h
FFh
0
1
0
0
80h
80h
0
0
0
0
1
16
8
8
8
1
1
1
8
8
8
8
8
8
N/A
N/A
0
1
Option to use same ADC target as 90333BCH. Default value equals lowered % ADC target
3901090333
Rev. 007
Page 20 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
13.
Description of End-User Programmable Items
13.1. Output Configuration
The parameter MAINMODE defines the output stages configuration
MAINMODE
OUT1
OUT2
0
ALPHA
BETA
1
BETA
ALPHA
2
ALPHA
ALPHA DERIVATE / SWITCH(22)
3
BETA
BETA DERIVATE / SWITCH(22)
13.2. Output Mode
The MLX90333 outputs type is defined by the Output Mode parameter.
Parameter
Value
Description
Analog Output Mode
2
Analog Rail-to-Rail
PWM Output Mode
5
7
Low Side (NMOS)
Push-Pull
Serial
N/A
Low Side (NMOS)
13.2.1. Analog Output Mode
The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration
allows the use of a pull-up or pull-down resistor.
13.2.2. PWM Output Mode
If one of the PWM Output modes is selected, the output signal is a digital signal with Pulse Width
Modulation (PWM).
In mode 5, the output stage is an open drain NMOS transistor (low side), to be used with a pull-up resistor
to VDD.
In mode 7, the output stage is a push-pull stage for which Melexis recommends the use of a pull-up
resistor to VDD.
The PWM polarity of the Out 1 (Out 2) is selected by the PWMPOL1 (PWMPOL2) parameter:
•
•
PWMPOL1 (PWMPOL2) = 0 for a low level at 100%
PWMPOL1 (PWMPOL2) = 1 for a high level at 100%
The PWM frequency is selected by the PWM_Freq parameter.
PWM Frequency Code
Oscillator Mode
Low Speed
22
Pulse-Width Modulation Frequency (Hz)
100
200
500
1000
35000
17500
7000
3500
Derivate = BCH , Switch = BCT
3901090333
Rev. 007
Page 21 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
High Speed
-
50000
20000
10000
For instance, in Low Speed Mode, set PWM_Freq = 7000 (decimal) to set the PWM frequency at 500Hz.
13.2.3. Serial Protocol Output Mode
The MLX90333 features a digital Serial Protocol mode. The MLX90333 is considered as a Slave node.
The frame layer type is defined by the parameter XYZ as described in the next table.
Parameter
Value
XYZ
0
1
Description
Regular SPI Frame Alpha, Beta
X,Y, Z Frame
See the dedicated Serial Protocol section for a full description (Section 15).
13.2.4. Switch Out
Parameter
Value
Unit
SWTHRES
0…100
%
SWHYST
0 … 0.39
%
SWLOW
0…100
%
SWHIGH
0…100
%
The output level on out2 is changed from SWLOW to SWHIGH when the output value is greater than the
value stored in the SWTHRES parameter.
The SWHYST defines the hysteresis amplitude around the Switch point. The switch is actually activated if
the digital output value is greater than SWTHRES+SWHYST. It is deactivated if the digital output value is
less than SWTHRES-SWHYST.
If the Switch feature is not used in the application, the output pin needs to be connected to the ground and
disabled in EEPROM.
13.3. Output Transfer Characteristic
Parameter
Value
3-Points
0
1
Description
Regular Alpha, Beta Output (2 times 2 segments)
Alpha (or Beta) Single Output (1 time 4 segments)
The 3-Points parameters allow the user to use the 3-points mapping (4 segments). This mode can only be
used for Mainmode equals 2 and 3.
•
3-Points = 0, the parameters list is described as bellow (Angle Alpha and Beta):
3901090333
Rev. 007
Parameter
Value
ALPHA_POL
BETA_POL
0
1
Page 22 of 48
Unit
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
•
ALPHA_MOD180
BETA_MOD180
0
1
ALPHA_DP
BETA_DP
0 … 359.9999
deg
ALPHA_X
BETA_X
0 … 359.9999
deg
ALPHA_Y
BETA_Y
0 … 100
%
ALPHA_S0
ALPHA_S1
BETA_S0
BETA_S1
CLAMP_LOW
0 … 17
%/deg
0 … 100
%
CLAMP_HIGH
0 … 100
%
ALPHA_DEADZONE
BETA_DEADZONE
0 … 359.9999
deg
3-Points = 1, the parameters list is described as bellow (Alpha or Beta):
Parameter
Value
ALPHA_POL
0 CCW
1 CW
Unit
DP
LNR_A_X
LNR_B_X
LNR_C_X
LNR_A_Y
LNR_B_Y
LNR_C_Y
LNR_S0
LNR_A_S
LNR_B_S
LNR_C_S
0 … 359.9999
deg
0 … 359.9999
deg
0 … 100
%
0 … 17
%/deg
-17… 0 … 17
%/deg
CLAMP_LOW
0 … 100
%
CLAMP_HIGH
0 … 100
%
DEADZONE
0 … 359.9999
deg
13.3.1. The Polarity and Modulo Parameters
The angle Alpha is defined as the arctangent of Z/X and Beta as the arctangent of Z/Y. It is possible to
invert the polarity of these angles via the parameters ALPHA_POL and BETA_POL set to “1”.
The
MLX90333
can
also
be
insensitive
ALPHA_MOD180/BETA_MOD180 to “1”.
3901090333
Rev. 007
to
the
Page 23 of 48
field
polarity
by
setting
the
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
z
β
y
α
x
13.3.2. Alpha/Beta Discontinuity Point (or Zero Degree Point)
The Discontinuity Point defines the zero point of the circle (Alpha or Beta). The discontinuity point places
the origin at any location of the trigonometric circle (see Figure 13).
For a Joystick Application, Melexis recommends to set the DP to zero.
13.3.3. LNR Parameters
The LNR parameters, together with the clamping values, fully define the relation (the transfer function)
between the digital angles (Alpha and Beta) and the output signals.
The shape of the MLX90333 transfer function from the digital angle values to the output voltages is
described by the drawing below (See Figure 11). Four segments can be programmed but the clamping
levels are necessarily flat (3-Points = 0).
100%
C
Clamping High
AlphaOut
CLAMPHIGH
ALPHA_S1
B
ALPHA_Y
ALPHA_S0
A
Clamping Low
CLAMPLOW
0%
0°
ALPHA_X
Alpha
360°
Figure 11 - Digital Angle (Alpha) Transfer Characteristic (Idem ditto for Beta)
In the case of one single angle output (3-Points = 1), the shape of the MLX90333 transfer function from
the digital angle values to the output voltage is described by the drawing below (See Figure 12). Six
3901090333
Rev. 007
Page 24 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
segments can be programmed but the clamping levels are necessarily flat.
100 %
Clamping High
CLAMPHIGH
C
Slope LNR_C_S
LNR_C_Y
B
Slope LNR_B_S
LNR_B_Y
A
Slope LNR_A_S
LNR_A_Y
Slope LNR_S0
Clamping Low
CLAMPLOW
0%
LNR_A_X
0
LNR_B_X
LNR_C_X
360
(Deg.)
Figure 12 – Digital Angle (Alpha) Transfer Characteristic for Single Angle Output
13.3.4. CLAMPING Parameters
The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW
parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum
output voltage level. Both parameters have 16 bits of adjustment. In analog mode, the resolution will be
limited by the D/A converter (12 bits) to 0.024%VDD. In PWM mode, the resolution will be 0.024%DC. In
SPI mode, the resolution is 14bits or 0.022deg over 360deg.
13.3.5. DEADZONE Parameter
The dead zone is defined as the angle window between 0 and 359.9999 (See Figure 13).
When the digital angle (Alpha or Beta) lies in this zone, the IC is in fault mode (RESONFAULT must be
set to “1” – See 13.8.2).
In case of ALPHA_MOD180 (or BETA_MOD180) is not set, the angle between 180° and 360° will
generate a “deadzone” fault, unless DEADZONE=0.
3901090333
Rev. 007
Page 25 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
z
90°
Programmable 0°point
α
0°
180°
x
Programmable Forbidden Zone
Figure 13 – Discontinuity Point and Dead Zone (Alpha – Idem ditto for Beta)
13.4. Identification
Parameter
Value
MELEXSID1
MELEXSID2
MELEXSID3
CUSTUMERID1
CUSTUMERID2
CUSTUMERID3
0 … 65535
0 … 65535
0 … 65535
0 … 65535
0 … 65535
0 … 65535
Unit
Identification number: 48 bits freely useable by Customer for traceability purpose.
13.5. Sensor Front-End
Parameter
Value
Unit
HIGHSPEED
0 = Slow mode
1 = Fast mode
GAINMIN
0 … 41
GAINMAX
0 … 41
FIELDTHRES_LOW
0 … 100
%
FIELDTHRES_HIGH
0 … 100
%
13.5.1. HIGHSPEED Parameter
The HIGHSPEED parameter defines the main frequency for the DSP.
• HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock.
• HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock.
For better noise performance, the Slow Mode must be enabled.
3901090333
Rev. 007
Page 26 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
13.5.2. GAINMIN and GAINMAX Parameters
The MLX90333 features an automatic gain control (AGC) of the analog chain. The AGC loop is based on
Max(|VX|, |VY|, |VZ|) = |Amplitude| = Radius
and it targets an amplitude of 90% of the ADC input span.
In MLX90333BCT, this default target is changed to 64% but can be set to 90% by enabling the parameter
AGCRADIUSTARGET.
The current gain can be read out with the programming unit PTC-04 and gives a rough indication of the
applied magnetic flux density (Amplitude).
GAINMIN & GAINMAX define the boundaries within the gain setting is allowed to vary. Outside this range,
the outputs are set in diagnostic low.
13.5.3. FIELDTHRES_LOW and FIELDTHRES_HIGH Parameters
The strength of the applied field is constantly calculated in a background process. The value of this field
can be read out with the PTC-04 and gives a rough indication of the applied magnetic flux density
(Amplitude).
FIELDTHRES_LOW & FIELDTHRES_HIGH define the boundaries within the actual field strength
(Radius) is allowed to vary. Outside this range, the outputs are set in diagnostic low.
3901090333
Rev. 007
Page 27 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
13.6. FILTER
Parameter
Value
Unit
FHYST
0 … 11 ; step 0.04
deg
FILTER
0… 6
FILTERFIRST
0
1
The MLX90333 includes 3 types of filters:
• Hysteresis Filter: programmable by the FHYST parameter
• Low Pass FIR Filters controlled with the Filter parameter
• Low Pass IIR Filter controlled with the Filter parameter and the coefficients FILTER A1 and
FILTER A2
Note: if the parameter FILTERFIRST is set to “1”, the filtering is active on the digital angle. If set to “0”, the
filtering is active on the output transfer function.
13.6.1. Hysteresis Filter
The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step
is smaller than the programmed FHYST parameter value. The output value is modified when the
increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level
compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the
noise level.
13.6.2. FIR Filters
The MLX90333 features 6 FIR filter modes controlled with Filter = 0…5. The transfer function is described
below:
yn =
1
j
∑ ai
j
∑a x
i
n −i
i =0
i =0
The characteristics of the filters no 0 to 5 is given in the Table 1.
Filter No (j)
Type
Coefficients a0… a5
Title
90% Response Time (CT)
99% Response Time (CT)
Efficiency RMS (dB)
Efficiency P2P (dB)
0
Disable
N/A
No Filter
1
1
0
0
1
2
3
4
Finite Impulse Response
110000
121000
133100
111100
Extra Light
Light
2
3
4
4
2
3
4
4
2.9
4.0
4.7
5.6
2.9
3.6
5.0
6.1
5
122210
5
5
6.2
7.0
Table 1 - FIR Filters Selection Table
3901090333
Rev. 007
Page 28 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
FIR and HYST Filters : Step response Comparative Plot
40000
x(n)
[0..65535] Scale
38000
fir(n)
hyst(n)
36000
34000
32000
30000
0
5
10
15
Milliseconds
20
25
30
FIR and HYST Filter : Gaussian white noise response
40200
x(n)
fir(n)
hyst(n)
40150
[0..65535] Scale
40100
40050
40000
39950
39900
39850
39800
0
50
100
150
Milliseconds
Figure 14 - Step Response and Noise Response for FIR (No 3) and FHYST=10
13.6.3. IIR Filters
The IIR Filter is enabled with Filter = 6. The diagram of the IIR Filter implemented in the MLX90333 is
given in Figure 15. Only the parameter A1 and A2 are configurable (See Table 2).
b0 = 1
x(n)
y(n)
Z-1
Z-1
b1 = 2
-a1
Z-1
Z-1
b2 = 1
-a2
Figure 15 - IIR Diagram
3901090333
Rev. 007
Page 29 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
Filter No
Type
Title
90% Response Time (CT)
Efficiency RMS (dB)
Efficiency P2P (dB)
Coefficient A1
Coefficient A2
11
9.9
12.9
26112
10752
16
11.4
14.6
28160
12288
6
2nd Order Infinite Impulse Response (IIR)
Medium & Strong
26
40
52
13.6
15.3
16.2
17.1
18.8
20
29120
30208
31296
12992
13952
14976
100
>20
>20
31784
15412
Table 2 - IIR Filter Selection Table
The Figure 16 shows the response of the filter to a Gaussian noise with default coefficient A1 and A2.
IIR Filter - Gaussian White Noise Response
40200
[0…65535] Scale
40150
x(n)
40100
y(n)
40050
40000
39950
39900
39850
39800
0
50
100
150
Time
Figure 16 - Noise Response for the IIR Filter
13.7. Programmable enhanced “joystick’ angle correction23
Parameter
KTALPHA
KTBETA
ORTHZXALPHA
ORTHZYALPHA
ORTHZXBETA
ORTHZYBETA
ENHORTH
23
Value
Unit
[0..200] / 128
LSB
[-128…127] / 256
LSB
Disable = 0
Enable = 1
Only applicable for 90333BCT
3901090333
Rev. 007
Page 30 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
13.7.1. Enhanced “Joystick “Angle Formula
 (k V ) 2 + (k (V − ORTHzy * V ))2
Z Z
t
Y
z

VX − ORTHzx * Vz





 (k V ) 2 + (k (Vx − ORTHzx *V )) 2
Z Z
t
z

V y − ORTHzy *Vz





α = ATAN 
β = ATAN 
The enhanced “joystick” angle function is enabled by parameter ENORTH. Parameters are automatically
calculated when using the 90333BCT/ 9 points solver to optimize the shape of Betaout vs Alphaout in
accordance to the mechanical boundaries of the Joystick
13.8. Programmable Diagnostic Settings
Parameter
OUT1DIAG
OUT2DIAG
RESONFAULT
EEHAMHOLE
Value
DIAGLOW = 0
DIAGHIGH = 1
DIAGLOW = 0
DIAGHIGH = 1
Disable = 0
Enable = 1
Enable = 0
Disable = 3131h
13.8.1. OUTxDIAG Parameter
This OUT1DIAG, OUT2DIAG parameters define the behavior of the output in case of a diagnostic
situation.
13.8.2. RESONFAULT Parameter
This RESONFAULT parameter enables the soft reset when a fault is detected by the CPU when the
parameter is set to 1. It is recommended to set it to “1” to activate the self diagnostic modes (See section
14).
Note that in the User Interface (MLX90333UI), the RESONFAULT is a cluster of the following two bits, i.e.
the 2 bits are both disabled or both enabled:
• DRESONFAULT: disable the reset in case of a fault.
• DOUTINFAULT: disable output in diagnostic low in case of fault.
It is recommended to set both EEPROM parameters to “0” to activate the self diagnostic modes
3901090333
Rev. 007
Page 31 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
13.8.3. EEHAMHOLE Parameter
The EEHAMHOLE parameter disables the CRC check and memory recovery (Hamming code) check
when a fault is detected by the CRC when it is equal to 3131h. Melexis strongly recommends to set the
parameter to 0 (enable memory recovery). The parameter is set automatically to 0 by the solver function
“MemLock”.
13.9. Lock
Parameter
Value
0
1
0
1
MLXLOCK
LOCK
13.9.1. MLXLOCK Parameter
MLXLOCK locks all the parameters set by Melexis.
13.9.2. LOCK Parameter
LOCK locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the
EEPROM values anymore.
Note that the lock bit should be set by the solver function “MemLock”.
3901090333
Rev. 007
Page 32 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
14.
MLX90333 Self Diagnostic
The MLX90333 provides numerous self-diagnostic features. Those features increase the robustness of the IC
functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure
modes (“fail-safe”).
Action
ROM CRC Error at start up
(64 words including Intelligent
Watch Dog - IWD)
ROM CRC Error (Operation Background task)
RAM Test Fail (Start up)
Effect on Outputs
Diagnostic low(25)
CPU Reset (24)
Enter Endless Loop:
- Progress (watchdog
Acknowledge)
- Set Outputs in Diagnostic low
CPU Reset
Immediate Diagnostic low
Diagnostic low
Calibration Data CRC Error
(Start-Up)
Hamming Code Recovery
Hamming Code Recovery Error
(Start-Up)
Calibration Data CRC Error
(Operation - Background)
Dead Zone Alpha
Dead Zone Beta
CPU Reset
Immediate Diagnostic low
CPU Reset
Immediate Diagnostic low
Set Outputs in Diagnostic low.
Normal Operation until the “dead
zone” is left.
Set Outputs in Diagnostic low
Normal mode and CPU Reset If
recovery
Set Outputs in Diagnostic low
Normal mode and CPU Reset If
recovery
Set Outputs in Diagnostic low
Normal mode, and No CPU Reset
If recovery
Immediate Diagnostic low
Set Outputs in Diagnostic low
Normal mode, and CPU Reset If
recovery
Set Outputs in Diagnostic low
Normal mode, and CPU Reset If
recovery
Immediate Diagnostic low
ADC Clipping
(ADC Output is 0000h or
7FFFh)
Radius Overflow ( > 100% ) or
Radius Underflow
( < 50 % )
Field Clipping
(Radius < FIELDTHRES_LOW
or Radius >
FIELDTHRES_HIGH)
Rough Offset Clipping
(RO is < 0d or > 127d)
Gain Clipping
(Gain < GAINMIN or GAIN >
GAINMAX)
DAC Monitor (Digital to Analog
converter)
Set Outputs in Diagnostic low.
Normal Mode with immediate
recovery without CPU Reset
MLX90333 Fault Mode continues…
24
All the outputs are already
in Diagnostic low (start-up)
Start-Up Time is increased
by 3 ms if successful
recovery
See 13.8.3
Immediate recovery if the
“dead zone” is left
Immediate Diagnostic low
Immediate Diagnostic low
(50 % - 100 %)
No magnet / field too high
See also 13.5.2
Immediate Diagnostic low
Immediate Diagnostic low
See also 13.5.2
Immediate Diagnostic low
CPU reset means
1.
2.
3.
4.
25
Remark
All the outputs are already
in Diagnostic low - (start-up)
Core Reset (same as Power-On-Reset). It induces a typical start up time.
Periphery Reset (same as Power-On-Reset)
Fault Flag/Status Lost
The reset can be disabled by clearing the RESONFAULT bit (See 13.8.2)
Refer to section 6 for the Diagnostic Output Level specifications
3901090333
Rev. 007
Page 33 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
…MLX90333 Fault Mode
Fault Mode
Action
ADC Monitor (Analog to Digital
Converter)
Set Outputs in Diagnostic low.
Normal Mode with immediate
recovery without CPU Reset
Undervoltage Mode
At Start-Up, wait Until VDD > 3V.
During operation, CPU Reset after
3 ms debouncing
Effect on Outputs
Immediate Diagnostic low
Remark
ADC Inputs are Shorted
- VDD < POR level =>
Outputs high impedance
Firmware Flow Error
CPU Reset
- POR level < VDD < 3 V =>
Outputs in Diagnostic low.
Immediate Diagnostic low
Read/Write Access out of
physical memory
Write Access to protected area
(IO and RAM Words)
Unauthorized entry in
“SYSTEM” Mode
VDD > 7 V
CPU Reset
Immediate Diagnostic low
Intelligent Watchdog
(Observer)
100% Hardware detection
CPU Reset
Immediate Diagnostic low
100% Hardware detection
CPU Reset
Immediate Diagnostic low
100% Hardware detection
Set Output High Impedance
(Analog)
100% Hardware detection
VDD > 9.4 V
IC is switched off (internal supply)
CPU Reset on recovery
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High(25)
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
Broken VSS
CPU Reset on recovery
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
Broken VDD
CPU Reset on recovery
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
3901090333
Rev. 007
Page 34 of 48
No valid diagnostic for
VPULLUP = VDD.
Pull up load (≤ 10kΩ) to
VPULLUP > 8 V to meet Diag
Hi spec > 96% Vdd.
100% Hardware detection.
Pull down load ≤ 10 kΩ to
meet Diag Low spec:
- < 4% VDD (temperature
suffix K)
- contact Melexis for
temperature suffix L
No valid diagnostic for
VPULLUP = VDD.
Pull up load (≤ 10kΩ) to
VPULLUP > 8 V to meet Diag
Hi spec > 96% Vdd.
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
15.
Serial Protocol
15.1. Introduction
The MLX90333 features a digital Serial Protocol mode. The MLX90333 is considered as a Slave node.
The serial protocol of the MLX90333 is a three wires protocol (/SS, SCLK, MOSI-MISO):
•
•
•
/SS pin is a 5 V tolerant digital input
SCLK pin is a 5 V tolerant digital input
MOSI-MISO pin is a 5 V tolerant open drain digital input/output
The basic knowledge of the standard SPI specification is required for the good understanding of the
present section.
15.2. SERIAL PROTOCOL Mode
•
•
CPHA = 1 CPOL = 0 even clock changes are used to sample the data
active-Hi clock
The positive going edge shifts a bit to the Slave’s output stage and the negative going edge samples the
bit at the Master’s input stage.
15.3. MOSI (Master Out Slave In)
The Master sends a command to the Slave to get the angle information.
15.4. MISO (Master In Slave Out)
The MISO of the slave is an open-collector stage. Due to the capacitive load (TBD) a >1 kΩ pull-up is
used for the recessive high level (in fast mode). Note that MOSI and MISO use the same physical pin of
the MLX90333.
15.5. /SS (Slave Select)
The /SS pin enables a frame transfer (if CPHA = 1). It allows a re-synchronization between Slave and
Master in case of communication error.
15.6. Master Start-Up
/SS, SCLK, MISO can be undefined during the Master start-up as long as the Slave is re-synchronized
before the first frame transfer.
15.7. Slave Start-Up
The slave start-up (after power-up or an internal failure) takes 16 ms. Within this time /SS and SCLK is
ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-Impedance)
until the Slave is selected by its /SS input. MLX90333 will cope with any signal from the Master while
starting up.
3901090333
Rev. 007
Page 35 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
15.8. Timing
To synchronize communication, the Master deactivates /SS high for at least t5 (1.5 ms). In this case, the
Slave will be ready to receive a new frame. The Master can re-synchronize at any time, even in the middle
of a byte transfer.
Note:
Any time shorter than t5 leads to an undefined frame state, because the Slave may or may not
have seen /SS inactive.
t6
t1
t1 t7 t1
t1
t1
t4
t2
t9
t5
SCLK
MOSI/
MISO
/SS
1 Startbyte
Timings
26
Min(26)
Byte 0
Byte 1
Max
t1
2.3 µs / 6.9 µs
-
t2
12.5 µs / 37.5 µs
-
t4
2.3 µs / 6.9 µs
-
t5
300 µs / 1500 µs
-
t5
0µs
t6
2.3 µs / 6.9 µs
-
t7
15 µs / 45 µs
-
t9
-
<1 µs
TStartUp
-
< 10 ms / 16 ms
-
Byte 2
Byte 7
Remarks
No capacitive load on MISO.
t1 is the minimum clock period for any
bits within a byte.
t2 the minimum time between any other
byte
Time between last clock and
/SS=high=chip de-selection
Minimum /SS = Hi time where it’s
guaranteed
that
a
frame
resynchronizations will be started.
Maximum /SS = Hi time where it’s
guaranteed that NO frame resynchronizations will be started.
The time t6 defines the minimum time
between /SS = Lo and the first clock edge
t7 is the minimum time between the
StartByte and the Byte0
Maximum time between /SS = Hi and
MISO Bus High-Impedance
Minimum time between reset-inactive
and any master signal change
Timings shown for oscillator base frequency of 20MHz (Fast Mode) / 7 MHz (Slow Mode)
3901090333
Rev. 007
Page 36 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
15.9. Slave Reset
On internal soft failures the Slave resets after 1 second or after an (error) frame is sent. On internal hard
failures the Slave resets itself. In that case, the Serial Protocol will not come up. The serial protocol link is
enabled only after the completion of the first synchronization (the Master deactivates /SS for at least t5).
15.10. Frame Layer
15.10.1. Frame Type Selection
See the programmable parameter XYZ in section 13.2.3 to select between the Alpha, Beta Frame and the
X, Y, Z Frame.
15.10.2. Data Frame Structure
The Figure 17 gives the timing diagram for the SPI Frame. The latch point for the angle measurement is
at the last clock before the first data frame byte.
Latch point
/SS
SCLK
MOSI
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
MISO
F
F
D
A
T
A
D
A
T
A
D
A
T
A
S
U
M
F
F
D
A
T
A
XYZ
0
1
Alpha
X
Beta
Y
Error
Z
Figure 17 - Timing Diagram for the SPI Frame
A data frame consists of:
Data Frame
XYZ = 0
1 start byte
XYZ = 1
FFh
2 data bytes (LSByte first)
Alpha
X
2 data bytes (LSByte first)
Beta
Y
2 data bytes (LSByte first)
Error Code
Z
1 SUM byte
8 LSB of the sum of the transmitted bytes
15.10.3. Timing
There are no timing limits for frames: a frame transmission could be initiated at any time. There is no interframe time defined.
3901090333
Rev. 007
Page 37 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
15.10.4. Data Structure
The DATA could be a valid angle/field component or an error condition.
DATA: Angle/ Field Component A[15:0] with (Span)/216
Less Significant Byte
msb
A7
A6
A5
A4
A3
Most Significant Byte
A2
A1
lsb
A0
msb
A15
A14
A13
A12
A11
A10
lsb
A8
A9
DATA: Error
Less Significant Byte
msb
E7
E6
E5
E4
E3
BIT
E0
E1
E2
E3
E4
NAME
F_ADCMONITOR
F_ADCSATURA
F_GAINTOOLOW
E5
E6
F_GAINTOOHIGH
F_NORMTOOLOW
E7
E8
F_FIELDTOOLOW
F_FIELDTOOHIGH
E9
E10
E11
E12
E13
E14
E15
F_ROCLAMP
F_DEADZONEALPHA
F_DEADZONEBETA
E2
Most Significant Byte
E1
lsb
E0
msb
E15
E14
E13
E12
E11
E10
E9
lsb
E8
ADC Failure
ADC Saturation (Electrical failure or field too strong)
The gain code is strictly less than EE_GAINMIN
The gain code is strictly greater than EE_GAINMAX
Goes high when the fast norm (the max of absolute x,y,z) is
below 30%
The norm (Square root) is strictly less than EE_FIELDLOW
The norm (Square root) is strictly greater than
EE_FIELDHIGH
Analog Chain Rough Offset Compensation: Clipping
The angle ALPHA lies in the deadzone
The angle BETA lies in the deadzone
15.10.5. Angle Calculation
All communication timing is independent (asynchronous) of the angle data processing. The angle is
calculated continuously by the Slave:
•
•
Slow Mode: every 1.5 ms at most.
Fast Mode: every 350 µs at most.
The last angle calculated is hold to be read by the Master at any time. Only valid angles are transferred by
the Slave, because any internal failure of the Slave will lead to a soft reset.
15.10.6. Error Handling
In case of any errors listed in section 15.10.4, the Serial protocol will be initialized and the error condition
can be read by the master.
In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog
error…) the Slave’s serial protocol is not initialized. The MOSI/MISO pin will stay Hi-impedant (no error
frames are sent).
3901090333
Rev. 007
Page 38 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
16.
Recommended Application Diagrams
16.1. Analog Output Wiring with the MLX90333 in SOIC Package
ECU
5V
Vdd
8
1
Vdd
C1
100nF
GND
Vss
MLX90333
Test 1
NotUsed
C2
100nF
Vdig
C3
100nF
ADC
Test 2
5
4
Out 2
C6
4.7nF
R1
10k
Out 1
Out 1
R2
10k
C4
100nF
Out 2
C5
4.7nF
Figure 18 – Recommended wiring for the MLX90333 in SOIC8 package
16.2. PWM Low Side Output Wiring
ECU
5V
Vdd
8
1
Vdd
C1
100nF
GND
Vss
MLX90333
Test 1
NotUsed
C2
100nF
Vdig
ADC
5
PWM 1
PWM 1
C6
4.7nF
5V
Test 2
4
PWM 2
C3
4.7nF
R1
1k
R2
1k
C4
4.7nF
PWM 2
C5
4.7nF
Figure 19 – Recommended wiring for a PWM Low Side Output configuration
3901090333
Rev. 007
Page 39 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
16.3. Analog Output Wiring with the MLX90333 in TSSOP Package
ECU
VDD1
VDD1
GND1
C31
100nF
16
C1
100nF
GND1
GND1
1
C2
100nF
VDIG1
VSS1
OUT1_1
VDD1
OUT2_1
OUT1_1
C4
100nF
MLX90333
C62
100nF
VDD2
VSS2
OUT2_1
VDD2
VDD2
GND2
10K
4.7nF
ADC
9
8
OUT2_2
OUT1_2
C32
100nF
GND2
VDIG2
C5
100nF
C61
100nF
GND2
OUT1_2
OUT2_2
Figure 20 – Recommended wiring for the MLX90333 in TSSOP16 package (dual die).
16.4. Serial Protocol
Generic schematics for single slave and dual slave applications are described.
SPI Master
GND
8
1
Vdd
5V
C1
100nF
Vdd
_SS
_SS
Vss
MLX90333
Test 0
R4
C2
100nF
Vdig
SCLK
R5
Test 1
SCLK
MOSI
MISO
_MOSI
5
4
/SS
R3
MOSI
R1
R2
3.3V/5V
Figure 21 – MLX90333 − Single Die − Serial Protocol Mode
3901090333
Rev. 007
Page 40 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
µCtrl
Pull-up
90316
Supply
Supply Supply R1 (Ω) R2 (Ω) R3 (Ω) R4 (Ω)
(V)
(V)
(V)
5V µCtrl w/o O.D. w/o 3.3V
5V
5V
5V
100
1000
20,000
1000
5V µCtrl w/o O.D. w/ 3.3V
5V
3.3V
5V
150
1000
N/A
1000
3.3V µCtrl w/o O.D. (27)
3.3V
3.3V
5V
150
1000
N/A
N/A
5V µCtrl w/ O.D. w/o 3.3V (28)
5V
5V
5V
100
1000
20,000
1000
3.3V µCtrl w/ O.D.
3.3V
3.3V
5V
150
1000
N/A
N/A
Table 3 - Resistor Values for Common Specific Applications
Application Type
27
28
R5 (Ω)
MOS
Type
20,000
20,000
N/A
20,000
N/A
BS170
BS170
BS170
N/A
N/A
µCtrl w/ O.D. : Micro-controller with open-drain capability (for instance NEC V850ES series)
µCtrl w/o O.D. : Micro-controller without open-drain capability (like TI TMS320 series or ATMEL AVR )
3901090333
Rev. 007
Page 41 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
17. Standard information regarding manufacturability of Melexis
products with different soldering processes
Our products are classified and qualified regarding soldering technology, solderability and moisture
sensitivity level according to following test methods:
Reflow Soldering SMD’s (Surface Mount Devices)
•
•
IPC/JEDEC J-STD-020
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
(classification reflow profiles according to table 5-2)
EIA/JEDEC JESD22-A113
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing
(reflow profiles according to table 2)
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
•
EN60749-20
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat
EIA/JEDEC JESD22-B106 and EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Iron Soldering THD’s (Through Hole Devices)
•
EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
EIA/JEDEC JESD22-B102 and EN60749-21
Solderability
For all soldering technologies deviating from above mentioned standard conditions (regarding peak
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests
have to be agreed upon with Melexis.
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance
of adhesive strength between device and board.
Melexis recommends reviewing on our web site the General Guidelines soldering recommendation
(http://www.melexis.com/Quality_soldering.aspx) as well as trim&form recommendations
(http://www.melexis.com/Assets/Trim-and-form-recommendations-5565.aspx).
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more
information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction
Of the use of certain Hazardous Substances) please visit the quality page on our website:
http://www.melexis.com/quality.aspx
18.
ESD Precautions
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
3901090333
Rev. 007
Page 42 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
19.
Package Information
19.1. SOIC8 - Package Dimensions
1.27 TYP
NOTES:
3.81
3.99**
4.80
4.98*
5.80
6.20**
All dimensions are in millimeters (anlges in degrees).
* Dimension does not include mold flash, protrusions or
gate burrs (shall not exceed 0.15 per side).
** Dimension does not include interleads flash or protrusion
(shall not exceed 0.25 per side).
*** Dimension does not include dambar protrusion.
Allowable dambar protrusion shall be 0.08 mm total in
excess of the dimension at maximum material condition.
Dambar cannot be located on the lower radius of the foot.
1.37
1.57
1.52
1.72
0.19
0.25
0°
8°
0.100
0.250
0.36
0.46***
0.41
1.27
Out 1
MOSI/MISO
Test 1
Vdig
Vss
19.2. SOIC8 - Pinout and Marking
8
Marking :
Part Number MLX90333 (3 digits)
Die Version (3 digits)
5
TOP
333Bxx
M12345
Xy-E
Xy-E
WW
Out 2
SCLK
\SS
Test 0
YY
Split lot number (Optional ) + “-E”
Week Date code (2 digits)
Year Date code (2 digits)
4
Vdd
3901090333
Rev. 007
Bxx
M12345 Lot number: “M” + 5 digits
Bottom
1
333
Page 43 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
19.3. SOIC8 - IMC Positionning
CW
8
7
6
5
CCW
COS
1.25
1.65
1
2
3
0.46 +/- 0.06
4
1.96
2.26
SIN
3901090333
Rev. 007
Page 44 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
19.4. TSSOP16 - Package Dimensions
0.65 TYP
12O TYP
0.20 TYP
0.09 MIN
1.0 DIA
4.30
4.50**
6.4 TYP
0.09 MIN
1.0
12O TYP
0.50
0.75
0O
8O
1.0
1.0 TYP
0.85
0.95
4.90
5.10*
1.1 MAX
0.19
0.30***
0.09
0.20
0.05
0.15
NOTES:
All dimensions are in millimeters (anlges in degrees).
* Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side).
** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side).
*** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at
maximum material condition. Dambar cannot be located on the lower radius of the foot.
3901090333
Rev. 007
Page 45 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
19.5. TSSOP16 - Pinout and Marking
16
1
Test1_1
Vdig_1
Vss_1
Out1_1/MOSI/MISO_1
Vdd_1
Out2_1/SCLK_1
333Bxx
M12345
Xy-E
Test0_1
_SS_2
_SS_1
Test0_2
Marking :
Part Number MLX90316 (3 digits)
Die Version (3 digits)
9
Vdd_2
Vss_2
8
Out2_2/SCLK_2
Out1_2/MOSI/MISO_2
Test1_2
Vdig_2
333
Top
Bxx
M12345 Lot number: “M” + 5 digits
Xy-E
Bottom
YY
Split lot number (Optional ) + “-E”
WW
Week Date code (2 digits)
Year Date code (2 digits)
3901090333
Rev. 007
Page 46 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
19.6. TSSOP16 - IMC Positionning
CW
COS 2
16
9
Die 1
Die 2
SIN 2
SIN 1
0.30 +/- 0.06
CCW
1.95
2.45
1
8
1.84
2.04
COS 1
2.76
2.96
3901090333
Rev. 007
Page 47 of 48
Data Sheet
Jul/2013
MLX90333
Tria⊗
⊗is® Position Sensor
20.
Disclaimer
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in
its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement.
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,
prior to designing this product into a system, it is necessary to check with Melexis for current information.
This product is intended for use in normal commercial applications. Applications requiring extended
temperature range, unusual environmental requirements, or high reliability applications, such as military,
medical life-support or life-sustaining equipment are specifically not recommended without additional
processing by Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not
be liable to recipient or any third party for any damages, including but not limited to personal injury,
property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or
consequential damages, of any kind, in connection with or arising out of the furnishing, performance or
use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow
out of Melexis’ rendering of technical or other services.
© 2013 Melexis NV. All rights reserved.
For the latest version of this document, go to our website at
www.melexis.com
Or for additional information contact Melexis Direct:
Europe, Africa, Asia:
Phone: +32 1367 0495
E-mail: [email protected]
3901090333
Rev. 007
America:
Phone: +1 248 306 5400
E-mail: [email protected]
Page 48 of 48
Data Sheet
Jul/2013
Similar pages