Qimonda HYB18TC512160BF-3S 512-mbit double-data-rate-two sdram Datasheet

September 2006
HYB18TC512160BF
HYB18TC512800BF
512-Mbit Double-Data-Rate-Two SDRAM
DDR2 SDRAM
RoHS Compliant Products
Internet Data Sheet
Rev. 1.11
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
HYB18TC512160BF, HYB18TC512800BF
Revision History: 2006-09, Rev. 1.11
Page
Subjects (major changes since last revision)
All
Qimonda update
All
Adapted internet edition
39
Modified AC Timing Parameters
Previous Revision: 2006-06, Rev.1.1
For product types : HYB18TC512160BF-2.5, HYB18TC512800BF-2.5, HYB18TC512160BF-3,
HYB18TC512800BF-3, HYB18TC512160BF-3S, HYB18TC512800BF-3S, HYB18TC512160BF-3.7,
HYB18TC512800BF-3.7, HYB18TC512160BF-5, HYB18TC512800BF-5
Previous Revision: 2005-11, Rev. 1.04
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
qag_techdoc_rev400 / 3.2 QAG / 2006-08-07
03292006-HDLH-OAY6
2
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
1
Overview
This chapter gives an overview of the 512-Mbit Double-Data-Rate-Two SDRAM product family and describes its main
characteristics.
1.1
Features
The 512-Mbit Double-Data-Rate-Two SDRAM offers the following key features:
• Off-Chip-Driver impedance adjustment (OCD) and On• 1.8 V ± 0.1 V Power Supply 1.8 V ± 0.1 V (SSTL_18)
Die-Termination (ODT) for better signal quality.
compatible I/O
• Auto-Precharge operation for read and write bursts
• DRAM organizations with 4, 8 and 16 data in/outputs
• Auto-Refresh, Self-Refresh and power saving Power• Double Data Rate architecture: two data transfers per
Down modes
clock cycle four internal banks for concurrent operation
• Average Refresh Period 7.8 µs at a TCASE lower than 85
• Programmable CAS Latency: 3, 4, 5 and 6
• Programmable Burst Length: 4 and 8
°C, 3.9 µs between 85 °C and 95 °C
• Differential clock inputs (CK and CK)
• Programmable self refresh rate via EMRS2 setting
• Programmable partial array refresh via EMRS2 settings
• Bi-directional, differential data strobes (DQS and DQS) are
• DCC enabling via EMRS2 setting
transmitted / received with data. Edge aligned with read
• Full and reduced Strength Data-Output Drivers
data and center-aligned with write data.
• 1kB page size for ×8, 2kB page size for ×16
• DLL aligns DQ and DQS transitions with clock
• Packages: PG-TFBGA-84 for ×8 components PG-TFBGA• DQS can be disabled for single-ended data strobe
60 for ×16 components
operation
• RoHS Compliant Products1)
• Commands entered on each positive clock edge, data and
data mask are referenced to both edges of DQS
• All Speed grades faster than DDR400 comply with
• Data masks (DM) for write data
DDR400 timing specifications when run at a clock rate of
• Posted CAS by programmable additive latency for better
200 MHz.
command and data bus efficiency
A list of the performance tables for the various speeds can be found below
• Table 1 “Performance tables for –2.5” on Page 4
• Table 2 “Performance table for –3(S)” on Page 4
• Table 3 “Performance table for –3.7” on Page 4
• Table 4 “Performance table for –5” on Page 5
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined
in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury,
lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
3
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
TABLE 1
Performance tables for –2.5
Product Type Speed Code
–2.5
Unit
Speed Grade
DDR2–800E 6–6–6
—
400
MHz
333
MHz
266
MHz
200
MHz
15
ns
15
ns
45
ns
60
ns
Max. Clock Frequency
@CL6
@CL5
@CL4
@CL3
Min. RAS-CAS-Delay
Min. Row Precharge Time
Min. Row Active Time
Min. Row Cycle Time
fCK6
fCK5
fCK4
fCK3
tRCD
tRP
tRAS
tRC
TABLE 2
Performance table for –3(S)
Product Type Speed Code
–3
–3S
Unit
Speed Grade
DDR2–667C 4–4–4
DDR2–667D 5–5–5
—
333
333
MHz
333
266
MHz
200
200
MHz
12
15
ns
12
15
ns
45
45
ns
57
60
ns
Max. Clock Frequency
@CL5
@CL4
@CL3
Min. RAS-CAS-Delay
Min. Row Precharge Time
Min. Row Active Time
Min. Row Cycle Time
fCK5
fCK4
fCK3
tRCD
tRP
tRAS
tRC
TABLE 3
Performance table for –3.7
Product Type Speed Code
–3.7
Unit
Speed Grade
DDR2–533C 4–4–4
—
266
MHz
266
MHz
200
MHz
15
ns
15
ns
45
ns
60
ns
Max. Clock Frequency
@CL5
@CL4
@CL3
Min. RAS-CAS-Delay
Min. Row Precharge Time
Min. Row Active Time
Min. Row Cycle Time
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
fCK5
fCK4
fCK3
tRCD
tRP
tRAS
tRC
4
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
TABLE 4
Performance table for –5
Product Type Speed Code
–5
Units
Speed Grade
DDR2–400B 3–3–3
—
200
MHz
200
MHz
Max. Clock Frequency
fCK5
fCK4
fCK3
tRCD
tRP
tRAS
tRC
@CL5
@CL4
@CL3
Min. RAS-CAS-Delay
Min. Row Precharge Time
Min. Row Active Time
Min. Row Cycle Time
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
5
200
MHz
15
ns
15
ns
40
ns
55
ns
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
1.2
Description
latched at the cross point of differential clocks (CK rising and
CK falling). All I/Os are synchronized with a single ended
DQS or differential DQS-DQS pair in a source synchronous
fashion.
A 16-bit address bus for ×4 and ×8 organized components
and a 15-bit address bus for ×16 components is used to
convey row, column and bank address information in a RASCAS multiplexing style.
The DDR2 device operates with a 1.8 V ± 0.1 V power
supply. An Auto-Refresh and Self-Refresh mode is provided
along with various power-saving power-down modes.
The functionality described and the timing specifications
included in this data sheet are for the DLL Enabled mode of
operation.
The DDR2 SDRAM is available in PG-TFBGA package.
The 512-Mb DDR2 DRAM is a high-speed Double-DataRate-Two CMOS DRAM device containing 536,870,912 bits
and internally configured as a quad-bank DRAM. The 512-Mb
device is organized as either 32 Mbit × 4 I/O ×4 banks,
16 Mbit ×8 I/O × 4 banks or 8 Mbit ×16 I/O ×4 banks chip.
These devices achieve high speed transfer rates starting at
400 Mb/sec/pin for general applications. See Table 1 to
Table 4 for performance figures.
The device is designed to comply with all DDR2 DRAM key
features:
1. Posted CAS with additive latency,
2. Write latency = read latency - 1,
3. Normal and weak strength data-output driver,
4. Off-Chip Driver (OCD) impedance adjustment
5. On-Die Termination (ODT) function.
All of the control and address inputs are synchronized with a
pair of externally supplied differential clocks. Inputs are
TABLE 5
Ordering Information for RoHS compliant products
Product Type
Org
Speed
CAS-RCD-RP
Latencies1)2)3)
HYB18TC512160BF-2.5
×16
DDR2-800E
6-6-6
400
5-5-5
333
PG-TFBGA-84-8
HYB18TC512800BF-2.5
×8
DDR2-800E
6-6-6
400
5-5-5
333
PG-TFBGA-60-24
HYB18TC512160BF-3
×16
DDR2-667C
4-4-4
333
3-3-3
200
PG-TFBGA-84-8
HYB18TC512800BF-3
×8
DDR2-667C
4-4-4
333
3-3-3
200
PG-TFBGA-60-24
HYB18TC512160BF-3S
×16
DDR2-667D
5-5-5
333
4-4-4
266
PG-TFBGA-84-8
HYB18TC512800BF-3S
×8
DDR2-667D
5-5-5
333
4-4-4
266
PG-TFBGA-60-24
HYB18TC512160BF-3.7
×16
DDR2-533C
4-4-4
266
3-3-3
200
PG-TFBGA-84-8
HYB18TC512800BF-3.7
×8
DDR2-533C
4-4-4
266
3-3-3
200
PG-TFBGA-60-24
HYB18TC512160BF-5
×16
DDR2-400B
3-3-3
200
—
—
PG-TFBGA-84-8
HYB18TC512800BF-5
×8
DDR2-400B
3-3-3
200
—
—
PG-TFBGA-60-24
1) CAS: Column Address Strobe
2) RCD: Row Column Delay
3) RP: Row Precharge
Note: For product nomenclature see Chapter 9 of this data sheet
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
6
Clock CAS-RCD-RP
(MHz) Latencies1)2)3)
Clock Package
(MHz)
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
2
Pin Configuration
This chapter contains the pin configuration tables.
2.1
CPin Configuration for TFBGA–60 TFBGA–84
The pin configuration of a DDR2 SDRAM is listed by function in Table 6. The abbreviations used in the Pin# and Buffer Type
columns are explained in Table 7 and Table 8 respectively. The pin numbering for the FBGA package is depicted in Figure 1
for ×4, Figure 2 for ×8 and Figure 3 for ×16.
TABLE 6
Pin Configuration of DDR2 SDRAM
Ball#/Pin#
Name
Pin
Type
Buffer
Type
Function
SSTL
Clock Signal CK, Complementary Clock Signal CK
Clock Signals ×8 Organization
E8
CK
I
F8
CK
I
SSTL
F2
CKE
I
SSTL
Clock Enable
Clock Signal CK, Complementary Clock Signal CK
Clock Signals ×16 Organization
J8
CK
I
SSTL
K8
CK
I
SSTL
K2
CKE
I
SSTL
Clock Enable
Row Address Strobe (RAS), Column Address Strobe (CAS), Write
Enable (WE)
Control Signals ×8 Organization
F7
RAS
I
SSTL
G7
CAS
I
SSTL
F3
WE
I
SSTL
G8
CS
I
SSTL
Chip Select
Row Address Strobe (RAS), Column Address Strobe (CAS), Write
Enable (WE)
Control Signals ×16 Organization
K7
RAS
I
SSTL
L7
CAS
I
SSTL
K3
WE
I
SSTL
L8
CS
I
SSTL
Chip Select
G2
BA0
I
SSTL
Bank Address Bus 1:0
G3
BA1
I
SSTL
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
7
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
Ball#/Pin#
Name
Pin
Type
Buffer
Type
Function
H8
A0
I
SSTL
Address Signal 12:0, Address Signal 10/Autoprecharge
H3
A1
I
SSTL
H7
A2
I
SSTL
J2
A3
I
SSTL
J8
A4
I
SSTL
J3
A5
I
SSTL
J7
A6
I
SSTL
K2
A7
I
SSTL
K8
A8
I
SSTL
K3
A9
I
SSTL
H2
A10
I
SSTL
AP
I
SSTL
K7
A11
I
SSTL
L2
A12
I
SSTL
L8
A13
I
SSTL
Address Signal 13
Note: x4/x8 512 Mbit components
NC
–
–
Note: and x16 512 Mbit components
SSTL
Bank Address Bus 1:0
Address Signals ×16 Organization
L2
BA0
I
L3
BA1
I
SSTL
L1
NC
–
–
M8
A0
I
SSTL
M3
A1
I
SSTL
M7
A2
I
SSTL
N2
A3
I
SSTL
N8
A4
I
SSTL
N3
A5
I
SSTL
N7
A6
I
SSTL
P2
A7
I
SSTL
P8
A8
I
SSTL
P3
A9
I
SSTL
M2
A10
I
SSTL
AP
I
SSTL
P7
A11
I
SSTL
R2
A12
I
SSTL
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
Address Signal 12:0, Address Signal 10/Autoprecharge
8
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
Ball#/Pin#
Name
Pin
Type
Buffer
Type
Function
Data Signal 7:0
Data Signals ×8 Organization
C8
DQ0
I/O
SSTL
C2
DQ1
I/O
SSTL
D7
DQ2
I/O
SSTL
D3
DQ3
I/O
SSTL
D1
DQ4
I/O
SSTL
D9
DQ5
I/O
SSTL
B1
DQ6
I/O
SSTL
B9
DQ7
I/O
SSTL
Data Signals ×16 Organization
G8
DQ0
I/O
SSTL
G2
DQ1
I/O
SSTL
H7
DQ2
I/O
SSTL
H3
DQ3
I/O
SSTL
H1
DQ4
I/O
SSTL
H9
DQ5
I/O
SSTL
F1
DQ6
I/O
SSTL
F9
DQ7
I/O
SSTL
C8
DQ8
I/O
SSTL
C2
DQ9
I/O
SSTL
D7
DQ10
I/O
SSTL
D3
DQ11
I/O
SSTL
D1
DQ12
I/O
SSTL
D9
DQ13
I/O
SSTL
B1
DQ14
I/O
SSTL
B9
DQ15
I/O
SSTL
Data Signal 15:0
Data Strobe ×8 organisation
B7
DQS
I/O
SSTL
A8
DQS
I/O
SSTL
B3
RDQS
O
SSTL
A2
RDQS
O
SSTL
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
Data Strobe
Read Data Strobe
9
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
Ball#/Pin#
Name
Pin
Type
Buffer
Type
Function
Data Strobe Upper Byte
Data Strobe ×16 Organization
B7
UDQS
I/O
SSTL
A8
UDQS
I/O
SSTL
F7
LDQS
I/O
SSTL
E8
LDQS
I/O
SSTL
I
SSTL
Data Mask
Data Mask Upper/Lower Byte
Data Strobe Lower Byte
Data Mask ×8 Organization
B3
DM
Data Mask ×16 Organization
B3
UDM
I
SSTL
F3
LDM
I
SSTL
Power Supplies ×8 Organization
A9,C1,C3,C7,C VDDQ
9
PWR
–
I/O Driver Power Supply
A1
PWR
–
Power Supply
A7,B2,B8,D2,D VSSQ
8
PWR
–
I/O Driver Power Supply
A3,E3
PWR
–
Power Supply
VDD
VSS
Power Supplies ×8 Organization
E2
VREF
AI
–
I/O Reference Voltage
E1
VDDL
PWR
–
Power Supply
E9,H9,L1
VDD
PWR
–
Power Supply
E7
VSSDL
PWR
–
Power Supply
J1,K9
VSS
PWR
–
Power Supply
Power Supplies ×16 Organization
AI
–
I/O Reference Voltage
E9, G1, G3, G7, VDDQ
G9
PWR
–
I/O Driver Power Supply
J1
VDDL
PWR
–
Power Supply
E1, J9, M9, R1
VDD
PWR
–
Power Supply
E7, F2, F8, H2, VSSQ
H8
PWR
–
I/O Driver Power Supply
J7
VSSDL
PWR
–
Power Supply
A3,
E3,J3,N1,P9
VSS
PWR
–
Power Supply
J2
VREF
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
10
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
Ball#/Pin#
Name
Pin
Type
Buffer
Type
Function
–
Not Connected
–
Not Connected
NC
–
Not Connected
I
SSTL
On-Die Termination Control
SSTL
On-Die Termination Control
Not Connected ×4 Organization
A2, B1, B9, D1, NC
D9,G1, L3,L7,
L8
NC
Not Connected ×8 Organization
G1, L3,L7, L8
NC
NC
Not Connected ×16 Organization
A2, E2, L1, R3, NC
R7, R8
Other Pins ×8 Organization
F9
ODT
Other Pins ×16 Organization
K9
ODT
I
TABLE 7
Abbreviations for Pin Type
Abbreviation
Description
I
Standard input-only pin. Digital levels.
O
Output. Digital levels.
I/O
I/O is a bidirectional input/output signal.
AI
Input. Analog levels.
PWR
Power
GND
Ground
NC
Not Connected
TABLE 8
Abbreviations for Buffer Type
Abbreviation
Description
SSTL
Serial Stub Terminated Logic (SSTL_18)
LV-CMOS
Low Voltage CMOS
CMOS
CMOS Levels
OD
Open Drain. The corresponding pin has 2 operational states, active low and tristate, and
allows multiple devices to share as a wire-OR.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
11
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
FIGURE 1
Pin Configuration for ×4 components, PG-TFBGA-60 (top view)
6''
1&
666
1&
6664 6''4
$
6664
'46
6''4
'0
%
'46
6664
1&
'4
6''4
&
6''4
'4
6''4
1&
6664 '4
'
'4
6664
1&
6''/
65()
666
(
966'/
&.
6''
&.(
:(
)
5$6
&.
2'7
%$
%$
*
&$6
&6
$$
3
$
+
$
$
$
$
-
$
$
$
$
.
$
$
$
1&
/
1& 1&$
1&
666
6''
6''
666
0337
2. Ball position L8 is A13 for 512-Mbit and is Not Connected
on 256-Mbit
Notes
1. VDDL and VSSDL are power and ground for the DLL. VDDL is
connected to VDD on the device. VDD, VDDQ, VSSDL, VSS,
and VSSQ are isolated on the device.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
12
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
FIGURE 2
Pin Configuration for ×8 components, PG-TFBGA-60-24
6''
1&
5'46
666
'4
6664 6''4
$
6664
'46
6''4
'0
5'46
%
'46
6664
'4
'4
6''4
&
6''4
'4
6''4
'4
6664 '4
'
'4
6664
'4
6''/
65()
666
(
966'/
&.
6''
&.(
:(
)
5$6
&.
2'7
%$
%$
*
&$6
&6
$$
3
$
+
$
$
$
$
-
$
$
$
$
.
$
$
$
1&
/
1&
1&$
1&
666
6''
6''
666
0337
4. VDDL and VSSDL are power and ground for the DLL. VDDL is
connected to VDD on the device. VDD, VDDQ, VSSDL, VSS,
and VSSQ are isolated on the device.
5. Ball position L8 is A13 for 512-Mbit and is Not Connected
on 256-Mbit.
Notes
1. RDQS / RDQS are enabled by EMRS(1) command.
2. If RDQS / RDQS is enabled, the DM function is disabled
3. When enabled, RDQS & RDQS are used as strobe
signals during reads.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
13
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
FIGURE 3
Pin Configuration for ×16 components, PG-TFBGA-84-8
6''
.#
666
$
6664
8'46
6''4
'4
6664
8'0
%
8'46
6664
'4
6''4
'4
6''4
&
6''4
'4
6''4
'4
6664
'4
'
'4
6664
'4
6''
1&
666
(
6664
/'46
6''4
'4
6664
/'0
)
/'46
6664
'4
6''4
'4
6''4
*
6''4
'4
6''4
'4
6664
'4
+
'4
6664
'4
6''/
65()
666
-
966
'/
&.
6''
&.(
:(
.
5$6
&.
2'7
%$
%$
/
&$6
&6
$
$3
$
0
$
$
$
$
1
$
$
$
$
3
$
$
$
1&
5
1&
1&
1&
666
6''
6''
666
0337
Notes
2. LDM is the data mask signal for DQ[7:0], UDM is the data
mask signal for DQ[15:8]
3. VDDL and VSSDL are power and ground for the DLL. VDDL is
connected to VDD on the device. VDD, VDDQ, VSSDL, VSS,
and VSSQ are isolated on the device.
1. UDQS/UDQS is data strobe for DQ[15:8], LDQS/LDQS is
data strobe for DQ[7:0]
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
14
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
2.2
512 Mbit DDR2 Addressing
This chapter contents the table for the 512 Mbit DDR2 Addressing.
TABLE 9
DDR2 Addressing for ×8 Organization
Configuration
64Mb x 8
Bank Address
BA[1:0]
Number of Banks
4
Auto-Precharge
A10 / AP
Row Address
A[13:0]
Column Address
A[9:0]
Number of Column Address Bits
10
1)
Number of I/Os
8
Page Size [Bytes]
1024 (1K)
Note
2)
3)
1) Referred to as ’org’
2) Referred to as ’colbits’
3) PageSize = 2colbits × org/8 [Bytes]
TABLE 10
DDR2 Addressing for ×16 Organization
Configuration
1)
32Mb x 16
Bank Address
BA[1:0]
Number of Banks
4
Auto-Precharge
A10 / AP
Row Address
A[12:0]
Column Address
A[9:0]
Number of Column Address Bits
10
Number of I/Os
16
Page Size [Bytes]
2048 (2K)
1) Referred to as ’org’
2) Referred to as ’colbits’
3) PageSize = 2colbits × org/8 [Bytes]
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
15
Note
2)
3)
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
3
Functional Description
This chapter describes the Functional Description.
%$ %$ %$ $ $ $
$
UHJ
D
GGU
$
$
$
$
$
$
$
$
$
3'
:5
'//
70
&/
%7
%/
Z
Z
Z
Z
Z
Z
Z
$
03%7
TABLE 11
Mode Register Definition (BA[2:0] = 000B)
Field
Bits
Type1)
Description
BA2
16
reg. addr.
Bank Address [2]
Note: BA2 not available on 256 Mbit and 512 Mbit components
0B
BA2 Bank Address
BA1
15
Bank Address [1]
BA1 Bank Address
0B
BA0
14
Bank Address [0]
0B
BA0 Bank Address
A13
13
Address Bus[13]
Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration
0B
A13 Address bit 13
PD
12
w
Active Power-Down Mode Select
0B
PD Fast exit
1B
PD Slow exit
WR
[11:9]
w
Write Recovery2)
Note: All other bit combinations are illegal.
001B
010B
011B
100B
101B
WR 2
WR 3
WR 4
WR 5
WR 6
DLL
8
w
DLL Reset
0B
DLL No
1B
DLL Yes
TM
7
w
Test Mode
0B
TM Normal Mode
1B
TM Vendor specific test mode
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
16
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
Field
Bits
Type1)
Description
CL
[6:4]
w
CAS Latency
Note: All other bit combinations are illegal.
011B
100B
101B
110B
111B
CL 3
CL 4
CL 5
CL 6
CL 7
BT
3
w
Burst Type
0B
BT Sequential
1B
BT Interleaved
BL
[2:0]
w
Burst Length
Note: All other bit combinations are illegal.
010B BL 4
011B BL 8
1) w = write only register bits
2) Number of clock cycles for write recovery during auto-precharge. WR in clock cycles is calculated by dividing tWR (in ns) by tCK (in ns) and
rounding up to the next integer: WR [cycles] ≥ tWR (ns) / tCK (ns). The mode register must be programmed to fulfill the minimum requirement
for the analogue tWR timing WRMIN is determined by tCK.MAX and WRMAX is determined by tCK.MIN.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
17
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
%$ %$ %$ $ $ $
$
$
$
$
$
$
$
$
$
$
$
6 '46
4RII 5'4
2&'
3URJUDP
5WW
$/
5WW
',&
'//
Z
Z
Z
Z
Z
Z
Z
UHJ
D
GGU
Z
03%7
TABLE 12
Extended Mode Register Definition (BA[2:0] = 001B)
1)
Field
Bits
Type
BA2
16
reg. addr.
Description
Bank Address [2]
Note: BA2 not available on 256 Mbit and 512 Mbit components
0B
BA2 Bank Address
BA1
15
Bank Address [1]
BA1 Bank Address
0B
BA0
14
Bank Address [0]
0B
BA0 Bank Address
A13
13
w
Address Bus[13]
Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration
0B
A13 Address bit 13
Qoff
12
Output Disable
0B
QOff Output buffers enabled
1B
QOff Output buffers disabled
RDQS
11
Read Data Strobe Output (RDQS, RDQS)
0B
RDQS Disable
1B
RDQS Enable
DQS
10
Complement Data Strobe (DQS Output)
0B
DQS Enable
1B
DQS Disable
OCD
[9:7]
Program
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
Off-Chip Driver Calibration Program
000B OCD OCD calibration mode exit, maintain setting
001B OCD Drive (1)
010B OCD Drive (0)
100B OCD Adjust mode
111B OCD OCD calibration default
18
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
Field
Bits
AL
[5:3]
Type1)
Description
Additive Latency
Note: All other bit combinations are illegal.
000B
001B
010B
011B
100B
RTT
6,2
AL 0
AL 1
AL 2
AL 3
AL 4
Nominal Termination Resistance of ODT
Note: See Table 23 “ODT DC Electrical Characteristics” on Page 26
00B
01B
10B
11B
RTT ∞ (ODT disabled)
RTT 75 Ohm
RTT 150 Ohm
RTT 50 Ohm
DIC
1
Off-chip Driver Impedance Control
0B
DIC Full (Driver Size = 100%)
1B
DIC Reduced
DLL
0
DLL Enable
0B
DLL Enable
1B
DLL Disable
1) w = write only register bits
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
19
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
%$
%$
%$
$
$
$
$
$
$
$
$
65)
$
$
$
'&&
UHJDGGU
$
$
$
3$65
03%7
TABLE 13
EMRS(2) Programming Extended Mode register Definition (BA[2:0]=010B)
1)
Field
Bits
Type
Description
BA2
16
w
Bank Address[2]
Note: BA2 is not available on 256Mbit and 512Mbit components
BA
[15:14]
w
Bank Adress[15:14]
00B BA MRS
01B BA EMRS(1)
10B BA EMRS(2)
11B BA EMRS(3): Reserved
A
[13:7]
w
Address Bus[13:0]
Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration
A
7
w
Address Bus[7], adapted self refresh rate for TCASE > 85°C
0B
A7 disable
1B
A7 enable 2)
A
[6:4]
w
Address Bus[6:4]
0B
A[6:4] Address bits
A
3
w
Address Bus[3], Duty Cycle Correction (DCC)
0B
A[3] DCC disabled
1B
A[3] DCC enabled
0B
0B
BA2 Bank Address
A[13:0] Address bits
Partial Self Refresh for 4 banks
A
[2:0]
w
Address Bus[2:0], Partial Array Self Refresh for 4 Banks3)
000B PASR0 Full Array
001B PASR1 Half Array (BA[1:0]=00, 01)
010B PASR2 Quarter Array (BA[1:0]=00)
011B PASR3 Not defined
100B PASR4 3/4 array (BA[1:0]=01, 10, 11)
101B PASR5 Half array (BA[1:0]=10, 11)
110B PASR6 Quarter array (BA[1:0]=11)
111B PASR7 Not defined
1) w = write only
2) When DRAM is operated at 85°C ≤ TCase ≤ 95°C the extended self refresh rate must be enabled by setting bit A7 to "1" before the self
refresh mode can be entered.
3) If PASR (Partial Array Self Refresh) is enabled, data located in areas of the array beyond the specified location will be lost if self refresh
is entered. Data integrity will be maintained if tREF conditions are met and no Self Refresh command is issued
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
20
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
%$ %$ %$ $ $ $
$
$
$
$
$
$
$
$
$
$
$
UHJD
GG
U
03%7
TABLE 14
EMR(3) Programming Extended Mode Register Definition (BA[2:0]=010B)
1)
Field
Bits
Type
Description
BA2
16
reg.addr
BA1
15
Bank Adress[1]
1B
BA1 Bank Address
BA0
14
Bank Adress[0]
BA0 Bank Address
1B
A
[13:0]
Bank Address[2]
Note: BA2 is not available on 256Mbit and 512Mbit components
0B
w
BA2 Bank Address
Address Bus[13:0]
Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration
0B
A[13:0] Address bits
1) w = write only
TABLE 15
ODT Truth Table
Input Pin
EMRS(1) Address Bit A10
EMRS(1) Address Bit A11
×8 components
DQ[7:0]
X
DQS
X
DQS
0
X
RDQS
X
1
RDQS
0
1
DM
X
0
×16 components
DQ[7:0]
X
DQ[15:8]
X
LDQS
X
LDQS
0
UDQS
X
UDQS
0
LDM
X
UDM
X
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
X
X
21
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
TABLE 16
Burst Length and Sequence
Burst Length
Starting Address
(A2 A1 A0)
Sequential Addressing
(decimal)
Interleave Addressing
(decimal)
4
×00
0, 1, 2, 3
0, 1, 2, 3
×01
1, 2, 3, 0
1, 0, 3, 2
×1 0
2, 3, 0, 1
2, 3, 0, 1
×1 1
3, 0, 1, 2
3, 2, 1, 0
000
0, 1, 2, 3, 4, 5, 6, 7
0, 1, 2, 3, 4, 5, 6, 7
001
1, 2, 3, 0, 5, 6, 7, 4
1, 0, 3, 2, 5, 4, 7, 6
010
2, 3, 0, 1, 6, 7, 4, 5
2, 3, 0, 1, 6, 7, 4, 5
011
3, 0, 1, 2, 7, 4, 5, 6
3, 2, 1, 0, 7, 6, 5, 4
8
100
4, 5, 6, 7, 0, 1, 2, 3
4, 5, 6, 7, 0, 1, 2, 3
101
5, 6, 7, 4, 1, 2, 3, 0
5, 4, 7, 6, 1, 0, 3, 2
110
6, 7, 4, 5, 2, 3, 0, 1
6, 7, 4, 5, 2, 3, 0, 1
111
7, 4, 5, 6, 3, 0, 1, 2
7, 6, 5, 4, 3, 2, 1, 0
32Mb x 16 organization (CA[9:0]); Page Size = 2 KByte;
Page Length = 1024
2. Order of burst access for sequential addressing is “nibblebased” and therefore different from SDR or DDR
components
Notes
1. Page Size and Length is a function of I/O organization:
128Mb x 4 organization (CA[9:0], CA11); Page Size = 1
KByte; Page Length = 2048 64Mb x 8 organization
(CA[9:0]); Page Size = 1 KByte; Page Length = 1024
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
22
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
4
Truth Tables
The truth tables in this chapter summarize the commands and there signal coding to control a standard Double-Data-Rate-Two
SDRAM.
TABLE 17
Clock Enable (CKE) Truth Table for Synchronous Transitions
Current State1)
CKE
Command (N)2) 3)
RAS, CAS, WE
Action (N)2)
Notes4)5)
Previous Cycle6)
(N-1)
Current Cycle6)
(N)
L
L
X
Maintain Power-Down
7)8)11)
L
H
DESELECT or NOP
Power-Down Exit
7)9)10)11)
L
L
X
Maintain Self Refresh
8)11)12)
L
H
DESELECT or NOP
Self Refresh Exit
9)12)13)14)
Bank(s) Active
H
L
DESELECT or NOP
Active Power-Down Entry
7)9)10)11)15)
All Banks Idle
H
L
DESELECT or NOP
Precharge Power-Down
Entry
9)10)11)15)
H
L
AUTOREFRESH
Self Refresh Entry
7)11)14)16)
H
H
Refer to the Command Truth Table
Power-Down
Self Refresh
Any State other
than
listed above
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
17)
Current state is the state of the DDR2 SDRAM immediately prior to clock edge N.
Command (N) is the command registered at clock edge N, and Action (N) is a result of Command (N)
The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. See .
CKE must be maintained HIGH while the device is in OCD calibration mode.
Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.
The Power-Down Mode does not perform any refresh operations. The duration of Power-Down Mode is therefor limited by the refresh
requirements
“X” means “don’t care (including floating around VREF)” in Self Refresh and Power Down. However ODT must be driven HIGH or LOW in
Power Down if the ODT function is enabled (Bit A2 or A6 set to “1” in EMRS(1)).
All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.
Valid commands for Power-Down Entry and Exit are NOP and DESELECT only.
tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during
the time period of tIS + 2xtCKE + tIH.
VREF must be maintained during Self Refresh operation.
On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR period. Read
commands may be issued only after tXSRD (200 clocks) is satisfied.
Valid commands for Self Refresh Exit are NOP and DESELCT only.
Power-Down and Self Refresh can not be entered while Read or Write operations, (Extended) mode Register operations, Precharge or
Refresh operations are in progress. See and for a detailed list of restrictions.
Self Refresh mode can only be entered from the All Banks Idle state.
Must be a legal command as defined in the Command Truth Table.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
23
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
TABLE 18
Command Truth Table
Function
CKE
CS RAS
CAS WE BA0
BA1
A[12:11]
Notes1)2)3)
A10 A[9:0]
Previous
Cycle
Current
Cycle
(Extended) Mode
Register Set
H
H
L
L
L
L
BA
OP Code
Auto-Refresh
H
H
L
L
L
H
X
X
X
X
4)
Self-Refresh Entry
H
L
L
L
L
H
X
X
X
X
4)6)
Self-Refresh Exit
L
H
H
X
X
X
X
X
X
X
4)6)7)
L
H
H
H
Single Bank Precharge
H
H
L
L
H
L
BA
X
L
X
4)5)
Precharge all Banks
H
H
L
L
H
L
X
X
H
X
4)
Bank Activate
H
H
L
L
H
H
BA
Row Address
Write
H
H
L
H
L
L
BA
Column
L
Column
4)5)8)
Write with AutoPrecharge
H
H
L
H
L
L
BA
Column
H
Column
4)5)8)
Read
H
H
L
H
L
H
BA
Column
L
Column
4)5)8)
Read with AutoPrecharge
H
H
L
H
L
H
BA
Column
H
Column
4)5)8)
No Operation
H
X
L
H
H
H
X
X
X
X
4)
Device Deselect
H
X
H
X
X
X
X
X
X
X
4)
Power Down Entry
H
L
H
X
X
X
X
X
X
X
4)9)
L
H
H
H
H
X
X
X
X
X
X
X
4)9)
L
H
H
H
Power Down Exit
L
H
4)5)
4)5)
1) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.
2) “X” means “H or L (but a defined logic level)”.
3) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
4) All DDR2 SDRAM commands are defined by states of CS, WE, RAS, CAS, and CKE at the rising edge of the clock.
5) Bank addresses BA[1:0] determine which bank is to be operated upon. For (E)MRS BA[1:0] selects an (Extended) Mode Register.
6) VREF must be maintained during Self Refresh operation.
7) Self Refresh Exit is asynchronous.
8) Burst reads or writes at BL = 4 cannot be terminated. See for details.
9) The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by the refresh
requirements outlined in
TABLE 19
Data Mask (DM) Truth Table
Name (Function)
DM
DQs
Write Enable
L
Valid
1)
Write Inhibit
H
X
1)
1) Used to mask write data; provided coincident with the corresponding data.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
24
Note
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
5
Electrical Characteristics
This chapter lists the electrical characteristics.
5.1
Absolute Maximum Ratings
This chapter contains the absolute maximum ratings table.
TABLE 20
Absolute Maximum Ratings
Symbol
Parameter
Rating
Unit
Note
VDD
VDDQ
VDDL
VIN, VOUT
TSTG
Voltage on VDD pin relative to VSS
–1.0 to +2.3
V
1)
Voltage on VDDQ pin relative to VSS
–0.5 to +2.3
V
1)
Voltage on VDDL pin relative to VSS
–0.5 to +2.3
V
1)
Voltage on any pin relative to VSS
–0.5 to +2.3
V
1)
°C
2)
Storage Temperature
–55 to +100
1) When VDD and VDDQ and VDDL are less than 500mV; Vref may be equal to or less than 300mV.
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM.
Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings
are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated
circuit.
TABLE 21
DRAM Component Operating Temperature Range
Symbol
Parameter
Rating
Unit
Note
TOPER
Operating Temperature
0 to 95
°C
1)2)3)4)
1) Operating Temperature is the case surface temperature on the center / top side of the DRAM.
2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case
temperature must be maintained between 0 - 95 °C under all other specification parameters.
3) Above 85 °C case temperature the Auto-Refresh command interval has to be reduced to tREFI = 3.9 µs.
4) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by
setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
25
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
5.2
DC Characteristics
This chapter describes the DC characteristics.
TABLE 22
Recommended DC Operating Conditions (SSTL_18)
Symbol
VDD
VDDDL
VDDQ
VREF
VTT
1)
2)
3)
4)
Parameter
Rating
Unit
Note
Min.
Typ.
Max.
Supply Voltage
1.7
1.8
1.9
V
1)
Supply Voltage for DLL
1.7
1.8
1.9
V
1)
Supply Voltage for Output
1.7
1.8
1.9
V
1)
Input Reference Voltage
0.49 × VDDQ
0.5 × VDDQ
0.51 × VDDQ
V
2)3)
4)
Termination Voltage
VREF – 0.04
VREF
VREF + 0.04
V
VDDQ tracks with VDD, VDDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together.
The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to
be about 0.5 × VDDQ of the transmitting device and VREF is expected to track variations in VDDQ.
Peak to peak ac noise on VREF may not exceed ± 2% VREF (dc)
VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and
must track variations in die dc level of VREF.
TABLE 23
ODT DC Electrical Characteristics
Parameter / Condition
Symbol
Min.
Nom.
Max.
Unit
Note
Termination resistor impedance value for
EMRS(1)[A6,A2] = [0,1]; 75 Ohm
Rtt1(eff)
60
75
90
Ω
1)
Termination resistor impedance value for
EMRS(1)[A6,A2] =[1,0]; 150 Ohm
Rtt2(eff)
120
150
180
Ω
1)
Termination resistor impedance value for
EMRS(1)(A6,A2)=[1,1]; 50 Ohm
Rtt3(eff)
40
50
60
Ω
1)
Deviation of VM with respect to VDDQ / 2
delta VM
–6.00
—
+ 6.00
%
2)
1)
Measurement Definition for Rtt(eff): Apply VIH(ac) and VIL(ac) to test pin separately, then measure current I(VIHac) and I(VILac) respectively.
Rtt(eff) = (VIH(ac) – VIL(ac)) /(I(VIHac) – I(VILac)).
2) Measurement Definition for VM: Turn ODT on and measure voltage (VM) at test pin (midpoint) with no load: delta VM = ((2 x VM / VDDQ) –
1) x 100%
TABLE 24
Input and Output Leakage Currents
Symbol
Parameter / Condition
Min.
Max.
Unit
Note
IIL
IOL
Input Leakage Current; any input 0 V < VIN < VDD
–2
+2
µA
1)
Output Leakage Current; 0 V < VOUT < VDDQ
–5
+5
µA
2)
1) All other pins not under test = 0 V
2) DQ’s, LDQS, LDQS, UDQS, UDQS, DQS, DQS, RDQS, RDQS are disabled and ODT is turned off
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
26
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
5.3
DC & AC Characteristics
DDR2 SDRAM pin timing are specified for either single ended
or differential mode depending on the setting of the EMRS(1)
“Enable DQS” mode bit; timing advantages of differential
mode are realized in system design. The method by which the
DDR2 SDRAM pin timing are measured is mode dependent.
In single ended mode, timing relationships are measured
relative to the rising or falling edges of DQS crossing at VREF.
In differential mode, these timing relationships are measured
relative to the crosspoint of DQS and its complement, DQS.
This distinction in timing methods is verified by design and
characterization but not subject to production test. In single
ended mode, the DQS (and RDQS) signals are internally
disabled and don’t care.
TABLE 25
DC & AC Logic Input Levels for DDR2-667 and DDR2-800
Symbol
VIH(dc)
VIL(dc)
VIH(ac)
VIL(ac)
Parameter
DDR2-667, DDR2-800
Units
Min.
Max.
DC input logic high
VREF + 0.125
–0.3
VDDQ + 0.3
VREF – 0.125
V
DC input low
AC input logic high
VREF + 0.200
—
V
AC input low
—
VREF – 0.200
V
V
TABLE 26
DC & AC Logic Input Levels for DDR2-533 and DDR2-400
Symbol
VIH(dc)
VIL(dc)
VIH(ac)
VIL(ac)
Parameter
DDR2-533, DDR2-400
Units
Min.
Max.
VREF + 0.125
V
DC input low
–0.3
VDDQ + 0.3
VREF - 0.125
AC input logic high
VREF + 0.250
—
V
AC input low
—
VREF - 0.250
V
DC input logic high
V
TABLE 27
Single-ended AC Input Test Conditions
Symbol
Condition
Value
Unit
Note
VREF
VSWING.MAX
Input reference voltage
0.5 x VDDQ
V
1)
Input signal maximum peak to peak swing
1.0
V
1)
SLEW
Input signal minimum Slew Rate
1.0
V / ns
2)3)
1) Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test.
2) The input signal minimum Slew Rate is to be maintained over the range from VIH(ac).MIN to VREF for rising edges and the range from VREF to
VIL(ac).MAX for falling edges as shown in Figure 4.
3) AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to VIL(ac) on the negative
transitions.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
27
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
FIGURE 4
Single-ended AC Input Test Conditions Diagram
9''4
9,+ DF PLQ
9,+ GF PLQ
96:,1* 0$;
95()
9,/ GF PD[
9,/ DF PD[
966
'HOWD7)
)DOOLQJ6OHZ
'HOWD75
95()9,/ DF PD[
5LVLQJ6OHZ
'HOWD7)
9,+ DF PLQ95()
'HOWD75
03(7
TABLE 28
Differential DC and AC Input and Output Logic Levels
Symbol
Parameter
Min.
Max.
Unit
Note
VIN(dc)
VID(dc)
VID(ac)
VIX(ac)
VOX(ac)
DC input signal voltage
–0.3
—
1)
DC differential input voltage
0.25
—
2)
AC differential input voltage
0.5
V
3)
AC differential cross point input voltage
0.5 × VDDQ – 0.175
V
4)
AC differential cross point output voltage
0.5 × VDDQ – 0.125
VDDQ + 0.3
VDDQ + 0.6
VDDQ + 0.6
0.5 × VDDQ + 0.175
0.5 × VDDQ + 0.125
V
5)
1)
2)
3)
4)
VIN(dc) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS etc.
VID(dc) specifies the input differential voltage VTR– VCP required for switching. The minimum value is equal to VIH(dc) – VIL(dc).
VID(ac) specifies the input differential voltage VTR – VCP required for switching. The minimum value is equal to VIH(ac) – VIL(ac).
The value of VIX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VIX(ac) is expected to track variations in VDDQ. VIX(ac)
indicates the voltage at which differential input signals must cross.
5) The value of VOX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VOX(ac) is expected to track variations in VDDQ. VOX(ac)
indicates the voltage at which differential input signals must cross.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
28
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
FIGURE 5
Differential DC and AC Input and Output Logic Levels Diagram
9''
4
975
&URVVLQJ3RLQW
9,'
9,;RU9
2;
9&3
9664
5.4
Output Buffer Characteristics
This chapter describes the Output Buffer Characteristics.
TABLE 29
SSTL_18 Output DC Current Drive
Symbol
Parameter
SSTL_18
Unit
Note
IOH
IOL
Output Minimum Source DC Current
–13.4
mA
1)2)
2)3)
Output Minimum Sink DC Current
13.4
mA
1) VDDQ = 1.7 V; VOUT = 1.42 V. (VOUT–VDDQ) / IOH must be less than 21 Ohm for values of VOUT between VDDQ and VDDQ – 280 mV.
2) The values of IOH(dc) and IOL(dc) are based on the conditions given in 1) and 3). They are used to test drive current capability to ensure VIH.MIN.
plus a noise margin and VIL.MAX minus a noise margin are delivered to an SSTL_18 receiver. The actual current values are derived by
shifting the desired driver operating points along 21 Ohm load line to define a convenient current for measurement.
3) VDDQ = 1.7 V; VOUT = 280 mV. VOUT / IOL must be less than 21 Ohm for values of VOUT between 0 V and 280 mV.
TABLE 30
SSTL_18 Output AC Test Conditions
Symbol
Parameter
SSTL_18
Unit
Note
VOH
VOL
VOTR
Minimum Required Output Pull-up
VTT + 0.603
VTT – 0.603
0.5 × VDDQ
V
1)
V
1)
Maximum Required Output Pull-down
Output Timing Measurement Reference Level
V
1) SSTL_18 test load for VOH and VOL is different from the referenced load. The SSTL_18 test load has a 20 Ohm series resistor additionally
to the 25 Ohm termination resistor into VTT. The SSTL_18 definition assumes that ± 335 mV must be developed across the effectively 25
Ohm termination resistor (13.4 mA × 25 Ohm = 335 mV). With an additional series resistor of 20 Ohm this translates into a minimum
requirement of 603 mV swing relative to VTT, at the ouput device (13.4 mA × 45 Ohm = 603 mV).
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
29
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
TABLE 31
OCD Default Characteristics
Symbol
Description
Min.
—
Output Impedance
See Chapter 5.5
—
Pull-up / Pull down mismatch
0
—
—
Output Impedance step size
for OCD calibration
0
1.5
SOUT
Output Slew Rate
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V
Nominal
Max.
Unit
Note
Ohms
1)2)
4
Ohms
1)2)3)
—
1.5
Ohms
4)
—
5.0
V / ns
1)5)6)7)
2) Impedance measurement condition for output source dc current: VDDQ = 1.7 V, VOUT = 1420 mV; (VOUT–VDDQ) / IOH must be less than 23.4
ohms for values of VOUT between VDDQ and VDDQ – 280 mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7 V;
VOUT = –280 mV; VOUT / IOL must be less than 23.4 Ohms for values of VOUT between 0 V and 280 mV.
3) Mismatch is absolute value between pull-up and pull-down, both measured at same temperature and voltage.
4) This represents the step size when the OCD is near 18 ohms at nominal conditions across all process parameters and represents only the
DRAM uncertainty. A 0 Ohm value (no calibration) can only be achieved if the OCD impedance is 18 ± 0.75 Ohms under nominal
conditions.
5) The absolute value of the Slew Rate as measured from DC to DC is equal to or greater than the Slew Rate as measured from AC to AC.
This is verified by design and characterization but not subject to production test.
6) Timing skew due to DRAM output Slew Rate mis-match between DQS / DQS and associated DQ’s is included in tDQSQ and tQHS
specification.
7) DRAM output Slew Rate specification applies to 400, 533 and 667 MT/s speed bins.
5.5
Input / Output Capacitance
This chapter describes the Input / Output Capacitance.
TABLE 32
Input / Output Capacitance
Symbol
Parameter
Min.
Max.
Unit
CCK
Input capacitance, CK and CK
1.0
2.0
pF
CDCK
Input capacitance delta, CK and CK
—
0.25
pF
CI
Input capacitance, all other input-only pins
1.0
1.75
pF
CDI
Input capacitance delta, all other input-only pins
—
0.25
pF
CIO
Input/output capacitance,
DQ, DM, DQS, DQS, RDQS, RDQS
2.5
3.5
pF
CDIO
Input/output capacitance delta,
DQ, DM, DQS, DQS, RDQS, RDQS
—
0.5
pF
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
30
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
5.6
Overshoot and Undershoot Specification
This chapter describes the Overshoot and Undershoot Specification.
TABLE 33
AC Overshoot / Undershoot Specification for Address and Control Pins
Parameter
DDR2–400
DDR2–533
DDR2–667
DDR2–800
Unit
Maximum peak amplitude allowed for overshoot area
0.9
0.9
0.9
0.9
V
Maximum peak amplitude allowed for undershoot area
0.9
0.9
0.9
0.9
V
Maximum overshoot area above VDD
1.33
1.00
0.80
0.80
V.ns
Maximum undershoot area below VSS
1.33
1.00
0.80
0.80
V.ns
FIGURE 6
AC Overshoot / Undershoot Diagram for Address and Control Pins
0D[LPXP$PSOLWXGH
9ROWV 9
2YHUVKRRW$UHD
9''
966
8QGHUVKRRW$UHD
0D[LPXP$PSOLWXGH
7LPH QV
03(7
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
31
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
TABLE 34
AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Pins
Parameter
DDR2–400
DDR2–533
Maximum peak amplitude allowed for overshoot area
0.9
0.9
Maximum peak amplitude allowed for undershoot area
0.9
0.9
Maximum overshoot area above VDDQ
0.38
0.28
Maximum undershoot area below VSSQ
0.38
0.28
DDR2–667
DDR2–800
Unit
0.9
0.9
V
0.9
0.9
V
0.23
0.23
V.ns
0.23
0.23
V.ns
FIGURE 7
AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins
0D[LPXP$PSOLWXGH
9ROWV 9
2YHUVKRRW$UHD
9''4
9664
8QGHUVKRRW$UHD
0D[LPXP$PSOLWXGH
7LPH QV
03(7
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
32
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
6
Specifications and Conditions
This chapter describes the Specifications and Conditions.
TABLE 35
IDD Measurement Conditions
Parameter
Symbol
Operating Current - One bank Active - Precharge
IDD0
tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), CKE is HIGH, CS is HIGH between valid commands. Address
and control inputs are switching; Databus inputs are switching.
Operating Current - One bank Active - Read - Precharge
IOUT = 0 mA, BL = 4, tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), tRCD = tRCD(IDD), AL = 0, CL = CL(IDD);
CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are switching; Databus
inputs are switching.
IDD1
Note
1)2)3)4)
5)6)
1)2)3)4)5
)6)
Precharge Power-Down Current
IDD2P
All banks idle; CKE is LOW; tCK = tCK(IDD);Other control and address inputs are stable; Data bus inputs are
floating.
1)2)3)4)5
IDD2N
1)2)3)4)5
Precharge Quiet Standby Current
IDD2Q
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are stable, Data
bus inputs are floating.
1)2)3)4)5
Precharge Standby Current
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are switching,
Data bus inputs are switching.
)6)
)6)
)6)
Active Power-Down Current
All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable; Data bus inputs
are floating. MRS A12 bit is set to “0” (Fast Power-down Exit).
IDD3P(0)
1)2)3)4)5
Active Power-Down Current
All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable, Data bus inputs
are floating. MRS A12 bit is set to 1 (Slow Power-down Exit);
IDD3P(1)
1)2)3)4)5
Active Standby Current
All banks open; tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid
commands. Address inputs are switching; Data Bus inputs are switching;
IDD3N
1)2)3)4)5
Operating Current
Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS =
tRAS.MAX.(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are
switching; Data Bus inputs are switching; IOUT = 0 mA.
IDD4R
1)2)3)4)5
Operating Current
Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS =
tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are
switching; Data Bus inputs are switching;
IDD4W
1)2)3)4)5
Burst Refresh Current
tCK = tCK(IDD), Refresh command every tRFC = tRFC(IDD) interval, CKE is HIGH, CS is HIGH between valid
commands, Other control and address inputs are switching, Data bus inputs are switching.
IDD5B
1)2)3)4)5
Distributed Refresh Current
IDD5D
tCK = tCK(IDD), Refresh command every tREFI = 7.8 µs interval, CKE is LOW and CS is HIGH between valid
commands, Other control and address inputs are switching, Data bus inputs are switching.
1)2)3)4)5
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
33
)6)
)6)
)6)
)6)
)6)
)6)
)6)
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
Note
Self-Refresh Current
IDD6
CKE ≤ 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are floating, Data bus
inputs are floating.
1)2)3)4)5
Operating Bank Interleave Read Current
IDD7
1. All banks interleaving reads, IOUT = 0 mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD) -1 × tCK(IDD); tCK = tCK(IDD),
tRC = tRC(IDD), tRRD = tRRD(IDD); CKE is HIGH, CS is HIGH between valid commands. Address bus inputs
are stable during deselects; Data bus is switching.
2. Timing pattern:
1)2)3)4)5
)6)
)6)7)
DDR2-400-333: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D (11 clocks)
DDR2-533-333: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D (15 clocks)
DDR2-667-444: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D (19 clocks)
DDR2-667-555: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D (20 clocks)
DDR2-800-555: A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D D D D D(22 clocks)
VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V
IDD specifications are tested after the device is properly initialized.
IDD parameter are specified with ODT disabled.
1)
2)
3)
4)
5)
6)
7)
Data Bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS and UDQS.
Definitions for IDD: see Table 36.
Timing parameter minimum and maximum values for IDD current measurements are defined in chapter 7.
A = Activate, RA = Read with Auto-Precharge, D=DESELECT
TABLE 36
Definition for IDD
Parameter
Description
LOW
defined as VIN ≤ VIL(ac).MAX
HIGH
defined as VIN ≥ VIH(ac).MIN
STABLE
defined as inputs are stable at a HIGH or LOW level
FLOATING
defined as inputs are VREF = VDDQ / 2
SWITCHING
defined as: Inputs are changing between high and low every other clock (once per two clocks) for address
and control signals, and inputs changing between high and low every other clock (once per clock) for DQ
signals not including mask or strobes
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
34
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
TABLE 37
IDDSpecification for HYB18T512xxxBF
Symbol
–2.5
–3
–3S
–3.7
–5
Unit
Note
DDR2-800E
DDR2-667C
DDR2-667D
DDR2-533C
DDR2-400B
IDD0
80
75
71
65
61
mA
×8
100
95
90
IDD1
95
90
85
80
75
mA
×16
75
70
mA
×8
115
105
IDD2P
IDD2N
IDD2Q
IDD3P
7
7
100
90
83
mA
×16
7
7
7
mA
51
45
45
38
34
mA
45
40
40
35
32
mA
39
33
33
28
24
mA
1)
9
9
9
9
9
mA
2)
IDD3N
IDD4R
60
50
50
43
39
mA
155
130
130
110
95
mA
180
155
155
130
115
mA
×16
IDD4W
155
130
130
110
95
mA
×8
200
170
170
145
130
mA
×16
145
140
140
130
125
mA
9
9
9
9
9
mA
3)
7
7
7
7
7
mA
3)
160
160
152
145
141
mA
×8
255
252
240
230
220
mA
×16
IDD5B
IDD5D
IDD6
IDD7
1) MRS(12)=0
2) MRS(12)=1
3) 0° ≤ TCASE ≤ 85°C.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
35
×8
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
7
Timing Characteristics
This chapter contains speed grade definition, AC timing parameter and ODT tables.
7.1
Speed Grade Definitions
All Speed grades faster than DDR2-DDR400B comply with DDR2-DDR400B timing specifications(tCK = 5ns with tRAS = 40ns).
List of Speed Grade Definition tables:
• Table 38 “Speed Grade Definition Speed Bins for DDR2–800E” on Page 36
• Table 39 “Speed Grade Definition Speed Bins for DDR2–667” on Page 37
• Table 41 “Speed Grade Definition Speed Bins for DDR2–400B” on Page 38
TABLE 38
Speed Grade Definition Speed Bins for DDR2–800E
Speed Grade
DDR2–800E
IFX Sort Name
–2.5
CAS-RCD-RP latencies
6–6–6
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
@ CL = 6
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
—
tCK
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
ns
1)2)3)4)
3.75
8
ns
1)2)3)4)
3
8
ns
1)2)3)4)
2.5
8
ns
1)2)3)4)
45
70000
ns
1)2)3)4)5)
60
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal
OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”.
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS,
RDQS / RDQS is defined.
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
36
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
TABLE 39
Speed Grade Definition Speed Bins for DDR2–667
Speed Grade
DDR2–667C
DDR2–667D
IFX Sort Name
–3
–3S
CAS-RCD-RP latencies
4–4–4
5–5–5
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
5
8
ns
1)2)3)4)
3
8
3.75
8
ns
1)2)3)4)
3
8
3
8
ns
1)2)3)4)
45
70000
45
70000
ns
1)2)3)4)5)
57
—
60
—
ns
1)2)3)4)
12
—
15
—
ns
1)2)3)4)
12
—
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal
OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements” .
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS,
RDQS / RDQS is defined.
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
TABLE 40
Speed Grade Definition Speed Bins for DDR2–533C
Speed Grade
DDR2–533C
IFX Sort Name
–3.7
CAS-RCD-RP latencies
4–4–4
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
ns
1)2)3)4)
3.75
8
ns
1)2)3)4)
3.75
8
ns
1)2)3)4)
45
70000
ns
1)2)3)4)5)
60
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal
OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”.
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS,
RDQS / RDQS is defined.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
37
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
TABLE 41
Speed Grade Definition Speed Bins for DDR2–400B
Speed Grade
DDR2–400B
IFX Sort Name
–5
CAS-RCD-RP latencies
3–3–3
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
ns
1)2)3)4)
5
8
ns
1)2)3)4)
5
8
ns
1)2)3)4)
40
70000
ns
1)2)3)4)5)
55
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other Slew Rates see Timings are further
guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements” according to only.
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS,
RDQS / RDQS is defined in .
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT. See for the reference load for timing measurements.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
38
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
7.2
AC Timing Parameters
List of Timing Parameters Tables.
• Table 42 “Timing Parameter by Speed Grade - DDR2–800” on Page 39
• Table 43 “Timing Parameter by Speed Grade - DDR2–667” on Page 42
• Table 44 “Timing Parameter by Speed Grade - DDR2–533” on Page 48
• Table 45 “Timing Parameter by Speed Grade - DDR2-400” on Page 51
TABLE 42
Timing Parameter by Speed Grade - DDR2–800
Parameter
Symbol
DDR2–800
Unit
Note1)2)3)4)5)6)7)
8)
Min.
Max.
–400
+400
ps
9)
–350
+350
ps
9)
0.48
0.52
tCK.AVG
10)11)
0.48
0.52
tCK.AVG
10)11)
2500
8000
ps
10)11)
50
––
ps
12)13)14)
125
––
ps
13)14)15)
0.6
—
0.35
—
tCK.AVG
tCK.AVG
—
tAC.MAX
tAC.MAX
ps
9)16)
ps
9)16)
tAC.MAX
ps
9)16)
—
200
ps
17)
Min(tCH.ABS,
tCL.ABS)
__
ps
18)
—
300
ps
19)
DQ/DQS output hold time from DQS
tQHS
tQH
tHP – tQHS
—
ps
20)
Write command to DQS associated clock edges
WL
RL – 1
DQ output access time from CK / CK
DQS output access time from CK / CK
Average clock high pulse width
tAC
tDQSCK
tCH.AVG
tCL.AVG
Average clock period
tCK.AVG
DQ and DM input setup time
tDS.BASE
DQ and DM input hold time
tDH.BASE
Control & address input pulse width for each input tIPW
DQ and DM input pulse width for each input
tDIPW
Data-out high-impedance time from CK / CK
tHZ
DQS/DQS low-impedance time from CK / CK
tLZ.DQS
DQ low impedance time from CK/CK
tLZ.DQ
DQS-DQ skew for DQS & associated DQ signals tDQSQ
CK half pulse width
tHP
Average clock low pulse width
DQ hold skew factor
tAC.MIN
2 x tAC.MIN
DQS latching rising transition to associated clock tDQSS
edges
DQS input high pulse width
DQS input low pulse width
DQS falling edge to CK setup time
DQS falling edge hold time from CK
Write postamble
Write preamble
Address and control input setup time
Address and control input hold time
Read preamble
Read postamble
Active to precharge command
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
tDQSH
tDQSL
tDSS
tDSH
tWPST
tWPRE
tLS.BASE
tLH.BASE
tRPRE
tRPST
tRAS
39
nCK
21)
– 0.25
+ 0.25
tCK.AVG
0.35
—
0.35
—
0.2
—
0.2
—
0.4
0.6
0.35
—
tCK.AVG
tCK.AVG
tCK.AVG
tCK.AVG
tCK.AVG
tCK.AVG
175
—
ps
22)23)
250
—
ps
23)24)
0.9
1.1
25)26)
0.4
0.6
tCK.AVG
tCK.AVG
45
70000
ns
28)
21)
21)
25)27)
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2–800
Unit
Note1)2)3)4)5)6)7)
8)
Min.
Max.
Active to active command period for 1KB page
size products
tRRD
7.5
—
ns
28)
Active to active command period for 2KB page
size products
tRRD
10
—
ns
28)
Four Activate Window for 1KB page size products tFAW
35
—
ns
28)
Four Activate Window for 2KB page size products tFAW
45
—
ns
28)
tCCD
Write recovery time
tWR
Auto-Precharge write recovery + precharge time tDAL
Internal write to read command delay
tWTR
Internal Read to Precharge command delay
tRTP
Exit self-refresh to a non-read command
tXSNR
Exit self-refresh to read command
tXSRD
Exit precharge power-down to any valid
tXP
2
—
nCK
15
—
ns
28)
WR + tnRP
—
nCK
29)30)
7.5
—
ns
28)31)
7.5
—
ns
28)
tRFC +10
—
ns
28)
200
—
nCK
2
—
nCK
tXARD
tXARDS
2
—
nCK
8 – AL
—
nCK
CKE minimum pulse width ( high and low pulse
width)
tCKE
3
—
nCK
ODT turn-on delay
tAOND
tAON
tAONPD
2
2
nCK
tAC.MIN
tAC.MIN + 2
tAC.MAX + 0.7
2 x tCK.AVG +
tAC.MAX + 1
ns
tAOFD
tAOF
tAOFPD
2.5
2.5
nCK
tAC.MIN
tAC.MIN + 2
tAC.MAX + 0.6
ns
2.5 x tCK.AVG + ns
tAC.MAX + 1
tANPD
tAXPD
tMRD
tMOD
tOIT
tDELAY
3
—
nCK
8
—
nCK
2
—
nCK
0
12
ns
28)
0
12
ns
28)
tLS + tCK .AVG + ––
tLH
ns
CAS to CAS command delay
command (other than NOP or Deselect)
Exit power down to read command
Exit active power-down mode to read command
(slow exit, lower power)
ODT turn-on
ODT turn-on (Power down mode)
ODT turn-off delay
ODT turn-off
ODT turn-off (Power down mode)
ODT to power down entry latency
ODT to power down exit latency
Mode register set command cycle time
MRS command to ODT update delay
OCD drive mode output delay
Minimum time clocks remain ON after CKE
asynchronously drops LOW
32)
9)33)
ns
34)35)
1) For details and notes see the relevant Qimonda component data sheet
2) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V. See notes 5)6)7)8)
3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode;
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
40
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
7) The output timing reference voltage level is VTT.
8) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock
under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and
DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command
may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min).
9) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272
ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN – tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and
tDQSCK.MAX(DERATED) = tDQSCK.MAX – tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED)
= - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!)
10) Input clock jitter spec parameter. These parameters are referred to as 'input clock jitter spec parameters' and these parameters apply to
DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution.
11) These parameters are specified per their average values, however it is understood that the relationship between the average timing and
the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations).
12) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level
to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe
crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See
Figure 9.
13) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.
14) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal
((L/U/R)DQS / DQS) crossing.
15) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to
the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing
at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and
VIH.DC.MIN. See Figure 9.
16) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level
which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) .
17) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output
slew rate mismatch between DQS / DQS and associated DQ in any given cycle.
18) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter.
It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the
following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the
minimum of the actual instantaneous clock low time.
19) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is
transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next
transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation
of the output drivers.
20) tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under
the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}
Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system
provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum.
21) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing.
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal
crossing. That is, these parameters should be met whether clock jitter is present or not.
22) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied
to the device under test. See Figure 10.
23) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to
its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC,
etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should
be met whether clock jitter is present or not.
24) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied
to the device under test. See Figure 10.
25) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving
(tRPST), or begins driving (tRPRE). Figure 8 shows a method to calculate these points when the device is no longer driving (tRPST), or begins
driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the
calculation is consistent.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
41
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
26) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps
and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX
+ tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!).
27) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps
and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX
+ tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!).
28) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in
clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support
tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at
Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter.
29) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result
of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For
DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.
30) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR.
31) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.
32) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during
the time period of tIS + 2 x tCK + tIH.
33) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when
the ODT resistance is fully on. Both are measured from tAOND.
34) ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD.
35) When the device is operated with input clock jitter, this parameter needs to be derated by {–tJIT.DUTY.MAX – tERR(6-10PER).MAX} and {–tJIT.DUTY.MIN
– tERR(6-10PER).MIN } of the actual input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter
into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272 ps, tERR(6- 10PER).MAX = + 293 ps, tJIT.DUTY.MIN = – 106 ps and tJIT.DUTY.MAX = + 94 ps,
then tAOF.MIN(DERATED) = tAOF.MIN + {– tJIT.DUTY.MAX – tERR(6-10PER).MAX} = – 450 ps + {– 94 ps – 293 ps} = – 837 ps and tAOF.MAX(DERATED) = tAOF.MAX
+ {– tJIT.DUTY.MIN – tERR(6-10PER).MIN} = 1050 ps + {106 ps + 272 ps} = + 1428 ps. (Caution on the MIN/MAX usage!)
TABLE 43
Timing Parameter by Speed Grade - DDR2–667
Parameter
Symbol
DDR2–667
Unit
Note1)2)3)4)5)6)7)
8)
DQ output access time from CK / CK
DQS output access time from CK / CK
Average clock high pulse width
tAC
tDQSCK
tCH.AVG
tCL.AVG
Average clock period
tCK.AVG
DQ and DM input setup time
tDS.BASE
DQ and DM input hold time
tDH.BASE
Control & address input pulse width for each input tIPW
DQ and DM input pulse width for each input
tDIPW
Data-out high-impedance time from CK / CK
tHZ
DQS/DQS low-impedance time from CK / CK
tLZ.DQS
DQ low impedance time from CK/CK
tLZ.DQ
DQS-DQ skew for DQS & associated DQ signals tDQSQ
CK half pulse width
tHP
Average clock low pulse width
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
42
Min.
Max.
–450
+450
ps
9)
–400
+400
ps
9)
0.48
0.52
tCK.AVG
10)11)
0.48
0.52
tCK.AVG
10)11)
3000
8000
ps
100
––
ps
12)13)14)
175
––
ps
13)14)15)
0.6
—
0.35
—
tCK.AVG
tCK.AVG
—
ps
9)16)
tAC.MIN
2 x tAC.MIN
tAC.MAX
tAC.MAX
tAC.MAX
ps
9)16)
ps
9)16)
—
240
ps
17)
Min(tCH.ABS,
tCL.ABS)
__
ps
18)
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2–667
Unit
Note1)2)3)4)5)6)7)
8)
Min.
Max.
—
340
ps
19)
DQ/DQS output hold time from DQS
tQHS
tQH
tHP – tQHS
—
ps
20)
Write command to DQS associated clock edges
WL
RL–1
DQ hold skew factor
DQS latching rising transition to associated clock tDQSS
edges
nCK
– 0.25
+ 0.25
tCK.AVG
tDQSH
tDQSL
tDSS
tDSH
tWPST
tWPRE
tLS.BASE
tLH.BASE
tRPRE
tRPST
tRAS
tRRD
0.35
—
0.35
—
0.2
—
0.2
—
0.4
0.6
tRRD
21)
0.35
—
tCK.AVG
tCK.AVG
tCK.AVG
tCK.AVG
tCK.AVG
tCK.AVG
200
—
ps
22)23)
275
—
ps
23)24)
0.9
1.1
25)26)
0.4
0.6
tCK.AVG
tCK.AVG
45
70000
ns
28)
7.5
—
ns
28)
10
—
ns
28)
Four Activate Window for 1KB page size products tFAW
37.5
—
ns
28)
Four Activate Window for 2KB page size products tFAW
50
—
ns
28)
CAS to CAS command delay
tCCD
tWR
Auto-Precharge write recovery + precharge time tDAL
Internal write to read command delay
tWTR
Internal Read to Precharge command delay
tRTP
Exit self-refresh to a non-read command
tXSNR
Exit self-refresh to read command
tXSRD
Exit precharge power-down to any valid
tXP
2
—
nCK
Write recovery time
15
—
ns
28)
WR + tnRP
—
nCK
29)30)
7.5
—
ns
28)31)
7.5
—
ns
28)
tRFC +10
—
ns
28)
200
—
nCK
2
—
nCK
tXARD
tXARDS
2
—
nCK
7 – AL
—
nCK
CKE minimum pulse width ( high and low pulse
width)
tCKE
3
—
nCK
ODT turn-on delay
2
2
nCK
tAC.MIN
tAC.MIN + 2
tAC.MAX + 0.7
2 x tCK.AVG +
tAC.MAX + 1
ns
ODT turn-on (Power down mode)
tAOND
tAON
tAONPD
ODT turn-off delay
tAOFD
2.5
2.5
nCK
DQS input high pulse width
DQS input low pulse width
DQS falling edge to CK setup time
DQS falling edge hold time from CK
Write postamble
Write preamble
Address and control input setup time
Address and control input hold time
Read preamble
Read postamble
Active to precharge command
Active to active command period for 1KB page
size products
Active to active command period for 2KB page
size products
21)
21)
25)27)
command (other than NOP or Deselect)
Exit power down to read command
Exit active power-down mode to read command
(slow exit, lower power)
ODT turn-on
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
43
ns
32)
9)33)
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2–667
Unit
Note1)2)3)4)5)6)7)
8)
ODT turn-off
ODT turn-off (Power down mode)
ODT to power down entry latency
ODT to power down exit latency
Mode register set command cycle time
MRS command to ODT update delay
OCD drive mode output delay
Minimum time clocks remain ON after CKE
asynchronously drops LOW
Min.
Max.
tAOF
tAOFPD
tAC.MIN
tAC.MIN + 2
tAC.MAX + 0.6
ns
2.5 x tCK.AVG + ns
tAC.MAX + 1
tANPD
tAXPD
tMRD
tMOD
tOIT
tDELAY
3
––
nCK
8
—
nCK
2
—
nCK
0
12
ns
28)
0
12
ns
28)
tLS + tCK .AVG + ––
tLH
ns
34)35)
1) For details and notes see the relevant Qimonda component data sheet
2) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V. See notes 5)6)7)8)
3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode.
6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
7) The output timing reference voltage level is VTT.
8) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock
under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and
DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command
may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min).
9) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272
ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN – tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and
tDQSCK.MAX(DERATED) = tDQSCK.MAX – tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED)
= - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!)
10) Input clock jitter spec parameter. These parameters are referred to as 'input clock jitter spec parameters' and these parameters apply to
DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution.
11) These parameters are specified per their average values, however it is understood that the relationship between the average timing and
the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations).
12) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level
to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe
crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See
Figure 9.
13) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.
14) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal
((L/U/R)DQS / DQS) crossing.
15) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to
the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing
at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and
VIH.DC.MIN. See Figure 9.
16) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level
which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) .
17) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output
slew rate mismatch between DQS / DQS and associated DQ in any given cycle.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
44
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
18) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter.
It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the
following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the
minimum of the actual instantaneous clock low time.
19) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is
transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next
transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation
of the output drivers.
20) tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under
the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}
Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system
provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum.
21) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing.
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal
crossing. That is, these parameters should be met whether clock jitter is present or not.
22) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied
to the device under test. See Figure 10.
23) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to
its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC,
etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should
be met whether clock jitter is present or not.
24) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied
to the device under test. See Figure 10.
25) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving
(tRPST), or begins driving (tRPRE). Figure 8 shows a method to calculate these points when the device is no longer driving (tRPST), or begins
driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the
calculation is consistent.
26) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps
and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX
+ tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!).
27) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps
and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX
+ tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!).
28) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in
clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support
tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at
Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter.
29) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result
of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For
DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.
30) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR.
31) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.
32) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during
the time period of tIS + 2 x tCK + tIH.
33) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when
the ODT resistance is fully on. Both are measured from tAOND.
34) ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD.
35) When the device is operated with input clock jitter, this parameter needs to be derated by {–tJIT.DUTY.MAX – tERR(6-10PER).MAX} and {–tJIT.DUTY.MIN
– tERR(6-10PER).MIN } of the actual input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter
into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272 ps, tERR(6- 10PER).MAX = + 293 ps, tJIT.DUTY.MIN = – 106 ps and tJIT.DUTY.MAX = + 94 ps,
then tAOF.MIN(DERATED) = tAOF.MIN + {– tJIT.DUTY.MAX – tERR(6-10PER).MAX} = – 450 ps + {– 94 ps – 293 ps} = – 837 ps and tAOF.MAX(DERATED) = tAOF.MAX
+ {– tJIT.DUTY.MIN – tERR(6-10PER).MIN} = 1050 ps + {106 ps + 272 ps} = + 1428 ps. (Caution on the MIN/MAX usage!)
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
45
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
FIGURE 8
Method for calculating transitions and endpoint
VOH - x mV
VTT + 2x mV
VOH - 2x mV
VTT + x mV
tLZ
tHZ
tRPRE begin point
tRPST end point
VOL + 2x mV
VTT - x mV
VOL + x mV
VTT - 2x mV
T1 T2
T1 T2
tHZ,tRPST end point = 2*T1-T2
tLZ,tRPRE begin point = 2*T1-T2
FIGURE 9
Differential input waveform timing - tDS and tDS
DQS
DQS
tDS
tDH
tDS
tDH
VDDQ
VIH(ac) min
VIH(dc) min
VREF(dc)
VIL(dc) max
VIL(ac) max
VSS
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
46
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
FIGURE 10
Differential input waveform timing - tlS and tlH
CK
CK
tIS
tIH
tIS
tIH
VDDQ
VIH(ac) min
VIH(dc) min
VREF(dc)
VIL(dc) max
VIL(ac) max
VSS
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
47
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
TABLE 44
Timing Parameter by Speed Grade - DDR2–533
Parameter
Symbol
DDR2–533
Unit
Note1)2)3)4)5)
6)7)
Min.
Max.
tAC
tCCD
tCH
tCKE
tCL
tDAL
–500
+500
ps
2
—
0.45
0.55
3
—
0.45
0.55
WR + tRP
—
tCK
tCK
tCK
tCK
tCK
Minimum time clocks remain ON after CKE
asynchronously drops LOW
tDELAY
tIS + tCK + tIH
––
ns
9)
DQ and DM input hold time (differential data
strobe)
tDH(base)
225
––
ps
10)
–25
—
ps
11)
tDIPW
tDQSCK
tDQSL,H
tDQSQ
0.35
—
tCK
–450
+450
ps
0.35
—
tCK
—
300
ps
tDQSS
tDS(base)
– 0.25
+ 0.25
tCK
100
—
ps
11)
–25
—
ps
11)
tDSH
0.2
—
tCK
DQS falling edge to CK setup time (write cycle) tDSS
0.2
—
tCK
37.5
—
ns
50
—
ns
DQ output access time from CK / CK
CAS A to CAS B command period
CK, CK high-level width
CKE minimum high and low pulse width
CK, CK low-level width
Auto-Precharge write recovery + precharge
time
DQ and DM input hold time (single ended data tDH1(base)
strobe)
DQ and DM input pulse width (each input)
DQS output access time from CK / CK
DQS input low (high) pulse width (write cycle)
DQS-DQ skew (for DQS & associated DQ
signals)
Write command to 1st DQS latching transition
DQ and DM input setup time (differential data
strobe)
DQ and DM input setup time (single ended data tDS1(base)
strobe)
DQS falling edge hold time from CK (write
cycle)
Four Activate Window period
Clock half period
Data-out high-impedance time from CK / CK
Address and control input hold time
Address and control input pulse width
(each input)
Address and control input setup time
DQ low-impedance time from CK / CK
DQS low-impedance from CK / CK
Mode register set command cycle time
OCD drive mode output delay
Data output hold time from DQS
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
tFAW
tHP
tHZ
tIH(base)
tIPW
48
11)
13)
12)
MIN. (tCL, tCH)
tIS(base)
tLZ(DQ)
tLZ(DQS)
tMRD
tOIT
tQH
8)18)
—
tAC.MAX
ps
13)
375
—
ps
11)
0.6
—
tCK
250
—
ps
11)
2 × tAC.MIN
ps
14)
tAC.MIN
tAC.MAX
tAC.MAX
ps
14)
2
—
tCK
0
12
ns
tHP –tQHS
—
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2–533
Unit
Note1)2)3)4)5)
6)7)
Data hold skew factor
Average periodic refresh Interval
tQHS
tREFI
Min.
Max.
—
400
ps
—
7.8
µs
14)15)
—
3.9
µs
16)18)
—
ns
17)
Auto-Refresh to Active/Auto-Refresh
command period
tRFC
105
Precharge-All (4 banks) command period
tRP
tRP
tRPRE
tRPST
tRRD
tRP + 1tCK
—
ns
15 + 1tCK
—
ns
0.9
1.1
14)
0.40
0.60
tCK
tCK
7.5
—
ns
14)18)
10
—
ns
16)20)
tRTP
tWPRE
tWPST
tWR
7.5
—
ns
0.25 x tCK
—
0.40
0.60
tCK
tCK
15
—
ns
Write recovery time for write with AutoPrecharge
WR
tWR/tCK
—
tCK
20)
Internal Write to Read command delay
tWTR
tXARD
7.5
—
ns
21)
2
—
tCK
22)
Exit active power-down mode to Read
command (slow exit, lower power)
tXARDS
6 – AL
—
tCK
22)
Exit precharge power-down to any valid
command (other than NOP or Deselect)
tXP
2
—
tCK
Exit Self-Refresh to non-Read command
tXSNR
tXSRD
tRFC +10
—
ns
200
—
tCK
Precharge-All (8 banks) command period
Read preamble
Read postamble
Active bank A to Active bank B command
period
Internal Read to Precharge command delay
Write preamble
Write postamble
Write recovery time for write without AutoPrecharge
Exit power down to any valid command
(other than NOP or Deselect)
Exit Self-Refresh to Read command
14)
19)
1) For details and notes see the relevant Qimonda component data sheet
2) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V. See notes 5)6)7)8)
3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS/ RDQS,
input reference level is the crosspoint when in differential strobe mode.
6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
7) The output timing reference voltage level is VTT.
8) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to
the WR parameter stored in the MR.
9) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.
10) For timing definition, refer to the Component data sheet.
11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate
mis-match between DQS / DQS and associated DQ in any given cycle.
12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can
be greater than the minimum specification limits for tCL and tCH).
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
49
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These
parameters are verified by design and characterization, but not subject to production test.
14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C
and 95 °C.
15) 0 °C≤ TCASE ≤ 85 °C
16) 85 °C < TCASE ≤ 95 °C
17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
18) The tRRD timing parameter depends on the page size of the DRAM organization. See.
19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
20) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK
refers to the application clock period. WR refers to the WR parameter stored in the MRS.
21) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.
22) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow
power-down exit timing tXARDS has to be satisfied.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
50
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
TABLE 45
Timing Parameter by Speed Grade - DDR2-400
Parameter
Symbol
DDR2–400
Unit
Note1)2)3)4)5)
6)7)
Min.
Max.
tAC
tCCD
tCH
tCKE
tCL
tDAL
–600
+600
ps
2
—
0.45
0.55
3
—
0.45
0.55
WR + tRP
—
tCK
tCK
tCK
tCK
tCK
Minimum time clocks remain ON after CKE
asynchronously drops LOW
tDELAY
tIS + tCK + tIH
––
ns
9)
DQ and DM input hold time (differential data
strobe)
tDH(base)
275
––
ps
10)
–25
—
ps
11)
tDIPW
tDQSCK
tDQSL,H
tDQSQ
0.35
—
tCK
–500
+500
ps
0.35
—
tCK
—
350
ps
tDQSS
tDS(base)
– 0.25
+ 0.25
tCK
150
—
ps
11)
DQ and DM input setup time (single ended
data strobe)
tDS1(base)
–25
—
ps
11)
DQS falling edge hold time from CK (write
cycle)
tDSH
0.2
—
tCK
DQS falling edge to CK setup time (write cycle) tDSS
0.2
—
tCK
37.5
—
ns
50
—
ns
DQ output access time from CK / CK
CAS A to CAS B command period
CK, CK high-level width
CKE minimum high and low pulse width
CK, CK low-level width
Auto-Precharge write recovery + precharge
time
DQ and DM input hold time (single ended data tDH1(base)
strobe)
DQ and DM input pulse width (each input)
DQS output access time from CK / CK
DQS input low (high) pulse width (write cycle)
DQS-DQ skew (for DQS & associated DQ
signals)
Write command to 1st DQS latching transition
DQ and DM input setup time (differential data
strobe)
Four Activate Window period
Clock half period
Data-out high-impedance time from CK / CK
Address and control input hold time
Address and control input pulse width
(each input)
Address and control input setup time
DQ low-impedance time from CK / CK
DQS low-impedance from CK / CK
Mode register set command cycle time
OCD drive mode output delay
Data output hold time from DQS
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
tFAW
tHP
tHZ
tIH(base)
tIPW
51
11)
13)
12)
MIN. (tCL, tCH)
tIS(base)
tLZ(DQ)
tLZ(DQS)
tMRD
tOIT
tQH
8)22)
—
tAC.MAX
ps
13)
475
—
ps
11)
0.6
—
tCK
350
—
ps
11)
2 × tAC.MIN
ps
14)
tAC.MIN
tAC.MAX
tAC.MAX
ps
14)
2
—
tCK
0
12
ns
tHP –tQHS
—
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2–400
Unit
Note1)2)3)4)5)
6)7)
Min.
Max.
—
450
ps
—
7.8
µs
14)15)
—
3.9
µs
16)18)
105
—
ns
17)
tRP + 1tCK
15 + 1tCK
—
ns
—
ns
0.9
1.1
14)
0.40
0.60
tCK
tCK
7.5
—
ns
14)18)
10
—
ns
16)20)
tRTP
tWPRE
tWPST
tWR
7.5
—
ns
0.25 x tCK
—
0.40
0.60
tCK
tCK
15
—
ns
Write recovery time for write with AutoPrecharge
WR
tWR/tCK
—
tCK
20)
Internal Write to Read command delay
tWTR
tXARD
10
—
ns
21)
2
—
tCK
22)
Exit active power-down mode to Read
command (slow exit, lower power)
tXARDS
6 – AL
—
tCK
22)
Exit precharge power-down to any valid
command (other than NOP or Deselect)
tXP
2
—
tCK
Exit Self-Refresh to non-Read command
tXSNR
tXSRD
tRFC +10
—
ns
200
—
tCK
Data hold skew factor
Average periodic refresh Interval
tQHS
tREFI
Auto-Refresh to Active/Auto-Refresh
command period
Precharge-All (4 banks) command period
Precharge-All (8 banks) command period
Read preamble
Read postamble
Active bank A to Active bank B command
period
Internal Read to Precharge command delay
Write preamble
Write postamble
Write recovery time for write without AutoPrecharge
Exit power down to any valid command
(other than NOP or Deselect)
Exit Self-Refresh to Read command
tRP
tRP
tRPRE
tRPST
tRRD
14)
19)
1) For details and notes see the relevant Qimonda component data sheet
2) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V. See notes 5)6)7)8)
3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS/ RDQS,
input reference level is the crosspoint when in differential strobe mode.
6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
7) The output timing reference voltage level is VTT.
8) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to
the WR parameter stored in the MR.
9) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.
10) For timing definition, refer to the Component data sheet.
11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate
mis-match between DQS / DQS and associated DQ in any given cycle.
12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can
be greater than the minimum specification limits for tCL and tCH).
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
52
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These
parameters are verified by design and characterization, but not subject to production test.
14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C
and 95 °C.
15) 0 °C≤ TCASE ≤ 85 °C
16) 85 °C < TCASE ≤ 95 °C
17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
18) The tRRD timing parameter depends on the page size of the DRAM organization. See .
19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
20) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK
refers to the application clock period. WR refers to the WR parameter stored in the MRS.
21) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.
22) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow
power-down exit timing tXARDS has to be satisfied.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
53
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
7.3
ODT AC Electrical Characteristics
This chapter contains the ODT AC electrical characteristic tables.
TABLE 46
ODT AC Characteristics and Operating Conditions for DDR2-667 & DDR2-800
Symbol
tAOND
tAON
tAONPD
tAOFD
tAOF
tAOFPD
tANPD
tAXPD
Parameter / Condition
Values
Unit
Min.
Max.
ODT turn-on delay
2
2
tCK
ODT turn-on
tAC.MIN
tAC.MIN + 2 ns
tAC.MAX + 0.7 ns
2 tCK + tAC.MAX + 1 ns
ns
ODT turn-on (Power-Down Modes)
Note
1)
ns
ODT turn-off delay
2.5
2.5
tCK
ODT turn-off
tAC.MAX + 0.6 ns
2.5 tCK + tAC.MAX + 1 ns
ns
ODT turn-off (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ODT to Power Down Mode Entry Latency
3
—
ODT Power Down Exit Latency
8
—
tCK
tCK
2)
ns
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when
the ODT resistance is fully on. Both are measure from tAOND.
2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD.
TABLE 47
ODT AC Characteristics and Operating Conditions for DDR2-533 & DDR2-400
Symbol
tAOND
tAON
tAONPD
tAOFD
tAOF
tAOFPD
tANPD
tAXPD
Parameter / Condition
Values
Unit
Min.
Max.
ODT turn-on delay
2
2
tCK
ODT turn-on
tAC.MIN
tAC.MIN + 2 ns
tAC.MAX + 1 ns
2 tCK + tAC.MAX + 1 ns
ns
ODT turn-on (Power-Down Modes)
Note
1)
ns
ODT turn-off delay
2.5
2.5
tCK
ODT turn-off
tAC.MAX + 0.6 ns
2.5 tCK + tAC.MAX + 1 ns
ns
ODT turn-off (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ODT to Power Down Mode Entry Latency
3
—
ODT Power Down Exit Latency
8
—
2)
ns
tCK
tCK
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when
the ODT resistance is fully on. Both are measure from tAOND.
2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD.
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
54
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
8
Package Dimensions
This chapter contains the Package Dimension tables.
FIGURE 11
Package Outline PG-TFBGA-60
[ $
[ 0
$;
%
0$
;
&
0,1
0$
;
&
¡“ [
¡ 0 $ %
&
¡ 0
'
XPP
\ SDGVZLWKRX WE DOO
0
LGGOHR IS DFN D JHVHGJHV
3
D FN DJH RULH QWDWLRQPD UN$
%
DGXQLWPD UNLQJ %80
'
LHV RUWILGXFLDO
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
55
7 ,1*
3/$1(
& 6($
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
FIGURE 12
Package Outline P-TFBGA-84
[ $
[ 0
$;
%
0$
;
&
0
$;
0
,1
&
¡ “
[
¡ 0 $ %
&
¡ 0
'
XPP
\ SDGV Z
LWK RXWE DOO
0
LGGOHRISDFN DJHVHGJ HV
3
D FN D JHRULHQWDWLRQP
DUN$
%
DGXQ LWP
DUNLQJ %80
'
LHV R UWILGXF LDO
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
56
*3
/$1(
& 6($7 ,1
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
9
Product Nomenclature
For reference the Qimonda SDRAM component nomenclature is enclosed in this chapter.
TABLE 48
Nomenclature Fields and Examples
Example for
DDR2 DRAM
Field Number
1
2
3
4
5
6
HYB
18
TC
512
16
7
8
9
10
0
A
C
–3.7
11
TABLE 49
DDR2 Memory Components
Field
Description
Values
Coding
1
QIMONDA
Component Prefix
HYB
Constant
2
Interface Voltage [V]
18
SSTL_18
3
DRAM Technology, consumer variant
TC
DDR2
4
Component Density [Mbit]
256
256 M
512
512 M
5+6
Number of I/Os
7
Product Variations
8
Die Revision
1G
1 Gb
40
x4
80
x8
16
x16
0 .. 9
look up table
A
First
B
Second
FBGA, lead-containing
9
Package,
Lead-Free Status
C
F
FBGA, lead-free
10
Speed Grade
–2.5
DDR2–800 6–6–6
–3
DDR2–667 4–4–4
–3S
DDR2–667 5–5–5
–3.7
DDR2–533 4–4–4
–5
DDR2–400 3–3–3
11
N/A for Components
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
57
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Pin Configuration for ×4 components, PG-TFBGA-60 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Configuration for ×8 components, PG-TFBGA-60-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Configuration for ×16 components, PG-TFBGA-84-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single-ended AC Input Test Conditions Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential DC and AC Input and Output Logic Levels Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC Overshoot / Undershoot Diagram for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . . . . . . . . . .
Method for calculating transitions and endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input waveform timing - tDS and tDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input waveform timing - tlS and tlH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Outline PG-TFBGA-60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Outline P-TFBGA-84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
58
12
13
14
28
29
31
32
46
46
47
55
56
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35
Table 36
Table 37
Table 38
Table 39
Table 40
Table 41
Table 42
Table 43
Table 44
Table 45
Table 46
Table 47
Table 48
Table 49
Performance tables for –2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Performance table for –3(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Performance table for –3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Performance table for –5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Ordering Information for RoHS compliant products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Configuration of DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Abbreviations for Pin Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
DDR2 Addressing for ×8 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
DDR2 Addressing for ×16 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Mode Register Definition (BA[2:0] = 000B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Extended Mode Register Definition (BA[2:0] = 001B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
EMRS(2) Programming Extended Mode register Definition (BA[2:0]=010B) . . . . . . . . . . . . . . . . . . . . . . . . . . 20
EMR(3) Programming Extended Mode Register Definition (BA[2:0]=010B) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
ODT Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Burst Length and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Clock Enable (CKE) Truth Table for Synchronous Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Command Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Data Mask (DM) Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
DRAM Component Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Recommended DC Operating Conditions (SSTL_18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
ODT DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Input and Output Leakage Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
DC & AC Logic Input Levels for DDR2-667 and DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DC & AC Logic Input Levels for DDR2-533 and DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Single-ended AC Input Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Differential DC and AC Input and Output Logic Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
SSTL_18 Output DC Current Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
SSTL_18 Output AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
OCD Default Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
AC Overshoot / Undershoot Specification for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . . . . . . 32
IDD Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Definition for IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
IDDSpecification for HYB18T512xxxBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Speed Grade Definition Speed Bins for DDR2–800E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Speed Grade Definition Speed Bins for DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Speed Grade Definition Speed Bins for DDR2–533C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Speed Grade Definition Speed Bins for DDR2–400B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Timing Parameter by Speed Grade - DDR2–800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Timing Parameter by Speed Grade - DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Timing Parameter by Speed Grade - DDR2–533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Timing Parameter by Speed Grade - DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
ODT AC Characteristics and Operating Conditions for DDR2-667 & DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . 54
ODT AC Characteristics and Operating Conditions for DDR2-533 & DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . 54
Nomenclature Fields and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
DDR2 Memory Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
59
Internet Data Sheet
HYB18TC512[16/80]0BF
512-Mbit Double-Data-Rate-Two SDRAM
Table of Contents
1
1.1
1.2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
2.1
2.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
CPin Configuration for TFBGA–60 TFBGA–84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
512 Mbit DDR2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4
Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5
5.1
5.2
5.3
5.4
5.5
5.6
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC & AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Buffer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overshoot and Undershoot Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7
7.1
7.2
7.3
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9
Product Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
25
25
26
27
29
30
31
36
36
39
54
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Rev. 1.11, 2006-09
03292006-HDLH-OAY6
60
Internet Data Sheet
Edition 2006-09
Published by Qimonda AG
Gustav-Heinemann-Ring 212
D-81739 München, Germany
© Qimonda AG 2006.
All Rights Reserved.
Legal Disclaimer
The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind,
including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office.
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please
contact your nearest Qimonda Office.
Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a
failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect
the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human
body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
www.qimonda.com
Similar pages