LED Driver ICs for High Power LEDs ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Data Sheet Revision 3.2, 2014-07-09 Power Management and Multimarket Edition 2014-07-09 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Revision History Page or Item Subjects (major changes since previous revision) Revision 3.2, 2014-07-09 Table 2 Footnote 1 updated respective ESD protection on pin VS Revision 3.1, 2014-06-05 Table 1 Pin 1 function changed to bias control input voltage Table 2 Upper spec limit of bias control voltage changed to VS Table 4 Operating conditions for bias control voltage VB added Figure 6 Pin 1 to VS connection updated Revision 3.0, 2013-10-10 All Initial release of final data sheet Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-11-11 Data Sheet 3 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Product Brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5 5.1 5.2 5.3 5.4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6.1 6.2 Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Setting the average LED current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Inductor Selection Guideline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Data Sheet 4 12 12 14 15 16 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC List of Figures List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Data Sheet Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Total Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Typical Output Current Duty Cycle of Over-Temperature Protection vs. TJ and RTadj . . . . . . . . . . 13 PWM Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Typical Integrated PWM Duty Cycle vs. PWM Control Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Minimum Inductance for 0.35 A Average LED Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Minimum Inductance for 0.7 A Average LED Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Minimum Inductance for 1.5 A Average LED Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Package outline PG-DSO-8-27 (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Recommended PCB Footprint for Reflow Soldering (dimensions in mm) . . . . . . . . . . . . . . . . . . . 24 Tape Loading (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC List of Tables List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Data Sheet Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Maximum Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Digital Control Parameter at Pin PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Analog Control Parameter at Pin PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6 Revision 3.2, 2014-07-09 60 V / 1.5 A High Efficiency Step-Down LED Driver IC 1 • • • • • • • • • • • • Features Wide input voltage range from 4.5 V to 60 V Capable to provide up to 1.5 A average output current Up to 1 MHz switching frequency Soft-start capability Analog and PWM dimming possible Integrated PWM generator for analog dimming input Typical 3% output current accuracy Very low LED current drift over temperature Adjustable over-temperature protection Undervoltage lockout Over-current protection Thermally optimized package: PG-DSO-8-27 Applications • • • • LED driver for general lighting Retail, office and residential downlights Street and tunnel lighting LED ballasts Product Name Package Marking ILD6150 PG-DSO-8-27 ILD6150 Data Sheet 7 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Product Brief 2 Product Brief The ILD6150 is a hysteretic buck LED driver IC for driving high power LEDs in general lighting applications with average currents up to 1.5 A. The ILD6150 is suitable for LED applications with a wide range of supply voltages from 4.5 V to 60 V. A multifunctional PWM input signal allows dimming of the LEDs with an analog DC voltage or an external PWM signal. To minimize colorshifts of the LEDs an analog PWM voltage is converted to an internal 1.6 kHz PWM signal modulating the LED current. The ILD6150 incorporates an undervoltage lock-out that will shut down the IC when the minimum supply voltage threshold is exceeded. The over-current protection turns off the output stage once the output current is above the current threshold. An integrated over-temperature protection circuit will start to reduce the LED current by internal PWM modulation once the adjustable junction temperature threshold of the IC is exceeded. Realizing a thermal coupling between LED driver IC and LEDs this feature eliminates the need of external temperature sensors as NTCs or PTCs. Thanks to the hysteretic concept the current control is extremely fast and always stable. A maximum contrast ratio of 3000:1 can be achieved depending of the dimensioning of the external components. The efficiency of the LED driver IC is remarkable high, reaching up to 98% of efficiency over a wide range. The output current accuracy from device to device and under all load conditions and over temperature is limited to a minimum, making ILD6150 the perfect fit for LED ballasts. ILD6150 Buck LED Driver VB 1 8 Tadj 7 VS 6 Vsense 5 Vswitch UVLO VSTAB PWM 2 GND 3 Vstab I/ V VREF Hysteretic Comparator DC to PWM OTP OCP GND 4 EP Figure 1 Data Sheet Block Diagram 8 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Product Brief Pin Definition Table 1 Pin Definition and Function Pin No. Name Pin Type Buffer Type Function 1 VB Input – Bias control input voltage, recommended to connect to pin VS 2 PWM Input – Dimming signal: • Analog dimming • PWM dimming 3 GND GND – IC ground 4 GND GND – IC ground 5 Vswitch Output – Power switch output 6 Vsense Input – LED current sense input 7 VS Input – Supply voltage 8 Tadj Output – Over-temperature adjustment EP Exposed Pad GND – IC ground and heat spreader Data Sheet 9 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Maximum Ratings 3 Maximum Ratings Table 2 Maximum Ratings Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Supply voltage VS -0.3 – 60 V – Bias control voltage VB -0.3 – VS V – PWM voltage VPWM -0.3 – 5.5 V – Tadj voltage VTadj -0.3 – 3.5 V – Sense voltage Vsense VS - 0.3 – VS V – Switch voltage Vswitch -0.3 – 60 V – Average switch output current Iout – – 1.5 A – Total power dissipation, TS ≤ 116°C Ptot – – 2 W – Junction temperature TJ -40 – 150 °C – TSTG -65 – 150 °C – VESD HBM – – 2 kV HBM acc. to JESD22 - A114 Storage temperature range ESD capability at all pins 1) 1) Two different classes of ESD protection elements are implemented within ILD6150: 1. ESD protection at pin VS will be triggered if the voltage at pin VS rises by more than 5 V with a slew rate of more than 5 V/µs. This condition is met during an ESD event, but might also occur if the LED driver gets hotplugged into a power supply and the VS blocking capacitor has a too small capacitance. ESD protection will remain triggered as long as the slewrate condition is met. If the ESD protection gets triggered while VS is supplied the IC might be damaged. 2. ESD protection at all other pins is triggered once the connected voltage signal exceeds a threshold higher than the maximum voltage rating specified for each pin. No preventions regarding slew rate control need to be taken for these pins. Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Data Sheet 10 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Thermal Characteristics 4 Thermal Characteristics Table 3 Maximum Thermal Resistance Parameter Symbol 1) Junction - soldering point Values RthJS Min. Typ. Max. – 17 – Unit Note / Test Condition K/W – 1) For calculation of RthJA please refer to application note AN077 (Thermal Resistance Calculation) 2.5 Ptot [W] 2 1.5 1 0.5 0 Figure 2 0 20 40 60 80 TS [°C] 100 120 140 160 Total Power Dissipation The major part of the IC power dissipation is caused by the switch resistance in conductive state. Therefore Equation (1) is a first estimation to calculate the total power dissipation of the IC Ptot = RON ⋅ I out ⋅ D + I S ⋅ VS 2 (1) D: Duty cycle of the output switch For a more precise analysis measure the soldering point temperature TS of ILD6150 at GND pin and use Figure 2 as a reference. Data Sheet 11 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Electrical Characteristics 5 Electrical Characteristics 5.1 DC Characteristics All parameters at TA = 25 °C, unless otherwise specified. Table 4 DC Characteristics Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Operating supply voltage VS 4.5 – 60 V – Operating bias control voltage VB 4.5 – VS V recommended to connect to VS Under Voltage Lock Out VS, UV, off 4.05 4.25 4.45 V IC deactivated1) VS, UV, on 4.15 4.35 4.50 V IC operative IS, OL, 4.5V 1.55 2.1 2.65 mA VS = 4.5 V IS, OL, 12V 1.60 2.2 2.70 mA VS = 12 V IS, OL, 60V 1.60 2.24 2.80 mA VS = 60 V Supply voltage reset time tS, reset 105 160 210 µs Reset time after VS power up2) Current of Vsense input Isense 12 17 22 µA At any LED current Current of VB input IB, 60V 35 55 70 µA VB = 60 V Output over current protection threshold Iout, OCP 2.2 2.5 2.9 A 160 220 300 ns turn off delay Supply current consumption open load VS = Vsense, ILED = 0 mA Output over current protection delay time tdelay, OCP Output over current protection time out ttimeout, OCP 30 57 – µs turn off duration3) Over-temperature protection threshold range (typical), 10 % reduction TOTP, range 75 – 145 °C RTadj = 35 kΩ ... 0 Ω4) Over-temperature protection threshold open, 10 % reduction TOTP, open – 115 – °C RTadj ≥ 150 kΩ Over-temperature protection threshold short, 10 % reduction TOTP, short – 145 – °C RTadj = 0 Ω Over-temperature protection, turn off TOTP, off – 160 – °C Tadj pin current source to GND ITadj, short -75 -60 -45 µA RTadj = 0 Ω5) 1) IC gets deactivated once the supply voltage drops below VS, UV, off and gets operative once supply voltage rises above VS, UV, on. 2) Reset timer starts after supply voltage exceeds the lower limit of the supply voltage. Output stage gets enabled once reset timer expires. 3) Once the over current protection threshold has been exceeded the output switch gets disabled. It is enabled again once the time out expired. 4) TOTP, range specifies the typical temperature tuning range achievable at a 10 % reduction of LED current using resistors with 1 % accuracy. Temperatures specified refer to junction temperature on chip. Accuracy of the temperature sensor is typical ±5 K. Any resistor value RTadj ≥ 0 Ω can be selected but it might not influence OTP temperature if out of the ranges specified. 5) Definition of current reference: Currents flowing out of the IC have a negative magnitude. ILD6150 has an integrated over-temperature protection based upon the junction temperature on chip. The threshold of the over-temperature protection circuit is tunable by resistor RTadj connected from pin Tadj to GND. Data Sheet 12 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Electrical Characteristics RTadj resistor values within 0 to 35 kΩ define the over-temperature protection behavior as shown in Figure 3. RTadj values ≥ 150 kΩ set the OTP threshold to TOTP, open. The over-temperature protection is based upon modulation of the LED current with an internal PWM generator. Once the junction temperature exceeds the OTP threshold the PWM duty cycle as well as the average LED current will get reduced. Once junction temperature reaches TOTP, off the PWM duty cycle and LED current will be reduced to zero. 100 Iout Duty Cycle [%] 80 60 40 0 kΩ 10 kΩ 20 kΩ 35 kΩ Open 20 0 60 Figure 3 Data Sheet 70 80 90 100 110 120 130 140 150 160 170 TJ [°C] Typical Output Current Duty Cycle of Over-Temperature Protection vs. TJ and RTadj 13 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Electrical Characteristics 5.2 Switching Characteristics All parameters at TA = 25 °C, unless otherwise specified. Table 5 Switching Characteristics Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition Switching frequency fswitch – – 1 MHz Mean current sense threshold voltage Vsense – 152 – mV fswitch = 100 kHz Sense threshold hysteresis Vsensehys – ±22 – % peak to average VS = 12 V fswitch = 100 kHz Output current variation over supply voltage Iout, Vs – ±3 – % Output current variation over temperature Iout, Ts – ±4 – % for temperatures below OTP threshold Output current variation over load Iout, load – ±3 – % fixed VS Switch on resistance RON, 25°C 0.2 0.23 0.26 Ω ISW = 1 A, TJ = 25 °C RON, 125°C 0.29 0.34 0.39 Ω ISW = 1 A, TJ = 125 °C Data Sheet 14 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Electrical Characteristics 5.3 Digital Control Signals All parameters at TA = 25 °C, unless otherwise specified. Dimming of the LED current can be achieved by an analog or digital input voltage connected to pin PWM. A digital input signal will modulate the LED current according to Table 6. Table 6 Digital Control Parameter at Pin PWM1) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition PWM voltage logic high level VPWM, high 2.6 – 5.5 V output stage enabled PWM voltage logic low level VPWM, low -0.3 – 0.5 V output stage disabled PWM output current ICC,PWM -23 -18 -12 µA VPWM = 0 V PWM delay time td, PWM, on – 0.8 – µs VPWM = rising to 2.5 V Vswitch = falling to 1V td, PWM, off – 0.6 – µs VPWM = falling to 0.5 V Vswitch = rising to 1V PWM signal frequency fPWM, ext – – 25 kHz 1) PWM pin has an internal pull-up circuit to high level if not connected externally on PCB 4.7 V ICC,PWM PWM Figure 4 PWM Input An analog PWM input voltage activates modulation of the LED current by the integrated PWM generator running at frequency fPWM, int. Its duty cycle corresponds to analog PWM control voltage as shown in Table 7 and Figure 5. Data Sheet 15 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Electrical Characteristics Table 7 Analog Control Parameter at Pin PWM Parameter Symbol Values Unit Min. Typ. Max. PWM input voltage for 0% duty cycle VPWM, 0% – 0.61 – V PWM input voltage for 50% duty cycle VPWM, 50% – 1.52 – V PWM input voltage for 100% duty VPWM, 100% – cycle 2.43 – V 55 – %/V 1.6 2.1 kHz Sensitivity of PWM duty cycle vs. PWM input voltage D.C./VPWM – Integrated PWM generator frequency fPWM, int 1.2 Note / Test Condition PWM Duty Cycle [%] 100 80 60 40 20 0 0 0.5 1 1.5 VPWM [V] 2 Figure 5 Typical Integrated PWM Duty Cycle vs. PWM Control Voltage 5.4 Switching Parameters 2.5 3 For all shown switching parameters ILD6150 has been measured on evaluation board ILD6150 at TA = 25 °C. Used LEDs have a typical VfLED of 3 V. Efficiency figure shows total efficiency of the application board including losses of external components as inductor or Schottky diode. See the application note for further details. Data Sheet 16 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Electrical Characteristics Performance vs. supply voltage and number of LEDs: Rsense = 100 mΩ, L = 47 µH, VfLED = 3 V ILED versus VS and number of LEDs Relative change of ILED versus VS and number of LEDs 3 1.540 1.530 2 ILEDrelative [%] ILED [A] 1.520 1.510 1.500 1.490 1.480 1.470 1 0 -1 -2 1.460 0 5 10 15 20 25 4 LEDs 5 LEDs 6 LEDs 1 LED 2 LEDs 3 LEDs 30 35 VS [V] 40 45 7 LEDs 8 LEDs 9 LEDs 50 55 -3 60 10 LEDs 0 5 10 15 Efficiency versus VS and number of LEDs 30 35 VS [V] 40 7 LEDs 8 LEDs 9 LEDs 45 50 55 60 10 LEDs fSwitch versus VS and number of LEDs 800 0.9 600 fSwitch [kHz] Efficiency [-] 25 4 LEDs 5 LEDs 6 LEDs 1 LED 2 LEDs 3 LEDs 1 0.8 0.7 0.6 20 400 200 0 5 10 15 20 25 4 LEDs 5 LEDs 6 LEDs 1 LED 2 LEDs 3 LEDs 30 35 VS [V] 40 45 7 LEDs 8 LEDs 9 LEDs 50 55 0 60 10 LEDs 0 1 LED 2 LEDs 3 LEDs 5 10 15 20 4 LEDs 5 LEDs 6 LEDs 25 30 35 VS [V] 7 LEDs 8 LEDs 9 LEDs 40 45 50 55 60 10 LEDs Duty Cycle versus VS and number of LEDs 1 0.9 0.8 Duty Cycle [-] 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 1 LED 2 LEDs 3 LEDs Data Sheet 10 15 20 4 LEDs 5 LEDs 6 LEDs 25 30 35 VS [V] 7 LEDs 8 LEDs 9 LEDs 40 45 50 55 60 10 LEDs 17 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Electrical Characteristics Performance vs. supply voltage and number of LEDs: Rsense = 213 mΩ, L = 68 µH, VfLED = 3 V ILED versus VS and number of LEDs Relative change of ILED versus VS and number of LEDs 5 4 0.720 3 ILEDrelative [%] 0.730 ILED [A] 0.710 0.700 0.690 2 1 0 -1 -2 0.680 -3 0.670 -4 0 5 10 15 20 25 4 LEDs 5 LEDs 6 LEDs 1 LED 2 LEDs 3 LEDs 30 35 VS [V] 40 45 7 LEDs 8 LEDs 9 LEDs 50 55 -5 60 10 LEDs 0 5 10 15 Efficiency versus VS and number of LEDs 30 35 VS [V] 40 7 LEDs 8 LEDs 9 LEDs 45 50 55 60 10 LEDs fSwitch versus VS and number of LEDs 800 0.9 600 fSwitch [kHz] Efficiency [-] 25 4 LEDs 5 LEDs 6 LEDs 1 LED 2 LEDs 3 LEDs 1 0.8 0.7 0.6 20 400 200 0 5 10 15 20 25 4 LEDs 5 LEDs 6 LEDs 1 LED 2 LEDs 3 LEDs 30 35 VS [V] 40 45 7 LEDs 8 LEDs 9 LEDs 50 55 0 60 10 LEDs 0 1 LED 2 LEDs 3 LEDs 5 10 15 20 4 LEDs 5 LEDs 6 LEDs 25 30 35 VS [V] 7 LEDs 8 LEDs 9 LEDs 40 45 50 55 60 10 LEDs Duty Cycle versus VS and number of LEDs 1 0.9 0.8 Duty Cycle [-] 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 1 LED 2 LEDs 3 LEDs Data Sheet 10 15 20 4 LEDs 5 LEDs 6 LEDs 25 30 35 VS [V] 7 LEDs 8 LEDs 9 LEDs 40 45 50 55 60 10 LEDs 18 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Electrical Characteristics Performance vs. supply voltage and number of LEDs: Rsense = 422 mΩ, L = 150 µH, VfLED = 3 V ILED versus VS and number of LEDs Relative change of ILED versus VS and number of LEDs 5 4 0.365 3 ILEDrelative [%] 0.370 ILED [A] 0.360 0.355 0.350 2 1 0 -1 -2 0.345 -3 0.340 -4 0 5 10 15 20 25 4 LEDs 5 LEDs 6 LEDs 1 LED 2 LEDs 3 LEDs 30 35 VS [V] 40 45 7 LEDs 8 LEDs 9 LEDs 50 55 -5 60 10 LEDs 0 5 10 15 Efficiency versus VS and number of LEDs 30 35 VS [V] 40 7 LEDs 8 LEDs 9 LEDs 45 50 55 60 10 LEDs fSwitch versus VS and number of LEDs 800 0.9 600 fSwitch [kHz] Efficiency [-] 25 4 LEDs 5 LEDs 6 LEDs 1 LED 2 LEDs 3 LEDs 1 0.8 0.7 0.6 20 400 200 0 5 10 15 20 25 4 LEDs 5 LEDs 6 LEDs 1 LED 2 LEDs 3 LEDs 30 35 VS [V] 40 45 7 LEDs 8 LEDs 9 LEDs 50 55 0 60 10 LEDs 0 1 LED 2 LEDs 3 LEDs 5 10 15 20 4 LEDs 5 LEDs 6 LEDs 25 30 35 VS [V] 7 LEDs 8 LEDs 9 LEDs 40 45 50 55 60 10 LEDs Duty Cycle versus VS and number of LEDs 1 0.9 0.8 Duty Cycle [-] 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 1 LED 2 LEDs 3 LEDs Data Sheet 10 15 20 4 LEDs 5 LEDs 6 LEDs 25 30 35 VS [V] 7 LEDs 8 LEDs 9 LEDs 40 45 50 55 60 10 LEDs 19 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Electrical Characteristics LED current vs. soldering point temperature: Rsense = 213 mΩ, L = 47 µH, VfLED = 3 V, RTadj = 0 Ω. Note: Soldering point temperature was measured on application PCB close to chip exposed pad. See application note AN-EVAL-ILD6150 for board details. Over-temperature protection has been adjusted to max. threshold connecting Tadj pin to GND with RTadj = 0 Ω. ILED versus TS and number of LEDs, supply voltage ILED versus TS and number of LEDs, supply voltage 4 3 0.72 2 ILEDrel [%] ILED [A] 0.71 0.7 1 0 -1 0.69 -2 0.68 1 LED, 5 V 3 LEDs, 12 V 6 LEDs, 24 V 12 LEDs, 48 V -40 -20 0 -3 20 40 TS [°C] 60 80 100 1 LED, 5 V 3 LEDs, 12 V 6 LEDs, 24 V 12 LEDs, 48 V -4 -40 120 -20 0 20 40 TS [°C] 60 80 100 120 LED current vs. soldering point temperature: Rsense = 100 mΩ, L = 68 µH, VfLED = 3 V, RTadj = 0 Ω. ILED versus TS and number of LEDs, supply voltage ILED versus TS and number of LEDs, supply voltage 1.56 4 3 1.54 2 ILEDrel [%] ILED [A] 1.52 1.5 1.48 1 0 -1 -2 1.46 1 LED, 5 V 3 LEDs, 12 V 6 LEDs, 24 V 12 LEDs, 48 V 1.44 -40 Data Sheet -20 0 -3 20 40 TS [°C] 60 80 100 1 LED, 5 V 3 LEDs, 12 V 6 LEDs, 24 V 12 LEDs, 48 V -4 -40 120 20 -20 0 20 40 TS [°C] 60 80 100 120 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Application Circuit 6 Application Circuit Vs RTadj 1 8 UVLO VSTAB PWM 2 Vstab I/V VREF 7 L CPWM 1) Rsense 3 Hysteretic Comparator DC to PWM 6 OTP OCP 4 5 EP 1) Figure 6 Exposed pad to be connected to GND CPWM is optional for soft start Application Circuit A VS blocking capacitor shall be placed close to pin 7 to enable a low ripple Vsense measurement and to avoid a false triggering of the VS ESD protection element inside the IC. To enable the bias control of the IC it is most simple to connect pin 1 of the IC to supply voltage VS. 6.1 Setting the average LED current The average output current for the LEDs is set by the external sense resistor Rsense. To calculate the value of this resistor a first approximation can be calculated using Equation (2). Vsense is slightly dependent on the supply voltage VS and the number of LEDs as shown in Chapter 5.4. Rsense = Vsense I LED (2) Example calculation VS = 12 V, 47 µH, VfLED = 3 V, 3 LEDs in series → Vsense = 152 mV ILED = 1.5 A → Rsense = 101 mΩ Data Sheet 21 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Application Circuit An easy way to achieve these resistor values is to connect standard resistors in parallel. 6.2 Inductor Selection Guideline The inductance of the inductor L, the supply voltage VS, the number of LEDs driven and their average LED current significantly influence the slew rate of the LED current in on and off condition of the LED driver IC output switch. Due to the hysteretic current control ILD6150 will toggle the output driver stage each time upper or lower current threshold are reached. To maintain best regulation capability of the LED driver IC it is reasonable to keep a margin to the minimum switch on and off time defined by internal propagation delay times. Disregard of this recommendation by choosing too small inductor values might result in an increased LED current ripple and loss of LED current regulation accuracy. Minimum 350 ns on and off time are recommended as a reasonable design target for the inductor selection. Below figures provide a guideline concerning minimum inductance value versus supply voltage and number of LEDs. It is assumed that the forward voltage of each LED is within a range of 2.5 V to 3.9 V over temperature and LED production tolerances. Minimum forward voltage (e.g. occuring at high LED temperatures) needs to be considered with respect to the minimum switch on-time while maximum forward voltage (e.g. occuring at low temperatures) needs to be considered with respect to the switch off-time. The saturation current of the chosen inductor has to be higher than the peak LED current and the rating of its continous current needs to exceed the average LED current. 0.35 A VS [V] 5 10 15 20 25 30 35 40 45 50 55 60 Figure 7 Number of LEDs 1 2 3 4 5 6 7 8 9 10 15 22 33 47 33 47 68 47 47 47 68 68 68 68 47 68 68 100 100 68 68 68 68 100 100 100 100 100 68 68 100 100 150 100 100 100 100 100 100 100 100 150 150 150 150 100 100 100 100 100 100 150 150 150 150 150 150 100 100 100 100 150 150 150 150 150 150 150 150 100 100 150 220 220 150 150 150 150 150 150 150 150 Inductance in µH; 2.5 V ≤ VfLED ≤ 3.9 V Data Sheet 12 13 14 15 150 150 150 150 150 150 220 150 150 150 220 220 Minimum Inductance for 0.35 A Average LED Current 0.7 A Number of LEDs VS [V] 1 2 3 4 5 6 7 8 9 10 6.8 5 10 15 10 22 15 22 15 33 22 22 33 33 20 33 33 33 33 33 47 25 47 47 33 33 33 47 47 30 47 47 47 47 33 47 47 47 35 68 68 47 47 47 47 47 47 68 68 40 68 68 68 68 47 47 47 47 68 68 45 68 68 68 68 68 68 47 47 68 68 50 100 100 68 68 68 68 68 68 68 68 55 100 100 100 100 68 68 68 68 68 68 60 Inductance in µH; 2.5 V ≤ VfLED ≤ 3.9 V Figure 8 11 11 12 13 14 15 68 68 68 68 68 68 100 68 100 100 100 Minimum Inductance for 0.7 A Average LED Current 22 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Application Circuit 1.5 A VS [V] 5 10 15 20 25 30 35 40 45 50 55 60 Figure 9 Data Sheet Number of LEDs 1 2 3 4 5 6 7 8 9 10 4.7 6.8 10 10 10 10 15 10 10 15 15 15 15 15 15 22 22 22 15 15 15 22 22 22 22 22 22 15 22 22 22 33 33 22 22 22 22 22 22 33 33 33 33 33 33 22 22 22 22 33 33 33 33 33 33 33 33 22 22 33 33 47 33 33 33 33 33 33 33 33 33 47 47 47 33 33 33 33 33 33 33 Inductance in µH; 2.5 V ≤ VfLED ≤ 3.9 V 11 12 13 14 15 33 33 33 33 33 33 33 47 47 47 47 Minimum Inductance for 1.5 A Average LED Current 23 Revision 3.2, 2014-07-09 ILD6150 60 V / 1.5 A High Efficiency Step-Down LED Driver IC Package Information 7 Package Information 0.35 x 45˚ 1.27 0.41±0.09 2) 0.2 8˚ MAX. 0.19 +0.06 0.08 C Seating Plane C M 0.1 C D 2x 1.7 MAX. Stand Off (1.45) 0.1+0 -0.1 3.9 ±0.11) 0.64 ±0.25 C A-B D 8x D 0.2 6 ±0.2 M D 8x Bottom View 8 1 5 1 4 8 4 5 2.65 ±0.2 3 ±0.2 A B 4.9 ±0.11) 0.1 C A-B 2x Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width 3) JEDEC reference MS-012 variation BA Figure 10 PG-DSO-8-27-PO V01 Package outline PG-DSO-8-27 (dimensions in mm) 1.31 0.65 3 1.27 2.65 5.69 PG-DSO-8-27-FP V01 Recommended PCB Footprint for Reflow Soldering (dimensions in mm) 0.3 8 5.2 Pin 1 marking 6.4 12 ±0.3 Figure 11 1.75 2.1 PG-DSO-8-27-TP V05 Figure 12 Data Sheet Tape Loading (dimensions in mm) 24 Revision 3.2, 2014-07-09 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG