APT15GP90B(G) 900V TYPICAL PERFORMANCE CURVES APT15GP90B APT15GP90BG* ® *G Denotes RoHS Compliant, Pb Free Terminal Finish. POWER MOS 7 IGBT ® TO -2 47 The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss G C • SSOA Rated E • Low Gate Charge C • Ultrafast Tail Current shutoff G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT15GP90B(G) VCES Collector-Emitter Voltage 900 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 43 I C2 Continuous Collector Current @ TC = 110°C 21 I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 1 UNIT Volts Amps 60 Switching Safe Operating Area @ TJ = 150°C 60A @ 900V Total Power Dissipation 250 Operating and Storage Junction Temperature Range Watts -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 350µA) 900 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C) 3.2 3.9 Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C) 2.7 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = 900V, VGE = 0V, Tj = 25°C) 3 2 Collector Cut-off Current (VCE = 900V, VGE = 0V, Tj = 125°C) 250 2 Gate-Emitter Leakage Current (VGE = ±20V) 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Units Volts µA nA 2-2006 MIN Rev D Characteristic / Test Conditions 050-7470 Symbol APT15GP90B(G) DYNAMIC CHARACTERISTICS Symbol Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) tr td(off) tf Eon1 tf f = 1 MHz 32 Gate Charge 7.5 VGE = 15V 60 15V, L = 100µH,VCE = 900V TBD 200 Inductive Switching (125°C) 9 VCC = 600V 14 VGE = 15V 70 RG = 4.3Ω 100 TBD I C = 15A Eon1 Turn-on Switching Energy Eon2 Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy 44 55 µJ 430 6 Current Fall Time ns 55 TJ = +25°C Turn-off Delay Time nC 33 I C = 15A Current Rise Time V A 14 RG = 4.3Ω Turn-on Delay Time pF 60 9 5 UNIT 27 VCC = 600V 4 MAX 10 Inductive Switching (25°C) Current Fall Time Turn-off Switching Energy td(off) 120 TJ = 150°C, R G = 4.3Ω, VGE = Turn-off Delay Time Eoff tr VGE = 0V, VCE = 25V VGE = 15V Turn-on Switching Energy (Diode) td(on) 1100 I C = 15A Current Rise Time Eon2 TYP Capacitance VCE = 450V Turn-on Delay Time Turn-on Switching Energy MIN TJ = +125°C ns µJ 790 6 500 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .50 RθJC Junction to Case (DIODE) N/A WT Package Weight 5.9 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 050-7470 Rev D 2-2006 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES = 15V GE IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 50 TJ = 25°C 40 30 TJ = 125°C 20 10 0 IC, COLLECTOR CURRENT (A) 80 70 60 50 40 TJ = -55°C 30 TJ = 25°C 20 TJ = 125°C 10 0 0 30 TJ = 25°C 20 TJ = 125°C 10 FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST<0.5 % DUTY CYCLE 40 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 90 I = 15A C T = 25°C J 14 VCE = 180V 12 VCE = 450V 10 8 VCE = 720V 6 4 2 0 2 4 6 8 10 12 14 VGE, GATE-TO-EMITTER VOLTAGE (V) 0 10 IC = 30A 4 IC = 15A 3 IC = 7.5A 2 1 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.10 1.00 0.95 0.90 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 60 70 4.0 IC = 30A 3.5 IC = 15A 3.0 2.5 IC = 7.5A 2.0 1.5 1.0 0.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 60 IC, DC COLLECTOR CURRENT(A) 1.05 20 30 40 50 GATE CHARGE (nC) FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 5 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 6 = 10V 0 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 100 V 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 2-2006 GE Rev D V APT15GP90B(G) 50 050-7470 60 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 12 VGE = 15V 10 8 6 4 VCE = 600V 2 TJ = 25°C, or 125°C 0 RG = 4.3Ω L = 100µH tf, FALL TIME (ns) tr, RISE TIME (ns) 20 15 10 TJ = 25 or 125°C,VGE = 15V VGE =15V,TJ=25°C 20 V = 600V 10 RCE= 4.3Ω G L = 100µH 5 RG = 4.3Ω, L = 100µH, VCE = 600V V = 600V CE V = +15V GE R = 4.3Ω G TJ = 25°C, VGE = 15V 40 35 30 25 20 15 10 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 1200 TJ = 125°C 1500 1000 500 60 0 EOFF, TURN OFF ENERGY LOSS (µJ) 2000 80 20 35 30 25 20 15 10 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current EON2, TURN ON ENERGY LOSS (µJ) 30 TJ = 125°C, VGE = 15V 25 0 TJ = 25°C 0 = 600V V CE = +15V V GE R = 4.3Ω G 1000 TJ = 125°C 800 600 400 200 TJ = 25°C 0 35 30 25 20 15 10 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 35 30 25 20 15 10 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 2500 2000 = 600V V CE = +15V V GE T = 125°C Eon2,30A J 2000 1500 Eoff,30A Eon2,15A 1000 Eon2,7.5A 500 0 Eoff,15A Eoff,7.5A 50 40 30 20 10 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) 40 100 5 2-2006 VGE =15V,TJ=125°C 50 120 RG = 4.3Ω, L = 100µH, VCE = 600V 30 Rev D 60 35 30 25 20 15 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 5 35 70 0 35 30 25 20 15 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 050-7470 APT15GP90B(G) 80 14 = 600V V CE = +15V V GE R = 4.3Ω G Eon2,30A 1500 1000 Eon2,15A Eoff,30A 500 Eoff,15A Eon2,7.5A 0 Eoff,7.5A 125 100 75 50 25 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature 0 TYPICAL PERFORMANCE CURVES P C, CAPACITANCE ( F) IC, COLLECTOR CURRENT (A) Cies 1,000 500 Coes 100 50 APT15GP90B(G) 70 3,000 Cres 60 50 40 30 20 10 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 0 200 400 600 800 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.50 D = 0.9 0.40 0.7 0.30 0.5 0.20 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.60 0.3 t1 t2 0.10 0 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.1 0.05 10-5 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.278 0.125 Case temperature(°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL F = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf T = 125°C J T = 75°C C D = 50% V = 600V CE R = 4.3Ω 10 5 max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 0 10 20 30 40 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 2-2006 0.00474 50 Rev D 0.222 Power (watts) 100 050-7470 RC MODEL Junction temp (°C) FMAX, OPERATING FREQUENCY (kHz) 210 APT15GP90B(G) Gate Voltage 10% APT15DQ100 TJ = 125°C td(on) Collector Current tr V CE IC V CC 5% 90% 10% 5% Collector Voltage A Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage td(off) TJ = 125°C Collector Voltage 90% tf 10% 0 Collector Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions TO-247 Package Outline e1 SAC: Tin, Silver, Copper 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC Collector 20.80 (.819) 21.46 (.845) 3.50 (.138) 3.81 (.150) Rev D 2-2006 4.50 (.177) Max. 050-7470 5.38 (.212) 6.20 (.244) 0.40 (.016) 0.79 (.031) 19.81 (.780) 20.32 (.800) 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) Gate Collector Emitter 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.