ADPOW APT15GP90B The power mos 7 igbt is a new generation of high voltage power igbt Datasheet

APT15GP90B(G)
900V
TYPICAL PERFORMANCE CURVES
APT15GP90B
APT15GP90BG*
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
POWER MOS 7 IGBT
®
TO
-2
47
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch
Through Technology this IGBT is ideal for many high frequency, high voltage switching
applications and has been optimized for high frequency switchmode power supplies.
• Low Conduction Loss
G
C
• SSOA Rated
E
• Low Gate Charge
C
• Ultrafast Tail Current shutoff
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT15GP90B(G)
VCES
Collector-Emitter Voltage
900
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
43
I C2
Continuous Collector Current @ TC = 110°C
21
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
60
Switching Safe Operating Area @ TJ = 150°C
60A @ 900V
Total Power Dissipation
250
Operating and Storage Junction Temperature Range
Watts
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 350µA)
900
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C)
3.2
3.9
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C)
2.7
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = 900V, VGE = 0V, Tj = 25°C)
3
2
Collector Cut-off Current (VCE = 900V, VGE = 0V, Tj = 125°C)
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Units
Volts
µA
nA
2-2006
MIN
Rev D
Characteristic / Test Conditions
050-7470
Symbol
APT15GP90B(G)
DYNAMIC CHARACTERISTICS
Symbol
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
tf
f = 1 MHz
32
Gate Charge
7.5
VGE = 15V
60
15V, L = 100µH,VCE = 900V
TBD
200
Inductive Switching (125°C)
9
VCC = 600V
14
VGE = 15V
70
RG = 4.3Ω
100
TBD
I C = 15A
Eon1
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
44
55
µJ
430
6
Current Fall Time
ns
55
TJ = +25°C
Turn-off Delay Time
nC
33
I C = 15A
Current Rise Time
V
A
14
RG = 4.3Ω
Turn-on Delay Time
pF
60
9
5
UNIT
27
VCC = 600V
4
MAX
10
Inductive Switching (25°C)
Current Fall Time
Turn-off Switching Energy
td(off)
120
TJ = 150°C, R G = 4.3Ω, VGE =
Turn-off Delay Time
Eoff
tr
VGE = 0V, VCE = 25V
VGE = 15V
Turn-on Switching Energy (Diode)
td(on)
1100
I C = 15A
Current Rise Time
Eon2
TYP
Capacitance
VCE = 450V
Turn-on Delay Time
Turn-on Switching Energy
MIN
TJ = +125°C
ns
µJ
790
6
500
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.50
RθJC
Junction to Case (DIODE)
N/A
WT
Package Weight
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
050-7470
Rev D
2-2006
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
= 15V
GE
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
50
TJ = 25°C
40
30
TJ = 125°C
20
10
0
IC, COLLECTOR CURRENT (A)
80
70
60
50
40
TJ = -55°C
30
TJ = 25°C
20
TJ = 125°C
10
0
0
30
TJ = 25°C
20
TJ = 125°C
10
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
40
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
90
I = 15A
C
T = 25°C
J
14
VCE = 180V
12
VCE = 450V
10
8
VCE = 720V
6
4
2
0
2
4
6
8
10
12
14
VGE, GATE-TO-EMITTER VOLTAGE (V)
0
10
IC = 30A
4
IC = 15A
3
IC = 7.5A
2
1
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.10
1.00
0.95
0.90
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
60
70
4.0
IC = 30A
3.5
IC = 15A
3.0
2.5
IC = 7.5A
2.0
1.5
1.0
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
60
IC, DC COLLECTOR CURRENT(A)
1.05
20
30
40
50
GATE CHARGE (nC)
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
5
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
6
= 10V
0
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
100
V
50
40
30
20
10
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
2-2006
GE
Rev D
V
APT15GP90B(G)
50
050-7470
60
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
12
VGE = 15V
10
8
6
4
VCE = 600V
2 TJ = 25°C, or 125°C
0
RG = 4.3Ω
L = 100µH
tf, FALL TIME (ns)
tr, RISE TIME (ns)
20
15
10
TJ = 25 or 125°C,VGE = 15V
VGE =15V,TJ=25°C
20
V = 600V
10 RCE= 4.3Ω
G
L = 100µH
5
RG = 4.3Ω, L = 100µH, VCE = 600V
V
= 600V
CE
V
= +15V
GE
R = 4.3Ω
G
TJ = 25°C, VGE = 15V
40
35
30
25
20
15
10
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
1200
TJ = 125°C
1500
1000
500
60
0
EOFF, TURN OFF ENERGY LOSS (µJ)
2000
80
20
35
30
25
20
15
10
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
EON2, TURN ON ENERGY LOSS (µJ)
30
TJ = 125°C, VGE = 15V
25
0
TJ = 25°C
0
= 600V
V
CE
= +15V
V
GE
R = 4.3Ω
G
1000
TJ = 125°C
800
600
400
200
TJ = 25°C
0
35
30
25
20
15
10
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
35
30
25
20
15
10
5
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
2500
2000
= 600V
V
CE
= +15V
V
GE
T = 125°C
Eon2,30A
J
2000
1500
Eoff,30A
Eon2,15A
1000
Eon2,7.5A
500
0
Eoff,15A
Eoff,7.5A
50
40
30
20
10
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
40
100
5
2-2006
VGE =15V,TJ=125°C
50
120
RG = 4.3Ω, L = 100µH, VCE = 600V
30
Rev D
60
35
30
25
20
15
10
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
5
35
70
0
35
30
25
20
15
10
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
050-7470
APT15GP90B(G)
80
14
= 600V
V
CE
= +15V
V
GE
R = 4.3Ω
G
Eon2,30A
1500
1000
Eon2,15A
Eoff,30A
500
Eoff,15A
Eon2,7.5A
0
Eoff,7.5A
125
100
75
50
25
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
0
TYPICAL PERFORMANCE CURVES
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
1,000
500
Coes
100
50
APT15GP90B(G)
70
3,000
Cres
60
50
40
30
20
10
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
0
200
400
600
800
1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.50
D = 0.9
0.40
0.7
0.30
0.5
0.20
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.60
0.3
t1
t2
0.10
0
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.1
0.05
10-5
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.278
0.125
Case temperature(°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
F
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
T = 125°C
J
T = 75°C
C
D = 50%
V
= 600V
CE
R = 4.3Ω
10
5
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
G
0
10
20
30
40
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
2-2006
0.00474
50
Rev D
0.222
Power
(watts)
100
050-7470
RC MODEL
Junction
temp (°C)
FMAX, OPERATING FREQUENCY (kHz)
210
APT15GP90B(G)
Gate Voltage
10%
APT15DQ100
TJ = 125°C
td(on)
Collector Current
tr
V CE
IC
V CC
5%
90%
10%
5%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
td(off)
TJ = 125°C
Collector Voltage
90%
tf
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
TO-247 Package Outline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
Collector
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
Rev D
2-2006
4.50 (.177) Max.
050-7470
5.38 (.212)
6.20 (.244)
0.40 (.016)
0.79 (.031) 19.81 (.780)
20.32 (.800)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
Gate
Collector
Emitter
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
Similar pages