AD ADL5358 500 mhz to 1700 mhz, dual-balanced mixer, lo buffer, if amplifier, and rf balun Datasheet

500 MHz to 1700 MHz, Dual-Balanced
Mixer, LO Buffer, IF Amplifier, and RF Balun
ADL5358
The ADL5358 uses a highly linear, doubly balanced, passive
mixer core along with integrated RF and local oscillator (LO)
balancing circuitry to allow single-ended operation. The
ADL5358 incorporates the RF baluns, allowing for optimal
performance over a 500 MHz to 1700 MHz RF input frequency
range. Performance is optimized for RF frequencies from 500 MHz
to 1200 MHz using a high-side LO and RF frequencies from
1200 MHz to 1700 MHz using a low-side LO. The balanced
passive mixer arrangement provides good LO-to-RF leakage,
typically better than −20 dBm, and excellent intermodulation
performance. The balanced mixer core also provides extremely
high input linearity, allowing the device to be used in demanding
cellular applications where in-band blocking signals may otherwise
result in the degradation of dynamic performance. A high linearity
IF buffer amplifier follows the passive mixer core to yield a
typical power conversion gain of 8.3 dB and can be used with
a wide range of output impedances.
NC
MNLG
VPOS
MNLE
MNOP
MNON
COMM
MNGM
MNCT
VGS2
COMM
VGS1
VPOS
VGS0
COMM
LOSW
VPOS
PWDN
COMM
VPOS
ADL5358
DVCT
COMM
NC
DVLG
VPOS
DVLE
DVON
07885-001
LOI1
DVIN
DVOP
GENERAL DESCRIPTION
LOI2
COMM
Cellular base station receivers
Transmit observation receivers
Radio link downconverters
MNIN
DVGM
APPLICATIONS
FUNCTIONAL BLOCK DIAGRAM
VPOS
RF frequency range of 500 MHz to 1700 MHz
IF frequency range of 30 MHz to 450 MHz
Power conversion gain: 8.3 dB
SSB noise figure of 9.9 dB
SSB noise figure with 5 dBm blocker of 23 dB
Input IP3 of 25.2 dBm
Input P1dB of 10.6 dBm
Typical LO drive of 0 dBm
Single-ended, 50 Ω RF and LO input ports
High isolation SPDT LO input switch
Single-supply operation: 3.3 V to 5 V
Exposed paddle, 6 mm × 6 mm, 36-lead LFCSP
VPOS
FEATURES
Figure 1.
The ADL5358 is fabricated using a BiCMOS high performance
IC process. The device is available in a 6 mm × 6 mm, 36-lead
LFCSP and operates over a −40°C to +85°C temperature range.
An evaluation board is also available.
Table 1. Passive Mixers
RF Frequency
(MHz)
500 to 1700
1200 to 2500
Single
Mixer
ADL5367
ADL5365
Single Mixer
and IF Amp
ADL5357
ADL5355
Dual Mixer
and IF Amp
ADL5358
ADL5356
The ADL5358 provides two switched LO paths that can be used
in TDD applications where it is desirable to ping-pong between
two local oscillators. LO current can be externally set using a
resistor to minimize dc current commensurate with the desired
level of performance. For low voltage applications, the ADL5358 is
capable of operation at voltages down to 3.3 V with substantially
reduced current. Under low voltage operation, an additional logic
pin is provided to power down (<300 μA) the circuit when desired.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2009 Analog Devices, Inc. All rights reserved.
ADL5358
TABLE OF CONTENTS
Features .............................................................................................. 1
3.3 V Performance ...................................................................... 15
Applications ....................................................................................... 1
Spurious Performance ............................................................... 16
General Description ......................................................................... 1
Circuit Description......................................................................... 17
Functional Block Diagram .............................................................. 1
RF Subsystem .............................................................................. 17
Revision History ............................................................................... 2
LO Subsystem ............................................................................. 18
Specifications..................................................................................... 3
Applications Information .............................................................. 19
5 V Performance ........................................................................... 4
Basic Connections ...................................................................... 19
3.3 V Performance ........................................................................ 4
IF Port .......................................................................................... 19
Absolute Maximum Ratings............................................................ 5
Bias Resistor Selection ............................................................... 19
ESD Caution .................................................................................. 5
Mixer VGS Control DAC .......................................................... 19
Pin Configuration and Function Descriptions ............................. 6
Evaluation Board ............................................................................ 21
Typical Performance Characteristics ............................................. 7
Outline Dimensions ....................................................................... 23
5 V Performance ........................................................................... 7
Ordering Guide .......................................................................... 23
REVISION HISTORY
11/09—Revision 0: Initial Version
Rev. 0 | Page 2 of 24
ADL5358
SPECIFICATIONS
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
ZO = 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.
Table 2.
Parameter
RF INPUT INTERFACE
Return Loss
Input Impedance
RF Frequency Range
OUTPUT INTERFACE
Output Impedance
IF Frequency Range
DC Bias Voltage 1
LO INTERFACE
LO Power
Return Loss
Input Impedance
LO Frequency Range
POWER-DOWN (PWDN) INTERFACE 2
PWDN Threshold
Logic 0 Level
Logic 1 Level
PWDN Response Time
PWDN Input Bias Current
1
2
Conditions
Min
Tunable to >20 dB over a limited bandwidth
Typ
Unit
1700
dB
Ω
MHz
450
5.5
Ω||pF
MHz
V
20
50
500
Differential impedance, f = 200 MHz
Externally generated
Max
230||0.75
30
3.3
−6
5.0
0
13
50
530
+10
1670
1.0
0.4
1.4
Device enabled, IF output to 90% of its final level
Device disabled, supply current < 5 mA
Device enabled
Device disabled
Apply supply voltage from external circuit through choke inductors.
PWDN function is intended for use with VS ≤ 3.6 V only.
Rev. 0 | Page 3 of 24
160
230
0
70
dBm
dB
Ω
MHz
V
V
V
ns
ns
μA
μA
ADL5358
5 V PERFORMANCE
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
VGS0 = VGS1 = VGS2 = 0 V, and ZO = 50 Ω, unless otherwise noted.
Table 3.
Parameter
DYNAMIC PERFORMANCE
Power Conversion Gain
Voltage Conversion Gain
SSB Noise Figure
SSB Noise Figure Under Blocking
Input Third-Order Intercept (IIP3)
Input Second-Order Intercept (IIP2)
Input 1 dB Compression Point (IP1dB)
LO-to-IF Leakage
LO-to-RF Leakage
RF-to-IF Isolation
IF/2 Spurious
IF/3 Spurious
IF Channel-to-Channel Isolation
POWER SUPPLY
Positive Supply Voltage
Quiescent Current
Conditions
Min
Typ
Max
Unit
Including 4:1 IF port transformer and PCB loss
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential
7.6
8.3
14.6
9.9
23
8.6
dB
dB
dB
dB
22
25.2
dBm
57
dBm
10.6
−33
−31
−43
−72
−79
54
dBm
dBm
dBm
dBc
dBc
dBc
dB
5 dBm blocker present ±10 MHz from wanted RF input,
LO source filtered
fRF1 = 899.5 MHz, fRF2 = 900.5 MHz, fLO = 1103 MHz,
each RF tone at −10 dBm
fRF1 = 900 MHz, fRF2 = 950 MHz, fLO = 1103 MHz,
each RF tone at −10 dBm
Unfiltered IF output
−10 dBm input power
−10 dBm input power
4.75
LO supply
IF supply
Total Quiescent Current
5
170
180
350
5.25
V
mA
mA
mA
3.3 V PERFORMANCE
VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.2 kΩ,
R2 = R5 = 400 Ω, VGS0 = VGS1 = VGS2 = 0 V, and ZO = 50 Ω, unless otherwise noted.
Table 4.
Parameter
DYNAMIC PERFORMANCE
Power Conversion Gain
Voltage Conversion Gain
SSB Noise Figure
Input Third-Order Intercept (IIP3)
Input Second-Order Intercept (IIP2)
Input 1 dB Compression Point (IP1dB)
POWER INTERFACE
Supply Voltage
Quiescent Current
Total Quiescent Current
Conditions
Min
Including 4:1 IF port transformer and PCB loss
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential
fRF1 = 899.5 MHz, fRF2 = 900.5 MHz, fLO = 1103 MHz,
each RF tone at −10 dBm
fRF1 = 950 MHz, fRF2 = 900 MHz, fLO = 1103 MHz,
each RF tone at −10 dBm
3.0
Resistor programmable
Device disabled
Rev. 0 | Page 4 of 24
Typ
Max
Unit
8.3
14.6
8.9
19.3
dB
dB
dB
dBm
47.2
dBm
6.75
dBm
3.3
200
300
3.6
V
mA
μA
ADL5358
ABSOLUTE MAXIMUM RATINGS
Table 5.
Parameter
Supply Voltage, VS
RF Input Level
LO Input Level
MNOP, MNON, DVOP, DVON Bias
VGS2, VGS1, VGS0, LOSW, PWDN
Internal Power Dissipation
θJA
Maximum Junction Temperature
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)
Rating
5.5 V
20 dBm
13 dBm
6.0 V
5.5 V
2.2 W
22°C/W
150°C
−40°C to +85°C
−65°C to +150°C
260°C
ESD CAUTION
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Rev. 0 | Page 5 of 24
ADL5358
36
35
34
33
32
31
30
29
28
VPOS
MNGM
COMM
MNON
MNOP
MNLE
VPOS
MNLG
NC
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
2
3
4
5
6
7
8
9
ADL5358
TOP VIEW
(Not to Scale)
27
26
25
24
23
22
21
LOI2
VGS2
VGS1
VGS0
LOSW
PWDN
VPOS
20 COMM
19 LOI1
NOTES
1. NC = NO CONNECT.
2. EXPOSED PAD MUST BE CONNECTED TO GROUND.
07885-002
DVGM
COMM
DVOP
DVON
DVLE
VPOS
DVLG
NC
VPOS 10
11
12
13
14
15
16
17
18
MNIN
MNCT
COMM
VPOS
COMM
VPOS
COMM
DVCT
DVIN
Figure 2. Pin Configuration
Table 6. Pin Function Descriptions
Pin No.
1
2
3, 5, 7, 12, 20, 34
4, 6, 10, 16,
21, 30, 36
8
9
11
13, 14
Mnemonic
MNIN
MNCT
COMM
VPOS
Description
RF Input for Main Channel. Internally matched to 50 Ω. This pin must be ac-coupled.
Center Tap for Main Channel Input Balun. Bypass this pin to ground using low inductance capacitor.
Device Common (DC Ground).
Positive Supply Voltage.
DVCT
DVIN
DVGM
DVOP, DVON
15
17
18, 28
19
22
DVLE
DVLG
NC
LOI1
PWDN
23
24, 25, 26
27
29
31
32, 33
LOSW
VGS0, VGS1, VGS2
LOI2
MNLG
MNLE
MNOP, MNON
35
Paddle
MNGM
EPAD
Center Tap for Diversity Channel Input Balun. Bypass to ground using low inductance capacitor.
RF Input for Diversity Channel. Internally matched to 50 Ω. This pin must be ac-coupled.
Diverstiy Amplifier Bias Setting. Connect a 1.3 kΩ resistor to ground for typical operation.
Diversity Channel Differential Open-Collector Outputs. DVOP and DVON should be pulled-up to
VCC using external inductors.
Diversity Channel IF Return. This pin must be grounded.
Diverstiy Channel LO Buffer Bias Setting. Connect a 1 kΩ resistor to ground for typical operation.
No Connect.
Local Oscillator Input 1. Internally matched to 50 Ω. This pin must be ac-coupled.
Connect to Ground for Normal Operation. Connect this pin to 3 V for disable mode when using
VPOS < 3.6 V. PWDN pin must be grounded when VPOS > 3.6 V.
Local Oscillator Input Selection Switch. Set LOSW high to select LOI1 or set LOSW low to select LOI2.
Gate to Source Control Voltages. For typical operation, set VGS0, VGS1, and VGS2 to low logic level.
Local Oscillator Input 2. Internally matched to 50 Ω. This pin must be ac-coupled.
Main Channel LO Buffer Bias Setting. Connect a 1 kΩ resistor to ground for typical operation.
Main Channel IF Return. This pin must be grounded.
Main Channel Differential Open-Collector Outputs. MNOP and MNON should be pulled-up to
VCC using external inductors.
Main Amplifier Bias Setting. Connect a 1.3 kΩ resistor to ground for typical operation.
Exposed pad must be connected to ground.
Rev. 0 | Page 6 of 24
ADL5358
TYPICAL PERFORMANCE CHARACTERISTICS
5 V PERFORMANCE
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted.
70
400
65
TA = –40°C
TA = –40°C
360
INPUT IP2 (dBm)
TA = +25°C
TA = +85°C
340
320
55
TA = +25°C
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
40
700
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
Figure 6. Input IP2 vs. RF Frequency
Figure 3. Supply Current vs. RF Frequency
12
14
11
13
10
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
TA = +85°C
50
45
07885-003
300
700
60
07885-006
SUPPLY CURRENT (mA)
380
TA = –40°C
9
TA = +25°C
8
TA = +25°C
12
TA = +85°C
11
10
TA = –40°C
7
TA = +85°C
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
8
700
07885-004
5
700
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
07885-007
9
6
Figure 7. Input P1dB vs. RF Frequency
Figure 4. Power Conversion Gain vs. RF Frequency
14
31
13
TA = –40°C
SSB NOISE FIGURE (dB)
TA = +25°C
25
23
TA = +85°C
21
19
700
TA = +85°C
12
TA = +25°C
11
10
9
TA = –40°C
8
7
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
6
700
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
Figure 8. SSB Noise Figure vs. RF Frequency
Figure 5. Input IP3 vs. RF Frequency
Rev. 0 | Page 7 of 24
07885-008
27
07885-005
INPUT IP3 (dBm)
29
ADL5358
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted.
62
400
61
VPOS = 5.25V
60
59
INPUT IP2 (dBm)
SUPPLY CURRENT (mA)
380
VPOS = 5.0V
360
VPOS = 4.75V
340
58
VPOS = 5.25V
VPOS = 5.0V
57
56
55
320
VPOS = 4.75V
54
10
20
30
40
50
60
70
80
TEMPERATURE (°C)
52
–40 –30 –20 –10
07885-009
0
30
40
50
60
70
80
70
80
70
80
13
4.75V
5.0V
5.25V
12
INPUT P1dB (dBm)
9.0
8.5
8.0
VPOS = 5.25V
VPOS = 5.0V
11
10
VPOS = 4.75V
7.5
0
10
20
30
40
50
60
70
80
TEMPERATURE (°C)
8
–40 –30 –20 –10
07885-010
7.0
–40 –30 –20 –10
10
20
30
40
50
60
TEMPERATURE (°C)
Figure 13. Input P1dB vs. Temperature
Figure 10. Power Conversion Gain vs. Temperature
29
12.0
28
11.5
27
0
07885-013
9
SSB NOISE FIGURE (dB)
VPOS = 5.25V
26
25
VPOS = 5.0V
24
VPOS = 4.75V
23
22
11.0
VPOS = 5.25V
10.5
10.0
9.5
VPOS = 4.75V
VPOS = 5.0V
9.0
8.5
0
10
20
30
40
50
TEMPERATURE (°C)
60
70
80
8.0
–40 –30 –20 –10
07885-011
21
–40 –30 –20 –10
0
10
20
30
40
50
60
TEMPERATURE (°C)
Figure 11. Input IP3 vs. Temperature
Figure 14. SSB Noise Figure vs. Temperature
Rev. 0 | Page 8 of 24
07885-014
CONVERSION GAIN (dB)
20
Figure 12. Input IP2 vs. Temperature
10.0
INPUT IP3 (dBm)
10
TEMPERATURE (°C)
Figure 9. Supply Current vs. Temperature
9.5
0
07885-012
53
300
–40 –30 –20 –10
ADL5358
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted.
70
400
65
TA = –40°C
360
INPUT IP2 (dBm)
TA = +25°C
340
60
TA = +25°C
TA = –40°C
55
TA = +85°C
50
TA = +85°C
320
30
80
130
180
230
280
330
380
430
IF FREQUENCY (MHz)
40
07885-015
300
30
80
180
230
280
330
380
430
380
430
380
430
IF FREQUENCY (MHz)
Figure 15. Supply Current vs. IF Frequency
Figure 18. Input IP2 vs. IF Frequency
11
13
TA = –40°C
10
12
TA = +85°C
9
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
130
07885-018
45
8
TA = +25°C
7
TA = +85°C
6
11
10
TA = +25°C
TA = –40°C
9
8
5
30
80
130
180
230
280
330
380
430
IF FREQUENCY (MHz)
7
07885-016
4
30
80
130
180
230
280
330
IF FREQUENCY (MHz)
Figure 16. Power Conversion Gain vs. IF Frequency
07885-019
SUPPLY CURRENT (mA)
380
Figure 19. Input P1dB vs. IF Frequency
30
14
29
13
TA = –40°C
27
TA = +25°C
26
25
24
TA = +85°C
23
22
12
11
10
9
8
20
30
80
130
180
230
280
330
IF FREQUENCY (MHz)
380
430
6
30
80
130
180
230
280
330
IF FREQUENCY (MHz)
Figure 17. Input IP3 vs. IF Frequency
Figure 20. SSB Noise Figure vs. IF Frequency
Rev. 0 | Page 9 of 24
07885-020
7
21
07885-017
INPUT IP3 (dBm)
SSB NOISE FIGURE (dB)
28
ADL5358
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted.
11.0
12.0
10.5
11.5
TA = +85°C
TA = –40°C
9.5
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
10.0
9.0
8.5
8.0
TA = +25°C
7.5
10.5
TA = +25°C
10.0
TA = –40°C
TA = +85°C
7.0
11.0
9.5
–6
–4
–2
0
2
4
6
8
10
LO POWER (dBm)
9.0
07885-021
6.0
–6
–4
–2
0
2
4
6
8
10
LO POWER (dBm)
07885-024
6.5
Figure 24. Input P1dB vs. LO Power
Figure 21. Power Conversion Gain vs. LO Power
–60
30
29
–65
28
IF/2 SPURIOUS (dBc)
TA = –40°C
26
25
24
TA = +25°C
TA = +85°C
23
–70
–75
TA = +25°C
–80
TA = +85°C
22
–85
21
TA = –40°C
–6
–4
–2
0
2
4
6
8
10
LO POWER (dBm)
–90
700
07885-022
20
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
07885-025
INPUT IP3 (dBm)
27
Figure 25. IF/2 Spurious vs. RF Frequency
Figure 22. Input IP3 vs. LO Power
–65
64
–67
62
–69
TA = –40°C
IF/3 SPURIOUS (dBc)
TA = +25°C
58
56
TA = +85°C
54
–71
TA = +25°C
TA = –40°C
–73
–75
–77
–79
TA = +85°C
–81
52
50
–6
–4
–2
0
2
4
6
LO POWER (dBm)
8
10
–85
700
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
Figure 26. IF/3 Spurious vs. RF Frequency
Figure 23. Input IP2 vs. LO Power
Rev. 0 | Page 10 of 24
07885-026
–83
07885-023
INPUT IP2 (dBm)
60
ADL5358
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
ZO = 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.
100
500
12
400
9
300
6
200
3
100
0
60
40
20
7.5
8.0
8.5
9.0
9.5
10.0
CONVERSION GAIN (dB)
0
30
07885-027
0
7.0
130
180
230
280
330
380
430
IF FREQUENCY (MHz)
Figure 27. Conversion Gain Distribution
Figure 30. IF Output Impedance (R Parallel, C Equivalent)
100
10
MEAN = 25.2
STANDARD DEVIATION = 0.71
12
80
14
RF RETURN LOSS (dB)
PERCENTAGE (%)
–3
80
07885-030
RESISTANCE (Ω)
PERCENTAGE (%)
80
CAPACITANCE (pF)
MEAN = 8.47
STANDARD DEVIATION = 0.66%
60
40
16
18
20
22
24
26
20
18
21
24
27
30
33
INPUT IP3 LO (dBm)
30
700
07885-028
15
750
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
Figure 28. Input IP3 Distribution
Figure 31. RF Return Loss, Fixed IF
100
8
MEAN = 10.66
STANDARD DEVIATION = 0.96
9
80
LO RETURN LOSS (dB)
10
60
40
SELECTED
11
12
13
UNSELECTED
14
15
20
0
7
8
9
10
11
INPUT P1dB (dBm)
12
13
Figure 29. Input P1dB Distribution
17
900
950
1000 1050 1100 1150 1200 1250 1300 1350 1400
LO FREQUENCY (GHz)
Figure 32. LO Return Loss, Selected and Unselected
Rev. 0 | Page 11 of 24
07885-032
16
07885-029
PERCENTAGE (%)
800
07885-031
28
0
ADL5358
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
ZO = 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.
–24
60
55
–26
TA = +25°C
TA = +85°C
LO-TO-RF LEAKAGE (dBm)
LO SWITCH ISOLATION (dB)
65
TA = –40°C
50
–28
TA = –40°C
–30
–32
TA = +25°C
–34
TA = +85°C
45
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
–38
900
07885-033
40
700
950
1000 1050 1100 1150 1200 1250 1300 1350 1400
LO FREQUENCY (MHz)
Figure 33. LO Switch Isolation vs. RF Frequency
07885-036
–36
Figure 36. LO-to-RF Leakage vs. LO Frequency
–20
0
–25
2XLO LEAKAGE (dBm)
RF-TO-IF ISOLATION (dB)
–5
–30
TA = +85°C
–35
TA = +25°C
–40
–45
TA = –40°C
–50
–10
–15
2XLO-TO-RF
–20
–25
–55
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
07885-034
750
–30
900
Figure 34. RF-to-IF Isolation vs. RF Frequency
1000 1050 1100 1150 1200 1250 1300 1350 1400
LO FREQUENCY (MHz)
Figure 37. 2XLO Leakage vs. LO Frequency
–20
0
–10
–25
3XLO LEAKAGE (dBm)
TA = –40°C
–30
–35
TA = +25°C
–40
TA = +85°C
–45
–20
–30
3XLO-TO-RF
–40
–50
–60
950
1000 1050 1100 1150 1200 1250 1300 1350 1400
LO FREQUENCY (MHz)
Figure 35. LO-to-IF Leakage vs. LO Frequency
–70
900
950
1000 1050 1100 1150 1200 1250 1300 1350 1400
LO FREQUENCY (MHz)
Figure 38. 3XLO Leakage vs. LO Frequency
Rev. 0 | Page 12 of 24
07885-038
3XLO-TO-IF
–50
900
07885-035
LO-TO-IF LEAKAGE (dBm)
950
07885-037
2XLO-TO-IF
–60
700
ADL5358
14
30
8
13
25
7
12
6
11
5
10
3
700
VGS = 000
VGS = 011
VGS = 100
VGS = 110
750
800
SSB NOISE FIGURE (dB)
20
15
10
5
9
850
900
950
8
1000 1050 1100 1150 1200
0
–30
RF FREQUENCY (MHz)
45
12
40
11
35
10
30
9
25
8
20
–20
–15
–10
–5
0
5
10
BLOCKER POWER (dBm)
Figure 42. SSB Noise Figure vs. 10 MHz Offset Blocker Level
Figure 39. Power Conversion Gain and SSB Noise Figure vs. RF Frequency
for Various VGS Settings
13
–25
07885-042
4
SSB NOISE FIGURE (dB)
9
07885-039
CONVERSION GAIN (dB)
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted.
300
280
SUPPLY CURRENT (mA)
15
850
900
950
10
1000 1050 1100 1150 1200
14
28
INPUT IP3
12
24
NOISE FIGURE
10
20
8
16
CONVERSION GAIN
6
12
4
8
4
1000 1100 1200 1300 1400 1500 1600
07885-041
900
LO BIAS RESISTOR VALUE (Ω)
Figure 41. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs.
LO Bias Resistor Value
700
800
900
1000 1100 1200 1300 1400 1500 1600
BIAS RESISTOR VALUE (Ω)
Figure 43. LO and IF Supply Current vs. IF and LO Bias Resistor Value
28
18
CONVERSION GAIN AND SSB NOISE FIGURE (dB)
32
INPUT IP3 (dBm)
CONVERSION GAIN AND SSB NOISE FIGURE (dB)
16
800
LO RESISTOR SUPPLY CURRENT
100
600
Figure 40. Input P1dB and Input IP3 vs. RF Frequency for Various VGS Settings
700
160
120
RF FREQUENCY (MHz)
2
600
180
07885-043
800
200
INPUT IP3
16
24
14
20
16
12
NOISE FIGURE
12
10
INPUT IP3 (dBm)
750
220
8
8
CONVERSION GAIN
4
6
4
600
700
800
900
0
1000 1100 1200 1300 1400 1500 1600
IF BIAS RESISTOR VALUE (Ω)
Figure 44. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs.
IF Bias Resistor Value
Rev. 0 | Page 13 of 24
07885-044
6
700
IF RESISTOR SUPPLY CURRENT
240
140
VGS = 000
VGS = 011
VGS = 100
VGS = 110
07885-040
7
INPUT IP3 (dB)
INPUT P1dB (dB)
260
ADL5358
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted.
TA = –40°C
59
TA = +25°C
58
57
TA = +85°C
56
55
54
53
700
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
07885-045
IF CHANNEL-TO-CHANNEL ISOLATION (dB)
60
Figure 45. IF Channel-to-Channel Isolation vs. RF Frequency
Rev. 0 | Page 14 of 24
ADL5358
3.3 V PERFORMANCE
VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.2 kΩ,
R2 = R5 = 400 Ω, VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted.
220
60
215
55
TA = –40°C
INPUT IP2 (dBm)
210
205
TA = +25°C
200
750
800
850
900
950
45
TA = +85°C
40
35
TA = +85°C
190
700
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
30
700
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
Figure 46. Supply Current vs. RF Frequency at 3.3 V
Figure 49. Input IP2 vs. RF Frequency at 3.3 V
11
10
10
9
TA = –40°C
9
TA = +25°C
7
TA = +85°C
6
TA = +25°C
7
6
TA = –40°C
5
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
4
700
07885-047
5
700
TA = +85°C
8
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
Figure 47. Power Conversion Gain vs. RF Frequency at 3.3 V
07885-050
8
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
TA = +25°C
50
07885-049
195
07885-046
SUPPLY CURRENT (mA)
TA = –40°C
Figure 50. Input P1dB vs. RF Frequency at 3.3 V
26
14
13
24
12
20
18
TA = +25°C
TA = +85°C
16
TA = +85°C
11
TA = +25°C
10
9
8
7
TA = –40°C
6
14
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
Figure 48. Input IP3 vs. RF Frequency at 3.3 V
4
700
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
Figure 51. SSB Noise Figure vs. RF Frequency at 3.3 V
Rev. 0 | Page 15 of 24
07885-051
5
12
700
07885-048
INPUT IP3 (dBm)
SSB NOISE FIGURE (dB)
TA = –40°C
22
ADL5358
SPURIOUS PERFORMANCE
All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board. Mixer spurious products are measured
in dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement
system = −100 dBm.
5 V Performance
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ,
R2 = R5 = 1 kΩ, VGS0 = VGS1 = VGS2 = 0 V, and ZO = 50 Ω, unless otherwise noted.
M
0
0
1
2
3
4
5
6
N 7
8
9
10
11
12
13
14
−52.4
−74.8
<−100
<−100
<−100
<−100
1
−28.0
0.0
−73.1
<−100
<−100
<−100
<−100
<−100
2
−21.5
−70.8
−78.2
<−100
<−100
<−100
<−100
<−100
<−100
<−100
3
−59.0
−42.4
−90.2
−91.1
<−100
<−100
<−100
<−100
<−100
<−100
<−100
4
−44.2
−67.8
−77.6
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
5
−71.2
−65.5
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
6
7
8
9
10
11
12
13
14
−86.2
−91.0
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
3.3 V Performance
VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.2 kΩ, R2 =
R5 = 400 Ω, VGS0 = VGS1 = VG2 = 0 V, and ZO = 50 Ω, unless otherwise noted.
M
0
0
1
2
3
4
5
6
N 7
8
9
10
11
12
13
14
1
−33.3
−46.3 0.0
−68.2 −61.5
−99.9 −90.6
<−100 <−100
<−100 <−100
<−100 <−100
<−100
2
−23.7
−64.4
−78.4
−95.2
<−100
<−100
<−100
<−100
<−100
<−100
3
−49.1
−39.4
−81.2
−75.7
<−100
<−100
<−100
<−100
<−100
<−100
<−100
4
−41.3
−71.2
−71.8
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
5
−82.9
−73.1
−94.6
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
6
7
8
9
10
11
12
13
14
−86.1
−88.8
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
<−100
Rev. 0 | Page 16 of 24
ADL5358
CIRCUIT DESCRIPTION
The ADL5358 consists of two primary components: the radio
frequency (RF) subsystem and the local oscillator (LO) subsystem.
The combination of design, process, and packaging technology
allows the functions of these subsystems to be integrated into
a single die, using mature packaging and interconnection
technologies to provide a high performance, low cost design
with excellent electrical, mechanical, and thermal properties.
In addition, the need for external components is minimized,
optimizing cost and size.
The RF subsystem consists of integrated, low loss RF baluns,
passive MOSFET mixers, sum termination networks, and IF
amplifiers. The LO subsystem consists of an SPDT-terminated FET
switch and two multistage limiting LO amplifiers. The purpose of
the LO subsystem is to provide a large, fixed amplitude balanced
signal to drive the mixer independent of the level of the LO input.
MNIN
LOI2
MNCT
VGS2
COMM
VGS1
VPOS
VGS0
COMM
LOSW
VPOS
PWDN
COMM
VPOS
ADL5358
DVCT
COMM
NC
DVLG
VPOS
DVLE
DVON
DVOP
COMM
DVGM
VPOS
07885-001
LOI1
DVIN
Because the mixer is inherently broadband and bidirectional, it
is necessary to properly terminate all the idler (M × N product)
frequencies generated by the mixing process. Terminating the
mixer avoids the generation of unwanted intermodulation
products and reduces the level of unwanted signals at the input
of the IF amplifier, where high peak signal levels can compromise
the compression and intermodulation performance of the system.
This termination is accomplished by the addition of a sum network
between the IF amplifier and the mixer and in the feedback
elements in the IF amplifier.
The IF amplifier is a balanced feedback design that simultaneously
provides the desired gain, noise figure, and input impedance that
is required to achieve the overall performance. The balanced opencollector output of the IF amplifier, with impedance modified
by the feedback within the amplifier, permits the output to be
connected directly to a high impedance filter, differential amplifier,
or an analog-to-digital input while providing optimum secondorder intermodulation suppression. The differential output
impedance of the IF amplifier is approximately 200 Ω. If
operation in a 50 Ω system is desired, the output can be
transformed to 50 Ω by using a 4:1 transformer.
NC
MNLG
VPOS
MNLE
MNOP
MNON
COMM
MNGM
VPOS
A simplified schematic of the device is shown in Figure 52.
The resulting balanced RF signal is applied to a passive mixer that
commutates the RF input with the output of the LO subsystem.
The passive mixer is essentially a balanced, low loss switch that
adds minimum noise to the frequency translation. The only
noise contribution from the mixer is due to the resistive loss of
the switches, which is in the order of a few ohms.
Figure 52. Simplified Schematic
RF SUBSYSTEM
The intermodulation performance of the design is generally limited
by the IF amplifier. The IP3 performance can be optimized by
adjusting the IF current with an external resistor. Figure 41,
Figure 43, and Figure 44 illustrate how various IF and LO bias
resistors affect the performance with a 5 V supply. Additionally,
dc current can be saved by increasing either or both resistors. It
is permissible to reduce the dc supply voltage to as low as 3.3 V,
further reducing the dissipated power of the part. No performance
enhancement is obtained by reducing the value of these resistors,
and excessive dc power dissipation may result.
The single-ended, 50 Ω RF input is internally transformed to a
balanced signal using a low loss (<1 dB) unbalanced-to-balanced
(balun) transformer. This transformer is made possible by an
extremely low loss metal stack, which provides both excellent
balance and dc isolation for the RF port. Although the port can be
dc connected, it is recommended that a blocking capacitor be used
to avoid running excessive dc current through the part. The RF
balun can easily support an RF input frequency range of 500 MHz
to 1700 MHz.
Rev. 0 | Page 17 of 24
ADL5358
LO SUBSYSTEM
The LO amplifier is designed to provide a large signal level to
the mixer to obtain optimum intermodulation performance.
The resulting amplifier provides extremely high performance
centered on an operating frequency of 1100 MHz. The best
operation is achieved with either high-side LO injection for RF
signals in the 500 MHz to 1200 MHz range or low-side injection
for RF signals in the 1200 MHz to 1700 MHz range. Operation
outside these ranges is permissible, and conversion gain is
extremely wideband, easily spanning 500 MHz to 1700 MHz,
but intermodulation is optimal over the aforementioned ranges.
The ADL5358 has two LO inputs permitting multiple synthesizers
to be rapidly switched with extremely short switching times
(<40 ns) for frequency agile applications. The two inputs are
applied to a high isolation SPDT switch that provides a constant
input impedance, regardless of whether the port is selected, to
avoid pulling the LO sources. This multiple section switch also
ensures high isolation to the off input, minimizing any leakage
from the unwanted LO input that may result in undesired IF
responses.
The single-ended LO input is converted to a fixed amplitude
differential signal using a multistage, limiting LO amplifier. This
results in consistent performance over a range of LO input power.
Optimum performance is achieved from −6 dBm to +10 dBm,
but the circuit continues to function at considerably lower levels
of LO input power.
The performance of this amplifier is critical in achieving a
high intercept passive mixer without degrading the noise floor
of the system. This is a critical requirement in an interferer rich
environment, such as cellular infrastructure, where blocking
interferers can limit mixer performance. The bandwidth of the
intermodulation performance is somewhat influenced by the
current in the LO amplifier chain. For dc current sensitive
applications, it is permissible to reduce the current in the LO
amplifier by raising the value of the external bias control resistor.
For dc current critical applications, the LO chain can operate
with a supply voltage as low as 3.3 V, resulting in substantial
dc power savings.
In addition, when operating with supply voltages below 3.6 V, the
ADL5358 has a power-down mode that permits the dc current
to drop to <300 μA.
The logic inputs are designed to work with any logic family that
provides a Logic 0 input level of less than 0.4 V and a Logic 1
input level that exceeds 1.4 V. All logic inputs are high impedance
up to Logic 1 levels of 3.3 V. At levels exceeding 3.3 V, protection
circuitry permits operation up to 5.5 V, although a small bias
current is drawn.
Rev. 0 | Page 18 of 24
ADL5358
APPLICATIONS INFORMATION
BASIC CONNECTIONS
BIAS RESISTOR SELECTION
The ADL5358 mixer is designed to downconvert radio
frequencies (RF) primarily between 500 MHz and 1700 MHz to
lower intermediate frequencies (IF) between 30 MHz and
450 MHz. Figure 53 depicts the basic connections of the mixer.
It is recommended to ac-couple the RF and LO input ports to
prevent non-zero dc voltages from damaging the RF balun or
LO input circuit. The RFIN matching network consists of a
series 8 pF capacitor to provide the optimized RF input return
loss for the desired frequency band.
The IF bias resistors (R1 and R4) and LO bias resistors (R2 and R5)
are used to adjust the bias current of the integrated amplifiers at the
IF and LO terminals. It is necessary to have a sufficient amount
of current to bias both the internal IF and LO amplifiers to optimize
dc current vs. optimum IIP3 performance. Figure 41, Figure 43,
and Figure 44 provide the reference for the bias resistor selection
when lower power consumption is preferred at the expense of
conversion gain and IP3 performance.
IF PORT
The ADL5358 features three logic control pins, VGS0 (Pin 24),
VGS1 (Pin 25), and VGS2 (Pin 26), that allow programmability for
internal gate-to-source voltages for optimizing mixer performance
over desired frequency bands. The evaluation board defaults
VGS0, VGS1, and VGS2 to ground. Power conversion gain, NF,
IIP3, and input P1dB can be optimized, as shown in Figure 39
and Figure 40.
The mixer differential IF interface requires pull-up choke inductors
to bias the open-collector outputs and to set the output match.
The shunting impedance of the choke inductors used to couple
dc current into the IF amplifier should be selected to provide
the desired output return loss.
The real part of the output impedance is approximately 200 Ω,
as seen in Figure 30, which matches many commonly used SAW
filters without the need for a transformer. This results in a voltage
conversion gain that is approximately 6 dB higher than the power
conversion gain, as shown in Table 3. When a 50 Ω output
impedance is needed, use a 4:1 impedance transformer, as shown
in Figure 53.
MIXER VGS CONTROL DAC
Rev. 0 | Page 19 of 24
ADL5358
R10
MAIN_OUTP
MAIN_OUTN
C32
C33
T1
C19
C17
C27
C8
C21
L2
L1
R3
C25
VCC
R1
C22
C18
VCC
R2
VCC
36
35
34
33
32
31
30
29
28
C9
C16
MAIN_IN
Z1
1
27
2
26
LO2
Z2
R12
C3
R16
VCC
R7
C2
3
25
C34
R13
R8
R14
4
R17
24
R11
R15
VCC
5
23
6
22
R19
7
C6
21
VCC
C26
C7
ADL5358
8
C15
20
C11
9
DIV_IN
Z3
LO1
19
C14
Z4
10
11
12
13
14
15
16
17
18
VCC
VCC
+
C10
C23
VCC
R4
VCC
C24
R5
C13
GND
L5
R6
C1
L4
C12
C28
C20
C29
T2
DIV_OUTN
C30
R9
C31
Figure 53. Typical Application Circuit
Rev. 0 | Page 20 of 24
07885-153
DIV_OUTP
ADL5358
EVALUATION BOARD
Table 7 describes the various configuration options of the
evaluation board. Evaluation board layout is shown in Figure 55
and Figure 56.
An evaluation board is available for the family of double
balanced mixers. The standard evaluation board schematic is
shown in Figure 54. The evaluation board is fabricated using
Rogers® RO3003 material.
R10
MAIN_OUTP
MAIN_OUTN
C32
C33
T1
C19
C17
C27
C8
C21
L1
L2
R3
C18
C25
VCC
R1
C22
VCC
R2
NC
MNLG
VPOS
MNLE
MNOP
MNON
COMM
MNGM
VPOS
VCC
C9
C16
LOI2
MNIN
MAIN_IN
LO2
R12
Z2
VGS2
MNCT
C3
VCC
R7
C2
COMM
VPOS
VGS1
R13
VGS0
R8
C34
COMM
C6
R17
R14
ADL5358
VCC
R16
LOSW
TOP VIEW
(Not to Scale)
R11
VPOS
PWDN
COMM
VPOS
DVCT
COMM
R15
C7
VCC
C11
DVIN
DIV_IN
R19
C15
LO1
C14
NC
DVLG
VPOS
DVLE
DVON
DVOP
DVGM
COMM
Z4
VPOS
Z3
C26
LOI1
VCC
+
VCC
C10
R5
C23
R4
VCC
VCC
GND
C24
L5
R6
C1
C13
L4
C12
C28
C20
C29
T2
DIV_OUTP
DIV_OUTN
C30
R9
C31
Figure 54. Evaluation Board Schematic
Rev. 0 | Page 21 of 24
07885-154
Z1
ADL5358
Table 7. Evaluation Board Configuration
T1, T2, C17, C19,
C20, C27 to C33,
L1, L2, L4, L5,
R3, R6, R9, R10
C14, C16,
R15, LOSW
R19, PWDN
RF Main and Diversity Input Interface. Main and diversity input
channels are ac-coupled through C9 and C11. Z1 to Z4 provide
additional component placement for external matching/filter
networks. C2, C3, C6, and C7 provide bypassing for the center taps
of the main and diversity on-chip input baluns.
IF Main and Diversity Output Interface. The open collector IF output
interfaces are biased through pull-up choke inductors L1, L2, L4, and
L5, with R3 and R6 available for additional supply bypassing. T1 and
T2 are 4:1 impedance transformers used to provide a single-ended IF
output interface with C27 and C28 providing center-tap bypassing.
C17, C19, C20, C29, C30, C31, C32, and C33 ensure an ac-coupled
output interface. Remove R9 and R10 for balanced output operation.
LO Interface. C14 and C16 provide ac coupling for the LOI1 and LOI2
local oscillator inputs. LOSW selects the appropriate LO input for
both mixer cores. R15 provides a pull-down to ensure LOI2 is enabled
when the LOSW jumper is removed. Jumper can be removed to
allow LOSW interface to be exercised using an external logic generator.
PWDN Interface. When the PWDN 2-pin shunt is inserted, the
ADL5358 is powered down. When R19 is open, it pulls the PWDN
logic low and enables the device. Jumper can be removed to allow
PWDN interface to be exercised using an external logic generator.
Grounding the PWDN pin is allowed during nominal operation but
is not permitted when supply voltages exceed 3.3 V.
Bias Control. R16 and R17 form a voltage divider to provide a 3 V for
logic control, bypassed to ground through C34. R7, R8, R11, R12, R13,
and R14 provide resistor programmability of VGS0, VGS1, and VGS2.
Typically, these nodes can be hardwired for nominal operation.
Grounding these pins is allowed for nominal operation. R2 and R5 set
the bias point for the internal LO buffers. R1 and R4 set the bias point
for the internal IF amplifiers.
Default Conditions
C1, C8, C12, C21 = 150 pF (Size 0402),
C10 = 4.7 μF (Size 3216),
C13, C15, C18 = 0.1 μF (Size 0402)
C22, C23, C24, C25, C26 = 10 pF (Size 0402)
Z1, Z3 = open (Size 0402),
Z2, Z4 = open (Size 0402),
C2, C7 = 10 pF (Size 0402),
C3, C6 = 0.01 μF (Size 0402),
C9, C11 = 8 pF (Size 0402)
T1, T2 = TC4-1T+ (Mini-Circuits),
C17, C19, C20, C29 to C33 = 0.001 μF (Size 0402),
C27, C28 = 150 pF (Size 0402),
L1, L2, L4, L5 = 330 nH (Size 0805),
R3, R6, R9, R10 = 0 Ω (Size 0402)
C14, C16 = 10 pF (Size 0402),
R15 = 10 kΩ (Size 0402),
LOSW = 2-pin shunt
R19 = 10 kΩ (Size 0402),
PWDN = 2-pin shunt
R1, R4 = 1.3 kΩ (Size 0402),
R2, R5 = 1 kΩ (Size 0402),
R7, R8, R11 = 0 Ω (Size 0402),
R12, R13, R14 = open (Size 0402),
R16 = 10 kΩ (Size 0402),
R17 = 15 kΩ (Size 0402),
C34 = 1 nF (Size 0402)
07885-056
R1, R2, R4, R5, R7,
R8, R11 to
R14, R16, R17, C34
Description
Power Supply Decoupling. Nominal supply decoupling consists of a
0.01 μF capacitor to ground in parallel with 10 pF capacitors to
ground positioned as close to the device as possible.
07885-057
Components
C1, C8, C10, C12,
C13, C15, C18,
C21, C22, C23,
C24, C25, C26
Z1 to Z4, C2, C3,
C6, C7, C9, C11
Figure 55. Evaluation Board Top Layer
Figure 56. Evaluation Board Bottom Layer
Rev. 0 | Page 22 of 24
ADL5358
OUTLINE DIMENSIONS
0.60 MAX
6.00
BSC SQ
TOP
VIEW
5.75
BSC SQ
0.50
BSC
SEATING
PLANE
12° MAX
3.85
3.70 SQ
3.55
(BOTTOM VIEW)
19
18
10
9
0.20 MIN
4.00
REF
0.80 MAX
0.65 TYP
0.35
0.28
0.23
PIN 1
INDICATOR
1
EXPOSED
PAD
0.75
0.60
0.50
1.00
0.85
0.80
36
28
27
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 REF
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-1
050808-D
PIN 1
INDICATOR
0.60 MAX
Figure 57. 36-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
6mm × 6 mm Body, Very Thin Quad (CP-36-1)
Dimensions shown in millimeters
ORDERING GUIDE
Model
ADL5358ACPZ-R2 1
ADL5358ACPZ-R71
ADL5358-EVALZ1
1
Temperature Range
−40°C to +85°C
−40°C to +85°C
Package Description
36-Lead LFCSP_VQ
36-Lead LFCSP_VQ
Evaluation Board
Z = RoHS Compliant Part.
Rev. 0 | Page 23 of 24
Package Option
CP-36-1
CP-36-1
ADL5358
NOTES
©2009 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D07885-0-11/09(0)
Rev. 0 | Page 24 of 24
Similar pages