C2M0080170P Silicon Carbide Power MOSFET TM C2M MOSFET Technology VDS 1700 V ID @ 25˚C 40 A RDS(on) 80 mΩ N-Channel Enhancement Mode Features • • • • • • Package Optimized package with separate driver source pin 8mm of creepage distance between drain and source High blocking voltage with low On-resistance High speed switching with low capacitances Easy to parallel and simple to drive Halogen Free, RoHS compliant TAB Drain Benefits • • • • • Drain (Pin 1, TAB) Reduce switching losses and minimize gate ringing Higher system efficiency Reduced cooling requirements Increased power density Increased system switching frequency 1 D 2 3 4 S S G Gate (Pin 4) Applications • • • • Driver Source (Pin 3) 1500V Solar Inverters Switch Mode Power Supplies High voltage DC/DC Converters Capacitor discharge Power Source (Pin 2) Part Number Package Marking C2M0080170P TO-247-4 Plus C2M0080170P Maximum Ratings (TC = 25 ˚C unless otherwise specified) Symbol Parameter Value Unit Test Conditions Note VDSmax Drain - Source Voltage 1700 V VGS = 0 V, ID = 100 μA VGSmax Gate - Source Voltage -10/+25 V AC (f >1 Hz) Note: 1 VGSop Gate - Source Voltage -5/+20 V Static Note: 2 VGS = 20 V, TC = 25˚C Fig. 19 ID ID(pulse) PD TJ , Tstg TL Continuous Drain Current 27 A VGS = 20 V, TC = 100˚C Pulsed Drain Current 80 A Pulse width tP limited by Tjmax Fig. 22 Power Dissipation 277 W TC=25˚C, TJ = 150 ˚C Fig. 20 -55 to +150 ˚C 260 ˚C Operating Junction and Storage Temperature Solder Temperature Note (1): When using MOSFET Body Diode VGSmax = -5V/+25V Note (2): MOSFET can also safely operate at 0/+20V 1 40 C2M0080170P Rev. A, 05-2018 1.6mm (0.063”) from case for 10s Electrical Characteristics (TC = 25˚C unless otherwise specified) Symbol Parameter V(BR)DSS Drain-Source Breakdown Voltage VGS(th) Gate Threshold Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate-Source Leakage Current RDS(on) Min. Typ. 1700 2.0 80 Drain-Source On-State Resistance Input Capacitance 2250 Coss Output Capacitance 105 Crss Reverse Transfer Capacitance 4 Eoss Coss Stored Energy 65 EON Turn-On Switching Energy (SiC Diode FWD) 0.3 EOFF Turn Off Switching Energy (SiC Diode FWD) 0.1 EON Turn-On Switching Energy (Body Diode FWD) 1.1 EOFF Turn Off Switching Energy (Body Diode FWD) 0.1 td(on) Turn-On Delay Time 25 Rise Time 9 Turn-Off Delay Time 34 Fall Time 18 Internal Gate Resistance 2 Qgs Gate to Source Charge 28 Qgd Gate to Drain Charge 33 Qg Total Gate Charge 120 tf RG(int) VDS = VGS, ID = 10 mA V VDS = VGS, ID = 10 mA, TJ = 150ºC 100 μA VDS = 1700 V, VGS = 0 V 250 nA VGS = 20 V, VDS = 0 V 125 9.73 Ciss td(off) V 4 150 Transconductance Test Conditions VGS = 0 V, ID = 100 μA 2.0 1 Unit V 2.6 gfs tr Max. mΩ S 10.07 VGS = 20 V, ID = 28 A VGS = 20 V, ID = 28 A, TJ = 150ºC VDS= 20 V, IDS= 20 A VDS= 20 V, IDS= 20 A, TJ = 150ºC VGS = 0 V pF VDS = 1000 V Note Fig. 11 Fig. 4, 5, 6 Fig. 7 Fig. 17, 18 f = 1 MHz μJ VAC = 25 mV Fig. 16 mJ VDS = 1200 V, VGS = -5/20 V, ID = 20A, RG(ext) = 2.5Ω, L= 200 μH, TJ = 150ºC, Using SiC Diode as FWD Fig. 26, 29b mJ VDS = 1200 V, VGS = -5/20 V, ID = 20A, RG(ext) = 2.5Ω, L= 200 μH, TJ = 150ºC, Using MOSFET as FWD Fig. 26, 29a ns VDD = 1200 V, VGS = -5/20 V ID = 20 A, RG(ext) = 2.5 Ω, Timing relative to VDS Inductive load Fig. 27 Ω f = 1 MHz, VAC = 25 mV nC VDS = 1200 V, VGS = -5/20 V ID = 20 A Per IEC60747-8-4 pg 21 Fig. 12 Reverse Diode Characteristics Symbol VSD Parameter Typ. Diode Forward Voltage Max. 4.1 3.6 28 Unit Test Conditions Note V VGS = - 5 V, ISD = 10 A V VGS = - 5 V, ISD = 10 A, TJ = 150 °C A TC = 25˚C, VGS = - 5 V Note 1 VGS = - 5 V, ISD = 20 A, VR = 1200 V dif/dt = 2600 A/µs, TJ = 150 °C Note 1 IS Continuous Diode Forward Current trr Reverse Recover time 36 ns Qrr Reverse Recovery Charge 1 µC Irrm Peak Reverse Recovery Current 38 A Fig. 8, 9, 10 Thermal Characteristics Parameter Typ. Max. RθJC Thermal Resistance from Junction to Case 0.37 0.45 RθJA Thermal Resistance From Junction to Ambient Symbol 2 C2M0080170P Rev. A, 05-2018 40 Unit °C/W Test Conditions Note Fig. 21 Typical Performance 100 100 Conditions: TJ = -55 °C tp = < 200 µs VGS = 18V VGS = 20V VGS = 16V VGS = 20V VGS = 18V VGS = 12V 60 40 VGS = 10V 20 0 VGS = 12V 60 VGS = 10V 40 20 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 Drain-Source Voltage, VDS (V) 3.0 Conditions: TJ = 150 °C tp = < 200 µs Drain-Source Current, IDS (A) 80 10.0 12.5 15.0 17.5 20.0 Figure 2. Output Characteristics TJ = 25 ºC VGS = 14V VGS = 12V VGS = 10V 60 Conditions: IDS = 28 A VGS = 20 V tp < 200 µs 2.5 VGS = 16V VGS = 18V VGS = 20V 40 20 On Resistance, RDS On (P.U.) 100 7.5 Drain-Source Voltage, VDS (V) Figure 1. Output Characteristics TJ = -55 ºC 2.0 1.5 1.0 0.5 0.0 0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 -50 20.0 -25 0 Figure 3. Output Characteristics TJ = 150 ºC 320 200 160 On Resistance, RDS On (mOhms) 240 200 TJ = 150 °C 120 TJ = 25 °C 80 TJ = -55 °C 40 75 100 125 150 Conditions: IDS = 28 A tp < 200 µs 180 160 50 Figure 4. Normalized On-Resistance vs. Temperature Conditions: VGS = 20 V tp < 200 µs 280 25 Junction Temperature, TJ (°C) Drain-Source Voltage, VDS (V) On Resistance, RDS On (mOhms) VGS = 14V 0 0.0 140 120 VGS = 12 V 100 VGS = 14 V 80 VGS = 16 V 60 VGS = 20 V 40 VGS = 18 V 20 0 0 0 10 20 30 40 50 60 70 Drain-Source Current, IDS (A) Figure 5. On-Resistance vs. Drain Current For Various Temperatures 3 VGS = 16V 80 Drain-Source Current, IDS (A) 80 Drain-Source Current, IDS (A) Conditions: TJ = 25 °C tp = < 200 µs VGS = 14V C2M0080170P Rev. A, 05-2018 80 90 -50 -25 0 25 50 75 100 Junction Temperature, TJ (°C) Figure 6. On-Resistance vs. Temperature For Various Gate Voltage 125 150 Typical Performance 100 -7 Conditions: VDS = 20 V tp < 200 µs 90 -4 -3 -2 -1 0 0 70 TJ = 25 °C 60 50 TJ = -55 °C TJ = 150 °C -10 Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) -5 VGS = -5 V 80 40 -6 30 20 VGS = 0 V -20 -30 -40 VGS = -2 V -50 -60 -70 10 Conditions: TJ = -55°C tp < 200 µs 0 0 2 4 6 8 10 12 14 16 18 20 Figure 7. Transfer Characteristic for Various Junction Temperatures -6 -5 -4 -3 -2 Figure 8. Body Diode Characteristic at -55 ºC -1 0 -7 -6 -5 -4 -3 -2 -1 0 0 0 -10 VGS = 0 V -20 -30 VGS = -2 V -40 -50 -60 -10 VGS = -5 V Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) VGS = -5 V VGS = 0 V -20 -30 VGS = -2 V -40 -50 -60 -70 Conditions: TJ = 25°C tp < 200 µs Drain-Source Voltage VDS (V) -70 Conditions: TJ = 150°C tp < 200 µs -80 -90 Drain-Source Voltage VDS (V) 3.0 Gate-Source Voltage, VGS (V) Threshold Voltage, Vth (V) 1.5 1.0 0.5 0.0 0 25 50 75 100 125 Junction Temperature TJ (°C) Figure 11. Threshold Voltage vs. Temperature 4 C2M0080170P Rev. A, 05-2018 Conditions: IDS = 20 A IGS = 50 mA VDS = 1200 V TJ = 25 °C 20 2.0 -25 -90 25 Conditons VGS = VDS IDS = 5 mA 2.5 -80 Figure 10. Body Diode Characteristic at 150 ºC Figure 9. Body Diode Characteristic at 25 ºC -50 -90 Drain-Source Voltage VDS (V) Gate-Source Voltage, VGS (V) -7 -80 150 15 10 5 0 -5 0 25 50 75 100 Gate Charge, QG (nC) Figure 12. Gate Charge Characteristics 125 150 Typical Performance -6 -5 -4 -3 -2 -1 0 -6 -5 -4 -3 -2 -1 0 0 Drain-Source Current, IDS (A) -20 VGS = 5 V -30 VGS = 10 V -40 VGS = 15 V -50 VGS = 20 V -60 -20 VGS = 5 V -40 -4 -3 -2 -70 Conditions: TJ = 25 °C tp < 200 µs -90 Drain-Source Voltage VDS (V) -80 -90 Figure 14. 3rd Quadrant Characteristic at 25 ºC 70 0 -1 -60 VGS = 20 V Figure 13. 3rd Quadrant Characteristic at -55 ºC -5 -50 VGS = 15 V -80 Drain-Source Voltage VDS (V) -6 -30 VGS = 10 V -70 Conditions: TJ = -55 °C tp < 200 µs -10 VGS = 0 V Drain-Source Current, IDS (A) -10 VGS = 0 V 0 0 -20 VGS = 5 V -30 VGS = 10 V VGS = 20 V -40 VGS = 15 V -50 -60 Conditions: TJ = 150 °C tp < 200 µs Drain-Source Voltage VDS (V) Stored Energy, EOSS (µJ) Drain-Source Current, IDS (A) 60 -10 VGS = 0 V 50 40 30 20 -70 10 -80 0 0 -90 200 Figure 15. 3rd Quadrant Characteristic at 150 ºC 10000 1000 Capacitance (pF) Capacitance (pF) 1000 1200 Ciss Coss 100 Crss 1000 Coss 100 10 1 Crss 1 0 50 100 Drain-Source Voltage, VDS (V) 150 Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V) 5 800 Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz Ciss 10 600 Figure 16. Output Capacitor Stored Energy Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz 10000 400 Drain to Source Voltage, VDS (V) C2M0080170P Rev. A, 05-2018 200 0 100 200 300 400 500 600 Drain-Source Voltage, VDS (V) 700 Figure 18. Capacitances vs. Drain-Source Voltage (0 - 1000V) 800 900 Typical Performance 300 Conditions: TJ ≤ 150 °C 40 Maximum Dissipated Power, Ptot (W) Drain-Source Continous Current, IDS (DC) (A) 45 35 30 25 20 15 10 5 250 200 150 100 0 -55 -30 -5 20 45 70 95 120 Conditions: TJ ≤ 150 °C 50 0 145 -55 Case Temperature, TC (°C) -30 -5 20 45 70 95 120 145 Case Temperature, TC (°C) Figure 19. Continuous Drain Current Derating vs. Case Temperature Figure 20. Maximum Power Dissipation Derating vs. Case Temperature 100.00 10 µs Limited by RDS On 0.5 100E-3 Drain-Source Current, IDS (A) Junction To Case Impedance, ZthJC (oC/W) 1 0.3 0.1 0.05 0.02 10E-3 0.01 SinglePulse 1E-3 1E-6 10E-6 100E-6 1E-3 10E-3 Time, tp (s) 100E-3 100 ms 1.00 0.10 Conditions: TJ = 25 °C VDD = 1200 V RG(ext) = 2.5 Ω VGS = -5V/+20 V FWD = C2M0080170P L = 200 μH 1.2 ETotal EOn 0.4 10 1000 0.2 ETotal 0.9 EOn 0.6 0.3 EOff EOff 0.0 0.0 0 10 20 30 40 Drain to Source Current, IDS (A) Figure 23. Clamped Inductive Switching Energy vs. Drain Current (VDD = 900V) 6 100 Figure 22. Safe Operating Area Switching Loss (uJ) Switching Loss (mJ) 0.6 1 Drain-Source Voltage, VDS (V) 1.5 Conditions: TJ = 25 °C VDD = 900 V RG(ext) = 2.5 Ω VGS = -5V/+20 V FWD = C2M0080170P L = 200 μH Conditions: TC = 25 °C D = 0, Parameter: tp 0.1 1 Figure 21. Transient Thermal Impedance (Junction - Case) 0.8 1 ms 10.00 0.01 100E-6 100 µs C2M0080170P Rev. A, 05-2018 50 0 10 20 30 40 Drain to Source Current, IDS (A) Figure 24. Clamped Inductive Switching Energy vs. Drain Current (VDD = 1200V) 50 Typical Performance 1.5 Switching Loss (mJ) 1.5 Conditions: TJ = 25 °C VDD = 1200 V IDS = 20 A VGS = -5V/+20 V FWD = C2M0080170P L = 200 μH 1.2 Conditions: IDS = 20 A VDD = 1200 V RG(ext) = 2.5 Ω VGS = -5V/+20 V FWD = C3M0080170P (- - -)FWD = C3D10170H L = 200 μH 1.2 ETotal Switching Loss (mJ) 1.8 0.9 EOn 0.6 EOn 0.6 ETotal EOn 0.3 EOff 0.3 0.9 ETotal EOff 0.0 0.0 0 5 10 15 20 25 External Gate Resistor RG(ext) (Ohms) Conditions: TJ = 25 °C VDD = 1200 V IDS = 20 A VGS = -5V/+20 V FWD = C2M0080170P L = 200 μH Switching Times (ns) 80 25 50 75 100 125 Figure 26. Clamped Inductive Switching Energy vs. Temperature td(off) 60 td(on) 40 tf 20 tr 0 0 5 10 15 20 25 External Gate Resistor RG(ext) (Ohms) Figure 27. Switching Times vs. RG(ext) 7 C2M0080170P Rev. A, 05-2018 150 Junction Temperature, TJ (°C) Figure 25. Clamped Inductive Switching Energy vs. RG(ext) 100 0 Figure 28. Switching Times Definition 175 Test Circuit Schematic Figure 29a. Clamped Inductive Switching Test Circuit using MOSFET intristic body diode Figure 29b. Clamped Inductive Switching Test Circuit using SiC Schottky diode 8 C2M0080170P Rev. A, 05-2018 Package Dimensions Package TO-247-4L Plus Semiconductor ASE Advanced Engineering Weihai, Inc. PACKAGE OUTLINE DWG NO. 98W0004TO005 ISSUE A DATE May.20, 2016 NOTE ; 1. ALL METAL SURFACES: TIN PLATED,EXCE 2. DIMENSIONING & TOLERANCEING CONFI ASME Y14.5M-1994. 3. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. E MILLIMETERS SYM E1 E4 A A1 A2 b' b b1 b2 b3 b4 b5 b6 c' c D D1 D2 E E1 E2 E3 E4 e e1 N L L1 L2 Q T W X E2 E3 BASE METAL SECTION "F-F", "G-G" AND "H-H" SCALE: NONE TITLE: 9 TO-247 Plus 4 LD C2M0080170P Rev. A, 05-2018 COMPANY ASE Weihai SHEET 1 OF 3 TITLE: MIN MAX 4.83 5.21 2.29 2.54 1.91 2.16 1.07 1.28 1.07 1.33 2.39 2.94 2.39 2.84 1.07 1.60 1.07 1.50 2.39 2.69 2.39 2.64 0.55 0.65 0.55 0.68 23.30 23.60 16.25 17.65 0.95 1.25 15.75 16.13 13.10 14.15 3.68 5.10 1.00 1.90 12.38 13.43 2.54 BSC 5.08 BSC 4 17.31 17.82 3.97 4.37 2.35 2.65 5.49 6.00 17.5° REF. 3.5 ° REF. 4 ° REF. TO-247 Plus 4LD Notes • RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. • REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. • This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems. Related Links • • • C2M PSPICE Models: http://wolfspeed.com/power/tools-and-support SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support Copyright © 2018 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. 10 C2M0080170P Rev. A, 05-2018 Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power