ON MC100EP51DR2 3.3v / 5v ecl d flip-flop with reset and differential clock Datasheet

MC10EP51, MC100EP51
3.3V / 5VECL D Flip-Flop
with Reset and Differential
Clock
The MC10/100EP51 is a differential clock D flip–flop with reset.
The device is functionally equivalent to the EL51 and LVEL51
devices.
The reset input is an asynchronous, level triggered signal. Data
enters the master portion of the flip–flop when the clock is LOW and is
transferred to the slave, and thus the outputs, upon a positive transition
of the clock. The differential clock inputs of the EP51 allow the device
to be used as a negative edge triggered flip-flop.
The differential input employs clamp circuitry to maintain stability
under open input conditions. When left open, the CLK input will be
pulled down to VEE and the CLK input will be biased at VCC/2.
The 100 Series contains temperature compensation.
• 350 ps Typical Propagation Delay
• Maximum Frequency > 3 GHz Typical
• PECL Mode Operating Range: VCC = 3.0 V to 5.5 V
•
http://onsemi.com
MARKING DIAGRAMS*
8
8
8
HEP51
ALYW
1
SO–8
D SUFFIX
CASE 751
1
1
8
8
1
TSSOP–8
DT SUFFIX
CASE 948R
with VEE = 0 V
NECL Mode Operating Range: VCC = 0 V
with VEE = –3.0 V to –5.5 V
Open Input Default State
8
KP51
ALYW
HP51
ALYW
1
1
H = MC10
K = MC100
A = Assembly Location
•
• Safety Clamp on Inputs
KEP51
ALYW
L = Wafer Lot
Y = Year
W = Work Week
*For additional information, see Application Note
AND8002/D
ORDERING INFORMATION
Device
Package
Shipping
MC10EP51D
SO–8
98 Units/Rail
MC10EP51DR2
SO–8
2500 Tape & Reel
MC100EP51D
SO–8
98 Units/Rail
MC100EP51DR2
SO–8
2500 Tape & Reel
MC10EP51DT
TSSOP–8
100 Units/Rail
MC10EP51DTR2
TSSOP–8
2500 Tape & Reel
MC100EP51DT
TSSOP–8
100 Units/Rail
MC100EP51DTR2 TSSOP–8
 Semiconductor Components Industries, LLC, 2001
April, 2001 – Rev. 3
1
2500 Tape & Reel
Publication Order Number:
MC10EP51/D
MC10EP51, MC100EP51
PIN DESCRIPTION
RESET
1
8
PIN
VCC
R
D
2
7
D
Q
Flip-Flop
CLK
3
6
Q
FUNCTION
CLK*, CLK*
ECL Clock Inputs
Reset*
ECL Asynchronous Reset
D*
ECL Data Input
Q, Q
ECL Data Outputs
VCC
Positive Supply
VEE
Negative Supply
* Pins will default LOW when left open.
TRUTH TABLE
CLK
4
5
Figure 1. 8–Lead Pinout (Top View) and Logic Diagram
Q
L
H
L
CLK
Z
Z
X
R
L
L
H
D
L
H
X
VEE
Z = LOW to HIGH Transition
ATTRIBUTES
Characteristics
Value
Internal Input Pulldown Resistor
75 k
Internal Input Pullup Resistor
ESD Protection
N/A
Human Body Model
Machine Model
Charged Device Model
> 2 kV
> 200 V
> 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1.)
Level 1
Flammability Rating
Oxygen Index
UL–94 code V–0 A 1/8”
28 to 34
Transistor Count
165 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
1. For additional information, see Application Note AND8003/D.
MAXIMUM RATINGS (Note 2.)
Symbol
Parameter
Condition 1
Condition 2
Rating
Units
6
V
–6
V
6
–6
V
V
50
100
mA
mA
VCC
PECL Mode Power Supply
VEE = 0 V
VEE
NECL Mode Power Supply
VCC = 0 V
VI
PECL Mode In
Input
ut Voltage
NECL Mode Input Voltage
VEE = 0 V
VCC = 0 V
Iout
Output Current
Continuous
Surge
TA
Operating Temperature Range
–40 to +85
°C
Tstg
Storage Temperature Range
–65 to +150
°C
θJA
Thermal Resistance (Junction to Ambient)
0 LFPM
500 LFPM
8 SOIC
8 SOIC
190
130
°C/W
°C/W
θJC
Thermal Resistance (Junction to Case)
std bd
8 SOIC
41 to 44
°C/W
θJA
Thermal Resistance (Junction to Ambient)
0 LFPM
500 LFPM
8 TSSOP
8 TSSOP
185
140
°C/W
°C/W
θJC
Thermal Resistance (Junction to Case)
std bd
8 TSSOP
41 to 44
°C/W
Tsol
Wave Solder
<2 to 3 sec @ 248°C
265
°C
2. Maximum Ratings are those values beyond which device damage may occur.
http://onsemi.com
2
VI VCC
VI VEE
MC10EP51, MC100EP51
10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3.)
–40°C
Symbol
Characteristic
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
26
34
44
26
35
45
28
37
47
mA
IEE
Power Supply Current
VOH
Output HIGH Voltage (Note 4.)
2165
2290
2415
2230
2355
2480
2290
2415
2540
mV
VOL
Output LOW Voltage (Note 4.)
1365
1490
1615
1430
1555
1680
1490
1615
1740
mV
VIH
Input HIGH Voltage (Single Ended)
2090
2415
2155
2480
2215
2540
mV
VIL
Input LOW Voltage (Single Ended)
1365
1690
1430
1755
1490
1815
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential) (Note 5.)
2.0
3.3
2.0
3.3
2.0
3.3
V
IIH
Input HIGH Current
150
µA
IIL
Input LOW Current
150
150
0.5
0.5
µA
0.5
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to –2.2 V.
4. All loading with 50 ohms to VCC–2.0 volts.
5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6.)
–40°C
Symbol
Characteristic
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
26
34
44
26
35
45
28
37
47
mA
Output HIGH Voltage (Note 7.)
3865
3990
4115
3930
4055
4180
3990
4115
4240
mV
VOL
Output LOW Voltage (Note 7.)
3065
3190
3315
3130
3255
3380
3190
3315
3440
mV
VIH
Input HIGH Voltage (Single Ended)
3790
4115
3855
4180
3915
4240
mV
VIL
Input LOW Voltage (Single Ended)
3065
3390
3130
3455
3190
3515
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential) (Note 8.)
2.0
5.0
2.0
5.0
2.0
5.0
V
IIH
Input HIGH Current
150
µA
IIL
Input LOW Current
IEE
Power Supply Current
VOH
150
150
0.5
0.5
µA
0.5
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to –0.5 V.
7. All loading with 50 ohms to VCC–2.0 volts.
8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = –5.5 V to –3.0 V (Note 9.)
–40°C
Symbol
Characteristic
Min
25°C
Typ
Max
Min
Typ
85°C
Max
Min
Typ
Max
Unit
IEE
Power Supply Current
26
34
44
26
35
45
28
37
47
mA
VOH
Output HIGH Voltage (Note 10.)
–1135
–1010
–885
–1070
–945
–820
–1010
–885
–760
mV
VOL
Output LOW Voltage (Note 10.)
–1935
–1810
–1685
–1870
–1745
–1620
–1810
–1685
–1560
mV
VIH
Input HIGH Voltage (Single Ended)
–1210
–885
–1145
–820
–1085
–760
mV
VIL
Input LOW Voltage (Single Ended)
–1935
–1610
–1870
–1545
–1810
–1485
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential) (Note 11.)
0.0
V
IIH
Input HIGH Current
150
µA
IIL
Input LOW Current
VEE+2.0
0.0
VEE+2.0
150
0.5
0.0
VEE+2.0
150
0.5
0.5
µA
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
9. Input and output parameters vary 1:1 with VCC.
10. All loading with 50 ohms to VCC–2.0 volts.
11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
http://onsemi.com
3
MC10EP51, MC100EP51
100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12.)
–40°C
Symbol
Characteristic
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
26
34
44
26
35
45
28
37
47
mA
IEE
Power Supply Current
VOH
Output HIGH Voltage (Note 13.)
2155
2280
2405
2155
2280
2405
2155
2280
2405
mV
VOL
Output LOW Voltage (Note 13.)
1355
1480
1605
1355
1480
1605
1355
1480
1605
mV
VIH
Input HIGH Voltage (Single Ended)
2075
2420
2075
2420
2075
2420
mV
VIL
Input LOW Voltage (Single Ended)
1355
1675
1355
1675
1355
1675
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential) (Note 14.)
2.0
3.3
2.0
3.3
2.0
3.3
V
IIH
Input HIGH Current
150
µA
IIL
Input LOW Current
150
150
0.5
0.5
µA
0.5
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to –2.2 V.
13. All loading with 50 ohms to VCC–2.0 volts.
14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15.)
–40°C
Symbol
Characteristic
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
26
34
44
26
35
45
28
37
47
mA
Output HIGH Voltage (Note 16.)
3855
3980
4105
3855
3980
4105
3855
3980
4105
mV
VOL
Output LOW Voltage (Note 16.)
3055
3180
3305
3055
3180
3305
3055
3180
3305
mV
VIH
Input HIGH Voltage (Single Ended)
3775
4120
3775
4120
3775
4120
mV
VIL
Input LOW Voltage (Single Ended)
3055
3375
3055
3375
3055
3375
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential) (Note 17.)
2.0
5.0
2.0
5.0
2.0
5.0
V
IIH
Input HIGH Current
150
µA
IIL
Input LOW Current
IEE
Power Supply Current
VOH
150
150
0.5
0.5
µA
0.5
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to –0.5 V.
16. All loading with 50 ohms to VCC–2.0 volts.
17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = –5.5 V to –3.0 V (Note 18.)
–40°C
Symbol
Characteristic
Min
25°C
Typ
Max
Min
Typ
85°C
Max
Min
Typ
Max
Unit
IEE
Power Supply Current
26
34
44
26
35
45
28
37
47
mA
VOH
Output HIGH Voltage (Note 19.)
–1145
–1020
–895
–1145
–1020
–895
–1145
–1020
–895
mV
VOL
Output LOW Voltage (Note 19.)
–1945
–1820
–1695
–1945
–1820
–1695
–1945
–1820
–1695
mV
VIH
Input HIGH Voltage (Single Ended)
–1225
–880
–1225
–880
–1225
–880
mV
VIL
Input LOW Voltage (Single Ended)
–1945
–1625
–1945
–1625
–1945
–1625
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential) (Note 20.)
0.0
V
IIH
Input HIGH Current
150
µA
IIL
Input LOW Current
VEE+2.0
0.0
VEE+2.0
150
0.5
0.0
VEE+2.0
150
0.5
0.5
µA
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
18. Input and output parameters vary 1:1 with VCC.
19. All loading with 50 ohms to VCC–2.0 volts.
20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
http://onsemi.com
4
MC10EP51, MC100EP51
AC CHARACTERISTICS VCC = 0 V; VEE = –3.0 V to –5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21.)
–40°C
Symbol
Characteristic
Min
Typ
25°C
Max
Min
>3
Typ
85°C
Max
Min
>3
Typ
Max
fmax
Maximum Frequency
(See Figure 2. Fmax/JITTER)
tPLH,
tPHL
Propagation Delay to Output Differential
CLK, CLK to Q, Q
10
100
250
275
300
340
350
425
270
300
320
375
370
450
300
350
350
425
420
500
RESET to Q, Q
300
380
450
325
400
475
350
425
500
Reset Recovery
150
150
tS
tH
Setup Time
Hold Time
100
100
100
100
tPW
Minimum Pulse Width
500
tr
tf
Output Rise/Fall Times
(20% – 80%)
150
ps
80
40
100
100
ps
440
500
ps
RESET
Cycle–to–Cycle Jitter
(See Figure 2. Fmax/JITTER)
500
440
.2
<1
120
170
.2
<1
130
180
.2
<1
150
200
80
100
11
Measured
Simulated
900
10
9
800
8
700
7
600
6
500
5
ÉÉ
ÉÉ
400
4
300
3
200
2
100
0
1000
JITTEROUT ps (RMS)
1000
ÉÉÉÉÉ
ÉÉÉÉÉ
ps
ps
70
1100
VOUTpp (mV)
440
Q, Q
21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V CC–2.0 V.
0
GHz
ps
tRR
tJITTER
>3
Unit
1
(JITTER)
2000
3000
4000
FREQUENCY (MHz)
Figure 2. Fmax/Jitter
http://onsemi.com
5
5000
6000
MC10EP51, MC100EP51
Q
D
Receiver
Device
Driver
Device
Qb
Db
50 50 V TT
V TT = V CC – 2.0 V
Figure 3. Typical Termination for Output Driver and Device Evaluation
(See Application Note AND8020 – Termination of ECL Logic Devices.)
Resource Reference of Application Notes
AN1404
–
ECLinPS Circuit Performance at Non–Standard VIH Levels
AN1405
–
ECL Clock Distribution Techniques
AN1406
–
Designing with PECL (ECL at +5.0 V)
AN504
–
Metastability and the ECLinPS Family
AN1568
–
Interfacing Between LVDS and ECL
AN1650
–
Using Wire–OR Ties in ECLinPS Designs
AN1672
–
The ECL Translator Guide
AND8001
–
Odd Number Counters Design
AND8002
–
Marking and Date Codes
AND8009
–
ECLinPS Plus Spice I/O Model Kit
AND8020
–
Termination of ECL Logic Devices
For an updated list of Application Notes, please see our website at http://onsemi.com.
http://onsemi.com
6
MC10EP51, MC100EP51
PACKAGE DIMENSIONS
SO–8
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751–07
ISSUE W
–X–
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION.
A
8
5
0.25 (0.010)
S
B
1
M
Y
M
4
K
–Y–
G
C
N
DIM
A
B
C
D
G
H
J
K
M
N
S
X 45 SEATING
PLANE
–Z–
0.10 (0.004)
H
M
D
0.25 (0.010)
M
Z Y
X
S
J
S
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0
8
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0
8
0.010
0.020
0.228
0.244
TSSOP–8
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948R–02
ISSUE A
8x
0.15 (0.006) T U
K REF
0.10 (0.004)
S
2X
L/2
8
1
PIN 1
IDENT
S
T U
V
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
5. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE -W-.
S
5
0.25 (0.010)
B
–U–
L
0.15 (0.006) T U
M
M
4
A
–V–
F
DETAIL E
C
0.10 (0.004)
–T– SEATING
PLANE
D
–W–
G
DETAIL E
http://onsemi.com
7
DIM
A
B
C
D
F
G
K
L
M
MILLIMETERS
MIN
MAX
2.90
3.10
2.90
3.10
0.80
1.10
0.05
0.15
0.40
0.70
0.65 BSC
0.25
0.40
4.90 BSC
0
6
INCHES
MIN
MAX
0.114
0.122
0.114
0.122
0.031
0.043
0.002
0.006
0.016
0.028
0.026 BSC
0.010
0.016
0.193 BSC
0
6
MC10EP51, MC100EP51
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–[email protected]
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–[email protected]
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: [email protected]
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–[email protected]
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–[email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland
For additional information, please contact your local
Sales Representative.
http://onsemi.com
8
MC10EP51/D
Similar pages