AOT3N50/AOTF3N50 500V, 3A N-Channel MOSFET General Description Features The AOT3N50 & AOTF3N50 have been fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications. By providing low RDS(on), Ciss and Crss along with guaranteed avalanche capability these parts can be adopted quickly into new and existing offline power supply designs. VDS (V) = 600V @ 150°C ID = 3A RDS(ON) < 3Ω Top View TO-220 G D G S D 100% UIS Tested! 100% R g Tested! TO-220F D G S S Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter AOT3N50 Symbol AOTF3N50 VDS Drain-Source Voltage 500 VGS ±30 Gate-Source Voltage TC=25°C Continuous Drain Current (VGS = 10V) TC=100°C 3* 1.9* 3 ID 1.9 Units V V A C IDM C, G IAR 2 A EAR 60 mJ Single pulsed avalanche energy G Peak diode recovery dv/dt TC=25°C Power Dissipation B Derate above 25 oC EAS dv/dt 120 5 mJ V/ns W Junction and Storage Temperature Range Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds Thermal Characteristics Parameter TJ, TSTG Pulsed Drain Current Avalanche Current Repetitive avalanche energy C, G Maximum Junction-to-Ambient A,D A 9 PD 31 0.25 -50 to 150 W/ oC °C 300 °C TL Symbol RθJA RθCS Maximum Case-to-Sink RθJC Maximum Junction-to-Case * Drain current limited by maximum junction temperature. Alpha & Omega Semiconductor, Ltd. 74 0.6 AOT3N50 65 AOTF3N50 65 Units 0.5 -4.0 °C/W °C/W 1.7 °C/W www.aosmd.com AOT3N50 / AOTF3N50 Electrical Characteristics (T J=25°C unless otherwise noted) Parameter Symbol STATIC PARAMETERS Conditions Min ID=250µA, VGS=0V, TJ=25°C 500 BVDSS Drain-Source Breakdown Voltage BVDSS Breakdown Voltage Temperature /∆TJ Coefficient IDSS Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS=±30V ID=250µA, VGS=0V, TJ=150°C Typ Max Units V 600 ID=250µA, VGS=0V V o V/ C 0.54 VDS=500V, VGS=0V 1 VDS=400V, TJ=125°C 10 µA ±100 nA VGS(th) Gate Threshold Voltage VDS=VGS, ID=250µA 4.1 4.7 V RDS(ON) gFS Static Drain-Source On-Resistance VGS=10V, ID=1.5A 2.3 3 Forward Transconductance VDS=40V, ID=1.5A 2.8 Ω S VSD Diode Forward Voltage IS=1A, VGS=0V Maximum Body-Diode Continuous Current 1 V IS 3 A ISM Maximum Body-Diode Pulsed Current 9 A 331 pF DYNAMIC PARAMETERS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance SWITCHING PARAMETERS Qg Total Gate Charge Qgs Gate Source Charge VGS=0V, VDS=25V, f=1MHz VGS=0V, VDS=0V, f=1MHz VGS=10V, VDS=400V, ID=3A 3.5 0.78 221 276 25 31.4 38 pF 2.1 2.6 3.0 pF 1.9 3.9 5.9 Ω 6.7 8.0 nC 1.7 2.0 nC Qgd Gate Drain Charge 2.7 3.2 nC tD(on) Turn-On DelayTime 11 13.2 ns tr Turn-On Rise Time 19 23.0 ns tD(off) Turn-Off DelayTime 20.5 24.6 ns tf Turn-Off Fall Time 15 18.0 ns 134 161 0.89 1.1 ns µC trr Qrr VGS=10V, VDS=250V, ID=3A, RG=25Ω IF=3A,dI/dt=100A/µs,VDS=100V Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge IF=3A,dI/dt=100A/µs,VDS=100V A. The value of R θJA is measured with the device in a still air environment with T A =25°C. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. L=60mH, IAS=2A, VDD=50V, RG=25Ω, Starting TJ=25°C Rev 2. Dec. 2008 THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Alpha & Omega Semiconductor, Ltd. www.aosmd.com AOT3N50 / AOTF3N50 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 6 10 10V 6.5V 4 6V 3 ID(A) ID (A) -55°C VDS=40V 5 125°C 1 2 25°C VGS=5.5V 1 0 0.1 0 5 10 15 20 25 30 2 4 VDS (Volts) Fig 1: On-Region Characteristics 8 200 16 3 Normalized On-Resistance 4.0 3.0 VGS=10V 2.0 10 VGS(Volts) Figure 2: Transfer Characteristics 5.0 RDS(ON) (mΩ) 6 2.5 VGS=10V ID=1.5A 2 1.5 1 0.5 1.0 0 1 2 3 4 5 6 0 -100 7 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage -50 0 1.2 100 150 200 1.0E+02 1.0E+01 125°C 1.1 1.0E+00 IS (A) BVDSS (Normalized) 50 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 1 1.0E-01 25°C 1.0E-02 0.9 1.0E-03 0.8 -100 1.0E-04 -50 0 50 100 150 200 TJ (oC) Figure 5: Break Down vs. Junction Temperature Alpha & Omega Semiconductor, Ltd. 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics www.aosmd.com AOT3N50 / AOTF3N50 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15 1000 Capacitance (pF) VGS (Volts) Ciss VDS=400V ID=3A 12 9 6 100 Coss 10 Crss 3 0 1 0 2 4 6 8 10 0.1 Qg (nC) Figure 7: Gate-Charge Characteristics 10 10 VDS (Volts) Figure 8: Capacitance Characteristics 10 10µs RDS(ON) limited 100µs 1ms DC 0.1 10ms 0.1s ID (Amps) RDS(ON) limited 1 100µs 1 DC 0.1 TJ(Max)=150°C TC=25°C TJ(Max)=150°C TC=25°C 0.01 100 200 16 10µs ID (Amps) 1 1ms 10ms 0.1s 1s 10s 0.01 1 10 100 1000 VDS (Volts) 1 10 100 1000 VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area for AOT3N50 (Note F) Figure 10: Maximum Forward Biased Safe Operating Area for AOTF3N50 (Note F) 3.5 Current rating ID(A) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 25 50 75 100 125 150 TCASE (°C) Figure 11: Current De-rating (Note B) Alpha & Omega Semiconductor, Ltd. www.aosmd.com AOT3N50 / AOTF3N50 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS ZθJC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=TA+PDM.ZθJC.RθJC RθJC=1.7°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD 0.01 Ton Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 T 10 100 Pulse Width (s) Figure 12: Normalized Maximum Transient Thermal Impedance for AOT3N50 (Note F) ZθJC Normalized Transient Thermal Resistance 10 1 200 16 D=Ton/T TJ,PK=TA+PDM.ZθJC.RθJC RθJC=4.0°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD 0.01 Ton Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 T 10 100 Pulse Width (s) Figure 13: Normalized Maximum Transient Thermal Impedance for AOTF3N50 (Note F) Alpha & Omega Semiconductor, Ltd. www.aosmd.com AOT3N50 / AOTF3N50 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + VDC - VDC DUT Qgs Vds Qgd - Vgs Ig Charge Res istive Switching Test Circuit & Waveforms RL Vds Vds DUT Vgs Rg + VDC 90% Vdd - 10% Vgs Vgs t d(on) tr t d(off) t on tf t off Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L EAR= 1/2 LI Vds 2 AR BVDSS Vds Id + Vgs Vgs VDC Rg - Vdd I AR Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Qrr = - Idt Vds + DUT Vds - Isd Vgs L Vgs Ig Alpha & Omega Semiconductor, Ltd. Isd + VDC - IF trr dI/dt IRM Vdd Vdd Vds www.aosmd.com